Article

Tacrolimus mitigates pathological patterns in mouse models of Alzheimer’s disease

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Neuroinflammation and disruptions in glutamatergic neurotransmission are hallmark features of Alzheimer's disease (AD). Various compounds have been investigated for their potential to modulate these processes in this disease. Tacrolimus (FK506), a calcineurin inhibitor (CNI), has been suggested as a candidate for the treatment of AD, although its effects and possible mechanisms have not been extensively evaluated. Here we investigated whether tacrolimus treatment could mitigate cognitive deficits, neurotoxicity, and microgliosis in AD models, including Aβ 1-42-induced intrahippocampal damage and middle-aged transgenic APP/PS1 mice, as well as improve glutamate release dysregulation in synaptosomes from the latter. A single dose of tacrolimus prevented the cognitive impairment induced by intrahippocampal microinjection of Aβ 1-42 in the novel object recognition test (NORT), and reduced the neurodegeneration. Interestingly, in the APP/PS1 model, a 30-day treatment with the drug did not prevent memory impairment in the NORT, albeit it improved the social interaction and partially reduced microgliosis. Finally, tacrolimus restored the intrasynaptotosomal calcium levels and normalized impaired glutamate release in synaptosomes from APP/PS1 mice. These findings provide new evidence that both acute and chronic treatment with tacrolimus exerts neuroprotective effects, providing a foundation for the potential therapeutic application of this CNI in managing AD.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity. Homeostatic scaling up and scaling down, which are additional types of plasticity similar to LTP and LTD, are also regulated by the insertion and removal of GluA1-containing AMPA receptors from the synaptic surface. The trafficking of AMPA receptors is an intricate process assisted by various proteins. Furthermore, AMPA receptors are critical for the formation and consolidation of various types of memory, and alterations in their function are intimately associated with cognitive dysfunction in aging and several neurological and psychiatric diseases. In this review, we will provide an overview of the current understanding of how AMPA receptors regulate various forms of synaptic plasticity, their contribution to memory functions, and their role in aging and brain diseases.
Article
Full-text available
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as “Alzheimer's disease,” “epidemiology,” “risk factors,” “symptoms,” “diagnosis,” “management,” “caregiving,” “treatment,” and “novel therapies.” Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Article
Full-text available
Alzheimer’s disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer’s disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer’s disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer’s disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Article
Full-text available
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Article
Full-text available
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain’s resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD’s core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Article
Full-text available
Alzheimer’s disease (AD) is a fatal neurodegenerative disease with a subtle and progressive onset and is the most common type of dementia. However, its etiology and pathogenesis have not yet been fully elucidated. The common pathological manifestations of AD include extraneuronal β-amyloid deposition (Aβ), intraneuronal tau protein phosphorylation leading to the formation of ‘neurofibrillary tangles’ (NFTs), neuroinflammation, progressive loss of brain neurons/synapses, and glucose metabolism disorders. Current treatment approaches for AD primarily focus on the ‘Aβ cascade hypothesis and abnormal aggregation of hyperphosphorylation of tau proteins’, but have shown limited efficacy. Therefore, there is an ongoing need to identify more effective treatment targets for AD. The central nervous system (CNS) inflammatory response plays a key role in the occurrence and development of AD. Neuroinflammation is an immune response activated by glial cells in the CNS that usually occurs in response to stimuli such as nerve injury, infection and toxins or in response to autoimmunity. Neuroinflammation ranks as the third most prominent pathological feature in AD, following Aβ and NFTs. In recent years, the focus on the role of neuroinflammation and microglia in AD has increased due to the advancements in genome-wide association studies (GWAS) and sequencing technology. Furthermore, research has validated the pivotal role of microglia-mediated neuroinflammation in the progression of AD. Therefore, this article reviews the latest research progress on the role of neuroinflammation triggered by microglia in AD in recent years, aiming to provide a new theoretical basis for further exploring the role of neuroinflammation in the process of AD occurrence and development.
Article
Full-text available
Alzheimer’s disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Article
Full-text available
Alzheimer’s disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer’s disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer’s disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer’s disease and related tauopathies.
Article
Full-text available
Immunosuppressants are vital in organ transplantation including facial transplantation (FT) but are associated with persistent side effects. This review article was prepared to compare the two most used immunosuppressants, cyclosporine and tacrolimus, in terms of mechanism of action, efficacy, and safety and to assess recent trials to mitigate their side effects. PubMed and Google Scholar queries were conducted using combinations of the following search terms: “transplantation immunosuppressant,” “cyclosporine,” “tacrolimus,” “calcineurin inhibitor (CNI),” “efficacy,” “safety,” “induction therapy,” “maintenance therapy,” and “conversion therapy.” Both immunosuppressants inhibit calcineurin and effectively down-regulate cytokines. Tacrolimus may be more advantageous since it lowers the likelihood of acute rejection, has the ability to reverse allograft rejection following cyclosporine treatment, and has the potential to reinnervate nerves. Meanwhile, graft survival rates seem to be comparable for the CNIs. To avoid nephrotoxicity, various immunosuppressants other than CNIs have been studied. Despite averting nephrotoxicity, these medications show increases in acute rejection or other types of adverse effects compared to CNIs. FT has been a topic of interest for oral and maxillofacial surgeons, and the postoperative usage of immunosuppressants is crucial for the long-term prognosis of FT. As contemporary transplantation regimens incorporate novel medications along with CNIs, further research is required.
Article
Full-text available
Synaptic plasticity enhances or reduces connections between neurons, affecting learning and memory. Postsynaptic AMPARs mediate greater than 90% of the rapid excitatory synaptic transmission in glutamatergic neurons. The number and subunit composition of AMPARs are fundamental to synaptic plasticity and the formation of entire neural networks. Accordingly, the insertion and functionalization of AMPARs at the postsynaptic membrane have become a core issue related to neural circuit formation and information processing in the central nervous system. In this review, we summarize current knowledge regarding the related mechanisms of AMPAR expression and trafficking. The proteins related to AMPAR trafficking are discussed in detail, including vesicle-related proteins, cytoskeletal proteins, synaptic proteins, and protein kinases. Furthermore, significant emphasis was placed on the pivotal role of the actin cytoskeleton, which spans throughout the entire transport process in AMPAR transport, indicating that the actin cytoskeleton may serve as a fundamental basis for AMPAR trafficking. Additionally, we summarize the proteases involved in AMPAR post-translational modifications. Moreover, we provide an overview of AMPAR transport and localization to the postsynaptic membrane. Understanding the assembly, trafficking, and dynamic synaptic expression mechanisms of AMPAR may provide valuable insights into the cognitive decline associated with neurodegenerative diseases.
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca²⁺-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Article
Full-text available
Background Current treatments for Alzheimer’s disease (AD) have largely failed to yield significant therapeutic benefits. Novel approaches are desperately needed to help address this immense public health issue. Data suggests that early intervention at the first stages of mild cognitive impairment may have a greater chance for success. The calcineurin (CN)-Pin1 signaling cascade can be selectively targeted with tacrolimus (FK506), a highly specific, FDA-approved CN inhibitor used safely for > 20 years in solid organ transplant recipients. AD prevalence was significantly reduced in solid organ recipients treated with FK506. Methods Time release pellets were used to deliver constant FK506 dosage to APP/PS1 mice without deleterious manipulation or handling. Immunofluorescence, histology, molecular biology, and behavior were used to evaluate changes in AD pathology. Results FK506 can be safely and consistently delivered into juvenile APP/PS1 mice via time-release pellets to levels roughly seen in transplant patients, leading to the normalization of CN activity and reduction or elimination of AD pathologies including synapse loss, neuroinflammation, and cognitive impairment. Pin1 activity and function were rescued despite the continuing presence of high levels of transgenic Aβ42. Indicators of neuroinflammation including Iba1 positivity and IL-6 production were also reduced to normal levels. Peripheral blood mononuclear cells (PBMC) obtained during treatment or splenocytes isolated at euthanasia activated normally after mitogens. Conclusions Low-dose, constant FK506 can normalize CNS CN and Pin1 activity, suppress neuroinflammation, and attenuate AD-associated pathology without blocking peripheral IL-2 responses making repurposed FK506 a viable option for early, therapeutic intervention in AD.
Article
Full-text available
Alzheimer’s disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes’ physiological and pathological role in AD. These roles include the inflammatory response, “eat me” and “don’t eat me” signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Article
Full-text available
Introduction: Tacrolimus is a potent immunosuppressive drug with many side effects including nephrotoxicity and post-transplant diabetes mellitus. To limit its toxicity, therapeutic drug monitoring (TDM) is performed. However, tacrolimus' pharmacokinetics are highly variable within and between individuals, which complicates their clinical management. Despite TDM, many kidney transplant recipients will experience under- or overexposure to tacrolimus. Therefore, dosing algorithms have been developed to limit the time a patient is exposed to off-target concentrations. Areas covered: Tacrolimus starting dose algorithms and models for follow-up doses developed and/or tested since 2015, encompassing both adult and pediatric populations. Literature was searched in different databases, i.e. Embase, PubMed, Web of Science, Cochrane Register, and Google Scholar, from inception to February 2023. Expert opinion: Many algorithms have been developed, but few have been prospectively evaluated. These performed better than bodyweight-based starting doses, regarding the time a patient is exposed to off-target tacrolimus concentrations. No benefit in reduced tacrolimus toxicity has yet been observed. Most algorithms were developed from small datasets, contained only a few tacrolimus concentrations per person, and were not externally validated. Moreover, other matrices should be considered which might better correlate with tacrolimus toxicity than the whole-blood concentration, e.g. unbound plasma or intra-lymphocytic tacrolimus concentrations.
Article
Full-text available
The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed immunosuppressant drug after solid organ transplantation. After renal transplantation (RTx) approximately 95% of recipients are discharged with a Tac-based immunosuppressive regime. Despite the high immunosuppressive efficacy, its adverse effects, narrow therapeutic window and high intra- and interpatient variability (IPV) in pharmacokinetics require therapeutic drug monitoring (TDM), which makes treatment with Tac a major challenge for physicians. The C/D ratio (full blood trough level normalized by daily dose) is able to classify patients receiving Tac into two major metabolism groups, which were significantly associated with the clinical outcomes of patients after renal or liver transplantation. Therefore, the C/D ratio is a simple but effective tool to identify patients at risk of an unfavorable outcome. This review highlights the challenges of Tac-based immunosuppressive therapy faced by transplant physicians in their daily routine, the underlying causes and pharmacokinetics (including genetics, interactions, and differences between available Tac formulations), and the latest data on potential solutions to optimize treatment of high-risk patients.
Article
Full-text available
Background Evidence suggests patients prescribed calcineurin inhibitors (CNIs) have a reduced prevalence of dementia, including Alzheimer’s disease (AD); however, this result has never been replicated in a large cohort and the involved mechanism(s) and site of action (central versus periphery) remain unclear. Objective We aim to determine if prescription of CNIs is associated with reduced prevalence of dementia, including AD, in a large, diverse patient population. Furthermore, we aim to gain insight into the mechanism(s) and site of action for CNIs to reduce dementia prevalence. Methods Electronic health records (EHRs) from patients prescribed tacrolimus, cyclosporine, or sirolimus were analyzed to compare prevalence, odds, and hazard ratios related to dementia diagnoses among cohorts. EHRs from a random, heterogeneous population from the same network were obtained to generate a general population-like control. Results All drugs examined reduced dementia prevalence compared to the general population-like control. There were no differences in dementia diagnoses upon comparing tacrolimus and sirolimus; however, patients prescribed tacrolimus had a reduced dementia prevalence relative to cyclosporine. Conclusion Converging mechanisms of action between tacrolimus and sirolimus likely explain the similar dementia prevalence between the cohorts. Calcineurin inhibition within the brain has a greater probability of reducing dementia relative to peripherally-restricted calcineurin inhibition. Overall, immunosuppressants provide a promising therapeutic avenue for dementia, with emphasis on the brain-penetrant CNI tacrolimus.
Article
Full-text available
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer’s disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Article
Full-text available
Mitochondria contribute to shape intraneuronal Ca2+ signals. Excessive Ca2+ taken up by mitochondria could lead to cell death. Amyloid beta (Aβ) causes cytosolic Ca2+ overload, but the effects of Aβ on mitochondrial Ca2+ levels in Alzheimer’s disease (AD) remain unclear. Using a ratiometric Ca2+ indicator targeted to neuronal mitochondria and intravital multiphoton microscopy, we find increased mitochondrial Ca2+ levels associated with plaque deposition and neuronal death in a transgenic mouse model of cerebral β-amyloidosis. Naturally secreted soluble Aβ applied onto the healthy brain increases Ca2+ concentration in mitochondria, which is prevented by blockage of the mitochondrial calcium uniporter. RNA-sequencing from post-mortem AD human brains shows downregulation in the expression of mitochondrial influx Ca2+ transporter genes, but upregulation in the genes related to mitochondrial Ca2+ efflux pathways, suggesting a counteracting effect to avoid Ca2+ overload. We propose lowering neuronal mitochondrial Ca2+ by inhibiting the mitochondrial Ca2+ uniporter as a novel potential therapeutic target against AD. Calvo-Rodriguez et al. show elevated calcium levels in neuronal mitochondria in a mouse model of cerebral β-amyloidosis after plaque deposition, which precede rare neuron death events in this model. The mechanism involves toxic extracellular Aβ oligomers and the mitochondrial calcium uniporter.
Article
Full-text available
Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of a2d-1–GluN1 complexes in the spinal cord and the level of a2d-1–bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting a2d-1 with gabapentin or disrupting the a2d-1–NMDAR interaction with a2d-1Tat peptide completely reversed the effects of FK506. In a2d-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of a2d-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or a2d-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that a2d-1–bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disease and the main cause of dementia. Its major symptom is memory loss, which is a result of neuronal cell death, which is accompanied by neuroinflammation. Some studies indicate the overactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) pathway in this disease, being, thus, a potential target for pharmacological treatment. Here, we used a transgenic mouse model of AD that expresses a mutant amyloid-β precursor protein (T41 mice) to investigate the effects of dactolisib (alternative name: NVP-BEZ235, abbreviation BEZ), a dual PI3K/mTOR inhibitor. Ten-months-old T41 animals were treated for 14 days with BEZ or vehicle via oral gavage and then submitted to social memory, open field and contextual conditioned fear tests. Hippocampal slices were prepared and Aβ1-42 content, NeuN, Iba-1, CD68 and GFAP were evaluated. Tissues were further processed to evaluate cytokines levels through cytometric bead array. The treatment with BEZ (5 mg/kg) reduced social memory impairment in T41 mice. However, BEZ did not have any effect on altered Aβ levels, NeuN, or GFAP staining. The drug reduced the CD68/Iba-1 ratio in CA3 region of hippocampus. Finally, BEZ diminished IL-10 levels in T41 mice. Thus, although its mechanisms are not clear, BEZ protects against memory impairment, reduces microglial activation and reestablishes IL-10 levels, revealing beneficial effects, which should be further investigated for the treatment of AD.
Article
Full-text available
Background There is need to identify targets for preventing or delaying dementia. Social contact is a potential target for clinical and public health studies, but previous observational studies had short follow-up, making findings susceptible to reverse causation bias. We therefore examined the association of social contact with subsequent incident dementia and cognition with 28 years’ follow-up. Methods and findings We conducted a retrospective analysis of the Whitehall II longitudinal prospective cohort study of employees of London civil service departments, aged 35–55 at baseline assessment in 1985–1988 and followed to 2017. Social contact was measured six times through a self-report questionnaire about frequency of contact with non-cohabiting relatives and friends. Dementia status was ascertained from three linked clinical and mortality databases, and cognition was assessed five times using tests of verbal memory, verbal fluency, and reasoning. Cox regression models with inverse probability weighting to account for attrition and missingness examined the association between social contact at age 50, 60, and 70 years and subsequent incident dementia. Mixed linear models examined the association of midlife social contact between 45 and 55 years and cognitive trajectory during the subsequent 14 years. Analyses were adjusted for age, sex, ethnicity, socioeconomic status, education, health behaviours, employment status, and marital status. Of 10,308 Whitehall II study participants, 10,228 provided social contact data (mean age 44.9 years [standard deviation (SD) 6.1 years] at baseline; 33.1% female; 89.1% white ethnicity). More frequent social contact at age 60 years was associated with lower dementia risk (hazard ratio [HR] for each SD higher social contact frequency = 0.88 [95% CI 0.79, 0.98], p = 0.02); effect size of the association of social contact at 50 or 70 years with dementia was similar (0.92 [95% CI 0.83, 1.02], p = 0.13 and 0.91 [95% CI 0.78, 1.06], p = 0.23, respectively) but not statistically significant. The association between social contact and incident dementia was driven by contact with friends (HR = 0.90 [95% CI 0.81, 1.00], p = 0.05), but no association was found for contact with relatives. More frequent social contact during midlife was associated with better subsequent cognitive trajectory: global cognitive function was 0.07 (95% CI 0.03, 0.11), p = 0.002 SDs higher for those with the highest versus lowest tertile of social contact frequency, and this difference was maintained over 14 years follow-up. Results were consistent in a series of post hoc analyses, designed to assess potential biases. A limitation of our study is ascertainment of dementia status from electronic health records rather than in-person assessment of diagnostic status, with the possibility that milder dementia cases were more likely to be missed. Conclusions Findings from this study suggest a protective effect of social contact against dementia and that more frequent contact confers higher cognitive reserve, although it is possible that the ability to maintain more social contact may be a marker of cognitive reserve. Future intervention studies should seek to examine whether improving social contact frequency is feasible, acceptable, and efficacious in changing cognitive outcomes.
Article
Full-text available
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disease. In the past decades, numbers of promising drug candidates showed significant anti‐AD effects in preclinical studies but failed in clinical trials. One of the major reasons might be the limitation of appropriate animal models for evaluating anti‐AD drugs. More than 95% of AD cases are sporadic AD (sAD). However, the anti‐AD drug candidates were mainly tested in the familial AD (fAD) animal models. The diversity between the sAD and fAD might lead to a high failure rate during the development of anti‐AD drugs. Therefore, an ideal sAD animal model is urgently needed for the development of anti‐AD drugs. Here, we summarized the available sAD animal models, including their methodology, pathologic features, and potential underlying mechanisms. The limitations of these sAD animal models and future trends in the field were also discussed.
Article
Full-text available
We present observational evidence from studies on primary cortical cultures from AD transgenic mice, APPSwe/PS1ΔE9 (APP/PS1) mice, for significant decrease in total spine density at DIV-15 and onward. This indicates reduction in potential healthy synapses and strength of connections among neurons. Based on this, a network model of neurons is developed, that explains the consequent loss of coordinated activity and transmission efficiency among neurons that manifests over time. The critical time when structural connectivity in the brain undergoes a phase-transition, from initial robustness to irreparable breakdown, is estimated from this model. We also show how the global efficiency of signal transmission in the network decreases over time. Moreover, the number of multiple paths of high efficiency decreases rapidly as the disease progresses, indicating loss of structural plasticity and inefficiency in choosing alternate paths or desired paths for any pattern of activity. Thus loss of spines caused by β-Amyloid (Aβ) peptide results in disintegration of the neuronal network over time with consequent cognitive dysfunctions in Alzheimer’s Disease (AD).
Article
Full-text available
Calcineurin inhibitor Tacrolimus, is a potent immunosuppressive drug widely used in order to prevent acute graft rejection. Urinary tract infection (UTI) is the most frequent infectious complication in renal transplant patients and long-term use of Tacrolimus might be involved in higher susceptibility to bacterial infections. It remains largely unknown how Tacrolimus affects the host innate immune response against lower and upper UTI. To address this issue, we used experimental UTI model by intravesical inoculation of uropathogenic E.coli in female wild-type mice pre-treated with Tacrolimus or solvent (CTR). We found that Tacrolimus pre-treated mice displayed higher bacterial loads (cystitis, pyelonephritis and bacteremia) than CTR mice. Granulocytes from Tacrolimus pre-treated mice phagocytized less E. coli, released less MPO and expressed decreased levels of CXCR2 receptor upon infection. Moreover, Tacrolimus reduced TLR5 expression in bladder macrophages during UTI. This immunosuppressive state can be explained by the upregulation of TLR-signaling negative regulators (A20, ATF3, IRAK-M and SOCS1) and parallel downregulation of TLR5 as observed in Tacrolimus treated granulocytes and macrophages. We conclude that Tacrolimus impairs host innate immune responses against UTI.
Article
Full-text available
Aims The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. Methods Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed‐effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. Results A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two‐compartment model. The mean absorption rate was 3.6 h⁻¹, clearance was 23.0 l h–1 (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose: Dosemg=222nghml–1*22.5lh–1*1.0ifCYP3A5*3/*3or1.62ifCYP3A5*1/*3orCYP3A5*1/*1*1.0ifCYP3A4*1or unknownor0.814ifCYP3A4*22*Age56−0.50*BSA1.930.72/1000 Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. Conclusions For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation.
Article
Full-text available
Microglial activation has been considered a crucial player in the pathological process of multiple human neurodegenerative diseases. In some of these pathologies, such as Amyotrophic Lateral Sclerosis or Multiple Sclerosis, the immune system and microglial cells (as part of the cerebral immunity) play a central role. In other degenerative processes, such as Alzheimer’s disease (AD), the role of microglia is far to be elucidated. In this “mini-review” article, we briefly highlight our recent data comparing the microglial response between amyloidogenic transgenic models, such as APP/PS1 and AD patients. Since the AD pathology could display regional heterogeneity, we focus our work at the hippocampal formation. In APP based models a prominent microglial response is triggered around amyloid-beta (Aβ) plaques. These strongly activated microglial cells could drive the AD pathology and, in consequence, could be implicated in the neurodegenerative process observed in models. On the contrary, the microglial response in human samples is, at least, partial or attenuated. This patent difference could simply reflect the lower and probably slower Aβ production observed in human hippocampal samples, in comparison with models, or could reflect the consequence of a chronic long-standing microglial activation. Beside this differential response, we also observed microglial degeneration in Braak V–VI individuals that, indeed, could compromise their normal role of surveying the brain environment and respond to the damage. This microglial degeneration, particularly relevant at the dentate gyrus, might be mediated by the accumulation of toxic soluble phospho-tau species. The consequences of this probably deficient immunological protection, observed in AD patients, are unknown.
Article
Full-text available
Alzheimer's disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Article
Full-text available
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first-generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD Second-generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD In this review, we evaluate different APP mouse models of AD, and review recent studies using the second-generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disorder that nowadays affects more than 40 million people worldwide and it is predicted to exponentially increase in the coming decades. Because no curative treatment exists, research on the pathophysiology of the disease, as well as the testing of new drugs, are mandatory. For these purposes, animal models constitute a valuable, although perfectible tool. This review takes a tour through several aspects of mouse models of AD, such as the generation of transgenic models, the relevance of the promoter driving the expression of the transgenes, and the concrete transgenes used to simulate AD pathophysiology. Then, transgenic mouse lines harboring mutated human genes at several loci such as APP, PSEN1, APOE ɛ4, and ob (leptin) are reviewed. Therefore, not only the accumulation of the Aβ peptide is emulated but also cholesterol and insulin metabolism. Further novel information about the disease will allow for the development of more accurate animal models, which in turn will undoubtedly be helpful for bringing preclinical research closer to clinical trials in humans.
Article
Full-text available
A new family of highly fluorescent indicators has been synthesized for biochemical studies of the physiological role of cytosolic free Ca2+. The compounds combine an 8-coordinate tetracarboxylate chelating site with stilbene chromophores. Incorporation of the ethylenic linkage of the stilbene into a heterocyclic ring enhances the quantum efficiency and photochemical stability of the fluorophore. Compared to their widely used predecessor, “quin2”, the new dyes offer up to 30-fold brighter fluorescence, major changes in wavelength not just intensity upon Ca2+ binding, slightly lower affinities for Ca2+, slightly longer wavelengths of excitation, and considerably improved selectivity for Ca2+ over other divalent cations. These properties, particularly the wavelength sensitivity to Ca2+, should make these dyes the preferred fluorescent indicators for many intracellular applications, especially in single cells, adherent cell layers, or bulk tissues.
Article
Full-text available
Alzheimer’s disease (AD) is a devastating illness characterized by a progressive loss of cognitive, social, and emotional functions, including memory impairments and more global cognitive deficits. Clinical-epidemiological evidence suggests that neuropsychiatric symptoms precede the onset of cognitive symptoms both in humans with early and late onset AD. The behavioural profile promoted by the AD pathology is believed to associate with degeneration of the serotonergic system. Using the APPswe/PS1δE9 model of AD-like pathology starting with 9 months old mice, we characterised long term non-cognitive behavioural changes measured at 9, 12, 15, and 18 months of age and applied principal component analysis on data obtained from open field, elevated plus maze, and social interaction tests. Long-term treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine was applied to assess the role of 5-HT on the behavioural profile; duration of treatment was 9 months, initiated when mice were 9 months of age. Treatment with paroxetine delays the decline in locomotion, in exploration and risk assessment behaviour, found in the APP/PS1 mice. APP/PS1 mice also exhibit low social activity and less aggressiveness, both of which are not affected by treatment with paroxetine. The APP/PS1 behavioural phenotype, demonstrated in this study, only begins to manifest itself from 12 months of age. Our results indicate that treatment with SSRI might ameliorate some of the behavioural deficits found in aged APP/PS1 mice.
Article
Full-text available
Excitatory glutamatergic neurotransmission via N-methyl-d-aspartate receptor (NMDAR) is critical for synaptic plasticity and survival of neurons. However, excessive NMDAR activity causes excitotoxicity and promotes cell death, underlying a potential mechanism of neurodegeneration occurred in Alzheimer’s disease (AD). Studies indicate that the distinct outcomes of NMDAR-mediated responses are induced by regionalized receptor activities, followed by different downstream signaling pathways. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs promotes cell death and thus contributes to the etiology of AD, which can be blocked by an AD drug, memantine, an NMDAR antagonist that selectively blocks the function of extrasynaptic NMDARs.
Article
Full-text available
Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.
Article
Full-text available
Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients.
Article
Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.
Article
Tacrolimus, a calcineurin inhibitor, is an immunosuppressant used globally to prevent rejection after organ transplantation. Although it significantly improves outcomes for solid organ transplant patients, it is associated with various side effects such as nephrotoxicity and neurotoxicity. Tacrolimus-induced neurotoxicity is frequently encountered in clinical practice and can present with a variety of symptoms that may occur even at therapeutic levels. Although tacrolimus-induced neurotoxicity is well documented, there is limited literature available on pharmacologic management. Twenty-eight case reports of tacrolimus-induced neurotoxicity were identified and analyzed in addition to other literature including reviews, retrospective studies, and animal model studies. The severity of cases of tacrolimus-induced neurotoxicity reported ranged from mild symptoms that could be managed with symptomatic treatment to conditions such as posterior reversible encephalopathy syndrome and chronic inflammatory demyelinating polyradiculoneuropathy that may require more immediate intervention. This information was utilized in addition to clinical experience to compile potential management options for prevention and treatment of neurotoxic adverse events. This review is limited by the utilization of primarily retrospective studies and case reports. The available literature on the subject is largely narrative and there are no guidelines on treatment of tacrolimus-induced neurotoxicity at the time of this research. This comprehensive review may guide further studies to investigate the pathophysiology of tacrolimus-induced neurotoxicity and to define patient-specific strategies for mitigation or minimization of neurotoxicity. This is especially important given that management of tacrolimus-induced neurotoxicity can include changes to immunosuppression that can result in an increased risk of rejection.
Article
Background: Calcineurin is highly enriched in immune T cells and in the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. Here, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. Methods and results: Immunoblotting and coimmunoprecipitation assays revealed that prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1 (the obligatory NMDAR subunit), and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Whole-cell recordings in brain slices showed that treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, telemetry recording showed that concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. Conclusions: These findings indicate that α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension.
Article
Gyroxin is a thrombin-like toxin obtained from the venom of the South American rattlesnake, Crotalus durissus terrificus. Literature has reported “gyroxin syndrome” characterized, in mice, as series of aberrant motor behavior, known as barrel rotation, mainly after intraperitoneal administration. Despites several studies, a physiological mechanism of “gyroxin syndrome” are still not completely understood. In this context, alterations on the central nervous system (CNS), especially causing neurotoxic events, are pointed out as likely candidates. Then, we decided to investigate whether gyroxin induces alterations in glutamate release, one of the most important neurotransmitter involved in neurotoxicity. For that, we performed all experiments, in vitro, using a model of mice brain cortical synaptosomes. Notably, our results indicate that the administration of gyroxin on purified presynaptic brain cortical terminals resulted in an extracellular Ca²⁺- dependent raise in glutamate release. Indeed, our results also showed that gyroxin increases intrasynaptosomal calcium (Ca²⁺) levels through acting on voltage gated calcium channels (VGCC), specifically N and P/Q subtypes. Moreover, our data show that gyroxin increases exocytosis rate. Interestingly, these data suggest that gyroxin might induce neurotoxicity by increasing glutamate levels. However, future investigations are needed in order to elucidate the nature of the following events.
Article
Long-term potentiation (LTP) of synaptic transmission is considered to be a cellular counterpart of learning and memory. Activation of postsynaptic NMDA type glutamate receptor (NMDA-R) induces trafficking of AMPA type glutamate receptors (AMPA-R) and other proteins to the synapse in sequential fashion. At the same time, the dendritic spine expands for long-term and modulation of actin underlies this (structural LTP or sLTP). How these changes persist despite constant diffusion and turnover of the component proteins have been the central focus of the current LTP research. Signaling triggered by Ca2+-influx via NMDA-R triggers kinase including Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII can sustain longer-term biochemical signaling by forming a reciprocally-activating kinase-effector complex with its substrate proteins including Tiam1, thereby regulating persistence of the downstream signaling. Furthermore, activated CaMKII can condense at the synapse through the mechanism of liquid-liquid phase separation (LLPS). This increases the binding capacity at the synapse, thereby contributing to the maintenance of enlarged protein complexes. It may also serve as the synapse tag, which captures newly synthesized proteins.
Article
Never before have we experienced social isolation on such a massive scale as we have in response to COVID-19. Yet we know that the social environment has a dramatic impact on our sense of life satisfaction and well-being. In times of distress, crisis, or disaster, human resilience depends on the richness and strength of social connections, as well as active engagement in groups and communities. Over recent years, evidence emerging from various disciplines has made it abundantly clear: loneliness may be the most potent threat to survival and longevity. Here, we highlight the benefits of social bonds, choreographies of bond creation and maintenance, as well as the neurocognitive basis of social isolation and its deep consequences for mental and physical health.
Article
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB possess is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Article
Background: This study aimed to determine whether de novo, prolonged-release tacrolimus- (PR-tacro) based immunosuppressive regimen affected graft and patient survival when compared to an immediate-release, twice-daily, tacrolimus- (IR-tacro) based regimen in kidney transplant recipients. We also aimed to determine the difference between the frequency of side effects, including diabetes control, in study groups. Methods: A total of 115 standard risk kidney transplant recipients were enrolled in this single center, retrospective study. Fifty-two patients received PR-tacro and 63 patients received IR-tacro as a calcineurin inhibitor. The primary outcome measures included incidence of graft loss and delayed graft function (DGF), biopsy-proven acute rejection , graft and patient survival, and creatinine clearance. Secondary outcome measures included the incidence of non-adherence, drug-induced tremor; post-transplant diabetes mellitus diagnosis rate; and control of diabetes in pre-transplant diabetic patients. Results: Baseline characteristics and mean tacrolimus trough levels were comparable between groups. Incidence of graft loss, DGF, and graft and patient survival were similar between groups (P > .05). Mean creatinine clearance level was also similar (P > .05). Mean serum levels of fasting glucose (P < .05) and A1C (P < .05) were lower in PR-tacro group when compared to IR-tacro group. Post-transplant diabetes mellitus diagnosis rate was also lower in PR-tacro group when compared to IR-tacro group (P = .040). Conclusion: This study suggests that there is no statistically significant difference between PR-tacro and IR-tacro in terms of patient and graft survival, DGF, and biopsy-proven acute rejection rates in kidney transplant recipients. Post-transplant diabetes mellitus frequency is lower in non-diabetic patients, and glucose metabolism control is better in diabetic patients.
Article
Ten years ago, a consensus report on the optimization of tacrolimus was published in this journal. In 2017, the Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicity (IATDMCT) decided to issue an updated consensus report considering the most relevant advances in tacrolimus pharmacokinetics (PK), pharmacogenetics (PG), pharmacodynamics, and immunologic biomarkers, with the aim to provide analytical and drug-exposure recommendations to assist TDM professionals and clinicians to individualize tacrolimus TDM and treatment. The consensus is based on in-depth literature searches regarding each topic that is addressed in this document. Thirty-seven international experts in the field of TDM of tacrolimus as well as its PG and biomarkers contributed to the drafting of sections most relevant for their expertise. Whenever applicable, the quality of evidence and the strength of recommendations were graded according to a published grading guide. After iterated editing, the final version of the complete document was approved by all authors. For each category of solid organ and stem cell transplantation, the current state of PK monitoring is discussed and the specific targets of tacrolimus trough concentrations (predose sample C0) are presented for subgroups of patients along with the grading of these recommendations. In addition, tacrolimus area under the concentration-time curve determination is proposed as the best TDM option early after transplantation, at the time of immunosuppression minimization, for special populations, and specific clinical situations. For indications other than transplantation, the potentially effective tacrolimus concentrations in systemic treatment are discussed without formal grading. The importance of consistency, calibration, proficiency testing, and the requirement for standardization and need for traceability and reference materials is highlighted. The status for alternative approaches for tacrolimus TDM is presented including dried blood spots, volumetric absorptive microsampling, and the development of intracellular measurements of tacrolimus. The association between CYP3A5 genotype and tacrolimus dose requirement is consistent (Grading A I). So far, pharmacodynamic and immunologic biomarkers have not entered routine monitoring, but determination of residual nuclear factor of activated T cells-regulated gene expression supports the identification of renal transplant recipients at risk of rejection, infections, and malignancy (B II). In addition, monitoring intracellular T-cell IFN-g production can help to identify kidney and liver transplant recipients at high risk of acute rejection (B II) and select good candidates for immunosuppression minimization (B II). Although cell-free DNA seems a promising biomarker of acute donor injury and to assess the minimally effective C0 of tacrolimus, multicenter prospective interventional studies are required to better evaluate its clinical utility in solid organ transplantation. Population PK models including CYP3A5 and CYP3A4 genotypes will be considered to guide initial tacrolimus dosing. Future studies should investigate the clinical benefit of time-to-event models to better evaluate biomarkers as predictive of personal response, the risk of rejection, and graft outcome. The Expert Committee concludes that considerable advances in the different fields of tacrolimus monitoring have been achieved during this last decade. Continued efforts should focus on the opportunities to implement in clinical routine the combination of new standardized PK approaches with PG, and valid biomarkers to further personalize tacrolimus therapy and to improve long-term outcomes for treated patients.
Article
Randomized, open‐label, comparative, single‐center, Phase 4, 24‐week study comparing pharmacokinetics (PK), safety, and efficacy of once‐daily, prolonged‐release tacrolimus (PR‐T) with twice‐daily, immediate‐release tacrolimus (IR‐T) in adult de novo living‐donor liver transplant (LDLT) recipients in Korea. All patients received intravenous tacrolimus from Day 0 (transplantation) for 4 days and were randomized (1:1) to receive oral PR‐T or IR‐T from Day 5. PK profiles taken on Days 6 and 21. Primary endpoint: area‐under‐the‐concentration–time curve over 24h (AUC0–24). Predefined similarity interval for confidence intervals of ratios: 80–125%. Secondary endpoints included: tacrolimus concentration at 24h (C24), patient/graft survival, biopsy‐confirmed acute rejection (BCAR), treatment‐emergent adverse events (TEAEs). One‐hundred patients were included (PR‐T, n=50; IR‐T, n=50). Compared with IR‐T, 40% and 66% higher mean PR‐T daily doses resulted in similar AUC0–24 between formulations on Day 6 (PR‐T:IR‐T ratio of means 96.8%), and numerically higher AUC0–24 with PR‐T on Day 21 (128.8%), respectively. Linear relationship was similar between AUC0–24 and C24, and formulations. No graft loss/deaths; incidence of BCAR and TEAEs similar between formulations. Higher PR‐T versus IR‐T doses were required to achieve comparable systemic exposure in Korean de novo LDLT recipients. PR‐T was efficacious; no new safety signals were detected. This article is protected by copyright. All rights reserved.
Article
The object recognition test (ORT) is a commonly used behavioral assay for the investigation of various aspects of learning and memory in mice. The ORT is fairly simple and can be completed over 3 days: habituation day, training day, and testing day. During training, the mouse is allowed to explore 2 identical objects. On test day, one of the training objects is replaced with a novel object. Because mice have an innate preference for novelty, if the mouse recognizes the familiar object, it will spend most of its time at the novel object. Due to this innate preference, there is no need for positive or negative reinforcement or long training schedules. Additionally, the ORT can also be modified for numerous applications. The retention interval can be shortened to examine short-term memory, or lengthened to probe long-term memory. Pharmacological intervention can be used at various times prior to training, after training, or prior to recall to investigate different phases of learning (i.e., acquisition, early or late consolidation, or recall). Overall, the ORT is a relatively low-stress, efficient test for memory in mice, and is appropriate for the detection of neuropsychological changes following pharmacological, biological, or genetic manipulations.
Article
Semantic dementia (SD) and Alzheimer's disease (AD) are both disorders in which early pathology affects the temporal lobe yet they produce distinct syndromes of declarative memory impairment—loss of established semantic knowledge with relatively preserved episodic memory in the former and the converse in the latter. Groups with mild SD and mild AD who showed a double dissociation in these two aspects of declarative memory were studied—the SD group's episodic memory and the AD group's semantic knowledge each being comparable to controls. Positron emission tomography and volumetric magnetic resonance imaging were used to map deficits in regional cerebral metabolic rate and mesial temporal lobe (MTL) atrophy, respectively. Episodic memory impairment in AD was associated with dysfunction of an integrated network (mesial temporal lobe, mamillary bodies, dorso-mesial thalamus and posterior cingulate). Semantic memory impairment in SD was associated with bilateral rostral temporal lobe hypometabolism. The SD group had comparable MTL atrophy and hypometabolism to that found in AD but the remainder of their limbic – diencephalic network was preserved suggesting that the latter explains their ability to acquire new episodic memories. The results challenge the view that amnesia in early AD can be explained by the degree of MTL damage alone while showing that semantic impairment can occur with damage restricted to the rostral temporal lobes. D
Article
Alzheimer's disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating - Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.