The genetics of colored sequence synesthesia: Evidence of linkage to chromosome 16q and genetic heterogeneity for the condition

Nature Precedings 11/2009; DOI: 10.1038/npre.2009.3987.1
Source: OAI


Synesthesia is a perceptual condition in which normal sensory stimulation can trigger anomalous sensory experiences. For example, synesthetes may experience colors in response to sounds, tastes in response to words, or smells in response to touch. We here focus on colored sequence synesthesia, in which color experiences are triggered by learned ordinal sequences such as letters, numbers, weekdays and months. Although synesthesia has been noted in the scientific literature for over a century, it is understood only at the level of the phenomenology, and not at the molecular and neural levels. We have performed a linkage analysis to identify the first genetic loci responsible for the increased neural crosstalk underlying colored sequence synesthesia. Our analysis has identified a 23 MB region on chromosome 16 as a putative locus for the trait. Our data provide the first step in understanding neural crosstalk from its molecular basis to its behavioral consequences, opening a new inroad into the understanding of the multisensory brain.

Download full-text


Available from: David M Eagleman
  • Source

    Full-text · Article · Jan 2010 · BMJ (online)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synesthesia is a perceptual experience in which stimuli presented through one modality will spontaneously evoke sensations in an unrelated modality. The condition occurs from increased communication between sensory regions and is involuntary, automatic, and stable over time. While synesthesia can occur in response to drugs, sensory deprivation, or brain damage, research has largely focused on heritable variants comprising roughly 4% of the general population. Genetic research on synesthesia suggests the phenomenon is heterogeneous and polygenetic, yet it remains unclear whether synesthesia ever provided a selective advantage or is merely a byproduct of some other useful selected trait. Progress in uncovering the genetic basis of synesthesia will help us understand why synesthesia has been conserved in the population.
    Full-text · Article · Nov 2011 · PLoS Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synesthesia is an unusual condition characterized by the over-binding of two or more features and the concomitant automatic and conscious experience of atypical, ancillary images or perceptions. Previous research suggests that synesthetes display enhanced modality-specific perceptual processing, but it remains unclear whether enhanced processing contributes to conscious awareness of color photisms. In three experiments, we investigated whether grapheme-color synesthesia is characterized by enhanced cortical excitability in primary visual cortex and the role played by this hyperexcitability in the expression of synesthesia. Using transcranial magnetic stimulation, we show that synesthetes display 3-fold lower phosphene thresholds than controls during stimulation of the primary visual cortex. We next used transcranial direct current stimulation to discriminate between two competing hypotheses of the role of hyperexcitability in the expression of synesthesia. We demonstrate that synesthesia can be selectively augmented with cathodal stimulation and attenuated with anodal stimulation of primary visual cortex. A control task revealed that the effect of the brain stimulation was specific to the experience of synesthesia. These results indicate that hyperexcitability acts as a source of noise in visual cortex that influences the availability of the neuronal signals underlying conscious awareness of synesthetic photisms.
    Full-text · Article · Nov 2011 · Current biology: CB