Yuan Z, Kim D, Shu S, Wu J, Guo J, Xiao L et al.. Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 285: 3815-3824

Article (PDF Available)inJournal of Biological Chemistry 285(6):3815-24 · November 2009with44 Reads
DOI: 10.1074/jbc.M109.059675 · Source: PubMed
Abstract
The protein kinase mammalian sterile 20-like kinase 1 (MST1) is a mammalian homologue of the Drosophila hippo and plays a critical role in regulation of programmed cell death. MST1 exerts pro-apoptotic function through cleavage, autophosphorylation-Thr183 and subsequent translocation to the nucleus where it phosphorylates a number of molecules, including LATS1/2, FOXO, JNK, and histone H2B. Here, we show that the cleavage of MST1 is inhibited by the phosphatidylinositol 3-kinase/Akt pathway. Akt interacts with MST1 and phosphorylates a highly conserved residue threonine 120 of MST1, which leads to inhibition of its kinase activity and nuclear translocation as well as the autophosphorylation of Thr183. Phospho-MST1-Thr120 failed to activate downstream targets FOXO3a and JNK. Further, inverse correlation between pMST1-Thr120 and pMST1-Thr183 was observed in human ovarian tumors. These findings indicate that the phosphorylation of MST1-Thr120 by Akt could be a major mechanism of regulation of the Hippo/MST1 pathway by cell survival signaling.