Neuroimaging Support for Discrete Neural Correlates of Basic Emotions: A Voxel-based Meta-analysis

Emory University, Atlanta, GA, USA.
Journal of Cognitive Neuroscience (Impact Factor: 4.09). 11/2009; 22(12):2864-85. DOI: 10.1162/jocn.2009.21366
Source: PubMed


What is the basic structure of emotional experience and how is it represented in the human brain? One highly influential theory, discrete basic emotions, proposes a limited set of basic emotions such as happiness and fear, which are characterized by unique physiological and neural profiles. Although many studies using diverse methods have linked particular brain structures with specific basic emotions, evidence from individual neuroimaging studies and from neuroimaging meta-analyses has been inconclusive regarding whether basic emotions are associated with both consistent and discriminable regional brain activations. We revisited this question, using activation likelihood estimation (ALE), which allows spatially sensitive, voxelwise statistical comparison of results from multiple studies. In addition, we examined substantially more studies than previous meta-analyses. The ALE meta-analysis yielded results consistent with basic emotion theory. Each of the emotions examined (fear, anger, disgust, sadness, and happiness) was characterized by consistent neural correlates across studies, as defined by reliable correlations with regional brain activations. In addition, the activation patterns associated with each emotion were discrete (discriminable from the other emotions in pairwise contrasts) and overlapped substantially with structure-function correspondences identified using other approaches, providing converging evidence that discrete basic emotions have consistent and discriminable neural correlates. Complementing prior studies that have demonstrated neural correlates for the affective dimensions of arousal and valence, the current meta-analysis results indicate that the key elements of basic emotion views are reflected in neural correlates identified by neuroimaging studies.


Available from: Katherine Vytal
  • Source
    • "According to models of addiction, the major brain regions underlying addiction constitute a network of at least four interdependent and overlapping circuits [24]: (i) motivation and/or drive and salience evaluation, located in the orbital frontal cortex; (ii) cognitive control, located in the dorsal anterior cingulate cortex and prefrontal cortex; (iii) memory and learning, including the hippocampus and amygdala; and (iv) reward, involving the ventral pallidum and nucleus accumbens. In addition, the ACC is an essential part of the frontal-subcortical circuit , and it plays a modulatory role in cognition, emotion and reward expectations [16,252627, and is also likely to affect the reactivity of the above circuits and parts of this network [16, 28, 29]. Convergent evidence from lesion and neuroimaging studies consistently indicate that drug dependence is closely associated with structural [30], functional [31], and metabolic [32] abnormalities of the ACC. "
    [Show abstract] [Hide abstract] ABSTRACT: It is generally acknowledged that drug dependence is connected with abnormal functional organization in the individual’s brain. The present study aimed to identify the anterior cingulate cortex (ACC) abnormality with the cerebral networks involved in betel quid dependence (BQD) by resting-state functional connectivity (rsFC) using functional magnetic resonance imaging (fMRI). With fMRI data measured from 33 resting-state BQD individuals and 32 non-addicted and age-, sex-, education-matched healthy controls, we inquired into the BQD-related changes in FC between the regions of ACC with the whole brain involved in BQD individuals using a region of interest vised method, and to identify the relation of the alteration with the severity of BQD and duration. Compared to controls, the BQD group showed increased connectivity from ACC to the regions of the reward network (brainstem including midbrain regions such as the ventral tegmental area and pons, caudate, thalamus) and cerebellum. Decreased connectivity was observed in the BQD group in regions from ACC to the default mode network (medial prefrontal cortex and precuneus) and para Hippocampal/hypothalamus. Specifically, the BQD scale was positively correlated with increased FC of right ACC to left thalamus and left ACC to pons; the durations were negatively correlated with FC of right ACC to left precuneus. These disturbances in rsFC from ACC to the reward network and DMN revealed by fMRI may have a key function in providing insights into the neurological pathophysiology underlying BQD-associated executive dysfunction and disinhibition. These findings may contribute to our better understanding of the mechanisms underlying BQD.
    Full-text · Article · Dec 2016 · Journal of Translational Medicine
    • "One of the main challenges of neuroscience in the field of emotions is the modeling of anatomical structure and its functional response underlying emotional experience. The two main models of emotion, categorical, and dimensional, are each underpinned by neural and psychophysiological patterns consistent with and validated by numerous studies (Anderson et al., 2003a; Dolcos et al., 2004; Lewis et al., 2007; Vytal and Hamann, 2010). According to discrete emotion theory, each primary emotion has a constant and specific neural and psychophysiological pattern. "
    No preview · Dataset · Apr 2016
  • Source
    • "In our study, the only effect of rTMS on mood was a non-significant trend towards a decrease of anger measured by VAS, probably because VAS is more appropriate for healthy subjects than clinical scales in order to identify subtle variations in mood (Baeken et al., 2008). This potential effect of rTMS applied on the left DLPFC on anger is consistent with recent meta-analyses, which showed that anger was significantly associated with the left DLPFC activity (Kirby & Robinson, 2015; Vytal & Hamann, 2010). However, if the subjective experience of anger tended to change after rTMS, recognition of emotions, including facial expressions of anger, was unaffected in our study. "
    [Show abstract] [Hide abstract] ABSTRACT: Background: High frequency repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) has shown significant efficiency in the treatment of resistant depression. However in healthy subjects, the effects of rTMS remain unclear. Objective: Our aim was to determine the impact of 10 sessions of rTMS applied to the DLPFC on mood and emotion recognition in healthy subjects. Design: In a randomised double-blind study, 20 subjects received 10 daily sessions of active (10 Hz frequency) or sham rTMS. The TMS coil was positioned on the left DLPFC through neuronavigation. Several dimensions of mood and emotion processing were assessed at baseline and after rTMS with clinical scales, visual analogue scales (VASs), and the Ekman 60 faces test. Results: The 10 rTMS sessions targeting the DLPFC were well tolerated. No significant difference was found between the active group and the control group for clinical scales and the Ekman 60 faces test. Compared to the control group, the active rTMS group presented a significant improvement in their adaptation to daily life, which was assessed through VAS. Conclusion: This study did not show any deleterious effect on mood and emotion recognition of 10 sessions of rTMS applied on the DLPFC in healthy subjects. This study also suggested a positive effect of rTMS on quality of life.
    Full-text · Article · Mar 2016
Show more