Preprint

The THESAN-ZOOM project: Long-term imprints of external reionization on galaxy evolution

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

We investigate the impact of ionizing external ultraviolet (UV) radiation on low-mass haloes (Mh<1010MM_{h}<10^{10}M_\odot) at high redshift using 1140M1140M_\odot baryonic resolution zoom-in simulations of seven regions from the THESAN-ZOOM project. We compare three simulation sets that differ in the treatment of external UV radiation: one employing a uniform UV background initiated at z=10.6 in addition to radiation transport for local sources, another with the same background starting at z=5.5, and the default configuration in which the large-scale radiation field from the parent THESAN-1 simulation box acts as a boundary condition. The multi-phase interstellar medium (ISM) model, combined with its high mass resolution, allows us to resolve all star-forming haloes and capture the back-reaction of ionizing radiation on galaxy properties during the epoch of reionization. When present, external UV radiation efficiently unbinds gas in haloes with masses below 109M10^9M_\odot and suppresses subsequent star formation. As a result, in simulations with early reionization, minihaloes fail to form stars from pristine gas, leading to reduced metal enrichment of gas later accreted by more massive haloes. Consequently, haloes with masses below 1010M10^{10}M_\odot at all simulated epochs (z>3) exhibit lower metallicities and altered metallicity distributions. The more accurate and realistic shielding from external UV radiation, achieved through self-consistent radiative transfer, permits the existence of a cold but low-density gas phase down to z=3. These findings highlight the importance of capturing a patchy reionization history in high-resolution simulations targeting high-redshift galaxy formation. We conclude that at minimum, a semi-numerical model that incorporates spatially inhomogeneous reionization and a non-uniform metallicity floor is necessary to accurately emulate metal enrichment in minihaloes.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

Preprint
Full-text available
We investigate the evolutionary histories of a population of high mass, high redshift, quiescent galaxies in the cosmohydrodynamical simulation Thesan; studying the characteristic properties of their haloes and environments over the epoch of reionisation. Thesan employs a modified version of the Arepo moving-mesh code utilised in IllustrisTNG, whose explicit handling of ionising radiation couples haloes and galaxies with cosmic reionisation. This results in a regime of rapid growth and quenching, producing nine massive quiescent galaxies at z=5.5z = 5.5, in a 95.5cMpc395.5\text{cMpc}^3 volume, with no counterpart in IllustrisTNG. We find that the rapid assembly of stellar mass is attributed to smooth accretion of mass onto their haloes in dense environments, particularly from massive neighbouring structures; while these galaxies exhibit fast-growing potential wells hosting massive central black holes. With insignificant merger activity, we find AGN feedback to be the primary source of quenching. We find megaparsec-scale densities and halo masses to continue growing after quenching, suggesting that massive quiescent galaxies will be found in some of the largest haloes and densest regions of space by observations. With an unprecedented plethora of massive quiescent galaxies found in JWST data, these reionisation simulations may provide the paradigm for the evolutionary histories of these galaxies, while constraining the relatively unknown physics of reionisation. Despite the rarity of simulated massive quiescent galaxies, their identification in Thesan enables identification of halo and environmental properties most conducive to their quenching, hopefully guiding future efforts into the study of analogous systems in deep observational surveys and large-volume N-body simulations.
Article
Full-text available
The A eos project introduces a series of high-resolution cosmological simulations that model star-by-star chemical enrichment and galaxy formation in the early Universe, achieving 1 pc resolution. These simulations capture the complexities of galaxy evolution within the first ~300 Myr by modeling individual stars and their feedback processes. By incorporating chemical yields from individual stars, A eos generates galaxies with diverse stellar chemical abundances, linking them to hierarchical galaxy formation and early nucleosynthetic events. These simulations underscore the importance of chemical abundance patterns in ancient stars as vital probes of early nucleosynthesis, star formation histories, and galaxy formation. We examine the metallicity floors of various elements resulting from Population III enrichment, providing best-fit values for eight different metals (e.g., [O/H] = −4.0) to guide simulations without Population III models. Additionally, we identify galaxies that begin star formation with Population II after external enrichment and investigate the frequency of carbon-enhanced metal-poor stars at varying metallicities. The A eos simulations offer detailed insights into the relationship between star formation, feedback, and chemical enrichment. Future work will extend these simulations to later epochs to interpret the diverse stellar populations of the Milky Way and its satellites.
Article
Full-text available
We present a sample of 88 candidate z ∼ 8.5–14.5 galaxies selected from the completed NIRCam imaging from the Cosmic Evolution Early Release Science survey. These data cover ∼90 arcmin ² (10 NIRCam pointings) in six broadband imaging filters and one medium-band imaging filter. With this sample we confirm at higher confidence early JWST conclusions that bright galaxies in this epoch are more abundant than predicted by most theoretical models. We construct the rest-frame ultraviolet luminosity functions at z ∼ 9, 11, and 14 and show that the space density of bright ( M UV = −20) galaxies changes only modestly from z ∼ 14 to z ∼ 9, compared to a steeper increase from z ∼ 8 to z ∼ 4. While our candidates are photometrically selected, spectroscopic follow-up has now confirmed 13 of them, with only one significant interloper, implying that the fidelity of this sample is high. Successfully explaining the evidence for a flatter evolution in the number densities of UV-bright z > 10 galaxies may thus require changes to the dominant physical processes regulating star formation. While our results indicate that significant variations of dust attenuation with redshift are unlikely to be the dominant factor at these high redshifts, they are consistent with predictions from models that naturally have enhanced star formation efficiency and/or stochasticity. An evolving stellar initial mass function could also bring model predictions into better agreement with our results. Deep spectroscopic follow-up of a large sample of early galaxies can distinguish between these competing scenarios.
Article
Full-text available
A substantial number of ultra-high redshift (8 ≲ z ≲ 17) galaxy candidates have been detected with JWST, posing the question: Are these observational results surprising in the context of current galaxy formation models? We address this question using the well-established Santa Cruz semi-analytic models, implemented within merger trees from the new suite of cosmological N-body simulations gureft, which were carefully designed for ultra-high redshift studies. Using our fiducial models calibrated at z = 0, we present predictions for stellar mass functions, rest-frame UV luminosity functions, and various scaling relations. We find that our (dust-free) models predict galaxy number densities at z ∼ 11 (z ∼ 13) that are an order of magnitude (a factor of ∼30) lower than the observational estimates. We estimate the uncertainty in the observed number densities due to cosmic variance, and find that it leads to a fractional error of ∼20–30 per cent at z = 11 (∼30–80 per cent at z = 14) for a 100 arcmin2 field. We explore which processes in our models are most likely to be rate-limiting for the formation of luminous galaxies at these early epochs, considering the halo formation rate, gas cooling, star formation, and stellar feedback, and conclude that it is mainly efficient stellar-driven winds. We find that a modest boost of a factor of ∼4 to the UV luminosities, which could arise from a top-heavy stellar initial mass function, would bring our current models into agreement with the observations. Adding a stochastic component to the UV luminosity can also reconcile our results with the observations.
Article
Full-text available
Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the UV luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope (JWST) imaging surveys of deep, lensed fields hold potential for uncovering the faint, low-mass galaxy population, which could provide constraints on altDM models.
Article
Full-text available
Modelling galaxy formation in hydrodynamic simulations has increasingly adopted various radiative transfer methods to account for photoionization feedback from young massive stars. However, the evolution of H ii regions around stars begins in dense star-forming clouds and spans large dynamical ranges in both space and time, posing severe challenges for numerical simulations in terms of both spatial and temporal resolution that depends strongly on gas density (∝n−1). In this work, we perform a series of idealized H ii region simulations using the moving-mesh radiation-hydrodynamic code arepo-rt to study the effects of numerical resolution. The simulated results match the analytical solutions and the ionization feedback converges only if the Strömgren sphere is resolved by at least 10–100 resolution elements and the size of each time integration step is smaller than 0.1 times the recombination timescale. Insufficient spatial resolution leads to reduced ionization fraction but enhanced ionized gas mass and momentum feedback from the H ii regions, as well as degrading the multi-phase interstellar medium into a diffuse, partially ionized, warm (∼8000 K) gas. On the other hand, insufficient temporal resolution strongly suppresses the effects of ionizing feedback. This is because longer timesteps are not able to resolve the rapid variation of the thermochemistry properties of the gas cells around massive stars, especially when the photon injection and thermochemistry are performed with different cadences. Finally, we provide novel numerical implementations to overcome the above issues when strict resolution requirements are not achievable in practice.
Article
Full-text available
Recent discoveries of a significant population of bright galaxies at cosmic dawn z ≳ 10 have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxys’ UV luminosity functions (UVLFs) appear higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8 ≤ z ≤ 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multichannel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications, such as a nonstandard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright ( M UV ≲ −20) galaxies at z ≳ 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.
Article
Full-text available
We introduce the Virgo Consortium’s FLAMINGO suite of hydrodynamical simulations for cosmology and galaxy cluster physics. To ensure the simulations are sufficiently realistic for studies of large-scale structure, the subgrid prescriptions for stellar and AGN feedback are calibrated to the observed low-redshift galaxy stellar mass function and cluster gas fractions. The calibration is performed using machine learning, separately for each of FLAMINGO’s three resolutions. This approach enables specification of the model by the observables to which they are calibrated. The calibration accounts for a number of potential observational biases and for random errors in the observed stellar masses. The two most demanding simulations have box sizes of 1.0 and 2.8 Gpc on a side and baryonic particle masses of 1 × 108 and 1 × 109 M⊙, respectively. For the latter resolution the suite includes 12 model variations in a 1 Gpc box. There are 8 variations at fixed cosmology, including shifts in the stellar mass function and/or the cluster gas fractions to which we calibrate, and two alternative implementations of AGN feedback (thermal or jets). The remaining 4 variations use the unmodified calibration data but different cosmologies, including different neutrino masses. The 2.8 Gpc simulation follows 3 × 1011 particles, making it the largest ever hydrodynamical simulation run to z = 0. Lightcone output is produced on-the-fly for up to 8 different observers. We investigate numerical convergence, show that the simulations reproduce the calibration data, and compare with a number of galaxy, cluster, and large-scale structure observations, finding very good agreement with the data for converged predictions. Finally, by comparing hydrodynamical and ‘dark-matter-only’ simulations, we confirm that baryonic effects can suppress the halo mass function and the matter power spectrum by up to ≈20 per cent.
Article
Full-text available
Cosmological simulations are an important theoretical pillar for understanding non-linear structure formation in our Universe and for relating it to observations on large scales. In several papers, we introduce our MillenniumTNG (MTNG) project that provides a comprehensive set of high-resolution, large-volume simulations of cosmic structure formation aiming to better understand physical processes on large scales and to help interpret upcoming large-scale galaxy surveys. We here focus on the full physics box MTNG740 that computes a volume of 740Mpc3740\, \mathrm{Mpc}^3 with a baryonic mass resolution of 3.1× 107M3.1\times ~10^7\, \mathrm{M_\odot } using arepo with 80.6 billion cells and the IllustrisTNG galaxy formation model. We verify that the galaxy properties produced by MTNG740 are consistent with the TNG simulations, including more recent observations. We focus on galaxy clusters and analyse cluster scaling relations and radial profiles. We show that both are broadly consistent with various observational constraints. We demonstrate that the SZ-signal on a deep light-cone is consistent with Planck limits. Finally, we compare MTNG740 clusters with galaxy clusters found in Planck and the SDSS-8 RedMaPPer richness catalogue in observational space, finding very good agreement as well. However, simultaneously matching cluster masses, richness, and Compton-y requires us to assume that the SZ mass estimates for Planck clusters are underestimated by 0.2 dex on average. Due to its unprecedented volume for a high-resolution hydrodynamical calculation, the MTNG740 simulation offers rich possibilities to study baryons in galaxies, galaxy clusters, and in large-scale structure, and in particular their impact on upcoming large cosmological surveys.
Article
Full-text available
We present a suite of high-resolution simulations of an isolated dwarf galaxy using four different hydrodynamical codes: Gizmo , Arepo , Gadget , and Ramses . All codes adopt the same physical model, which includes radiative cooling, photoelectric heating, star formation, and supernova (SN) feedback. Individual SN explosions are directly resolved without resorting to subgrid models, eliminating one of the major uncertainties in cosmological simulations. We find reasonable agreement on the time-averaged star formation rates as well as the joint density–temperature distributions between all codes. However, the Lagrangian codes show significantly burstier star formation, larger SN-driven bubbles, and stronger galactic outflows compared to the Eulerian code. This is caused by the behavior in the dense, collapsing gas clouds when the Jeans length becomes unresolved: Gas in Lagrangian codes collapses to much higher densities than that in Eulerian codes, as the latter is stabilized by the minimal cell size. Therefore, more of the gas cloud is converted to stars and SNe are much more clustered in the Lagrangian models, amplifying their dynamical impact. The differences between Lagrangian and Eulerian codes can be reduced by adopting a higher star formation efficiency in Eulerian codes, which significantly enhances SN clustering in the latter. Adopting a zero SN delay time reduces burstiness in all codes, resulting in vanishing outflows as SN clustering is suppressed.
Article
Full-text available
We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with Mstar > 108 M⊙ at z = 0) at a resolution (Δx ∼ 20 pc, mb ∼ 6 × 104 M⊙) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳ 106) and the inclusion of multi-channel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that simulated galaxies with Mstar < 1010.5 − 11 M⊙ have star formation rates, gas masses, and metallicities in broad agreement with observations. These galaxy scaling relations extend to low masses (Mstar ∼ 107 M⊙) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0 − 5. At low z, FIREbox predicts a peak in the stellar-mass–halo-mass relation, but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modeling challenges to be addressed in next-generation galaxy simulations.
Article
Full-text available
Early data from the James Webb Space Telescope (JWST) have revealed a bevy of high-redshift galaxy candidates with unexpectedly high stellar masses. An immediate concern is the consistency of these candidates with galaxy formation in the standard ΛCDM cosmological model, wherein the stellar mass (M⋆) of a galaxy is limited by the available baryonic reservoir of its host dark matter halo. The mass function of dark matter haloes therefore imposes an absolute upper limit on the number density n (>M⋆, z) and stellar mass density ρ⋆ (>M⋆, z) of galaxies more massive than M⋆ at any epoch z. Here I show that the most massive galaxy candidates in JWST observations at z ≈ 7–10 lie at the very edge of these limits, indicating an important unresolved issue with the properties of galaxies derived from the observations, how galaxies form at early times in ΛCDM or within this standard cosmology itself.
Article
Full-text available
Galaxies with stellar masses as high as ~ 1011 solar masses have been identified1–3 out to redshifts z ~ 6, approximately one billion years after the Big Bang. It has been difficult to find massive galaxies at even earlier times, as the Balmer break region, which is needed for accurate mass estimates, is redshifted to wavelengths beyond 2.5 μm. Here we make use of the 1-5 μm coverage of the JWST early release observations to search for intrinsically red galaxies in the first ≈ 750 million years of cosmic history. In the survey area, we find six candidate massive galaxies (stellar mass > 1010 solar masses) at 7.4 ≤ z ≤ 9.1, 500–700 Myr after the Big Bang, including one galaxy with a possible stellar mass of ~1011 solar masses. If verified with spectroscopy, the stellar mass density in massive galaxies would be much higher than anticipated from previous studies based on rest-frame ultraviolet-selected samples.
Article
Full-text available
The dividing line between galaxies that are quenched by reionization (“relics”) and galaxies that survive reionization (i.e., continue forming stars) is commonly discussed in terms of a halo mass threshold. We probe this threshold in a physically more complete and accurate way than has been possible to date, using five extremely high resolution ( M target = 4 M ⊙ ) cosmological zoom-in simulations of dwarf galaxies within the halo mass range (1–4) × 10 ⁹ M ⊙ . The employed LYRA simulation model features resolved interstellar medium physics and individual, resolved supernova explosions. Interestingly, two out of five of the simulated dwarf galaxies lie close to the threshold mass but are neither full reionization relics nor full reionization survivors. These galaxies initially quench at the time of reionization but merely remain quiescent for ∼500 Myr. At z ∼ 5 they recommence star formation in a synchronous way and remain star-forming until the present day. The parallel timing indicates consistent sound-crossing and cooling times between the halos. While the star formation histories we find are diverse, we show that they are directly related to the ability of a given halo to retain and cool gas. Whereas the latter is most strongly dependent on the mass (or virial temperature) of the host halo at the time of reionization, it also depends on its growth history, the UV background (and its decrease at late times), and the amount of metals retained within the halo.
Article
Full-text available
Recent observations with JWST have identified several bright galaxy candidates at z ≳ 10, some of which appear unusually massive (up to ∼10 ¹¹ M ⊙ ). Such early formation of massive galaxies is difficult to reconcile with standard ΛCDM predictions, demanding a very high star formation efficiency (SFE), possibly even in excess of the cosmic baryon mass budget in collapsed structures. With an idealized analysis based on linear perturbation theory and the Press–Schechter formalism, we show that the observed massive galaxy candidates can be explained with lower SFE than required in ΛCDM if structure formation is accelerated/seeded by massive (≳10 ⁹ M ⊙ ) primordial black holes (PBHs) that make a up a small fraction (∼10 ⁻⁶ –10 ⁻³ ) of dark matter, considering existing empirical constraints on PBH parameters. We also discuss the potential observational signatures of PBH cosmologies in the JWST era. More work needs to be done to fully evaluate the viability of such PBH models to explain observations of the high- z Universe.
Article
Full-text available
The presence of excess scatter in the Ly-α forest at z ∼ 5.5, together with the existence of sporadic extended opaque Gunn-Peterson troughs, has started to provide robust evidence for a late end of hydrogen reionization. However, low data quality and systematic uncertainties complicate the use of Ly-α transmission as a precision probe of reionization’s end stages. In this paper, we assemble a sample of 67 quasar sightlines at z > 5.5 with high signal-to-noise ratios of >10 per ≤15 km s−1 spectral pixel, relying largely on the new XQR-30 quasar sample. XQR-30 is a large program on VLT/X-Shooter which obtained deep (SNR > 20 per pixel) spectra of 30 quasars at z > 5.7. We carefully account for systematics in continuum reconstruction, instrumentation, and contamination by damped Ly-α systems. We present improved measurements of the mean Ly-α transmission over 4.9 < z < 6.1. Using all known systematics in a forward modelling analysis, we find excellent agreement between the observed Ly-α transmission distributions and the homogeneous-UVB simulations Sherwood and Nyx up to z ≤ 5.2 (<1σ), and mild tension (∼2.5σ) at z = 5.3. Homogeneous UVB models are ruled out by excess Ly-α transmission scatter at z ≥ 5.4 with high confidence (>3.5σ). Our results indicate that reionization-related fluctuations, whether in the UVB, residual neutral hydrogen fraction, and/or IGM temperature, persist in the intergalactic medium until at least z = 5.3 (t = 1.1 Gyr after the big bang). This is further evidence for a late end to reionization.
Article
Full-text available
We introduce the Phoenix Simulations, a suite of highly resolved cosmological simulations featuring hydrodynamics, primordial gas chemistry, primordial and enriched star formation and feedback, UV radiative transfer, and saved outputs with Δ t = 200 kyr. We observe 73,523 individual primordial stars within 3313 distinct regions forming 2110 second-generation enriched star clusters by z ≥ 12 within a combined 177.25 Mpc ³ volume across three simulations. The regions that lead to enriched star formation can contain ≳150 primordial stars, with 80% of regions having experienced combinations of primordial Type II, hypernovae, and/or pair-instability supernovae. Primordial supernovae enriched 0.8% of the volume, with 2% of enriched gas enriched by later-generation stars. We determine the extent of a primordial stellar region by its metal-rich or ionized hydrogen surrounding cloud; the metal-rich and ionized regions have time-dependent average radii r ≲ 3 kpc. 7 and 17% of regions have r > 7 kpc for metal-rich and ionized radii, respectively. We find that the metallicity distribution function of second-generation stars overlaps that of subsequent Population II star formation, spanning metal-deficient (∼7.94 × 10 ⁻⁸ Z ⊙ ) to supersolar (∼3.71 Z ⊙ ), and that 30.5% of second-generation stars have Z > 10 ⁻² Z ⊙ . We find that the metallicity of second-generation stars depends on progenitor configuration, with metals from pair-instability supernovae contributing to the most metal-rich clusters; these clusters form promptly after the supernova event. Finally, we create an interpretable regression model to predict the radius of the metal-rich influence of Population III star systems within the first 7–18 Myr after the first Population III stars form in the region.
Article
Full-text available
The recently launched James Webb Space Telescope promises unparalleled advances in our understanding of the first stars and galaxies, but realizing this potential requires cosmological simulations that capture the key physical processes that affected these objects. Here, we show that radiative transfer and subgrid turbulent mixing are two such processes. By comparing simulations with and without radiative transfer but with exactly the same physical parameters and subgrid turbulent mixing model, we show that tracking radiative transfer suppresses the Population III star formation density by a factor ≈4. In both simulations, ≳90% of Population III stars are found in the unresolved pristine regions tracked by our subgrid model, which does a better job at modeling the regions surrounding proto-galaxy cores where metals from supernovae take tens of megayears to mix thoroughly. At the same time, radiative transfer suppresses Population III star formation, via the development of ionized bubbles that slow gas accretion in these regions, and it results in compact high-redshift galaxies that are surrounded by isolated low-mass satellites. Thus, turbulent mixing and radiative transfer are both essential processes that must be included to accurately model the morphology, composition, and growth of primordial galaxies.
Article
Full-text available
We present the simulation of a 2 × 109 M⊙ halo mass cosmological dwarf galaxy run to z = 0 at 4 solar mass gas resolution with resolved supernova feedback. We compare three simple subgrid implementations for the inhomogeneous chemical enrichment from Population III stars and compare them to constraints from Local Group dwarf galaxies. The employed model, LYRA, is a novel high resolution galaxy formation model built for the moving mesh code AREPO, which is marked by a resolved multi-phase interstellar medium, single stars and individual supernova events. The resulting reionization relic is characterized by a short (<1.5 Gyr) star formation history that is repeatedly brought to a standstill by violent bursts of feedback. Star formation is reignited for a short duration due to a merger at z ≈ 4 and then again at z ≈ 0.2 − 0 after sustained gas accretion. Our model z = 0 galaxy matches the stellar mass, size, stellar kinematics and metallicity relations of Local Group dwarf galaxies well. The dark matter profile does not exhibit a core in any version of the model. We show that the host halo masses of Population III stars affect the assembly history of dwarf galaxies. This manifests itself through the initial gaseous collapse in the progenitor haloes, affecting the central density of the stellar component and through the accretion of luminous substructure.
Article
Full-text available
The Abundance Matching Box for the Epoch of Reionization (AMBER) is a semi-numerical code for modeling the cosmic dawn. The new algorithm is not based on the excursion set formalism for reionization, but takes the novel approach of calculating the reionization-redshift field z re ( x ) assuming that hydrogen gas encountering higher radiation intensity are photoionized earlier. Redshift values are assigned while matching the abundance of ionized mass according to a given mass-weighted ionization fraction x ¯ i ( z ) . The code has the unique advantage of allowing users to directly specify the reionization history through the redshift midpoint z mid , duration Δ z , and asymmetry A z input parameters. The reionization process is further controlled through the minimum halo mass M min for galaxy formation and the radiation mean free path l mfp for radiative transfer. We implement improved methods for constructing density, velocity, halo, and radiation fields, which are essential components for modeling reionization observables. We compare AMBER with two other semi-numerical methods and find that our code more accurately reproduces the results from radiation-hydrodynamic simulations. The parallelized code is over four orders of magnitude faster than radiative transfer simulations and will efficiently enable large-volume models, full-sky mock observations, and parameter-space studies. AMBER will be made publicly available to facilitate and transform studies of the Epoch of Reionization.
Article
Full-text available
The high-redshift intergalactic medium (IGM) and the primeval galaxy population are rapidly becoming the new frontier of extra-galactic astronomy. We investigate the IGM properties and their connection to galaxies at z ≥ 5.5 under different assumptions for the ionizing photon escape and the nature of dark matter, employing our novel thesan radiation-hydrodynamical simulation suite, designed to provide a comprehensive picture of the emergence of galaxies in a full reionization context. Our simulations have realistic ‘late’ reionization histories, match available constraints on global IGM properties and reproduce the recently-observed rapid evolution of the mean free path of ionizing photons. We additionally examine high-z Lyman-α transmission. The optical depth evolution is consistent with data, and its distribution suggests an even-later reionization than simulated, although with a strong sensitivity to the source model. We show that the effects of these two unknowns can be disentangled by characterising the spectral shape and separation of Lyman-α transmission regions, opening up the possibility to observationally constrain both. For the first time in simulations, thesan reproduces the modulation of the Lyman-α flux as a function of galaxy distance, demonstrating the power of coupling a realistic galaxy formation model with proper radiation-hydrodynamics. We find this feature to be extremely sensitive on the timing of reionization, while being relatively insensitive to the source model. Overall, thesan produces a realistic IGM and galaxy population, providing a robust framework for future analysis of the high-z Universe.
Article
Full-text available
Numerical methods have become a powerful tool for research in astrophysics, but their utility depends critically on the availability of suitable simulation codes. This calls for continuous efforts in code development, which is necessitated also by the rapidly evolving technology underlying today’s computing hardware. Here we discuss recent methodological progress in the GADGET code, which has been widely applied in cosmic structure formation over the past two decades. The new version offers improvements in force accuracy, in time-stepping, in adaptivity to a large dynamic range in timescales, in computational efficiency, and in parallel scalability through a special MPI/shared-memory parallelization and communication strategy, and a more-sophisticated domain decomposition algorithm. A manifestly momentum conserving fast multipole method (FMM) can be employed as an alternative to the one-sided TreePM gravity solver introduced in earlier versions. Two different flavours of smoothed particle hydrodynamics, a classic entropy-conserving formulation and a pressure-based approach, are supported for dealing with gaseous flows. The code is able to cope with very large problem sizes, thus allowing accurate predictions for cosmic structure formation in support of future precision tests of cosmology, and at the same time is well adapted to high dynamic range zoom-calculations with extreme variability of the particle number density in the simulated volume. The GADGET-4 code is publicly released to the community and contains infrastructure for on-the-fly group and substructure finding and tracking, as well as merger tree building, a simple model for radiative cooling and star formation, a high dynamic range power spectrum estimator, and an initial conditions generator based on second-order Lagrangian perturbation theory.
Article
JWST has revealed a large population of UV-bright galaxies at z10z\gtrsim 10 and possibly overly massive galaxies at z7z\gtrsim 7, challenging standard galaxy formation models in the ΛCDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at 4z104\lesssim z \lesssim 10 in both ΛCDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at z12z\simeq 12 based on spectroscopically confirmed galaxies (eight galaxies at z11 ⁣ ⁣13.5z\simeq 11\!-\!13.5) exhibit no tension with the benchmark model. Photometric constraints at 12z1612 \lesssim z\lesssim 16 can be fully explained within EDE via either moderately increased star-formation efficiencies (ϵ3 ⁣ ⁣10 per cent\epsilon _{\ast}\sim 3\!-\!10\ \hbox{per cent} at Mhalo1010.5MM_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }) or enhanced UV variabilities (σUV0.8 ⁣ ⁣1.3\sigma _{\rm UV}\sim 0.8\!-\!1.3 mag at Mhalo1010.5MM_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in Λ\LambdaCDM, especially at z14z\gtrsim 14, where the required σUV\sigma _{\rm UV} exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics.
Article
Combining the public JWST/NIRCam imaging programs CEERS, PRIMER and JADES, spanning a total area of ∼500 arcmin2, we obtain a sample of >30,000 galaxies at zphot ∼ 4 − 9 that allows us to perform a complete, rest-optical selected census of the galaxy population at z > 3. Comparing the stellar mass M* and the UV-slope β distributions between JWST- and HST-selected samples, we generally find very good agreement and no significant biases. Nevertheless, JWST enables us to probe a new population of UV-red galaxies that was missing from previous HST-based Lyman Break Galaxy (LBG) samples. We measure galaxy stellar mass functions (SMFs) at z ∼ 4 − 9 down to limiting masses of 107.5 − 108.5 M⊙, finding steep low mass slopes over the entire redshift range, reaching values of α ≈ −2 at z ≳ 6. At the high-mass end, UV-red galaxies dominate at least out to z ∼ 6. The implied redshift evolution of the SMF suggests a rapid build-up of massive dust-obscured or quiescent galaxies from z ∼ 6 to z ∼ 4 as well as an enhanced efficiency of star formation towards earlier times (z ≳ 6). Finally, we show that the galaxy mass density grows by a factor ∼20 × from z ∼ 9 to z ∼ 4. Our results emphasize the importance of rest-frame optically-selected samples in inferring accurate distributions of physical properties and studying the mass build-up of galaxies in the first 1.5 Gyr of cosmic history.
Article
Radiative transfer (RT) is a crucial ingredient for self-consistent modelling of numerous astrophysical phenomena across cosmic history. However, on-the-fly integration into radiation-hydrodynamics (RHD) simulations is computationally demanding, particularly due to the stringent time-stepping conditions and increased dimensionality inherent in multi-frequency collisionless Boltzmann physics. The emergence of exascale supercomputers, equipped with extensive CPU cores and GPU accelerators, offers new opportunities for enhancing RHD simulations. We present the first steps towards optimizing AREPO-RT for such high-performance computing environments. We implement a novel node-to-node communication strategy that utilizes shared memory to substitute intra-node communication with direct memory access. Furthermore, combining multiple inter-node messages into a single message substantially enhances network bandwidth utilization and performance for large-scale simulations on modern supercomputers. The single-message node-to-node approach also improves performance on smaller-scale machines with less optimized networks. Furthermore, by transitioning all RT-related calculations to GPUs, we achieve a significant computational speedup of around 15 for standard benchmarks compared to the original CPU implementation. As a case study, we perform cosmological RHD simulations of the Epoch of Reionization, employing a similar setup as the THESAN project. In this context, RT becomes sub-dominant such that even without modifying the core AREPO codebase, there is an overall threefold improvement in efficiency. The advancements presented here have broad implications, potentially transforming the complexity and scalability of future simulations for a wide variety of astrophysical studies. Our work serves as a blueprint for porting similar simulation codes based on unstructured resolution elements to GPU-centric architectures.
Article
We present SPICE, a new suite of radiation-hydrodynamic, cosmological simulations targeting the epoch of reionisation. The goal of these simulations is to systematically probe a variety of stellar feedback models, including ”bursty” and ”smooth” forms of supernova energy injection, as well as poorly-explored physical scenarios such as hypernova explosions and radiation pressure on dust. We show that even subtle differences in the behaviour of supernova feedback drive profound differences in reionisation histories, with burstier forms of feedback causing earlier reionisation. However, we also find that some global galaxy properties, such as the dust-attenuated luminosity functions and star formation main sequence, remain degenerate between models. In particular, we show that stellar feedback and its strength determine the morphological mix of galaxies emerging by z = 5 and that the reionisation history is inextricably connected to intrinsic properties such as galaxy kinematics and morphology. While star-forming, massive disks are prevalent if supernova feedback is ”smooth”, ”bursty” feedback preferentially generates dispersion-dominated systems. Different modes of feedback produce different strengths of outflows, altering the interstellar/circumgalactic medium in different ways, and in turn strongly affecting the escape of Lyman continuum (LyC) photons. We establish a correlation between galaxy morphology and LyC escape fraction, revealing that dispersion-dominated systems have escape fractions 10-50 times higher than their rotation-dominated counterparts at all redshifts. At the same intrinsic luminosity, dispersion-dominated systems should thus preferentially generate large HII regions as compared to their rotation-dominated counterparts. Since dispersion-dominated systems are more prevalent if stellar feedback is more explosive, reionisation occurs earlier in our simulation with burstier feedback. We argue that statistical samples of post-reionisation galaxy morphologies (using both stellar and gaseous components) probed with telescopes such as JWST, ALMA and MUSE can constrain stellar feedback at z > 5 and models of cosmic reionisation.
Article
The stellar initial mass function (IMF) in the early universe is essential to understand the formation of ancient galaxies. To this end, we conduct a series of long-term radiation hydrodynamic simulations following star cluster formation, varying the metallicity from Z/Z⊙ = 10−4 to 1. We particularly consider the effects of protostellar radiative feedback, which modify the exact shape of the IMF and determine the star formation efficiency (SFE), i.e. the ratio between the mass in stars and the initial gas mass in the parental cloud. Our results show that the IMF changes from a Salpeter-type to a top-heavy function as the metallicity decreases. When Z/Z⊙ ≲ 10−2, the IMF becomes log-flat and distinct from a Salpeter-like IMF. Stellar feedback is effective in shaping both the low- and high-mass ends of the IMF. Heating of dust grains by stellar radiation suppresses small-scale fragmentation and reduces the number of low-mass stars with M* ≲ 1 M⊙ at all metallicities. The ionizing radiation hinders the growth of massive stars, steepening the slope of the IMF at the high-mass end. The resulting feedback is more effective at lower metallicity, and star formation is regulated by stellar radiative feedback, with the SFE decreasing with decreasing metallicity. We suggest that the unexpectedly large number of UV-bright galaxies at z > 10 reported by JWST observations can be explained by considering star cluster formation at Z/Z⊙ ∼ 10−2 or 10−3, where the IMF is top-heavy, but the SFE is not too low due to stellar feedback.
Article
Cosmological simulations serve as invaluable tools for understanding the Universe. However, the technical complexity and substantial computational resources required to generate such simulations often limit their accessibility within the broader research community. Notable exceptions exist, but most are not suited for simultaneously studying the physics of galaxy formation and cosmic reionization during the first billion years of cosmic history. This is especially relevant now that a fleet of advanced observatories (e.g. James Webb Space Telescope, Nancy Grace Roman Space Telescope, SPHEREx, ELT, SKA) will soon provide an holistic picture of this defining epoch. To bridge this gap, we publicly release all simulation outputs and post-processing products generated within the thesan simulation project at www.thesan-project.com. This project focuses on the z ≥ 5.5 Universe, combining a radiation-hydrodynamics solver (arepo-rt), a well-tested galaxy formation model (IllustrisTNG) and cosmic dust physics to provide a comprehensive view of the Epoch of Reionization. The thesan suite includes 16 distinct simulations, each varying in volume, resolution, and underlying physical models. This paper outlines the unique features of these new simulations, the production and detailed format of the wide range of derived data products, and the process for data retrieval. Finally, as a case study, we compare our simulation data with a number of recent observations from the James Webb Space Telescope, affirming the accuracy and applicability of thesan. The examples also serve as prototypes for how to utilise the released dataset to perform comparisons between predictions and observations.
Article
The feedback loop between the galaxies producing the background radiation field for reionization and their growth is crucial, particularly for low-mass haloes. Despite this, the vast majority of galaxy formation studies employ a spatially-uniform, time-varying reionizing background, with the majority of reionization studies employing galaxy formation models only required to work at high redshift. This paper uses the well-studied TNG galaxy formation model, calibrated at low redshift, coupled to the Arepo-RT code, to self-consistently solve the coupled problems of galaxy evolution and reionization, evaluating the impact of patchy (and slow) reionization on early galaxies. thesan-hr is an extension of the thesan project to higher resolution (a factor of 50 increase, with a baryonic mass of mb ≈ 104 M⊙), to additionally enable the study of ‘mini-haloes’ with virial temperatures Tvir < 104 K. Comparing the self-consistent model to a uniform UV background, we show that galaxies in thesan-hr are predicted to be larger in physical extent (by a factor ∼2), less metal enriched (by ∼0.2 dex), and less abundant (by a factor ∼10 at M1500 = − 10) by z = 5. We show that differences in star formation and enrichment patterns lead to significantly different predictions for star formation in low mass haloes, low-metallicity star formation, and even the occupation fraction of haloes. We posit that cosmological galaxy formation simulations aiming to study early galaxy formation (z ≳ 3) must employ a spatially inhomogeneous UV background to accurately reproduce galaxy properties.
Article
JWST observations have revealed a population of galaxies bright enough that potentially challenge standard galaxy formation models in the ΛCDM cosmology. Using a minimal empirical framework, we investigate the influence of variability on the rest-frame ultra-violet (UV) luminosity function (UVLF) of galaxies at z ≥ 9. Our study differentiates between the median UV radiation yield and the variability of UV luminosities of galaxies at a fixed dark matter halo mass. We primarily focus on the latter effect, which depends on halo assembly and galaxy formation processes and can significantly increase the abundance of UV-bright galaxies due to the upscatter of galaxies in lower-mass haloes. We find that a relatively low level of variability, σUV ≈ 0.75 mag, matches the observational constraints at z ≈ 9. However, increasingly larger σUV is necessary when moving to higher redshifts, reaching σUV ≈ 2.0 (2.5) mag at z ≈ 12 (16). This implied variability is consistent with expectations of physical processes in high-redshift galaxies such as bursty star formation and dust clearance during strong feedback cycles. Photometric constraints from JWST at z ≳ 9 therefore can be reconciled with a standard ΛCDM-based galaxy formation model calibrated at lower redshifts without the need for adjustments to the median UV radiation yield.
Article
Cosmic strings, if they exist, source nonlinear and non-Gaussian perturbations all the way back to the time of equal matter and radiation (and earlier). Here, we compute the mass function of halos seeded by a scaling distribution of cosmic string loops, and we compare the results with the predictions of the standard Gaussian Λ cold dark matter model. Assuming a simple linear relation between stellar mass and halo mass, we also compute the stellar mass function. The contribution of cosmic strings dominates at sufficiently high redshifts z>zc where zc depends on the mass of the halo and on the mass per unit length μ of the strings and is of the order zc∼12 for Gμ=10−8. We find that strings with this value of Gμ can explain the preliminary James Webb Space Telescope (JWST) data on the high-redshift stellar mass density. Based on an extreme value statistic, we find that the mass of the heaviest expected string-seeded galaxy for the current JWST sky coverage is compatible with the heaviest detected galaxy. Given the uncertainties in the interpretation of the JWST data, we discuss predictions for higher redshift observations.
Article
The early release science results from JWST have yielded an unexpected abundance of high-redshift luminous galaxies that seems to be in tension with current theories of galaxy formation. However, it is currently difficult to draw definitive conclusions form these results as the sources have not yet been spectroscopically confirmed. It is in any case important to establish baseline predictions from current state-of-the-art galaxy formation models that can be compared and contrasted with these new measurements. In this work, we use the new large-volume (Lbox740cMpcL_\mathrm{box}\sim 740 \, \mathrm{cMpc}) hydrodynamic simulation of the MillenniumTNG project, suitably scaled to match results from higher resolution – smaller volume simulations, to make predictions for the high-redshift (z ≳ 8) galaxy population and compare them to recent JWST observations. We show that the simulated galaxy population is broadly consistent with observations until z ∼ 10. From z ≈ 10–12, the observations indicate a preference for a galaxy population that is largely dust-free, but is still consistent with the simulations. Beyond z ≳ 12, however, our simulation results underpredict the abundance of luminous galaxies and their star-formation rates by almost an order of magnitude. This indicates either an incomplete understanding of the new JWST data or a need for more sophisticated galaxy formation models that account for additional physical processes such as Population III stars, variable stellar initial mass functions, or even deviations from the standard ΛCDM model. We emphasize that any new process invoked to explain this tension should only significantly influence the galaxy population beyond z ≳ 10, while leaving the successful galaxy formation predictions of the fiducial model intact below this redshift.
Article
The first generation of stars, often called Population III (or Pop III), form from metal-free primordial gas at redshifts z ∼ 30 and below. They dominate the cosmic star-formation history until z ∼ 15–20, at which point the formation of metal-enriched Population II stars takes over. We review current theoretical models for the formation, properties, and impact of Pop III stars and discuss existing and future observational constraints. Key takeaways from this review include the following: ▪ Primordial gas is highly susceptible to fragmentation and Pop III stars form as members of small clusters with a logarithmically flat mass function. ▪ Feedback from massive Pop III stars plays a central role in regulating subsequent star formation, but major uncertainties remain regarding its immediate impact. ▪ In extreme conditions, supermassive Pop III stars can form, reaching masses of several 10 ⁵ M ⊙ . Their remnants may be the seeds of the supermassive black holes observed in high-redshift quasars. ▪ Direct observations of Pop III stars in the early Universe remain extremely challenging. Indirect constraints from the global 21-cm signal or gravitational waves are more promising. ▪ Stellar archeological surveys allow us to constrain both the low-mass and the high-mass ends of the Pop III mass distribution. Observations suggest that most massive Pop III stars end their lives as core-collapse supernovae rather than as pair-instability supernovae. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
JWST observations indicate a surprising excess of luminous galaxies at z ∼ 10 and above, consistent with efficient conversion of the accreted gas into stars, unlike the suppression of star formation by feedback at later times. We show that the high densities and low metallicities at this epoch guarantee a high star-formation efficiency (SFE) in the most massive dark-matter haloes. Feedback-free starbursts (FFBs) occur when the free-fall time is shorter than ∼1 Myr, below the time for low-metallicity massive stars to develop winds and supernovae. This corresponds to a characteristic density of ∼3 × 103 cm−3. A comparable threshold density permits a starburst by allowing cooling to star-forming temperatures in a free-fall time. The galaxies within ∼1011M⊙ haloes at z ∼ 10 are expected to have FFB densities. The halo masses allow efficient gas supply by cold streams in a halo crossing time ∼80 Myr. The FFBs gradually turn all the accreted gas into stars in clusters of ∼104 − 7M⊙ within galaxies that are rotating discs or shells. The starbursting clouds are insensitive to radiative feedback and are shielded against feedback from earlier stars. We predict high SFE above thresholds in redshift and halo mass, where the density is 103 − 4 cm−3. The z ∼ 10 haloes of ∼1010.8M⊙ are predicted to host galaxies of ∼1010M⊙ with SFR ∼65M⊙ − 1, blue colors, and sub-kpc sizes. The metallicity is ≤0.1Z⊙ with little dust, gas, outflows and hot circum-galactic gas, allowing a top-heavy IMF but not requiring it. The compact galaxies with thousands of young FFB clusters may have implications on reionization, black-hole growth and globular clusters.
Article
Despite extensive search efforts, direct observations of the first (Pop III) stars have not yet succeeded. Theoretical studies have suggested that late Pop III star formation is still possible in pristine clouds of high-mass galaxies, coexisting with Pop II stars, down to the Epoch of Reionization (EoR). Here we reassess this finding by exploring Pop III star formation in six 50h−1 cMpc simulations performed with the hydrodynamical code dustyGadget. We find that Pop III star formation (∼10−3.4 − 10−3.2 M⊙.yr−1.cMpc−3) is still occurring down to z ∼ 6 − 8, i.e. well within the reach of deep JWST surveys. At these epochs, 10%\gtrsim 10 \% of the rare massive galaxies with M⋆ ≳ 3 × 109 M⊙ are found to host Pop III stars, although with a Pop III/Pop II mass fraction 0.1%\lesssim 0.1 \%. Regardless of their mass, Pop III hosting galaxies are mainly found on the main sequence, at high star formation rates, probably induced by accretion of pristine gas. This scenario is also supported by their increasing star formation histories and their preferential location in high-density regions of the cosmic web. Pop III stars are found both in the outskirts of metal-enriched regions and in isolated, pristine clouds. In the latter case, their signal may be less contaminated by Pop IIs, although its detectability will strongly depend on the specific line-of-sight to the source, due to the complex morphology of the host galaxy and its highly inhomogeneous dust distribution.
Article
A fundamental requirement for reionizing the Universe is that a sufficient fraction of the ionizing photons emitted by galaxies successfully escapes into the intergalactic medium. However, due to the scarcity of high-redshift observational data, the sources driving reionization remain uncertain. In this work we calculate the ionizing escape fractions (fesc) of reionization-era galaxies from the state-of-the-art thesan simulations, which combine an accurate radiation-hydrodynamic solver (arepo-rt) with the well-tested IllustrisTNG galaxy formation model to self-consistently simulate both small-scale galaxy physics and large-scale reionization throughout a large patch of the universe (Lbox = 95.5 cMpc). This allows the formation of numerous massive haloes (Mhalo ≳ 1010 M⊙), which are often statistically underrepresented in previous studies but are believed to be important to achieving rapid reionization. We find that low-mass galaxies (Mstars ≲ 107 M⊙) are the main drivers of reionization above z ≳ 7, while high-mass galaxies (Mstars ≳ 108 M⊙) dominate the escaped ionizing photon budget at lower redshifts. We find a strong dependence of fesc on the effective star-formation rate (SFR) surface density defined as the SFR per gas mass per escape area, i.e. ΣˉSFR=SFR/Mgas/R2002\bar{\Sigma }_\text{SFR} = \text{SFR}/M_\text{gas}/R_{200}^2. The variation in halo escape fractions decreases for higher-mass haloes, which can be understood from the more settled galactic structure, SFR stability, and fraction of sightlines within each halo significantly contributing to the escaped flux. Dust is capable of reducing the escape fractions of massive galaxies, but the impact on the global fesc depends on the dust model. Finally, AGN are unimportant for reionization in thesan and their escape fractions are lower than stellar ones due to being located near the centres of galaxy gravitational potential wells.
Article
We present the Sherwood-Relics simulations, a new suite of large cosmological hydrodynamical simulations aimed at modelling the intergalactic medium (IGM) during and after the cosmic reionization of hydrogen. The suite consists of over 200 simulations that cover a wide range of astrophysical and cosmological parameters. It also includes simulations that use a new lightweight hybrid scheme for treating radiative transfer effects. This scheme follows the spatial variations in the ionizing radiation field, as well as the associated fluctuations in IGM temperature and pressure smoothing. It is computationally much cheaper than full radiation hydrodynamics simulations and circumvents the difficult task of calibrating a galaxy formation model to observational constraints on cosmic reionization. Using this hybrid technique, we study the spatial fluctuations in IGM properties that are seeded by patchy cosmic reionization. We investigate the relevant physical processes and assess their impact on the z > 4 Lyman-α forest. Our main findings are: (i) Consistent with previous studies patchy reionization causes large scale temperature fluctuations that persist well after the end of reionization, (ii) these increase the Lyman-α forest flux power spectrum on large scales, and (iii) result in a spatially varying pressure smoothing that correlates well with the local reionization redshift. (iv) Structures evaporated or puffed up by photoheating cause notable features in the Lyman-α forest, such as flat-bottom or double-dip absorption profiles.
Article
Recent determinations of the mean free path of ionising photons (mfp) in the intergalactic medium (IGM) at z=6\rm z=6 are lower than many theoretical predictions. In order to gain insight, we investigate the evolution of the mfp in our new massive fully coupled radiation hydrodynamics cosmological simulation of reionization: Cosmic Dawn III (CoDa III). CoDa III’s scale (943cMpc3\rm 94^3 \, cMpc^3) and resolution (81923\rm 8192^3 grid) make it particularly suitable to study the IGM during reionization. The simulation was performed with RAMSES-CUDATON on Summit, and used 131072 processors coupled to 24576 GPUs, making it the largest reionization simulation, and largest ever RAMSES simulation. A superior agreement with global constraints on reionization is obtained in CoDa III over CoDa II, especially for the evolution of the neutral hydrogen fraction and the cosmic photo-ionization rate, thanks to an improved calibration, later end of reionization (z=5.6\rm z=5.6), and higher spatial resolution. Analyzing the mfp, we find that CoDa III reproduces the most recent observations very well, from z=6\rm z=6 to z=4.6\rm z=4.6. We show that the distribution of the mfp in CoDa III is bimodal, with short (neutral) and long (ionized) mfp modes, due to the patchiness of reionization and the co-existence of neutral versus ionized regions during reionization. The neutral mode peaks at sub-kpc to kpc scales of mfp, while the ionized mode peak evolves from 0.1Mpc/h\rm 0.1 Mpc/h at z=7\rm z=7 to ∼10 Mpc/h at z=5.2\rm z=5.2. Computing the mfp as the average of the ionized mode provides the best match to the recent observational determinations. The distribution reduces to a single neutral (ionized) mode at z>13\rm z>13 (z<5\rm z<5).
Article
We investigate constraints on early dark energy (EDE) using ACT DR4, SPT-3G 2018, Planck polarization, and restricted Planck temperature data (at ℓ<650), finding a 3.3σ preference (Δχ2=−16.2 for three additional degrees of freedom) for EDE over ΛCDM. The EDE contributes a maximum fractional energy density of fEDE(zc)=0.163−0.04+0.047 at a redshift zc=3357±200 and leads to a CMB inferred value of the Hubble constant H0=74.2−2.1+1.9 km/s/Mpc. We find that Planck and ACT DR4 data provide the majority of the improvement in χ2, and that the inclusion of SPT-3G pulls the posterior of fEDE(zc) away from ΛCDM. This is the first time that a moderate preference for EDE has been reported for these combined CMB datasets including Planck polarization. We find that including measurements of supernovae luminosity distances and the baryon acoustic oscillation standard ruler only minimally affects the preference (3.0σ), while measurements that probe the clustering of matter at late times—the lensing potential power spectrum from Planck and fσ8 from BOSS—decrease the significance of the preference to 2.6σ. Conversely, adding a prior on the H0 value as reported by the SH0ES collaboration increases the preference to the 4−5σ level. In the absence of this prior, the inclusion of Planck TT data at ℓ>1300 reduces the preference from 3.0σ to 2.3σ and the constraint on fEDE(zc) becomes compatible with ΛCDM at 1σ. We explore whether systematic errors in the Planck polarization data may affect our conclusions and find that changing the TE polarization efficiencies significantly reduces the Planck preference for EDE. More work will be necessary to establish whether these hints for EDE within CMB data alone are the sole results of systematic errors or an opening to new physics.
Article
We measure escape fractions, fesc, of ionizing radiation from galaxies in the Sphinx suite of cosmological radiation-hydrodynamical simulations of reionization, resolving haloes with Mvir7.5×107 MM_{\rm vir}\gtrsim 7.5 \times 10^7 \ {\rm {M}_{\odot }} with a minimum cell width of ≈10 pc. Our new and largest 20 co-moving Mpc wide volume contains tens of thousands of star-forming galaxies with halo masses up to a few times 1011 M⊙. The simulated galaxies agree well with observational constraints of the UV luminosity function in the Epoch of Reionization. The escape fraction fluctuates strongly in individual galaxies over timescales of a few Myrs, due to its regulation by supernova and radiation feedback, and at any given time a tiny fraction of star-forming galaxies emits a large fraction of the ionizing radiation escaping into the inter-galactic medium. Statistically, fesc peaks in intermediate-mass, intermediate-brightness, and low-metallicity galaxies (M* ≈ 107 M⊙, M1500 ≈ −17, Z ≲ 5 × 10−3 Z⊙), dropping strongly for lower and higher masses, brighter and dimmer galaxies, and more metal-rich galaxies. The escape fraction correlates positively with both the short-term and long-term specific star formation rate. According to Sphinx, galaxies too dim to be yet observed, with M150017{M_{1500}}\gtrsim -17, provide about 55 per cent of the photons contributing to reionization. The global averaged fesc naturally decreases with decreasing redshift, as predicted by UV background models and low-redshift observations. This evolution is driven by decreasing specific star formation rates over cosmic time.
Article
We study star cluster formation at low metallicities of Z/Z⊙ = 10−4–10−1 using three-dimensional hydrodynamics simulations. Particular emphasis is put on how the stellar mass distribution is affected by the cosmic microwave background radiation (CMB), which sets the temperature floor to the gas. Starting from the collapse of a turbulent cloud, we follow the formation of a protostellar system resolving ∼au scale. In relatively metal-enriched cases of Z/Z⊙ ≳ 10−2, where the mass function resembles the present-day one in the absence of the CMB, high temperature CMB suppresses cloud fragmentation and reduces the number of low-mass stars, making the mass function more top-heavy than in the cases without CMB heating at z ≳ 10. In lower-metallicity cases with Z/Z⊙ ≲ 10−3, where the gas temperature is higher than the CMB value due to inefficient cooling, the CMB has only a minor impact on the mass distribution, which is top-heavy regardless of the redshift. In cases either with a low metallicity of Z/Z⊙ ≲ 10−2 or at a high redshift z ≳ 10, the mass spectrum consists of a low-mass Salpeter-like component, peaking at 0.1 M⊙, and a top-heavy component with 10–50 M⊙, with the fraction in the latter increasing with increasing redshift. In galaxies forming at z ≳ 10, the major targets of the future instruments including JWST, CMB heating makes the stellar mass function significantly top-heavy, enhancing the number of supernova explosions by a factor of 1.4 (2.8) at z = 10 (20, respectively) compared to the prediction by Chabrier initial mass function when Z/Z⊙ = 0.1.
Article
The visibility of high-redshift Lyman-alpha emitting galaxies (LAEs) provides important constraints on galaxy formation processes and the Epoch of Reionization (EoR). However, predicting realistic and representative statistics for comparison with observations represents a significant challenge in the context of large-volume cosmological simulations. The thesan project offers a unique framework for addressing such limitations by combining state-of-the-art galaxy formation (IllustrisTNG) and dust models with the arepo-rt radiation-magnetohydrodynamics solver. In this initial study, we present Lyman-alpha centric analysis for the flagship simulation that resolves atomic cooling haloes throughout a (95.5cMpc)3(95.5\, \text{cMpc})^3 region of the Universe. To avoid numerical artefacts, we devise a novel method for accurate frequency-dependent line radiative transfer in the presence of continuous Hubble flow, transferable to broader astrophysical applications as well. Our scalable approach highlights the utility of LAEs and red damping-wing transmission as probes of reionization, which reveal nontrivial trends across different galaxies, sightlines, and frequency bands that can be modelled in the framework of covering fractions. In fact, after accounting for environmental factors influencing large-scale ionized bubble formation such as redshift and UV magnitude, the variation across galaxies and sightlines mainly depends on random processes including peculiar velocities and self-shielded systems that strongly impact unfortunate rays more than others. Throughout the EoR local and cosmological optical depths are often greater than or less than unity such that the exp (− τ) behaviour leads to anisotropic and bimodal transmissivity. Future surveys will benefit by targeting both rare bright objects and Goldilocks zone LAEs to infer the presence of these (un)predictable (dis)advantages.
Article
The relative velocity between baryons and dark matter in the early Universe can suppress the formation of small-scale baryonic structure and leave an imprint on the baryon acoustic oscillation (BAO) scale at low redshifts after reionization. This ‘streaming velocity’ affects the post-reionization gas distribution by directly reducing the abundance of pre-existing mini-haloes (107M\lesssim 10^7 M_{\bigodot }) that could be destroyed by reionization and indirectly modulating reionization history via photoionization within these mini-haloes. In this work, we investigate the effect of streaming velocity on the BAO feature in H i 21 cm intensity mapping after reionization, with a focus on redshifts 3.5 ≲ z ≲ 5.5. We build a spatially modulated halo model that includes the dependence of the filtering mass on the local reionization redshift and thermal history of the intergalactic gas. In our fiducial model, we find isotropic streaming velocity bias coefficients bv ranging from -0.0043 at z = 3.5 to -0.0273 at z = 5.5, which indicates that the BAO scale is stretched (i.e. the peaks shift to lower k). In particular, streaming velocity shifts the transverse BAO scale between 0.121 per cent (z = 3.5) and 0.35 per cent (z = 5.5) and shifts the radial BAO scale between 0.167 per cent (z = 3.5) and 0.505 per cent (z = 5.5). These shifts exceed the projected error bars from the more ambitious proposed hemispherical-scale surveys in H i (0.13 per cent at 1σ per Δz = 0.5 bin).
Article
We introduce the Astrid simulation, a large-scale cosmological hydrodynamic simulation in a 250 h−1Mpc box with 2 × 55003 particles. Astrid contains a large number of high redshift galaxies, which can be compared to future survey data, and resolves galaxies in halos more massive than 2 × 109 M⊙. Astrid has been run from z = 99 to z = 3. As a particular focus is modelling the high redshift Universe, it contains models for inhomogeneous hydrogen and helium reionization, baryon relative velocities and massive neutrinos, as well as supernova and AGN feedback. The black hole model includes mergers driven by dynamical friction rather than repositioning. We briefly summarise the implemented models, and the technical choices we took when developing the simulation code. We validate the model, showing good agreement with observed UV luminosity functions, galaxy stellar mass functions and specific star formation rates. We show that the redshift at which a given galaxy underwent hydrogen reionization has a large effect on the halo gas fraction. Finally, at z = 6 halos with M ∼ 2 × 109 M⊙ which have been reionized have a star formation rate 1.5 times greater than those which have not yet been reionized.
Article
We present the evolution of black holes (BHs) and their relationship with their host galaxies in Astrid , a large-volume cosmological hydrodynamical simulation with box size 250 h−1Mpc containing 2 × 55003 particles evolved to z = 3. Astrid statistically models BH gas accretion and AGN feedback to their environments, applies a power-law distribution for BH seed mass Msd, uses a dynamical friction model for BH dynamics and executes a physical treatment of BH mergers. The BH population is broadly consistent with empirical constraints on the BH mass function, the bright end of the luminosity functions, and the time evolution of BH mass and accretion rate density. The BH mass and accretion exhibit a tight correlation with host stellar mass and star formation rate. We trace BHs seeded before z > 10 down to z = 3, finding that BHs carry virtually no imprint of the initial Msd except those with the smallest Msd, where less than 50 per cent of them have doubled in mass. Gas accretion is the dominant channel for BH growth compared to BH mergers. With dynamical friction, Astrid predicts a significant delay for BH mergers after the first encounter of a BH pair, with a typical elapse time of about 200 Myrs. There are in total 4.5 × 105 BH mergers in Astrid at z > 3, ∼103 of which have X-ray detectable EM counterparts: a bright kpc scale dual AGN with LX > 1043 erg s−1. BHs with MBH ∼ 107 − 8 M⊙ experience the most frequent mergers. Galaxies that host BH mergers are unbiased tracers of the overall MBH − M* relation. Massive (>1011 M⊙) galaxies have a high occupation number (≳ 10) of BHs, and hence host the majority of BH mergers.
Article
We introduce the thesan project, a suite of large volume (Lbox = 95.5 cMpc) radiation-magneto-hydrodynamic simulations that simultaneously model the large-scale statistical properties of the intergalactic medium (IGM) during reionization and the resolved characteristics of the galaxies responsible for it. The flagship simulation has dark matter and baryonic mass resolutions of 3.1 × 106 M⊙ and 5.8 × 105 M⊙, respectively. The gravitational forces are softened on scales of 2.2 ckpc with the smallest cell sizes reaching 10 pc at z = 5.5, enabling predictions down to the atomic cooling limit. The simulations use an efficient radiation hydrodynamics solver (arepo-rt) that precisely captures the interaction between ionizing photons and gas, coupled to well-tested galaxy formation (IllustrisTNG) and dust models to accurately predict the properties of galaxies. Through a complementary set of medium resolution simulations we investigate the changes to reionization introduced by different assumptions for ionizing escape fractions, varying dark matter models, and numerical convergence. The fiducial simulation and model variations are calibrated to produce realistic reionization histories that match the observed evolution of the global neutral hydrogen fraction and electron scattering optical depth to reionization. They also match a wealth of high-redshift observationally inferred data, including the stellar-to-halo-mass relation, galaxy stellar mass function, star formation rate density, and the mass-metallicity relation, despite the galaxy formation model being mainly calibrated at z = 0. We demonstrate that different reionization models give rise to varied bubble size distributions that imprint unique signatures on the 21 cm emission, especially on the slope of the power spectrum at large spatial scales, enabling current and upcoming 21 cm experiments to accurately characterise the sources that dominate the ionizing photon budget.
Article
The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼ L * galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir . We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gas that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo.
Article
We study star cluster formation in a low-metallicity environment using three dimensional hydrodynamic simulations. Starting from a turbulent cloud core, we follow the formation and growth of protostellar systems with different metallicities ranging from 10−6 to 0.1 Z⊙. The cooling induced by dust grains promotes fragmentation at small scales and the formation of low-mass stars with M* ∼ 0.01–0.1 M⊙ While the number of low-mass stars increases with metallicity, when Z/Z⊙ ≳ 10−5. the stellar mass distribution is still top-heavy for Z/Z⊙ ≲ 10−2 compared to the Chabrier initial mass function (IMF). In these cases, star formation begins after the turbulent motion decays and a single massive cloud core monolithically collapses to form a central massive stellar system. The circumstellar disk preferentially feeds the mass to the central massive stars, making the mass distribution top-heavy. When Z/Z⊙ = 0.1, collisions of the turbulent flows promote the onset of the star formation and a highly filamentary structure develops owing to efficient fine-structure line cooling. In this case, the mass supply to the massive stars is limited by the local gas reservoir and the mass is shared among the stars, leading to a Chabrier-like IMF. We conclude that cooling at the scales of the turbulent motion promotes the development of the filamentary structure and works as an important factor leading to the present-day IMF.
Article
We present the O BELISK project, a cosmological radiation-hydrodynamics simulation that follows the assembly and reionization of a protocluster progenitor during the first two billion years after the big bang, down to z = 3.5. The simulation resolves haloes down to the atomic cooling limit and tracks the contribution of different sources of ionization: stars, active galactic nuclei, and collisions. The O BELISK project is specifically designed to study the coevolution of high-redshift galaxies and quasars in an environment favouring black hole growth. In this paper, we establish the relative contribution of these two sources of radiation to reionization and their respective role in establishing and maintaining the high-redshift ionizing background. Our volume is typical of an overdense region of the Universe and displays star formation rate and black hole accretion rate densities similar to those of high-redshift protoclusters. We find that hydrogen reionization happens inside-out, is completed by z ∼ 6 in our overdensity, and is predominantly driven by galaxies, while accreting black holes only play a role at z ∼ 4.
Article
Winds driven by stellar feedback are an essential part of the galactic ecosystem and are the main mechanism through which low-mass galaxies regulate their star formation. These winds are generally observed to be multi-phase with detections of entrained neutral and molecular gas. They are also thought to enrich the circum-galactic medium around galaxies with metals and dust. This ejected dust encodes information about the integrated star formation and outflow history of the galaxy. Therefore it is important to understand how much dust is entrained and driven out of the disc by galactic winds. Here we demonstrate that stellar feedback is efficient in driving dust-enriched winds and eject enough material to account for the amount of extraplanar dust observed in nearby galaxies. The amount of ejected dust depends on the sites from where they are launched, with dustier galaxies launching more dust-enriched outflows. Moreover, the outflowing cold and dense gas is significantly more dust-enriched than the volume filling hot and tenuous material. These results provide an important new insight into the dynamics, structure, and composition of galactic winds and their role in determining the dust content of the extragalactic gas in galaxies.
Article
We present a novel framework to self-consistently model the effects of radiation fields, dust physics, and molecular chemistry (H2) in the interstellar medium (ISM) of galaxies. The model combines a state-of-the-art radiation hydrodynamics module with a H and He non-equilibrium thermochemistry module that accounts for H2 coupled to an empirical dust formation and destruction model, all integrated into the new stellar feedback framework SMUGGLE. We test this model on high-resolution isolated Milky-Way (MW) simulations. We show that the effect of radiation feedback on galactic star formation rates is quite modest in low gas surface density galaxies like the MW. The multiphase structure of the ISM, however, is highly dependent on the strength of the interstellar radiation field. We are also able to predict the distribution of H2, that allow us to match the molecular Kennicutt–Schmidt (KS) relation, without calibrating for it. We show that the dust distribution is a complex function of density, temperature, and ionization state of the gas. Our model is also able to match the observed dust temperature distribution in the ISM. Our state-of-the-art model is well-suited for performing next-generation cosmological galaxy formation simulations, which will be able to predict a wide range of resolved (∼10 pc) properties of galaxies.