Article

Tobacco smoke exposure induces nicotine dependence in rats

Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, 100 S. Newell Dr., PO Box 100256, Gainesville, FL 32610, USA.
Psychopharmacology (Impact Factor: 3.88). 11/2009; 208(1):143-58. DOI: 10.1007/s00213-009-1716-z
Source: PubMed

ABSTRACT

Tobacco smoke contains nicotine and many other compounds that act in concert on the brain reward system. Therefore, animal models are needed that allow the investigation of chronic exposure to the full spectrum of tobacco smoke constituents.
The aim of these studies was to investigate if exposure to tobacco smoke leads to nicotine dependence in rats.
The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Somatic signs were recorded from a checklist of nicotine abstinence signs. Nicotine self-administration sessions were conducted to investigate if tobacco smoke exposure affects the motivation to self-administer nicotine. Nicotinic receptor autoradiography was used to investigate if exposure to tobacco smoke affects central alpha7 nicotinic acetylcholine receptor (nAChR) and non-alpha7 nAChR levels (primarily alpha4beta2 nAChRs).
The nAChR antagonist mecamylamine dose-dependently elevated the brain reward thresholds of the rats exposed to tobacco smoke and did not affect the brain reward thresholds of the untreated control rats. Furthermore, mecamylamine induced more somatic withdrawal signs in the smoke-exposed rats than in the control rats. Nicotine self-administration was decreased 1 day after the last tobacco smoke exposure sessions and was returned to control levels 5 days later. Tobacco smoke exposure increased the alpha7 nAChR density in the CA2/3 area and the stratum oriens and increased the non-alpha7 nAChR density in the dentate gyrus.
Tobacco smoke exposure leads to nicotine dependence as indicated by precipitated affective and somatic withdrawal signs and induces an upregulation of nAChRs in the hippocampus.

Download full-text

Full-text

Available from: Hartmut Derendorf, Dec 16, 2013
  • Source
    • "Although not significant, here we have observed that subcutaneously injected nicotine was better in inducing CPP and locomotor activation than intraperitoneal injection (Fig. 1). This observation might probably be due to pharmacokinetic differences, pharmacological effects of nicotine and absorption of the drug for both routes (O'Dell and Khroyan, 2009;Small et al., 2010). To our knowledge, this is the first study to directly compare the rewarding effects of nicotine in these two commonly used routes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine addiction is a worldwide problem. However, previous studies characterizing the rewarding and reinforcing effects of nicotine in animal models have reported inconsistent findings. It was observed that the addictive effects are variable on different factors (e.g. route, dose, and age). Here, we evaluated the rewarding and reinforcing effects of nicotine in different routes of administration, across a wide dose range, and in different age groups. Two of the most widely used animal models of drug addiction were employed: the conditioned place preference (CPP) and self-administration (SA) tests. Nicotine CPP was evaluated in different routes [intraperitoneal (i.p.) and subcutaneous (s.c.)], doses (0.05 to 1.0 mg/kg) and age [adolescent and adult rats]. Similarly, intravenous nicotine SA was assessed in different doses (0.01 to 0.06 mg/kg/infusion) and age (adolescent and adult rats). In the CPP test, s.c. nicotine produced greater response than i.p. The 0.2 mg/kg dose produced highest CPP response in adolescent, while 0.6 mg/kg in adult rats; which were also confirmed in 7 days pretreated rats. In the SA test, adolescent rats readily self-administer 0.03 mg/kg/infusion of nicotine. Doses that produced nicotine CPP and SA induced blood nicotine levels that corresponded well with human smokers. In conclusion, we have demonstrated that nicotine produces reliable CPP [0.2 mg/kg dose (s.c.)] in adolescents and [0.6 mg/kg dose (s.c.)] in adults, and SA [0.03 mg/kg/infusion] in adolescent rats. Both tests indicate that adolescent rats are more sensitive to the rewarding and reinforcing effects of nicotine.
    Full-text · Article · Sep 2014 · Biomolecules and Therapeutics
  • Source
    • "From days 4 to 14, the average total suspended particulate matter was about 100 mg/m 3 and the CO level about 350 ppm. A previous study by our laboratory demonstrated that these tobacco smoke exposure conditions led to nicotine dependence in rats and plasma nicotine levels of approximately 45 ng/ml and cotinine levels of 250 ng/ml (Small et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain disorders and environmental factors can affect neurogenesis and gliogenesis in the hippocampus. These studies investigated the effects of chronic exposure to tobacco smoke on progenitor cell proliferation and the survival and phenotype of new cells in the dentate gyrus of adolescent rats. The rats were exposed to tobacco smoke for 4h/day for 14 days. To investigate cell proliferation, the exogenous marker 5-bromo-2'-deoxyuridine (BrdU, 200mg/kg, ip) was administered 2h into the 4-h smoke exposure session on day 14. The rats were sacrificed 2-4h after the administration of BrdU. To investigate cell survival, the same dose of BrdU was administered 24h before the start of the 14-day smoke exposure period. These rats were sacrificed 24h after the last smoke exposure session. Tobacco smoke exposure decreased both the number of dividing progenitor cells (-19%) and the number of surviving new cells (-20%), labeled with BrdU in the dentate gyrus. The decrease in cell proliferation was not associated with an increase in apoptotic cell death, as shown by TUNEL analysis. Colocalization studies indicated that exposure to tobacco smoke decreased the number of new immature neurons (BrdU/DCX-positive) and transition neurons (BrdU/DCX/NeuN-positive) and increased the number of new glial cells (BrdU/GFAP-positive). These findings demonstrate that exposure to tobacco smoke diminishes neurogenesis and promotes gliogenesis in the dentate gyrus of adolescent rats. These effects may play a role in the increased risk for depression and cognitive impairment in adolescent smokers.
    Full-text · Article · Jul 2011 · Brain research
  • Source
    • "These preparations contain all compounds that potentially act upon neuronal activity. Tobacco smoke exposure activates DA neurons (Fa et al, 2000) and induces nicotine dependence (Small et al, 2010) in rats. ToEs and SmEs have been widely used to investigate the genotoxicity (for review, see DeMarini (2004)) and cytotoxicity (Bagchi et al, 1998, 1999; Tanaka et al, 2007; Yildiz et al, 1999) of tobacco intake. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine prominently mediates the behavioral effects of tobacco consumption, either through smoking or when taking tobacco by snuff or chew. However, many studies question the exclusive role of nicotine in these effects. The use of preparations containing all the components of tobacco, such as tobacco and smoke extracts, may be more suitable than nicotine alone to investigate the behavioral effects of smoking and tobacco intake. In the present study, the electrophysiological effects of tobacco and smoke on ventral tegmental area dopaminergic (DA) neurons were examined in vivo in anesthetized wild-type (WT), β2-nicotinic acetylcholine receptor (nAChR) knockout (β2-/-), α4-/-, and α6-/- mice and compared with those of nicotine alone. In WT mice, smoke and nicotine had similar potentiating effects on DA cell activity, but the action of tobacco on neuronal firing was weak and often inhibitory. In particular, nicotine triggered strong bursting activity, whereas no bursting activity was observed after tobacco extract (ToE) administration. In β2-/- mice, nicotine or extract elicited no modification of the firing patterns of DA cells, indicating that extract acts predominantly through nAChRs. The differences between DA cell activation profiles induced by tobacco and nicotine alone observed in WT persisted in α6-/- mice but not in α4-/- mice. These results would suggest that tobacco has lower addiction-generating properties compared with either nicotine alone or smoke. The weak activation and prominent inhibition obtained with ToEs suggest that tobacco contains compounds that counteract some of the activating effects of nicotine and promote inhibition on DA cell acting through α4β2*-nAChRs. The nature of these compounds remains to be elucidated. It nevertheless confirms that nicotine is the main substance involved in the tobacco addiction-related activation of mesolimbic DA neurons.
    Full-text · Article · Jun 2011 · Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology
Show more