Analysis of propagation mechanisms based on direction-of-arrival measurements in urban environments at 2 GHz frequency range

Conference Paper · February 2002with6 Reads
DOI: 10.1109/APS.2002.1016295 · Source: IEEE Xplore
Conference: Antennas and Propagation Society International Symposium, 2002. IEEE, Volume: 1

    Abstract

    In cellular mobile communications propagation environments are usually defined roughly by base station location, distance from the base station, and local environment around the mobile station. In this paper a rough categorization of the main propagation mechanisms was done based on the direction of arrival information of each incident wave at the mobile. Three propagation mechanisms, or classes, were specified; propagation along street canyons, propagation directly from transmitter over rooftops in a vertical plane, and other mechanisms as the third class. The first two classes correspond to propagation planes of quasi-3D-models, and the last class presents the proportion of power which quasi 3D-models cannot predict. The categorization is based on a constant elevation boundary for street canyon propagation and tracing of the transmitter's azimuth direction with a small margin for over rooftop propagation. The study of the significance of different propagation mechanisms is based on measurements in several different city environments at 2 GHz frequency range. The measured data consist of microcell and small macrocell measurements and the distance between transmitter and receiver varies from 100 m to 550 m.