Implicit equilibrium models, i.e., deep neural networks (DNNs) defined by implicit equations, have been becoming more and more attractive recently. In this paper, we investigate one emerging question if model's equilibrium point can be regarded as the solution of an optimization problem. Specifically, we first decompose DNNs into a new class of unit layer that is differential of an implicit
... [Show full abstract] convex function while keeping its output unchanged. Then, the equilibrium model of the unit layer can be derived, named Optimization Induced Equilibrium Networks (OptEq), which can be easily extended to deep layers. The equilibrium point of OptEq can be theoretically connected to the solution of its corresponding convex optimization problem with explicit objectives. Based on this, we can flexibly introduce prior properties to the equilibrium points: 1) modifying the underlying convex problems explicitly so as to change the architectures of OptEq; and 2) merging the information into the fixed point iteration, which guarantees to choose the desired equilibrium when the fixed point set is non-singleton. This work establishes an important first step towards optimization guided design of deep models.