ArticlePDF Available

Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes

Authors:
  • Al-Balqa Applied University

Abstract and Figures

Using business intelligence-backed big data leverages the decision-making processes in Jordanian commercial banks. The current study aimed to look into the consequence of using big data to upthrust the link between business intelligence and decision-making processes within Jordanian commercial banks. The study sample comprises 1600 employees from all levels in the 12 Commercial Banks in Jordan. Based on a random sampling of 371 questionnaires that were spread, (94.8%) of the total questionnaires were found fit for the analysis. This study utilized AMOS as a tool to examine the collected data. This study’s results revealed that big data, business intelligence and decision-making processes are interrelated and significantly affect each other in Jordanian commercial banks. The current study results recommend banks in Jordan to devote more investment in big data infrastructure and also take measures to boost the abilities of personnel in analyzing and utilizing innovative data technology. Also, this study recommends researchers investigate other related factors that affect the relationship between the current study’s concepts.
Content may be subject to copyright.
International Review of Management and
Marketing
ISSN: 2146-4405
available at http: www.econjournals.com
International Review of Management and Marketing, 2025, 15(2), 180-188.
International Review of Management and Marketing | ol 1  ssue   
180
Big Data Backed Business Intelligence to Upthrust Commercial
Banks Decision-Making Processes
Abeer Sultan Altarawneh1, Hasan Khaled AlAwamleh2, Fawwaz Tawq Awamleh1, Ala Nihad Bustami3*
1Department of Business Administration, Faculty of Business, Amman Arab University, Jordan, 2Department of Business
Administration, Al-Balqa Applied University, Amman University College, Jordan, 3University of Glasgow, Glasgow, UK.
*Email: alabustami@outlook.com
Accepted: 16 September 2024 Received: 04 January 2025 DOI: https://doi.org/10.32479/irmm.17709
ABSTRACT
Using business intelligence-backed big data leverages the decision-making processes in Jordanian commercial banks. The current study aimed to look
into the consequence of using big data to upthrust the link between business intelligence and decision-making processes within Jordanian commercial
banks. The study sample comprises 1600 employees from all levels in the 12 Commercial Banks in Jordan. Based on a random sampling of 371
questionnaires that were spread, (94.8%) of the total questionnaires were found ¿t for the analysis. This study utilized AMOS as a tool to examine the
collected data. This study’s results revealed that big data, business intelligence and decision-making processes are interrelated and signi¿cantly affect
each other in Jordanian commercial banks. The current study results recommend banks in Jordan to devote more investment in big data infrastructure
and also take measures to boost the abilities of personnel in analyzing and utilizing innovative data technology. Also, this study recommends researchers
investigate other related factors that affect the relationship between the current study’s concepts.
Keywords: Business Intelligence, Decision-Making Processes, Big Data, Data Quality and Integrity, Real-time
Analysis, Flexibility and Scalability
JEL Classications: G21, C53, O33
1. INTRODUCTION
In the big data era where a massive amount of data is available
for ¿nancial institutions to handle, effective decision-making is
what steers the wheel towards success. Business intelligence is
a central piece in leveraging decision-making processes. Using
business intelligence tools and techniques, bank managers can
analyze and interpret vast data from innumerable sources such
as client transactions, market-related trends, and risk-factors
assessments. Hence, allows them to make informed decisions
such as product offerings, pricing strategies, risk management,
and customer retention. Furthermore, business intelligence enables
bank managers to spot patterns and associations in customer
behaviour, therefore allow them to personalize their services and
offerings based on individual customer preferences. Ultimately,
the use of business intelligence in banking helps drive pro¿tability,
mitigate risks, improve operational ef¿ciency, and enhance overall
customer satisfaction.
Big data analysis tool, within the banking industry, is at the
center of decision-making processes.(Aliu, 2019; Soltani
Delgosha et al., 2021). It enables banks to get the best out of
vast amounts of information in real-time and leads to accurate
predictions and assessments (Soltani Delgosha et al., 2021).
Various alarming challenges are facing ¿nancial institutions such
as process automation, heightened customer expectations, ¿erce
competition, mergers and acquisitions, new developments, and
market segmentation. Financial institutions hoard vast amounts of
data daily, recording information for each customer individually,
encompassing personal details, property and ¿nancial decisions,
as well as their accounts, transactions per account, debit, and
credit liabilities. Therefore, effective management that is built on
This Journal is licensed under a Creative Commons Attribution 4.0 International License
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025 181
effective decision-making is at the heart of the survival of ¿nancial
institutions. Consequently, poses a need for a cost-effective, data-
driven, and reliable information decision-making process. This is
the means for the banks to adopt robust analysis tools to enhance
their performance, primarily aligned with the attainment of their
objectives (Alshehadeh et al., 2023).
The integration of BI into the systems of organizations has
evolved into a crucial scienti¿c and organizational innovation
for contemporary ¿rms, endorsing information dissemination and
forming the foundation of business decision-making processes
(Borissova et al., 2020). Therefore, business intelligence empowers
a company to comprehend its characteristics, and operational
ef¿ciency, and aids in designing a framework suitable for its
organizational environment. It ensures that the implementation
facilitates accurate decision-making, thereby enhancing overall
¿rm performance (Olszak, 2022).
The Jordan Banking System is on a steady upward trend as it
evolves to adapt to the challenges and changes of the global
market, in the framework of implementing the best banking
practices. It has always fulfilled its mission in economic
productivity, monetary and ¿nancial stability, and supported
development projects, and has begun to take innovative initiatives
driven by new technologies, such as big data (Al-Khatib, 2022;
Al-Okaily et al., 2023). In dealing with vast and complex
datasets, adopting a business intelligence framework proves
advantageous for any modern business entity (Borissova et al.,
2020). This approach aligns employees’ intellectual resources
with the ef¿ciency of computer-supported support systems,
enhancing the quality of decision-making (Gołbiowska et al.,
2021). Banks can use business intelligence, considering factors
such as data quality, analytical capabilities, and usage levels, to
enhance the transparency and intelligent visibility of their data
and core operations (Nithya and Kiruthika, 2020), improving
decision-making processes Awan et al.,(2021), integrates data
across the value chain allowing for even more informed decision
making (Singu, 2021). It equips managers with tools to report and
analyze business information enabling them to comprehensively
understand both internal and external organizational environments
(Kašparová, 2023). As a result, managers have access, to data that
signi¿cantly inuences their decision-making and guides their
endeavors (Maaitah, 2023).
In recent years, big data and business intelligence have
revolutionized numerous industries, yet the banking sector still
faces significant research gaps in effectively utilizing these
technologies to support decision-making (Nithya and Kiruthika,
2020; Ranjan and Foropon, 2021). Despite the strides of
interpreting and analyzing the dimensions of business intelligence,
many banks still lag in the proper utilization of this valuable
tools in the decision-making process. However, there is still an
incomplete understanding of how business intelligence can be best
used to enhance the effectiveness of banking operations, which
is especially important in light of the intense competition within
the sector. Therefore, this study aims to pave the way to a holistic
approach of using intelligent systems to boost decision-making
in the Jordanian banking sector by investigating the mediating
role of big data in decision-making processes based on business
intelligence in Jordanian commercial banks.
2. THEORETICAL FRAMEWORK
2.1. Fact-Based Decision-Making Culture
Factual-driven decision-making is critical in banking, especially
in business intelligence. Within the banks’ context, this philosophy
is ingrained in smart tools in order to analyze vast¿nancial data
(Bany Mohammad et al., 2022). Therefore, decision-making
based on factual data in banking uses Big Data, enabling banks
to organize massive data from different sources, suchas ¿nancial
transactions, customer records and sometimes even economic
predictions (Li et al., 2022). Working on this data assists in
understanding trends and forecasts, which have a bene¿cial effect
while making decisions, for they are based on true facts and ¿g ures.
The relationship of FBDM culture to business intelligence lies in
the use of advanced analytics and smart technologies to make the
most of data. Business intelligence helps transform this data into
valuable information and strategic insights (Gad-Elrab, 2021).
Bharadiya, (2023) indicated that business intelligence systems can
predict market trends, identify potential opportunities and risks,
and provide guidance for improving the decision-making process.
According to (Othman, 2021), the culture of decision-making
based on facts and business intelligence contributes to enhancing
banks’ ef¿ciency and improving their risk management.
2.2. Business Intelligence and Decision-making Process
The term “Business intelligence” highlights the use of technologies
and strategic techniques to support management decisions
(Shao et al., 2022). Business Intelligence and analytics has
established literature in supporting the business in general and
speci¿cally strategic intelligence (Awamleh and Bustami, 2022),
entrepreneurship (Awamleh et al., 2024), and business model
innovation (Božič and Dimovski, 2019). Through business
intelligence (BI), insightful perspectives must be gained, and
without the analysis of intelligence, decisions regarding any part of
the information cannot be made (Niño et al., 2020). The goal is to
uncover the underlying processes or patterns thatlead to a speci¿c
perspective or desired outcomes (Nithya and Kiruthika, 2020).
Business Intelligence (BI) encompasses the gathering, integrating,
analysing, and presenting business-related information,
technology, applications, and practices. Its primary purpose is to
facilitate informed and effective decision-making within a business
context (Bharadiya, 2023). BI strives to enhance organizational
ef¿ciency in internal matters and promote transparency in crucial
process trends (Ramakrishnan et al., 2020).
Niu et al., (2021) indicates that the core aim of BI is to transform
data into knowledge, thereby contributing to the improvement of
decision-making processes. Business Intelligence (BI) presents a
solution that can collect and process data ef¿ciently. Currently,
BI stands out as a rapidly advancing domain within information
technology (Skyrius, 2021). It encompasses a range of capabilities,
technologies, tools, and methodologies aimed at assisting managers
in comprehending business conditions (Olaniyi et al., 2023). BI
comprises tools and processes to transform data into actionable
knowledge, facilitating informed decision-making. Furthermore,
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025
182
professionals and analysts can enhance their workflows by
leveraging straightforward functionalities, leading to improved
outcomes (Skyrius, 2021). For information to genuinely bene¿t
the business, it is imperative to deliver precise data promptly,
exactly when required. Furthermore, this information must prove
vital for decision-making, strategic planning, and ultimately, the
triumph of the business. The primary advantage of employing BI
systems lies in the signi¿cant enhancement of decision-making
effectiveness (Skyrius, 2021). Chatzistefanou, (2023) indicates
that key tools within the BI-integrated framework encompass data
storage, extraction, transmission, loading (ETL), online analytical
processing, data mining (DM), and reporting.
The precise and trustworthy data leads to long-term success
(Duggineni, 2023). BI tools are useful for organizing and
transforming data into valuable insights, contributing to more
reliable decision-making (Khong et al., 2023). The concentration
on data quality and precision enhances the credibility of
organizational decisions making (Singu, 2021). In addition to
providing integrated, high-quality data, business intelligence
contributes to real-time data analysis.
The BI’s reporting and analyzing capabilities reduce the waiting
time for decision-makers. This shift enables organizations to
make structured decisions promptly, enhancing their ability
to respond quickly to changes and align with industry trends
(Ranjan and Foropon, 2021). Also, (El Ghalbzouri and El
Bouhdidi, 2022) highlight the capability of BI tools to handle
large-scale data requirements ef¿ciently (Nambiar and Mundra,
2022). Furthermore, BI tools allow organizations to scale up their
infrastructure without compromising ef¿ciency, ensuring they can
meet the growing data-demand. Ultimately, Borissova et al., (2020)
indicated that business intelligence systems essentially serve as
decision support systems based on the analyzed data. Therefore,
the researcher believes that:
H1: Business intelligence signi¿cantly impacts Decision-Making
Processes in Jordanian commercial banks.
2.3. Business Intelligence and Big Data
Business Intelligence (BI) systems enable the consolidation of
data from diverse environments, locations, operating systems, and
databases rapidly (Kašparová, 2023). Frequently, this voluminous
data is either unstructured or stored in databases with distinct
schemas, necessitating specialized handling before integration
(Negro and Mesia, 2020). Gad-Elrab, (2021) pointed out that
Big data has changed the way enterprises handle and pro¿t from
enormous amounts of data through BI. Companies get useful
information from big datasets analytics which are easily interactive
with BI tools for the decision-making process. Through structure,
analyses, and graphs of large sizes of data, BI tools have the power
to allow companies to follow patterns trends, and relationships
that may not have been followed otherwise (Al-Okaily et al.,
2023). The blend of business intelligence and big data empowers
organizations to improve strategic planning, optimize operations,
and get a competitive advantage in the data-driven world of today.
They can therefore view how business intelligence affects big
data in de¿ning a new era where ideas of innovation and success
are accessible in all sectors. Hence, the researcher believes that:
H2: Business intelligence Significantly Impacts Big Data in
Jordanian commercial banks.
2.4. Big Data and Decision-Making Process
Weerasinghe et al. (2022) indicated that the employment of big
data has allowed organizations to rethink how they make decisions
and re¿ne decision-making processes. Upper-ton Big Data refers
to the huge amount of the same, new, and different types of data
that swamps a business. One of the great things about big data
is that it provides a lot of information, which results in great
decision-making (Pattnaik and Shah, 2023). Big data plays an
important role in making the right decisions based on data rather
than a hunch using different shared analytical tools, managers
effectively sort/¿lter the data and then process it, thus drawing out
valuable insights in a much shorter time (Jabbar et al., 2020). This
results in organizations having autonomy and can make the most
informed decisions because the data is current, and the decision
is made instantly (Kauffmann et al., 2020). By using big data
the banks can ef¿ciently predict future outcomes and can make
sound decisions on current occurring issues. Predictive analysis
techniques help organizations identify potential future challenges
and upcoming opportunities. It helps them to manipulate their data
and plan accordingly (Balbin et al., 2020). Seyedan and Mafakheri,
(2020) believe that through predictive analysis using big data,
more reliable forecasting can be done, leading to better decisions
in different areas. In the opinion of Kahila, (2023), large-scale data
is going to be inevitable, thus companies need to ¿nd a strategy
through it now or later. Therefore, the researcher believes that:
H3: Big Data has a Significant Impact on Decision-Making
Processes in Jordanian commercial banks.
2.5. Business Intelligence, Big Data, and
Decision-Making Process
Business intelligence with the help of big data, enables banks
to get valuable insights and to make decisions such as how to
perform, modify strategies, and cut off any extra coststhat can
be a barrier to achieving goals, without violating any compliance
standard (Al-Okaily et al., 2023). Business intelligence is a
strategic focus, in today’s world, to have an edge for informed
decision-making. Through business intelligence, the whole data
can be analyzed and then key decisions can be made ef¿ciently
(Duggineni, 2023). One of the most important features of business
intelligence tools is to gather data from various sources throughout
the organization. The data, after being structured into a repository,
can be retrieved faster by the relevant department (Skyrius, 2021).
However, (Olszak, 2022) found a direct link between Big Data
and Business Intelligence and organizational success. This is by
stressing the importance of decision making optimization. Big
data is an important tool to understand the business context and
monitor changes. With the assistance of big data, ¿rmscan have
a system that will provide in-depth insights into this data, making
decision-making easier. Big data is a comprehensive tool to gather
data, from multiple sources such as social media platforms, and
different technologies, to derive insights from this data (Shahid
and Sheikh, 2021). Diversity in data sources ultimately helps
understand deep relations and all possible perspectives relevant to
a business (Li et al., 2022). Therefore, the researcher believes that:
H4: Big Data mediates the relationship between Business
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025 183
intelligence and Decision-Making Processes in Jordanian
commercial banks.
Consequently. The theoretical model outlined in (Figure 1) shows
interrelationships among the study’s aspects.
3. RESEARCH METHODOLOGY
The methodology section prescribes the methodology to achieve
the study’s objectives. Besides, details of the selected sample and
its characteristics. Furthermore, it explicates the preparation and
development of the data collection instrument. Then, the required
statistical methods utilized to process the collected data.
The researchers followed a descriptive-analytical approach to
answer this study’s question; identify the big data meditating
effect in the interaction of business intelligence capabilities and
decision-making processes. This method is based on an exhaustive
explanation of the subject problem. In other words, detecting
the research model variables and unfolding the interrelated links
within them (Sekaran and Bougie, 2016).
3.1. Population and Study Sample
This study addresses the Commercial Banks in Jordan as the
study population. Speci¿cally, it consists of 12 Banks that hold
administrative positions. In total, it targets (1600) employees.
The sampling method is a random sample of 371 questionnaires
which is suitable for the study (Sekaran and Bougie, 2016). Out
of all the distributed questionnaires, 359 were retrieved and
(7) questionnaires were excluded. Hence, (352) questionnaires
(94.8%) of the questionnaires were found ¿t for the analysis.
3.2. Study Tool
The researchers designed the study instrument based on a thorough
investigation of related previous studies. The questionnaire
highlighted (39) items organized as the following sections:
Firstly, (21) questions related to the independent variable which
is Business intelligence (Data Quality and Integration (7) items,
Real-time Analysis (7) items, Flexibility, and Scalability (7) items).
Secondly, (11) questions related to the dependent variable which
is Decision-Making Processes. Thirdly, (7) questions about the
intermediary variable which is Big Data. The questions formulated
as a five-point Likert scale. Namely, 1 as strongly agree to
5 strongly disagree. This is to give respondents greater exibility
in selecting the right response (Sekaran and Bougie, 2016).
3.3. Reliability Test
To test the reliability of the study’s instrument, the Cronbach
Alpha coef¿cient values were calculated for all items. The overall
reliability test result is 86.4% shown in Table 1. The Cronbach
Alpha score ranged from 87.5% to 91.2% which is higher than
the acceptable percentage of 70%. This agrees with the acceptable
scores within the ¿eld (Sekaran and Bougie, 2016).
4. RESULTS
According to Table 2, the descriptive statistics show that 62.8%
of the total sample were males, leaving 37.2% for females. In
terms of education, 65.1% of the total sample held a bachelor’s
degree. The highest percentage for years of experiencewas
6-10 years constituting 32.7% of the total sample. Finally, 27% of
the sample were Managers and unit heads whereas theremaining
were employees.
In order to check that the data is normally distributed, the result of
the normal distribution test is shown in Table 3. As the response
number is large, one sample Kolmogorov-Smirnov (K-S) was
used. The result indicates that K-S value is < 5 at a Sig value
> 0.05, and the skewness values < 1, collectively indicating a
normal distribution (Hair, et al., 2011).
The multicollinearity test and the VIF and tolerance scores
were recorded in Table 4. The results show the VIF values < 3,
while the tolerance values > 0.10. This con¿rms the absence of
multicollinearity amid the independent variables.
Table 1: The study instruments stability coefcients
Variable Alpha value Number of statements
Independent variable
Business intelligence 0.887 21
Independent variable 0.875 7
Real-time analysis 0.902 7
Flexibility and scalability0.887 7
Mediation variable
Big data 0.912 7
Dependent variable
Decision-Making Processes0.877 11
All 0.85 39
Table 2: Descriptive statistics
Variable Frequency Percentage
Gender
Female 131 37.2
Male 221 62.8
Academic quali¿cation
Diploma 61 17.3
Bachelor’s degree 229 65.1
Postgraduate studies 62 17.6
Years of experience
5 years or less 96 27.3
6-10 years 115 32.7
11-15 years 104 29.5
16 years and above 37 10.5
Job vacancy
Employee 257 73
Unit manager 36 10.2
Department head 59 16.8
Total 352 100
Table 3: The normal distribution test of data
Variable Mean SD Skewness k-s Sig
Business intelligence 3.73 0.64 –0.43 0.84 0.51
Data quality and
integration 3.83 0.42 –0.43 1.03 0.374
Real-time analysis 3.45 0.62 –0.33 1.12 0.087
Flexibility and scalability3.92 0.53 –0.42 1.25 0.261
Big data 3.64 0.60 –0.09 1.09 0.174
Decision-making
processes 3.84 0.57 –0.35 1.245 0.085
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025
184
As shown in Table 5, the details of the inter-correlation which
is represented by the Pearson Correlation test to validate the
relationship between the current study variables. The value of
the correlations between the variables ranged from (0.417 to
0.783). Hence, indicates the occurrence of a positively signi¿cant
relationship amongst the study variables at P = 0.000.
The researchers used multiple regression to examine the study’s
hypotheses. H1 test the link between business intelligence and the
decision-making process. Table 6 shows the testing results of H1.
The results in Table 6 indicate a statistically signi¿cant effect
at the signi¿cance level of 0.00. Furthermore, the coef¿cient of
determination is (R
2= 0.766) hence, business intelligence explained
(76.6%) of the variance in Decision-Making Processes. According
to the results, all variables contributed to the impact of business
intelligence on decision-making processes. Therefore, this leads
to alternative hypothesis acceptance “Business intelligence has
a signi¿cant impact on Decision-Making Processes in Jordanian
commercial banks.”
Table 7 speci¿es the results of the multiple linear regression test
for H2. The coef¿cient (R
2 = 0.562), indicates that the (business
intelligence) explained (56.2%) of the variance in (big data), at
a signi¿cance level of 0.00. Consequently, business intelligence
signi¿cantly impacts Big Data with moderate variance explanation.
Therefore, this indicates the acceptance of the alternative
hypothesis “Business intelligence has a signi¿cantimpact on Big
Data in Jordanian commercial banks.” is accepted.
Table 8displays the result of the coefficient (R
2= 0.579),
indicates that the Big Data explained (57.9%) of the variance
in Decision-Making Processes at (Sig = 0.000), the value of (F)
reached (176.111), which con¿rms the signi¿cance of the model
at (α ≤ 0.05). the coef¿cient value (B = 0.498) equivalent to
Decision-Making Processes at (Sig = 0.000). Collectively, the
alternative hypothesis is accepted “There is a positive relationship
between Big Data and the Decision-Making Processes in Jordanian
commercial banks”.
The ¿t model data analysis appears in Table 9, showing that
(χ2/df =4.01) is signi¿cant at (Sig = 0.000), (GFI = 0.976) is
above the recommended minimum. The (CFI = 0.982) exceeds
the recommended minimum limit (RAMSEA = 0.082) and meets
the recommended limit. Accordingly, all the mentioned results
indicate that the proposed model ¿ts the collected data.
Table 10 illustrates the values of the direct and indirect impact
of the relationship of the intermediate variable (Big Data) in
the bridge between business intelligence and decision-making
Processes. The direct effect of business intelligence BI-decision-
making Processes is (0.539), which indicates that business
Table 5: Pearson correlation
Variable Business
intelligence
Data quality
and integration
Real-time
analysis
Flexibility and
scalability
Decision-making
processes
Big
data
Business intelligence 1
Data quality and integration 0.523** 1
Real-time analysis 0.427** 0.783** 1
Flexibility and scalability0.418** 0.783** 0.765** 1
Decision-making processes 0.748** 0.663** 0.658** 0.752** 1
Big data 0.559** 0.506** 0.453** 0.594** 0.579** 1
**Correlation is signi¿cant at the 0.01 level (2-tailed).
Table 4: Tolerance and VIF
Variables Tolerance VIF
Data quality and integration 0.579 1.725
Real-time analysis 0.453 2.208
Flexibility and scalability 0.463 2.19
Business Intelligence
Data Quality
and
Integration
Real-Time
Analytics
Scalability
and
Flexibility
Big Data
Decision-
making
processes
H2
H3
H1
H4
Figure 1: Theoretical model
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025 185
intelligence affects Decision-Making Processes. As for the direct
impact of big data on the DMP is (0.5). This indicates that big
data moderately impacts the decision-making processes and thus
increased attention to big data will generate an impact on the
decision-making processes.
Business intelligence’ direct impact on big data equals (0.76) at
(P < 0.05), hence there is an indirect effect of the mediating variable
statistically accounting for (0.38). As for the business intelligence’s
total impact on the decision-making processes equals (0.91)
with big data presence. The effect of the mediating variable was
statistically signi¿cant, the mediation is partialdue to the presence
of business intelligence in both direct (Business intelligence –
Decision-Making Processes) and indirect (Business intelligence –
Big Data – Decision-Making Processes) effects. However, business
intelligence and big data substantially and signi¿cantly enhance
the decision-making process in commercial banks.
Based on (Figure 2), this study concluded that integrating business
intelligence and big data improves the decision-making processes.
This conclusion relates to another study’s ¿ndingsthat using big
data analytics alongside business intelligence tools aids leaders in
making fast, data-driven, precise decisions for the most optimized
outcomes (Olaniyi et al., 2023). However, the dimensions of the
variables were different in both studies. Speci¿cally, theutilization
of internal benchmarks, banks can identify what is working well and
what needs improvement. This, in turn, ensures that the bank can
improve its ef¿ciency and productivity across different channels.
This study con¿rms that linking business intelligence with big
data is useful for commercial banks. Similarly, Shouman and
Table 6: The multiple regression test of H1
Variable B Standard
error
TSig T*
Constant 1.01 0.133 7.597 0.00
Data quality and integration 0.313 0.057 5.491 0.049
Real-time analysis 0.217 0.049 4.428 0.017
Flexibility and scalability0.492 0.054 9.11 0.00
R=0.766, R²=0.587, R² Adj.=0.583, F=164.68, Sig.=0.00
Table 7: The multiple regression test of the H2
Variable B Standard
error
TSig T*
Constant 0.943 0.283 3.33 0.001
Data quality and integration 0.229 0.069 3.318 0.001
Real-time analysis 0.249 0.075 3.324 0.001
Flexibility and scalability0.21 0.07 3.001 0.003
R=0.562, R²=0.316, R² Adj.=0.306, F=32.514, Sig.=0.00
Table 8: Testing the impact of big data on decision-making
processes
Variable B Standard error T Sig T*
Constant 1.78 0.157 11.353 0.00
Big data 0.498 0.037 13.271 0.00
R=0.579, R²=0.335, R² Adj.=0.333, F=176.111, Sig.=0.00
Figure 2: Test results of the model
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025
186
Chehade, (2020); Pillay and Van Der Merwe, (2021) mention that
business intelligence enables the analysis of vast amounts of big
data collected from multiple sources within a banking organization.
This comprehensive analysis allows a deeper understanding
of customer behaviour, market trends, and potential ¿nancial
risks. Banks can utilize their business intelligence technologies
to recognize where the investment opportunities lie. Therefore,
it can provide better ¿nancial services (Yu and Song, 2020). On
the other hand, integrated technologies offer a vital pathway
through which the leaders and strategic managers make important
operation decisions by analyzing essential insights that eventually
lead to success in the volatile ¿nancial environment (Awamleh
and Bustami, 2022; Al-Okaily et al., 2023). This supports the
current study ¿ndings which indicate big data’s signi¿cant role
in elevating the bridge between business intelligence and the
decision-making process.
5. CONCLUSIONS
The current study empirically proved that incorporating business
intelligence with big data quips Jordanian commercial banks
with the necessary tools to enhance the quality of data. This
is via systematically collecting and analyzing vast amounts of
information. In more depth, this rigid process leads to usable
data and therefore more reliable information. Consequently,
this contributes to increased accuracy in analysis and reduces
the likelihood of errors. Moreover, business intelligence and big
data facilitate comprehensive data integration within Jordanian
commercial Banks which aids in forming a comprehensive
understanding of the business investment. This holistic approach
enables commercial banks to form cohesive knowledge of
customer behaviors and market dynamics. Therefore, enabling
more informed and ef¿cient decision-making regarding resource
utilization.
This study also found that real-time big data analysis contributes
to enhancing decision-making processes in Jordanian commercial
banks. The primary bene¿t is embedded in the availability of real-
time data analysis, which leads to instant and immediate access to
information. This function enables the banking sector to keep pace
with ongoing developments, hence easing the process of making
rapid decisions based on the latest data. Therefore, Jordanian
commercial banks can cope with rapid uctuations in ¿nancial
markets and improve their responsiveness to customer needs.
Another conclusion of the current study is to highlight the big
data transformative impact on the decision-making process. The
vast volume, diversity, and speed of data generated in Jordanian
commercial banks provide them with unprecedented insights
and a better understanding of their business. Based on this study
practical implications, big data analysis and business intelligence
integration, benefit make a powerful tool that is able to re-
engineering of data processing in organizations which in turn
enhance the data generated by its daily activities and practices.
Finally, the study has demonstrated the impact of business
intelligence and big data analysis on decision-making processes,
highlighting the importance of understanding the utilization and
management of big data.
5.1. Practical Implications
The current study’s highlight several practical implications
for Jordanian commercial banks. Firstly, big data enables
commercial banks to leverage business intelligence in improving
the decision-making process ef¿ciency. This involvesutilizing
business intelligence for informed decision-making regarding
operations, personnel, processes, and customer relationships.
Secondly, the study urges commercial banks to apply appropriate
measures that ensure the robustness and quality of real-time
big data analysis, by utilizing business intelligence. Thirdly, it
encourages commercial banks to utilize advanced analytics tools
such as predictive analysis and machine learning to maximize
understanding of big data. Fourthly, the study underscores
the need for commercial banks to employ a solid grasp of the
relationship between business intelligence, big data, and the
decision-making process. Finally, the study endorses commercial
banks in Jordan to invest heavily in infrastructure development
and human resource training to earn the full potential of this
data-driven approach.
5.2. Limitations and Future Research
This study inuences the current literature to take different
approaches to explore further the connection between business
intelligence and decision-making processes, the study recommends
that researchers take other related factors into account. However,
this current study was limited to the following:
• Jordanian commercial banks.
• The employees who hold administrative positions in the
Jordanian commercial banks.
• Fiscal year 2024.
Table 9: Fit model
Indicator AGFI χ2/df GFI RMSEA CFI NFI
Value recommended >0.8 <5 >0.90 ≤0.10 >0.9 >0.9
References (Miles and
Shevlin, 1998). (Tabachnick and
Fidell, 2007) (Miles and
Shevlin, 1998). (MacCallum
et al., 1996) (Hu and
Bentler, 1999). (Hu and
Bentler, 1999).
Value of model 0.9 4.01 0.976 0.082 0.982 0.979
Table 10: Direct and indirect effects H4
Variable Direct impact Indirect impact Total Impact C.R S.E Sig.
Business intelligence – decision making processes 0.539 0.38 0.919 9.98 0.054 ***
Business intelligence - big data 0.761 0.761 14.11 0.054 ***
Big data – decision making processes 0.5 0.5 12.19 0.041 0.007
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025 187
REFERENCES
Aliu, B. (2019), Big Data Phenomenon in Banking. Available from:
https://www.texilajournal.com/academic-research/article/1424-big-
data-phenomenon
Al-Khatib, A.W. (2022), Big data analytics capabilities and green supply
chain performance: Investigating the moderated mediation model
for green innovation and technological intensity. Business Process
Management Journal, 28(5/6), 1446-1471.
Al-Okaily, A., Teoh, A.P., Al-Okaily, M., Iranmanesh, M., Al-Betar, M.A.
(2023), The efficiency measurement of business intelligence
systems in the big data-driven economy: A multidimensional model.
Information Discovery and Delivery, 51(4), 404-416.
Alshehadeh, A., Elrefae, G., Belarbi, A., Qasim, A., Al-Khawaja, H.
(2023), The impact of business intelligence tools on sustaining
¿nancial report quality in Jordanian commercial banks. Uncertain
Supply Chain Management, 11(4), 1667-1676.
Awamleh, F.T., Bustami, A.N. (2022), Investigate the mediating role of
business a intelligence on the relationship between critical kk success
factors for business intelligence and strategic intelligence. Journal
of Intelligence Studies in Business, 2(2), 66-79.
Awamleh, F.T., Bustami, A.N., Alarabiat, Y.A., Sultan, A. (2024), Data-
driven decision-making under uncertainty: Investigating OLAP’s
mediating role to leverage business intelligence analytics for
entrepreneurship. Journal of System and Management Sciences,
14(8), 350-365.
Awan, U., Shamim, S., Khan, Z., Zia, N.U., Shariq, S.M., Khan, M.N.
(2021), Big data analytics capability and decision-making: The
role of data-driven insight on circular economy performance.
Technological Forecasting and Social Change, 168, 120766.
Balbin, P.P.F., Barker, J.C., Leung, C.K., Tran, M., Wall, R.P.,
Cuzzocrea, A. (2020), Predictive analytics on open big data for
supporting smart transportation services. Procedia Computer Science,
176, 3009-3018.
Bany Mohammad, A., Al-Okaily, M., Al-Majali, M., Masa’deh, R.E.
(2022), Business intelligence and analytics (BIA) usage in the banking
industry sector: An application of the TOE framework. Journal of
Open Innovation: Technology, Market, and Complexity, 8(4), 189.
Bharadiya, J.P. (2023), Machine learning and AI in business intelligence:
Trends and opportunities. International Journal of Computer,
48(1), 123-134.
Božič, K., & Dimovski, V. (2019), Business intelligence and analytics for
value creation: The role of absorptive capacity. International journal
of information management, 46, 93-103.
Borissova, D., Cvetkova, P., Garvanov, P., Garvanova, M. (2020), In:
Saeed, K., Dvorský, J., editors. A Framework of Business Intelligence
System for Decision Making in Ef¿ciency Management. Berlin:
Springer International Publishing. p111-121.
Chatzistefanou, D. (2023), Data Warehousing in Business Intelligence
and ETL Processes. Available from: https://repository.ihu.edu.gr/
xmlui/handle/11544/30200
Duggineni, S. (2023), Data analytics in modern business intelligence.
Journal of Marketing and Supply Chain Management, 114, 2-4.
El Ghalbzouri, H., & El Bouhdidi, J. (2022), Integrating business
intelligence with cloud computing: State of the art and fundamental
concepts. Networking, Intelligent Systems and Security: Proceedings
of NISS 2021, 197-213.
Gad-Elrab, A.A. (2021), Modern business intelligence: Big data analytics
and arti¿cial intelligence for creating the data-driven value. In:
E-Business-Higher Education and Intelligence Applications. London:
Intechopen. p135.
Gołbiowska, A., Jakubczak, W., Prokopowicz, D., Jakubczak, R.
(2021), Cybersecurity of business intelligence analytics based on
the processing of large sets of information with the use of sentiment
analysis and Big Data. European Research Studies Journal,
24(4), 850-871.
Hair, J.F., Ringle, C.M., Sarstedt, M. (2011), PLS-SEM: Indeed a silver
bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
Jabbar, A., Akhtar, P., Dani, S. (2020), Real-time big data processing for
instantaneous marketing decisions: A problematization approach.
Industrial Marketing Management, 90, 558-569.
Kahila, M. (2023), The bene¿ts and challenges of integrating ERP and
Business Intelligence.
Kašparová, P. (2023), Intention to use business intelligence tools in
decision making processes: Applying a UTAUT 2 model. Central
European Journal of Operations Research, 31(3), 991-1008.
Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R., Mora, H.
(2020), A framework for big data analytics in commercial social
networks: A case study on sentiment analysis and fake review
detection for marketing decision-making. Industrial Marketing
Management, 90, 523-537.
Khong, I., Yusuf, N.A., Nuriman, A., Yadila, A.B. (2023), Exploring the
impact of data quality on decision-making processes in information
intensive organizations. APTISI Transactions on Management,
7(3), 253-260.
Li, C., Chen, Y., Shang, Y. (2022), A review of industrial big data for
decision making in intelligent manufacturing. Engineering Science
and Technology, an International Journal, 29, 101021.
Maaitah, T. (2023), The role of business intelligence tools in the decision
making process and performance. Journal of Intelligence Studies in
Business, 13(1), 43-52.
Nambiar, A., Mundra, D. (2022), An overview of data warehouse and data
lake in modern enterprise data management. Big Data and Cognitive
Computing, 6(4), 132.
Niño, H. A. C., Niño, J. P. C., & Ortega, R. M. (2020), Business
intelligence governance framework in a university: Universidad de la
costa case study. International Journal of Information Management,
50, 405-412.
Negro, A.R., Mesia, R. (2020), The Business Intelligence and its inuence
on decision making. Journal of Applied Business and Economics,
22(2), 929.
Nithya, N., Kiruthika, R. (2020), Impact of business intelligence adoption
on performance of banks: Aconceptual framework. Journal of
Ambient Intelligence and Humanized Computing, 12(2), 3139-3150.
Niu, Y., Ying, L., Yang, J., Bao, M., Sivaparthipan, C.B. (2021),
Organizational business intelligence and decisionmaking using
big data analytics. Information Processing and Management,
58(6), 102725.
Olaniyi, O., Abalaka, A., Olabanji, S.O. (2023), Utilizing big data
analytics and business intelligence for improved decision-making
at leading fortune company. Journal of Scienti¿c Researchand
Reports, 29(9), 64-72.
Olszak, C.M. (2022), Business intelligence systems for innovative
development of organizations. Procedia Computer Science,
207, 1754-1762.
Othman, R. B. (2021), The Impact of Using Business Intelligence Systems
on the Quality of Decision-Making: Jordanian Banking Sector
(Doctoral dissertation, University of Petra (Jordan).
Pattnaik, M., Shah, T.R. (2023), Role of Big Data to Boost Corporate
Decision Making. United States: IEEE. p105-111.
Pillay, K., Van Der Merwe, A. (2021), A big data driven decision making
model: A case of the South African banking sector. South African
Computer Journal, 33(2), 928.
Ramakrishnan, T., Khuntia, J., Kathuria, A., Saldanha, T.J. (2020), An
integrated model of business intelligence & analytics capabilities and
organizational performance. Communications of the Association for
Altarawneh, et al.: Big Data Backed Business Intelligence to Upthrust Commercial Banks Decision-Making Processes
International Review of Management and Marketing | Vol 15  Issue 2  2025
188
Information Systems, 46(1), 31.
Ranjan, J., Foropon, C. (2021), Big data analytics in building the
competitive intelligence of organizations. International Journal of
Information Management, 56, 102231.
Sekaran, U., Bougie, R. (2016), Research Methods for Business: A Skill
Building Approach. United States: John Wiley & Sons.
Seyedan, M., Mafakheri, F. (2020), Predictive big data analytics for supply
chain demand forecasting: Methods, applications, and research
opportunities. Journal of Big Data, 7(1), 53.
Shahid, N.U., Sheikh, N.J. (2021), Impact of big data on innovation,
competitive advantage, productivity, and decision making: Literature
review. Open Journal of Business and Management, 9(2), 586.
Shao, C., Yang, Y., Juneja, S., GSeetharam, T. (2022), IoT data visualization
for business intelligence in corporate ¿nance. Information Processing
and Management, 59(1), 102736.
Shouman, L., Chehade, J. (2020), The Effect of Big Data Analytics on
Firm Decision Making: The Case of the Lebanese Banking Sector. In:
Digital Economy. Emerging Technologies and Business Innovation:
5th International Conference on Digital Economy, ICDEc 2020,
Bucharest, Romania, Proceedings 5. Springer. p66-75.
Singu, S. (2021), Business intelligence on the quality of decision
making. International Journal of Statistical Computation and
Simulation, 13(1), 24.
Skyrius, R. (2021), Business Intelligence: A Comprehensive Approach
to Information Needs, Technologies and Culture, Progress in
IS. Cham: Springer International Publishing. Available from:
https://link.springer.com/10.1007/978-3-030-67032-0
Soltani Delgosha, M., Hajiheydari, N., Fahimi, S.M. (2021), Elucidation
of big data analytics in banking: A four-stage Delphi study. Journal
of Enterprise Information Management, 34(6), 1577-1596.
Weerasinghe, K., Scahill, S.L., Pauleen, D.J., Taskin, N. (2022), Big data
analytics for clinical decision-making: Understanding health sector
perceptions of policy and practice. Technological Forecasting and
Social Change, 174, 121222.
Yu, T.R., Song, X. (2020), Big data and arti¿cial intelligence in the
banking industry. In: Handbook of Financial Econometrics,
Mathematics, Statistics, and Machine Learning. Singapore: WORLD
SCIENTIFIC. p4025-4041.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This research empirically investigates the enabling role of online analytical processing (OLAP) in leveraging business intelligence and analytics (BIA) for entrepreneurial decisions. A survey analysis of 262 telecom managers in Jordan evinces OLAP's mediating effect in indirectly linking BIA to entrepreneurship outcomes. The study advances scholarly comprehension of how analytics translation through multidimensional modelling bolsters data-driven decision-making under uncertainty. Additionally, the applied insights on synergizing BIA with online data interpretations assist practitioners seeking to optimize entrepreneurial initiatives through intelligent systems integration. The findings of the current study confirmed that all the hypotheses were supported.
Article
Full-text available
This study investigates the influence of data quality on decision-making processes within organizations that heavily rely on information for their operations. With the increasing digitalization and proliferation of data in today's business landscape, the quality of data has emerged as a critical factor in ensuring accurate and effective decision-making. Through a comprehensive review of existing literature and an empirical analysis, this research aims to shed light on the relationship between data quality and decision-making outcomes. The study employs a mixed-methods approach, utilizing both qualitative interviews and quantitative surveys to gather insights from professionals across various information-intensive sectors. The findings reveal that data quality significantly impacts the accuracy, reliability, and timeliness of decisions made within these organizations. Moreover, the study identifies key challenges that organizations face in maintaining data quality and suggests potential strategies to enhance decision-making processes. The results of this research contribute to a deeper understanding of the pivotal role data quality plays in the success of information-intensive organizations and provide practical implications for managers and decision-makers.
Article
Full-text available
The present study evaluates Walmart’s existing big data analytics with business intelligence techniques, accentuating their strengths and weaknesses, and suggests improvements for implementation and maintenance through the literature review of the scholarly journals addressing similar topics. Big data analytics is receiving loads of attention globally in the business environment within every sector of the economy. Incorporating the job plan as an additional input component in their models would be beneficial for Walmart to improve the precision and appropriateness of their data analysis and decision-making procedures. Walmart is a company that heavily invests in utilizing big data to improve its operations; this includes optimizing in-store experiences and predicting product trends. Scholarly articles emphasize the importance of advanced data analytics tools like MapReduce and Apache Spark for effective big data strategies. Social media content influences engagement and sentiment. Social network data aids sales forecasting but presents challenges. Big data analytics with business intelligence enhances performance and decision-making. Walmart's success in big data analytics relies on a data-driven culture but faces security challenges. Many Fortune 1000 companies adopt innovative solutions to improve performance and customer experiences but require significant resources. Embracing big data analytics with business intelligence remains a compelling investment for sustaining a competitive edge. Walmart's success in big data analytics is due to a data-driven culture and advanced infrastructure, including the Data Café.
Article
Full-text available
The integration of machine learning and artificial intelligence (AI) in business intelligence has brought forth a plethora of trends and opportunities. These cutting-edge technologies have revolutionized how businesses analyze data, gain insights, and make informed decisions. One prominent trend is the rise of predictive analytics. Machine learning algorithms can sift through vast amounts of historical data to identify patterns and trends, enabling businesses to make accurate predictions about future outcomes. This empowers organizations to optimize operations, anticipate customer needs, and mitigate risks. By leveraging business intelligence, companies can uncover hidden patterns, identify opportunities for growth and improvement, optimize business processes, and ultimately make informed decisions that drive their success. Another trend is the adoption of AI-powered chatbots and virtual assistants. The opportunities presented by machine learning and AI in business intelligence are extensive. From automated data analysis and anomaly detection to demand forecasting and dynamic pricing, these technologies empower businesses to optimize processes, reduce costs, and identify new revenue streams. In conclusion, the integration of machine learning and AI in business intelligence offers promising trends and abundant opportunities. By leveraging these technologies, businesses can gain a competitive edge, drive innovation, and unlock new levels of success in the digital era.
Article
Full-text available
In the current turbulent business markets, the way companies address and tackle unexpected events is reflective of their success. Different varieties of technological tools have been created to assist in overcoming unpredictable and unexpected events in businesses that could impact them, and one such tool is business intelligence. Such systems assist in gathering data concerning business operations and environments, transforming information into something that can be easily understood. Major firms have adopted big data analytic systems, but this does not hold true for most universities and organizations. Literature has yet to present the way business intelligence tools affect businesses of different types. Therefore, in this study, the impact of business intelligence tools on the decision-making and performance of public universities in Jordan is investigated. This qualitative study was conducted on 200 members at 10 chosen universities. Based on the interview results, BI tools deployed in the universities assist in facilitating timely decision-making, enhance efficiency of performance, and meet clients' needs suitably, leading to employee satisfaction.
Article
Full-text available
This study aims to investigate the mediating role of business intelligence in the relationship between critical success factors for business intelligence and strategic intelligence in the ear of the COVID-19 epidemic. The data acquired from a sample of 392 managerial positions from Jordanian commercial banks was examined using a multi-regression analysis in SPSS. This study's findings came in agreement with the notion that business intelligence boosts the link between CSF for BI and strategic intelligence. The study's findings have clues for both the current body of literature and decision-makers. Hence, businesses that have embraced BI understand the advantages of improving their strategic intelligence skills and decision-making procedures during the COVID-19 outbreak.
Article
Full-text available
The pressure on the speed of information processing ranks business intelligence technologies among the fastest growing decision support tools. The main goal of this article is, applying the UTAUT 2 (the unified theory of acceptance and use of technology), to verify the factors determining the implementation of business intelligence tools in business processes, especially decision-making, and their subsequent optimal use in business practice. The researched scheme was modified according to the specifics of business intelligence tools and was supplemented by user behaviour in decision-making. The verification was performed using a questionnaire survey based on UTAUT 2 theory and 152 respondents were included in the analysis. According to the results, the most important variable of influence on both the behavioural intention and the users’ behaviour itself in decision-making was the factor of habit. And surprisingly, some previously recognised links were not confirmed, especially the factors influencing the intention of behaviour (effort expectancy, social influence, facilitating conditions). So, there is room after almost 10 years and experience gained during the Covid-19 pandemic to modify the latest version of a model.
Article
In the realm of modern Business Intelligence (BI), data virtualization has emerged as a powerful yet often misunderstood technique. This paper aims to demystify data virtualization, offering clarity on its concepts, benefits, and practical applications. It explores how data virtualization enables organizations to seamlessly access, integrate, and analyze data from diverse sources, fostering agility and data-driven decision-making. Through real-world examples and best practices, this paper illuminates the role of data virtualization as a critical component in the BI landscape, enhancing organizations’ ability to derive actionable insights and maintain competitiveness.
Article
Purpose There is a growing importance of business intelligence systems (BIS) adoption in today’s digital economy age which is characterized by uncertainty and ambiguity considering the magnitude and influence of data-related issues to be solved in contemporary businesses. This study aims to investigate critical success factors that affect business intelligence efficiency based on the DeLone and McLean model in Jordanian banking industry. Design/methodology/approach A quantitative research method through a questionnaire was used to collect data from actual users who depend on business intelligence tools to make operational and strategic decisions in Jordanian banks. The data obtained were tested using the partial least squares–structural equation modeling approach. Findings The survey findings attest that system quality, information quality, user quality, user satisfaction and user performance are important factors and contribute to business intelligence efficiency in the Jordanian banking industry. Practical implications The findings gained from this work can help policymakers in Jordanian banks to improve the business intelligence success and organizational performance. Originality/value To the best of the authors’ knowledge, this study is the first of its kind to propose a theoretical model to assess drivers of BIS efficiency from the Jordanian banks’ perspective.