ArticlePDF Available

Biology of the Citrus Wax Scale Insect, Ceroplastes floridensis Comstock on Citrus Trees, and the Relationship Between the Dimensions of the Developmental Stages of the Insect with its Hosts in Syria

Authors:

Abstract

Hassan, A., N. Abo Kaf and E. Mohamed. 2024. Biology of the Citrus Wax Scale Insect, Ceroplastes floridensis Comstock on Citrus Trees, and the Relationship Between the Dimensions of the Developmental Stages of the Insect with its Hosts in Syria. Arab Journal of Plant Protection, 42(4): 419-423. https://doi.org/10.22268/AJPP-001266 This study was carried out during the 2018-2019 period in citrus orchards in Latakia Governorate, Syria. The biology of the citrus wax scale, Ceroplastes floridensis Comstock (Homoptera: Coccidae), was investigated and the effect of the plant host on the insect stages dimensions was determined. It has been shown that the insect had two generations per year, and the adult female laid an average of 350-500 eggs under a wax cover. The dimensions of the insect’s stages reached their highest value on the laurel plant, followed by loquat, and the least was on citrus. Keywords: Citrus wax scale, Ceroplastes floridensis, Syria.
419 Arab J. Pl. Prot. Vol. 42, No. 4 (2024)
 Short Communication (Ecology: Insects)
Ceroplastes floridensis





alihasanhasan@tishreen.edu.sy

  Ceroplastes floridensis
001266-https://doi.org/10.22268/AJPP
Ceroplastes floridensis
ComstockHomoptera: Coccidae   

Ceroplastes floridensis



1
   Ceroplastic floridensis
Comstock,1881


Perseaa mericana
Cedrus deodaraUlmus spp.
Rhapiolepsis indica Pinus taeda
Quercus spp. Drees et al., 2006





       Argyriou &
Kourmadas, 1980


CABI, 2010
       
Johnson & Lyon, 1991

   
    
Bodenheimer, 1935Drees et al., 2006
https://doi.org/10.22268/AJPP-001266
Arab Society for Plant Protection

Chown &
Gaston, 2010Honěk, 1993
Teder & Tammaru, 2005
Stillwell & Fox, 2009


Davidowitz et al., 2004Nylin & Gotthard, 1998







  


4242024
     
Abd El-Kareim et al., 2012

  




25
 
   



       
Opticha
Genstat12


      













  
   












    
  


    



 
  




Karaca & Eserkay, 2016
 
  
   
  

       
Drees et al., 2006






































421 Arab J. Pl. Prot. Vol. 42, No. 4 (2024)



















de Kogel et al., 1999
Frankliniella
occidentalis

Ceroplastes floridensis

    

Figure 1. Monitoring the number of adult and nymph stages
of the citrus wax scale and the mean temperatures during
2018/2019.
 

Table 1. The dates of egg laying and hatching, the maximum appearance of the nymphal stage, the dormancy stage, the length
of nymphal period, and the duration of the two generations of the citrus wax scale insect during 2018/2019.

Second generation

First generation
Description

July 15-28

March 15-April 5
 
Egg laying date

August 7-15

April 17-27

Hatching date

August 17-22

May 15-20

Maximum appearance period of the nymphal stage
Adult females
-
Dormancy stage
1-2 days
2-3 days
Larvae 1

Length of the nymphal
period
20-24 days
25-28 days
 Larvae 2
22-25 days
22-25 days
 Larvae 3
90-105 days
90-115 days
Generation duration
4242024

Table 2. Length mean (±SE) (mm) of the different stages of the citrus wax scale insect on three different host plants.
Host
 Egg stage
 nymphal stage
st
1
 nymphal stage
nd
2
 nymphal stage
rd
3
 Adult stage

Citrus
0.2560.050
0.3480.058
0.4840.117
1.3760.265
0.452±2.744
0.1000.894
0.208±0.027
0.2520.065
0.8000.195
2.292±0.407

Laurel
0.2560.050
0.3880.066
0.237±1.228
0.184±2.180
0.351±3.244
0.1000.894
0.2160.037
0.7360.157
1.6360.182
2.704±0.352

Loquat
0.0509±0.252
0.050±0.356
0.776±0.139
1.464±0.279
0.230±2.780
0.1000.894
0.2080.027
0.448±0.104
0.960±0.255
2.2280.203



0.05
LSD
Host
0.0527
0.04581
Stage
0.0680
0.05914
 Host × Stage
0.1177
0.10243
Abstract
Hassan, A., N. Abo Kaf and E. Mohamed. 2024. Biology of the Citrus Wax Scale Insect, Ceroplastes floridensis Comstock
on Citrus Trees, and the Relationship Between the Dimensions of the Developmental Stages of the Insect with its Hosts
in Syria. Arab Journal of Plant Protection, 42(4): 419-423. https://doi.org/10.22268/AJPP-001266
This study was carried out during the 2018-2019 period in citrus orchards in Latakia Governorate, Syria. The biology of the citrus wax
scale, Ceroplastes floridensis Comstock (Homoptera: Coccidae), was investigated and the effect of the plant host on the insect stages
dimensions was determined. It has been shown that the insect had two generations per year, and the adult female laid an average of 350-500
eggs under a wax cover. The dimensions of the insect’s stages reached their highest value on the laurel plant, followed by loquat, and the least
was on citrus.
Keywords: Citrus wax scale, Ceroplastes floridensis, Syria.
Affiliation of authors: A. Hassan1*, N. Abo Kaf1and E. Mohamed2. (1) Plant Protection Department, Faculty of Agricultural Engineering,
Tishreen University, Latakia, Syria; (2) Directorate of Agriculture, Ministry of Agriculture and Agrarian Reform,
Latakia, Syria. *Email address of the corresponding author: alihasanhasan@tishreen.edu.sy
References
Abd El-Kareim, A.M., M.E. El-Naggar, M.M. and W. El-
Baradey. 2012. Host plant scale insect, florida wax
scale Ceroplastes floridensis (Comst). Journal of Plant
Protection and Pathology, 3(9):967-977.
https://dx.doi.org/10.21608/jppp.2012.84353
Argyriou, L.C. and A.L. Kourmadas. 1980. Ceroplastes
floridensis Comstock an important pest of citrus trees
in Aegean islands. Fruits, 35(11):705-708.
Bodenheimer, F.S. 1935. The Florida wax scale Ceroplastes
floridensis Comst. in Palestine. Hadar Bulletin, 17:1-
30.
CABI. 2010. Ceroplastes floridensis Distribution Maps of
Plant Pests. Map No.440.1st revision. Wallingford,
UK.
Chown, S.L. and K.J. Gaston. 2010. Body size variation in
insects: a macroecological perspective. Biology
Reviews, 85(1):139-169.
https://doi.org/10.1111/j.1469-185X.2009.00097.x
Davidowitz, G., L.J. D’Amico and H.F. Nijhout. 2004.The
effects of environmental variation on a mechanism that
controls insect body size. Evolution and Ecology
Research, 6(1):49-62.
de Kogel, W.J., D. Bosco, M.V.D. Hoek and C. Mollema.
1999. Effect of host plant on body size of Frankliniella
occidentalis (Thysanoptera: Thripidae) and its
correlation with reproductive capacity. European
Journal of Entomology, 96(4):365-368.
Drees, B.M., J.A. Reinert and M.L. Williams. 2006.
Florida wax scales: A major pest of hollies and other
landscape shrubs and trees. EEE-00023. Texas
Cooperative Extension, The Texas A&M University,
College Station, Texas, USA.6pp.
Honěk, A. 1993. Intraspecific variation in body size and
fecundity in insects: a general relationship. Oikos
66(3): 483-492. https://doi.org/10.2307/3544943
Johnson, W.T. and H.H. Lyon. 1991. Insects That Feed on
Trees and Shrubs, 2nd edition, Cornell University
Press. 356 pp.
423 Arab J. Pl. Prot. Vol. 42, No. 4 (2024)
Karaca, I. and E. Eserkay. 2016. Population development
of Ceroplastes floridensis on grapefruit and oranges.
Asian Journal of Agriculture and Food Sciences,
4(2):60-65.
Nylin, S. and K. Gotthard. 1998. Plasticity in life-history
traits. Annual Review of Entomology, 43:63-83.
https://doi.org/10.1146/annurev.ento.43.1.63
Stillwell, R.C. and C.W. Fox. 2009. Geographic variation
in body size, sexual size dimorphism and fitness
components of a seed beetle: Local adaptation versus
phenotypic plasticity. Oikos, 118(5):703-712.
http://dx.doi.org/10.1111/j.1600-0706.2008.17327.x
Teder, T. and T. Tammaru. 2005. Sexual size dimorphism
within species increases with body size in insects.
Oikos, 108(2):321-334.
https://doi.org/10.1111/j.0030-1299.2005.13609.x
1610
Received: January 18, 2023; Accepted: October 16, 2023
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Weeds, pathogens, and animal pests are among the pests that pose a threat to the productivity of crops meant for human consumption. Bird-caused crop losses pose a serious and costly challenge for farmers. This work presents a survey on bird deterrent solutions for crop protection. It first introduces the related concepts. Then, it provides an extensive review and categorization of existing methods, techniques, and related studies. Further, their strengths and limitations are discussed. Based on this review, current gaps are identified, and strategies for future research are proposed.
Article
Full-text available
The present study was carried out at the experimental farm of Faculty of Agriculture, Mansoura University during the two seasons; 2010 and 2011 to evaluate the of (blood orange, loquat and mango) to Florida wax scale, Ceroplastes floridensis (Comst). C. floridensis Population fluctuation exhibited three peaks of abundance in blood orange, Loquat and mango orchards. The more favourable host for C. floridensis was blood orange followed by loquat then mango. However, C. floridensis population showed the highest density on blood orange trees and the lowest on mango trees. The average population density of C. floridensis population was (4.53 ± 3.15, 1.36 ± 0.34 and 1.58± 0.36) and (3.28 ± 1.0, 1.44 ± 0.16 and 1.07 ± 0.10) on blood orange, Lquat and mango leaves, respectively. Chemical analysis indicated that loquat and mandarin leaves had the highest percentage of total protein in comparison with blood orange leaves. On the contrary, the pest exhibited the highest population density on Orange leaves. Statistical analysis indicated that there was a significant positive correlation between the changes of total protein contents and C. floridensis population density in all tested host plants. While, there was correlation with the carbohydrates percent.
Article
Full-text available
Present paper provides information on reducing the watermelon damage by using the distress sound player. As it is ranked as an important nutritional fruit crop of Pakistan, it is subjected to an intensive depredation by common myna (Acridotheres tristris), house crow (Corvus splendens) and house sparrow (Passer domesticus) in the unprotected conditions, causing not only severe damage but resultant economic losses. At the unguarded seedling stage, the damage was 1.192±0.023, and in protected with sound player it remained 0.200±0.014, while protected at foliage, flowering and mature stages, it remained as low as 0.130±0.007, 0.155±0.010, and 0.138±0.020, showing its effectiveness. It, therefore, suggests that use of this repellent can avert the damage not only on watermelon, but for other fruit crops, and by and large incorporation of mechanical and that the use of similar mechanical repellents, would be useful to inhibit the damage and restrain serious and economically important bird depredations on the sustainable horticultural and agricultural crops in Pakistan.
Article
Full-text available
About 470 bird species known from Egypt. The majority are non-breeding migrants, passing through the country, exploiting the wide range of habitat types unique for their life, including agricultural habitats. A survey of wild bird carried out in three agricultural districts, El-Badrasheen, El-Aayyat and El-Hawamdiah districts, in Giza Governorate, from March 2018 to February 2020, using the point transect method. Twenty-eight species belonging to nine orders and twenty-five families recorded. House sparrow (passer domesticus niloticus) and Hooded Crow (xuvroc suvurc suvroC) were the only recorded noxious species, damaging wheat and corn crops. House sparrow damage to wheat start after the first week of the panicles emergence causing 21.4 % and 19 % losses, with the highest loss rate of 5.7 and 6.1% during 1 st of April at El-Badrasheen and El-Aayyat districts, respectively. The damage percent were 16.3 and 14.5% to corn by hooded crow in both districts from the 1 st week of August up to the 2 nd week of September and the highest loss rate were 5.4 and 4.2% during the 4 th week of August in the two districts, respectively. It is advisable to apply damage control programs against house sparrow populations at the beginning of February in wheat fields, and against hooded crow populations at the beginning of June in corn fields in these areas.
Article
Full-text available
The crop losses due to birds are serious and costly problem for farmers. The hooded crow (Corvus corone Linnaeus, 1758) and house sparrow (Passer domesticus niloticus Nicoll and Bonhote, 1909) are major pests for many crops in Egypt. In current work bird damage was assessed on maize, snake cucumber at El-Ibrahemia district, while that on pea and guava was determined at Zagazig district, Sharkia Goverenorate during the growing season 2016. Regarding maize, the hooded crow feed on developing ears in corn fields following pollination and early in the grain filling period. The total number of inspected plants was 2800 and the highest losses (9.81%) were recorded in the 7thweek. While, the hooded crow attacks snake cucumber fruits causing damage with mean percentage6.33%. But the pea is preferable vegetable crop to birds, which destroy the leaves, flower buds as well green seeds in pods and this damage may be reduced the yield. The average percentage of damage for pea was 4.41%. The highest percentage of damage was 7.50% which obtained during the 5th week. Guava fruits were vulnerable to house sparrow, birds gnaw fruits. The losses by birds were estimated to be 4.79 and 4.64% in orchards nearby poultry farms and those nearby field crops, respectively.
Article
Full-text available
The efficacy of Tukam® and VP Skud® compounds were tested as repellents against wild birds attacking wheat and cowpea fields in Sharkia Governorate. In the wheat crop experiment, the house sparrow Passer domesticus niloticus attacked the spikes with the highest percentage of damage (14.82%) in the control trial, during the 6th week when spikes emergence. While damage percentages were 11.19, 9.22, 8.94 and 8.73% when applying Tukam® concentrations of 2.5, 5, 10 and 15 ml/liter, respectively during the same period in the treatment trials. The highest protection percentage was obtained in the 4th week with 15, 10, 5 and 2.5 ml/liter, respectively. The same trend was found with VP Skud®, since the highest percentages of damage were 10.07%, 9.16%, 8.08% and 6.20% in the 6th week with the four concentrations 1, 2, 4 and 6 ml/liter, respectively. While the protection percentage were the highest during the 4th week with concentrations of 6, 4, 2 and 1 ml/liter, respectively. In the cowpea experiment, pigeon (Cloumba sp.) attacked the pods and caused high percentage of damage reached 13.32 % in the 5th week of the control trial. When spraying Tukam® at a concentration of 15.0 ml/liter, the damage was dropped considerably as compared with other concentrations or control after pollination. The decrease in damage was found to be 2.11, 3.88, 4.74 and 7.38%, after the 2nd, 3rd, 4th and 5th week, respectively. The highest protection percentage was recorded with the concentration of 15 ml/liter. The same trend was recorded with V.P. Skud®. It gave the lowest percentage of damage at the concentration of 6 ml/liter with values of 1.97, 3.21, 5.67 and 10.56%, during the 2nd, 3rd, 4th and 5th week after pollination, respectively. Protection percentage reached its maximum during the study period with the concentration of 6 ml/liter.