ArticleLiterature Review

Polysaccharides from traditional Chinese medicine and their nano-formulated delivery systems for cancer immunotherapy

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
This study aimed to evaluate the effect of Astragalus polysaccharides (PG2) on reducing chemotherapy-induced fatigue (CIF) and toxicity, thereby encouraging compliance to chemotherapy. This was a randomized, placebo-controlled, phase 2 study. Patients with stage II/III early breast cancer planning to undergo adjuvant anthracycline-based chemotherapy were randomly assigned to receive PG2 500 mg or placebo on days 1, 3, and 8 every 21 days. The fatigue global score (FGS) was assessed using the brief fatigue inventory (BFI)-Taiwan. The Breast Cancer-Specific Module of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaires-Core30 evaluated the health-related quality of life during the first four cycles of adjuvant chemotherapy. Overall, 66 eligible patients were equally randomized into the PG2 and placebo groups between March 01, 2018, and March 09, 2021. The mean change in the FGS and fatigue intensity did not significantly differ between both groups. However, the FGS and fatigue intensity were less aggravated in the first four cycles in the premenopausal-PG2 group than in the placebo group. Our study concluded PG2 combined with adjuvant chemotherapy can reduce CIF, insomnia, the negative effect on future perspectives, and improve global health status, especially for premenopausal patients with breast cancer. Trial registration number: NCT03314805 registered on 19/10/2017.
Article
Full-text available
Background Melanoma is a highly aggressive form of skin cancer. The existence of cancer stem cells (CSCs) and tumor immune evasion are two major causes of melanoma progression, but no effective treatment has been found at present. Astragalus polysaccharide (APS) is a principal active component derived from Astragalus membranaceus, showing anti-tumor effects in various tumors including melanoma. However, the underlying mechanism is still unclear. Methods The regulation of APS on self-renewal ability and CSC markers expression in melanoma stem cells (MSCs) was measured by tumor sphere formation and tumorigenicity assays, RT-qPCR, and western blot. Flow cytometry was conducted to evaluate the activation of immune system by APS in melanoma mice. Further, the mechanism was explored based on PD-L1 overexpression and knock-down B16 cells. Results APS attenuated the tumor sphere formation of MSCs in vitro as well as the tumorigenicity in vivo. It also decreased the expression of CD133, BMI1 and CD47. Based on the PD-L1 overexpression and knock-down B16 cells, it was confirmed that APS inhibited the induction of MSCs by down-regulating PD-L1 expression. Meanwhile, APS increased the infiltration of CD4⁺ and CD8⁺T cells in tumor tissues because of its inhibitory effect on PD-L1. Conclusions APS inhibited MSC induction and overcame tumor immune evasion through reducing PD-L1 expression. This study provided compelling evidence that APS could be a prospective therapeutic agent for treating melanoma.
Article
Full-text available
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system’s first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines’ polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure–efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure–efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Article
Full-text available
The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body’s immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.
Article
Full-text available
This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four‐fold to five‐fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South‐Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics‐based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.
Article
Full-text available
Menopause marks the end of menstrual cyclicity and, depending on individual vulnerability, has several consequences related to gonadal steroid deprivation, especially if it is premature. Menopause may be more burdensome for some women than for others. Individual factors, such as personal history, socioeconomic status, ethnicity, and current health conditions, affect symptomatology and, thereby, the menopausal experience. In addition, some menopausal symptoms, such as severe hot flashes, sleep disorders, and depression, are markers of future health risks. Counseling is a fundamental part of health care in the peri‐ and postmenopause periods. It must include an assessment of the patient's symptoms, needs, desires, and risk profile to address the benefits and risks of menopausal hormone therapy (MHT) on an individual basis and promote a healthy lifestyle. Indeed, healthcare practitioners can and must protect the health and lives of mid‐life women by increasing awareness of menopausal symptoms and ensuring healthcare options, especially MHT. The type and duration of MHT should be tailored based on the patient's history, menopausal age, physical characteristics, and current health status so that the benefits always outweigh the risks. This FIGO position paper focuses on the benefits and risks of MHT on health domains, target organs, and systems, and on systemic and vaginal MHT regimens, to provide indications that can be used in the clinical practice for menopausal counseling. Moreover, it offers insights into what FIGO considers the mainstay for the healthcare management of women in peri‐ and postmenopause, worldwide.
Article
Full-text available
As research on traditional Chinese medicine (TCM) has expanded, our understanding of the role it can have in controlling the immune system has increased. Polysaccharides from medicinal plants exhibit numerous beneficial therapeutic properties, presumably owing to their modulation of innate immunity and macrophage function. Numerous studies have demonstrated the multiple ways whereby certain polysaccharides can affect the immune system. In addition to stimulating immune cells, such as T cells, B lymphocytes, macrophages, and natural killer cells, polysaccharides stimulate complements and increase cytokine secretion. The biological functions of polysaccharides are directly correlated with their structures. This paper summarizes the sources, TCM uses, extraction and purification methods, structural characterization, in vitro and in vivo immune activities, and underlying molecular mechanisms of TCM root polysaccharides. Moreover, the structure–activity relationships of TCM root polysaccharides are emphasized and discussed. This review can provide a scientific basis for the research and industrial utilization of TCM root polysaccharides.
Article
Full-text available
Purpose Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-β-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.
Article
Full-text available
Background: Neoadjuvant or adjuvant immunotherapy can improve outcomes in patients with resectable non-small-cell lung cancer (NSCLC). Perioperative regimens may combine benefits of both to improve long-term outcomes. Methods: We randomly assigned patients with resectable NSCLC (stage II to IIIB [N2 node stage] according to the eighth edition of the AJCC Cancer Staging Manual) to receive platinum-based chemotherapy plus durvalumab or placebo administered intravenously every 3 weeks for 4 cycles before surgery, followed by adjuvant durvalumab or placebo intravenously every 4 weeks for 12 cycles. Randomization was stratified according to disease stage (II or III) and programmed death ligand 1 (PD-L1) expression (≥1% or <1%). Primary end points were event-free survival (defined as the time to the earliest occurrence of progressive disease that precluded surgery or prevented completion of surgery, disease recurrence [assessed in a blinded fashion by independent central review], or death from any cause) and pathological complete response (evaluated centrally). Results: A total of 802 patients were randomly assigned to receive durvalumab (400 patients) or placebo (402 patients). The duration of event-free survival was significantly longer with durvalumab than with placebo; the stratified hazard ratio for disease progression, recurrence, or death was 0.68 (95% confidence interval [CI], 0.53 to 0.88; P = 0.004) at the first interim analysis. At the 12-month landmark analysis, event-free survival was observed in 73.4% of the patients who received durvalumab (95% CI, 67.9 to 78.1), as compared with 64.5% of the patients who received placebo (95% CI, 58.8 to 69.6). The incidence of pathological complete response was significantly greater with durvalumab than with placebo (17.2% vs. 4.3% at the final analysis; difference, 13.0 percentage points; 95% CI, 8.7 to 17.6; P<0.001 at interim analysis of data from 402 patients). Event-free survival and pathological complete response benefit were observed regardless of stage and PD-L1 expression. Adverse events of maximum grade 3 or 4 occurred in 42.4% of patients with durvalumab and in 43.2% with placebo. Data from 62 patients with documented EGFR or ALK alterations were excluded from the efficacy analyses in the modified intention-to-treat population. Conclusions: In patients with resectable NSCLC, perioperative durvalumab plus neoadjuvant chemotherapy was associated with significantly greater event-free survival and pathological complete response than neoadjuvant chemotherapy alone, with a safety profile that was consistent with the individual agents. (Funded by AstraZeneca; AEGEAN ClinicalTrials.gov number, NCT03800134.).
Article
Full-text available
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Article
Full-text available
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Article
Full-text available
Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.
Article
Full-text available
Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.
Article
Full-text available
Cancer-associated fibroblasts (CAFs), as a central component of the tumor microenvironment in primary and metastatic tumors, profoundly influence the behavior of cancer cells and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Furthermore, the innate versatility and plasticity of CAFs allow their education by cancer cells, resulting in dynamic alterations in stromal fibroblast populations in a context-dependent manner, which highlights the importance of precise assessment of CAF phenotypical and functional heterogeneity. In this review, we summarize the proposed origins and heterogeneity of CAFs as well as the molecular mechanisms regulating the diversity of CAF subpopulations. We also discuss current strategies to selectively target tumor-promoting CAFs, providing insights and perspectives for future research and clinical studies involving stromal targeting.
Article
Full-text available
Efficient hepatocellular carcinoma (HCC) treatment remains a significant challenge due to the inherent limitations of traditional strategies. The exploration of polysaccharides' natural immunity for immunotherapy of HCC has been rarely explored. For this purpose, we reported in this study facile construction of a multifunctional nanoplatform, biotinylated aldehyde alginate-doxorubicin nano micelle (BEA-C = N-DOX-M) for synergistic chemo-immunotherapy by the use of constant β-D-mannuronic acid (M) units and modulated α-L-guluronic acid (G) units in the alginate (ALG) structure. The constant M units show natural immunity and specific binding ability with mannose receptor (MR) via strong receptor-ligand interactions, and the modulated G units serve as highly reactive conjugation sites for biotin (Bio) and DOX. This formulation not only integrates natural immunity of ALG and ICD triggering function of DOX, but also shows dual targeting properties to HCC cells via MR and Bio receptor (BR)-mediated endocytosis pathways. Notably, BEA-C = N-DOX-M at an equivalent dose of 3 mg/kg of DOX mediated tumor inhibitory efficiency 12.10% and 4.70% higher than free DOX and aldehyde alginate-doxorubicin nano micelle (ASA-C = N-DOX-M), respectively, in Hepa1-6 tumor-bearing mice. This study reported the first example of integrating natural immunity of ALG and ICD effect of anticancer drugs for enhanced chemo-immunotherapy of HCC. This article is protected by copyright. All rights reserved.
Article
Full-text available
The toxicity and side effects of chemotherapeutic drugs remain a crucial obstacle to the clinical treatment of hepatocellular carcinoma (HCC). Identifying combination therapy from Chinese herbs to enhance the sensitivity of tumors to chemotherapeutic drugs is of particular interest. Astragalus polysaccharide (APS), one of the natural active components in Astragalus membranaceus, has been reported to exhibit anti-tumor properties in diverse cancer cell lines. The aim of this study was to determine the effect of APS on Doxorubicin (Dox)-induced apoptosis in HCC and the underlying mechanism. The results showed that APS dose-dependently promoted Dox-induced apoptosis and enhanced endoplasmic reticulum (ER) stress. Additionally, APS decreased the mRNA level and protein stability of O-GlcNAc transferase (OGT), and increased the O-GlcNAcase (OGA) expression. Furthermore, OGT lentiviral transfection or PugNAc (OGA inhibitor) treatment reversed the ER stress and apoptosis induced by the combination of Dox and APS. A xenograft tumor mouse model confirmed that the combination of APS and Dox showed an advantage in inhibiting tumor growth in vivo. These findings suggested that APS promoted Dox-induced apoptosis in HCC cells through reducing the O-GlcNAcylation, which led to the exacerbation of ER stress and activation of apoptotic pathways.
Article
Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.
Article
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Article
Background Cancers are a large and heterogeneous group of malignant tumors that collectively accounted for approximately 600 000 US deaths in 2020; only heart disease claimed more lives. A large amount of knowledge has accumulated regarding the epidemiology of most cancer types, including their causes. Content The cancer types most frequently diagnosed among adults in most high-income countries are lung, colorectal, female breast, cutaneous melanoma, and prostate. In general cancer incidence and mortality is very low in children and adolescents, rising exponentially with increasing age during adulthood. There is marked international variation in the incidence of most cancers. The most important causes of cancer are tobacco use (primarily cigarette use), excess alcohol consumption, obesity, lack of physical activity, diets low in fruits and vegetables, infectious agents, and sun exposure. Early detection can reduce the chances that a person will die of cancers of the female breast, uterine cervix, colon and rectum, lung, and prostate. Summary Although the most common cancers in the United States continue to have a substantial impact on public health, they are caused in whole or part by factors over which people and governments have control through choices they make. Among these are tobacco and alcohol use, obesity, diets low in fruits and vegetables and lack of physical activity, and sun exposure. Thus, a very large proportion of cancer’s impact could be ameliorated if more people avoided these exposures.
Article
Polysaccharides (TCMPs) derived from traditional Chinese medicines (TCMs), such as Ganoderma lucidum, Astragalus membranaceus, Lycium barbarum, and Panax ginseng, are considered to be the main active constituents in TCMs. However, the significant pharmacological effects of orally administered TCMPs do not align well with their poor pharmacokinetics. This article aims to review the literature published mainly from 2010 to 2022, focusing on the relationship between pharmacokinetics and pharmacological effects. It has been found that unabsorbed TCMPs can exert local pharmacological effects in the gut, including anti-inflammation, anti-oxidation, regulation of intestinal flora, modulation of intestinal immunity, and maintenance of intestinal barrier integrity. Unabsorbed TCMPs can also produce systemic pharmacological effects, such as anti-tumor activity and immune system modulation, by regulating intestinal flora and immunity. Conversely, some TCMPs can be absorbed and distributed to various tissues, especially the liver, where they exhibit tissue-protecting effects against inflammation and oxidative stress-induced damage and improve glucose and lipid metabolism. In future studies, it is important to improve quality control and experimental design. Furthermore, research on enhancing the oral bioavailability of TCMPs, exploring the activity of TCMP metabolites, investigating pharmacokinetic interactions between TCMPs and oral drugs, and developing oral drug delivery systems using TCMPs holds great significance.
Article
The current study aimed to investigate the effects and mechanisms of Paris polyphylla polysaccharide component 1 (PPPm-1) to improve learning and memory in D-galactose-induced aging model mice. We determined the effects of PPPm-1 on the brain, organ index, and behavior in the aging model mice induced by D-galactose to study learning and memory improvement. UV-Vis spectrophotometry helped determine the PPPm-1 effect on antioxidant parameters associated with learning and memory in the brain and related organs of aging mice. Moreover, in the hippocampi of aging model mice, PPPm-1 effect on the mRNA and protein expressions of p19, p53, p21, P16, Rb, Wnt/1, β-catenin, CyclinD1, TCF-4, and GSK-3β were detected using the quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The results indicated that PPPm-1 could increase the brain and organ indexes, the avoidance latency, the total distance and average speed in the water maze, and the SOD and GSH-PX activities in the brain, liver tissues, and plasma. Moreover, the mRNA and protein expressions of Wnt/1, β-catenin, CyclinD1, and TCF-4 were also elevated in the hippocampi of aging model mice. However, the error times in step-through tests, the MDA content in the brain and liver tissues, the AChE activity in the brain tissue, the protein expressions of P16, Rb in the hippocampi, and the mRNA and protein expressions of p19, p53, p21, and GSK-3β in the hippocampi of aging model mice were significantly decreased. Thus, PPPm-1 significantly enhanced the learning and memory impairment induced by D-galactose in mice. The action mechanisms were associated with anti-oxidative stress, cholinergic nervous system function regulation, LTP enhancement in long-term memory, down-regulated expression of p19/p53/p21 signaling pathway factors, and Wnt/β-catenin signaling pathway activation.
Article
T cell responses against infections and cancer are directed by conventional dendritic cells (cDCs) in lymph nodes distant from the site of challenge. Migratory cDCs, which travel from the tissue to the lymph node, not only drive initial T cell activation but also transfer antigen to lymph node-resident cDCs. These resident cells have essential roles defining the character of the resulting T cell response; however, it is unknown how they can appropriately process and present antigens to suitably direct responses given their spatial separation. Here, using a novel strain of influenza A and a modified melanoma model, we show that tissue and lymph node cDC activation is harmonized and that this is driven by cotransfer of contextual cues. In the tumor, incomplete cDC activation in the tumor microenvironment is mirrored by lymph node-resident cDCs, whereas during influenza infection, pathogen-associated molecular patterns cotransferred with antigen drive TLR signaling in resident cDCs and their subsequent robust activation. This cotransfer mechanism explains how individual antigens can be handled distinctly by resident cDCs and how signals driving poor tumoral cDC activation further impact the lymph node. Our findings clarify how tissue context dictates antigenic and, consequently, T cell fate in the lymph node.
Article
Gene therapy, recently frequently investigated, is an alternative treatment method that introduces therapeutic genes into a cancer cell or tissue to cause cell death or slow down the growth of the cancer. This treatment has various strategies such as therapeutic gene activation or silencing of unwanted or defective genes; therefore a wide variety of genes and viral or nonviral vectors are being used in studies. Gene therapy strategies in cancer can be classified as inhibition of oncogene activation, activation of tumor suppressor gene, immunotherapy, suicide gene therapy and antiangiogenic gene therapy. In this review, we explain gene therapy, gene therapy strategies in cancer, approved gene medicines for cancer treatment and future of gene therapy in cancer. Today gene therapy has not yet reached the level of replacing conventional therapies. However, with a better understanding of the mechanism of cancer to determine the right treatment and target, in the future gene therapy, used as monotherapy or in combination with another existing treatment options, is likely to be used as a new medical procedure that will make cancer a controllable disease.
Article
Bletilla striata is a well-known medicinal plant with high pharmaceutical and ornamental values. Polysaccharide is the most important bioactive ingredient in B. striata and has various health benefits. Recently, B. striata polysaccharides (BSPs) have attracted much attention from industries and researchers due to their remarkable immunomodulatory, antioxidant, anti-cancer, hemostatic, anti-inflammatory, anti-microbial, gastroprotective, and liver protective effects. Despite the successful isolation and characterization of B. striata polysaccharides (BSPs), there is still limited knowledge regarding their structure-activity relationships (SARs), safety concerns, and applications, which hinders their full utilization and development. Herein, we provided an overview of the extraction, purification, and structural features, as well as the effects of different influencing factors on the components and structures of BSPs. We also highlighted and summarized the diversity of chemistry and structure, specificity of biological activity, and SARs of BSP. The challenges and opportunities of BSPs in the food, pharmaceutical, and cosmeceutical fields are discussed, and the potential development and future study direction are scrutinized. This article provides comprehensive knowledge and underpinnings for further research and application of BSPs as therapeutic agents and multifunctional biomaterials.
Article
In this study, two homogeneous polysaccharides (APS-A1 and APS-B1) were isolated from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Their chemical structures were characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-A1 (2.62 × 106 Da) was a 1,4-α-D-Glcp backbone with a 1,4,6-α-D-Glcp branch every ten residues. APS-B1 (4.95 × 106 Da) was a heteropolysaccharide composed of glucose, galactose, and arabinose (75.24:17.27:19.35). Its backbone consisted of 1,4-α-D-Glcp, 1,4,6-α-D-Glcp, 1,5-α-L-Araf and the sidechains composed of 1,6-α-D-Galp and T-α/β-Glcp. Bioactivity assays showed that APS-A1 and APS-B1 had potential anti-inflammatory activity. They could inhibit the production of inflammatory factors (TNF-α, IL-6, and MCP-1) in LPS-stimulated RAW264.7 macrophages via NF-κB and MAPK (ERK, JNK) pathways. These results suggested that the two polysaccharides could be potential anti-inflammatory supplements.
Article
Cancers represent complex ecosystems comprising tumor cells and a multitude of non-cancerous cells, embedded in an altered extracellular matrix. The tumor microenvironment (TME) includes diverse immune cell types, cancer-associated fibroblasts, endothelial cells, pericytes, and various additional tissue-resident cell types. These host cells were once considered bystanders of tumorigenesis but are now known to play critical roles in the pathogenesis of cancer. The cellular composition and functional state of the TME can differ extensively depending on the organ in which the tumor arises, the intrinsic features of cancer cells, the tumor stage, and patient characteristics. Here, we review the importance of the TME in each stage of cancer progression, from tumor initiation, progression, invasion, and intravasation to metastatic dissemination and outgrowth. Understanding the complex interplay between tumor cell-intrinsic, cell-extrinsic, and systemic mediators of disease progression is critical for the rational development of effective anti-cancer treatments.
Article
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Article
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Article
Recently, lentinan (LNT) has been utilized for its diversified potential in research with an extended role from nutritional or medicinal applications to a novel biomaterial. LNT is a biocompatible, multifunctional polysaccharide employed as a pharmaceutical additive in engineering customized drug or gene carriers with an improved safety profile. Its triple helical structure containing hydrogen bonding offers more extraordinary binding sites for the attachments of dectin-1 receptors and polynucleotide sequences (poly(dA)). Hence, the diseases expressing dectin-1 receptors can be specifically targeted through so-designed LNT-engineered drug carriers. Gene delivery using poly(dA)-s-LNT complexes and composites has exhibited greater targetability and specificity. The achievement of such gene applications is assessed through the pH and redox potential of the extracellular cell membrane. The steric hindrance-acquiring behavior of LNT shows promise as a system stabilizer in drug carrier engineering. LNT shows viscoelastic gelling behavior temperature-dependently and therefore needs to explore more to meet topical disease applications. The immunomodulatory and vaccine adjuvant properties of LNT help in mitigating viral infections too. This review highlights the new role of LNT as a novel biomaterial, particularly in drug delivery and gene delivery applications. In addition, its importance in achieving various biomedical applications is also discussed.