Einstein’s general theory of relativity from 1915¹ remains the most successful description of gravitation. From the 1919 solar eclipse² to the observation of gravitational waves³, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory⁴ appeared in 1928; the positron was observed⁵ in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted⁶ by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.
Gravity is the weakest of all known fundamental forces and poses some of the most important open questions to modern physics: it remains resistant to unification within the standard model of physics and its underlying concepts appear to be fundamentally disconnected from quantum theory1–4. Testing gravity at all scales is therefore an important experimental endeavour5–7. So far, these tests have mainly involved macroscopic masses at the kilogram scale and beyond⁸. Here we show gravitational coupling between two gold spheres of 1 millimetre radius, thereby entering the regime of sub-100-milligram sources of gravity. Periodic modulation of the position of the source mass allows us to perform a spatial mapping of the gravitational force. Both linear and quadratic coupling are observed as a consequence of the nonlinearity of the gravitational potential. Our results extend the parameter space of gravity measurements to small, single source masses and low gravitational field strengths. Further improvements to our methodology will enable the isolation of gravity as a coupling force for objects below the Planck mass. This work opens the way to the unexplored frontier of microscopic source masses, which will enable studies of fundamental interactions9–11 and provide a path towards exploring the quantum nature of gravity12–15.
Quantum key distribution (QKD)1–3 is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long4–7. In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away8–10. However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres11,12. The use of trusted relays can extend these distances from across a typical metropolitan area13–16 to intercity¹⁷ and even intercontinental distances¹⁸. However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security19,20. Long-distance entanglement distribution can be realized using quantum repeaters²¹, but the related technology is still immature for practical implementations²². The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient²³ enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels24,25. Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.
We present a loophole-free violation of local realism using entangled photon
pairs. We ensure that all relevant events in our Bell test are spacelike
separated by placing the parties far enough apart and by using fast random
number generators and high-speed polarization measurements. A high-quality
polarization-entangled source of photons, combined with high-efficiency,
low-noise, single-photon detectors, allows us to make measurements without
requiring any fair-sampling assumptions. Using a hypothesis test, we compute
p-values as small as for our Bell violation while
maintaining the spacelike separation of our events. We estimate the degree to
which a local realistic system could predict our measurement choices.
Accounting for this predictability, our smallest adjusted p-value is . We therefore reject the hypothesis that local realism governs
our experiment.
Local realism is the worldview in which physical properties of objects exist
independently of measurement and where physical influences cannot travel faster
than the speed of light. Bell's theorem states that this worldview is
incompatible with the predictions of quantum mechanics, as is expressed in
Bell's inequalities. Previous experiments convincingly supported the quantum
predictions. Yet, every experiment performed to date required assumptions that
provide loopholes for a local realist explanation. Here we report a Bell test
that closes the most significant of these loopholes simultaneously. Using a
well-optimized source of entangled photons, rapid setting generation, and
highly efficient superconducting detectors, we observe a violation of a Bell
inequality with high statistical significance.
The existence of a cosmic neutrino background – the analogue of the cosmic microwave background – is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics.
Correlations are generally described by one of two mechanisms: either a first event influences a second one by sending information encoded in bosons or other physical carriers, or the correlated events have some common causes in their shared history. Quantum physics predicts an entirely different kind of cause for some correlations, named entanglement. This reveals itself in correlations that violate Bell inequalities (implying that they cannot be described by common causes) between space-like separated events (implying that they cannot be described by classical communication). Many Bell tests have been performed, and loopholes related to locality and detection have been closed in several independent experiments. It is still possible that a first event could influence a second, but the speed of this hypothetical influence (Einstein's 'spooky action at a distance') would need to be defined in some universal privileged reference frame and be greater than the speed of light. Here we put stringent experimental bounds on the speed of all such hypothetical influences. We performed a Bell test over more than 24 hours between two villages separated by 18 km and approximately east-west oriented, with the source located precisely in the middle. We continuously observed two-photon interferences well above the Bell inequality threshold. Taking advantage of the Earth's rotation, the configuration of our experiment allowed us to determine, for any hypothetically privileged frame, a lower bound for the speed of the influence. For example, if such a privileged reference frame exists and is such that the Earth's speed in this frame is less than 10(-3) times that of the speed of light, then the speed of the influence would have to exceed that of light by at least four orders of magnitude.
Long-distance quantum state transfer (QST), which can be achieved with the help of quantum teleportation, is a core element of important quantum protocols. A typical situation for QST based on teleportation is one in which two remote communication partners (Alice and Bob) are far from the entanglement source (Charlie). Because of the atmospheric turbulence, it is challenging to implement the Bell-state measurement after photons propagate in atmospheric channels. In previous long-distance free-space experiments, Alice and Charlie always perform local Bell-state measurement before the entanglement distribution process is completed. Here, by developing a highly stable interferometer to project the photon into a hybrid path-polarization dimension and utilizing the satellite-borne entangled photon source, we demonstrate proof-of-principle QST at the distance of over 1200 km assisted by prior quantum entanglement shared between two distant ground stations with the satellite Micius. The average fidelity of transferred six distinct quantum states is 0.82±0.01, exceeding the classical limit of 2/3 on a single copy of a qubit.
Quantum entanglement has been observed at low temperatures in both microscopic and macroscopic systems. It now seems that the effect can also occur at high temperatures if the systems are not in thermal equilibrium.
Quantum: Einstein, Bohr and the Great Debate about the Nature of Reality
M Kumar
Experiments on ‘Entangled’ Quantum Particles Won the Physics Nobel Prize