ArticlePDF Available

Análisis estático y dinámico de cojinetes de aire mediante elementos finitos

Authors:

Abstract

Este artículo presenta una formulación de BunovGalerkin para el análisis, mediante Elementos Finitos, de problemas estáticos y dinámicos de lubricación gaseosa. Para la parte espacial del problema se emplean las habituales funciones CO, mientras que la integración enel tiempo se realiza con un par de prediccióncorrección basado en el método de Newmark, algoritmo éste bien conocido en el contexto del análisis dinámico de estructuras. Se realiza un breve análisis del esquema resultante en su aplicación a ecuaciones diferenciales ordinarias de primer orden. La discusión se ilustra con dos ejemplos motivados en la tecnología de cabezas voladoras para discos de almacenamiento magnético. La principal motivación de este trabajo es el desarrollo de un método numérico flexible, capaz de resolver los diversos problemas que se presentan en actuales y, predeciblemente, futuras aplicaciones de la lubricación mediante película de gas. El Método de los Elementos Finitos en combinación con el procedimiento de integración temporal presentado es una técnica ventajosa en este sentido. Peer Reviewed
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
This two part paper presents the experimental observation and numerical simulation of the dynamic response of self-acting gas-lubricated slider bearings used to maintain the sub-micron spacings between the Read/Write transducers and the rotating disks in magnetic recording disk files. In this Part II, a factored implicit finite difference scheme is used to integrate the Reynolds lubrication equation, which describes the isothermal compressible fluid flow within the bearing region, and a fourth order Runge-Kutta method is used to solve the equations of motion, which describe the slider dynamics. Using this numerical model, the theoretical slider response due to a rectangular step in the disk surface is obtained. Excellent correlation is observed between theory and experiment. Results are presented to illustrate the effects of step size, step location, and surface velocity on the dynamic performance of slider bearings.
Article
The method of matched asymptotic expansions is used to develop an asymptotic expression for the load-carrying capacity of a finite width gas slider bearing for large bearing numbers and for film thicknesses varying both in the sliding and transverse directions. The individual terms in the formula for the load are independent of the bearing number and are related to the interior portion, the side edge boundary layers, and the trailing edge boundary layer of the bearing. Only the terms associated with the side leakage phenomena must be computed numerically. Two special cases are discussed: (i) the film thickness varying only in the sliding direction, and (ii) the film thickness having linear or parabolic variation in the sliding direction and parabolic variation in the transverse direction.
Article
Direct and incremental variational formulations for the steady-state compressible Reynolds‖ equation are given. Finite element equations for these are derived and sample solutions are presented.
Article
A factored implicit algorithm is developed for the numerical solution of the compressible Reynolds equation. The method is second-order time-accurate, noniterative and allows the calculation of finite width films while requiring only tridiagonal matrix inverses. A variable spacial grid is used which incorporates both numerical resolution as needed and efficiency of computation. The scheme should be especially useful for the calculation of low spacing (< 0.5 micron), high velocity lubricant flows as found in current magnetic recording applications. Numerical results are presented and discussed.
Article
The application of numerical methods to gas bearing problems is of great importance in view of the difficulties encountered by purely analytical methods in dealing with the non-linear character of the governing equations and complicated details of practical geometries encountered. The past ten years have witnessed marked progress in computer technology with accompanying development of numerical analysis. The report presents the best techniques which are applicable to gas bearing systems. (Author)
Article
Finite element methods are used to solve hydrodynamic lubrication problems involving compressible lubricants and porous bearing solids. The particular calculation scheme permits solution at high compressibility numbers (Λ > 100) to be obtained without any numerical difficulty. Finite element and finite difference results for the porous, gas lubricated journal bearing are presented and compared.