Preprint

Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Despite widespread speculation about artificial intelligence's impact on the future of work, we lack systematic empirical evidence about how these systems are actually being used for different tasks. Here, we present a novel framework for measuring AI usage patterns across the economy. We leverage a recent privacy-preserving system to analyze over four million Claude.ai conversations through the lens of tasks and occupations in the U.S. Department of Labor's O*NET Database. Our analysis reveals that AI usage primarily concentrates in software development and writing tasks, which together account for nearly half of all total usage. However, usage of AI extends more broadly across the economy, with approximately 36% of occupations using AI for at least a quarter of their associated tasks. We also analyze how AI is being used for tasks, finding 57% of usage suggests augmentation of human capabilities (e.g., learning or iterating on an output) while 43% suggests automation (e.g., fulfilling a request with minimal human involvement). While our data and methods face important limitations and only paint a picture of AI usage on a single platform, they provide an automated, granular approach for tracking AI's evolving role in the economy and identifying leading indicators of future impact as these technologies continue to advance.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this essay, I begin by identifying the reasons that automation has not wiped out a majority of jobs over the decades and centuries. Automation does indeed substitute for labor—as it is typically intended to do. However, automation also complements labor, raises output in ways that leads to higher demand for labor, and interacts with adjustments in labor supply. Journalists and even expert commentators tend to overstate the extent of machine substitution for human labor and ignore the strong complementarities between automation and labor that increase productivity, raise earnings, and augment demand for labor. Changes in technology do alter the types of jobs available and what those jobs pay. In the last few decades, one noticeable change has been a "polarization" of the labor market, in which wage gains went disproportionately to those at the top and at the bottom of the income and skill distribution, not to those in the middle; however, I also argue, this polarization is unlikely to continue very far into future. The final section of this paper reflects on how recent and future advances in artificial intelligence and robotics should shape our thinking about the likely trajectory of occupational change and employment growth. I argue that the interplay between machine and human comparative advantage allows computers to substitute for workers in performing routine, codifiable tasks while amplifying the comparative advantage of workers in supplying problem-solving skills, adaptability, and creativity.
Article
Full-text available
We apply an understanding of what computers do to study how computerization alters job skill demands. We argue that computer capital (1) substitutes for workers in performing cognitive and manual tasks that can be accomplished by following explicit rules; and (2) complements workers in performing nonroutine problem-solving and complex communications tasks. Provided these tasks are imperfect substitutes, our model implies measurable changes in the composition of job tasks, which we explore using representative data on task input for 1960 to 1998. We find that within industries, occupations and education groups, computerization is associated with reduced labor input of routine manual and routine cognitive tasks and increased labor input of nonroutine cognitive tasks. Translating task shifts into education demand, the model can explain sixty percent of the estimated relative demand shift favoring college labor during 1970 to 1998. Task changes within nominally identical occupations account for almost half of this impact.
Article
We examine the concerns that new technologies will render labor redundant in a framework in which tasks previously performed by labor can be automated and new versions of existing tasks, in which labor has a comparative advantage, can be created. In a static version where capital is fixed and technology is exogenous, automation reduces employment and the labor share, and may even reduce wages, while the creation of new tasks has the opposite effects. Our full model endogenizes capital accumulation and the direction of research toward automation and the creation of new tasks. If the long-run rental rate of capital relative to the wage is sufficiently low, the long-run equilibrium involves automation of all tasks. Otherwise, there exists a stable balanced growth path in which the two types of innovations go hand-in-hand. Stability is a consequence of the fact that automation reduces the cost of producing using labor, and thus discourages further automation and encourages the creation of new tasks. In an extension with heterogeneous skills, we show that inequality increases during transitions driven both by faster automation and the introduction of new tasks, and characterize the conditions under which inequality stabilizes in the long run.
Article
An emerging literature argues that changes in the allocation of workplace “tasks” between capital and labor, and between domestic and foreign workers, has altered the structure of labor demand in industrialized countries and fostered employment polarization—that is, rising employment in the highest and lowest paid occupations. Analyzing this phenomenon within the canonical production function framework is challenging, however, because the assignment of tasks to labor and capital in the canonical model is essentially static. This essay sketches an alternative model of the assignment of skills to tasks based upon comparative advantage, reviews key conceptual and practical challenges that researchers face in bringing the “task approach” to the data, and cautions against two common pitfalls that pervade the growing task literature. I conclude with a cautiously optimistic forecast for the potential of the task approach to illuminate the interactions among skill supplies, technological capabilities, and trade and offshoring opportunities, in shaping the aggregate demand for skills, the assignment of skills to tasks, and the evolution of wages.
The claude 3 model family: Opus, sonnet, haiku
  • Anthropic
Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024.
What can machines learn, and what does it mean for occupations and the economy?
  • E Brynjolfsson
  • T Mitchell
  • D Rock
E. Brynjolfsson, T. Mitchell, and D. Rock. What can machines learn, and what does it mean for occupations and the economy? AEA Papers and Proceedings, 108:43-47, May 2018b. doi: 10.1257/pandp.20181019. URL https://www.aeaweb.org/articles?id=10.1257/pandp. 20181019.