Article

Low glycemic index food products using microorganisms

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Introduction and purpose of review: The term glycemic index (GI) is the measure of how much a specific substance increases the postprandial blood glucose level [1]. Substances with lower GI promote a lower glycemic response and are said to promote satiety, postprandial insulin secretion and maintain insulin sensitivity and therefore help to control blood glucose concentrations [2]. According to guidelines on the management of patients with diabetes, type 2 diabetes mellitus patients’ source of carbohydrates in diet should be whole grain cereal products especially with low GI [3]. Type 2 diabetes is a chronic, metabolic disease occurring mostly in adults. It leads to numerous chronic complications that include e.g. macroangiopathy, retinopathy, nephropathy, neuropathy and diabetic foot as well as vulnerability to infections [2]. These complications lower the quality of life, generate costs when treating them and eventually lead to death. Currently there are about 422 million people with diabetes worldwide and the number is expected to rise [3]. Therefore it is crucial for patients to maintain their blood glucose at stable levels to prevent progression of the disease and its complications. The glycemic response can be modified by implementing a low GI diet. The aim of this study is to provide an overview of selected strategies lowering the glycemic index and the probable mechanisms by which they work. Methods: For this review, articles in the Pubmed and Google Scholar databases were analyzed as well as the references of previously found articles. Current state of knowledge: Existing studies show that some strategies alter the glycemic index and glycemic response that can help diabetic patients to better control their glucose blood level. Summary: This review summarizes studies concerning methods of lowering the glycemic index and mechanisms of action of those specific methods.
Article
Full-text available
Diabetes is a significant global health concern, highlighting the critical role of dietary strategies in its management and prevention. Artificial sweeteners (ASs), due to their capacity to provide sweetness without contributing to caloric intake, have emerged as a potential tool in diabetes management. This review thoroughly examines the nuanced relationship between artificial sweeteners and diabetes, addressing their benefits and potential risks. ASs have been shown to aid in weight management, a key factor in reducing diabetes risk, and do not impact immediate blood glucose levels, offering improved glucose control for individuals with diabetes. Beyond these benefits, however, artificial sweeteners may interact complexly with gut microbiota, potentially altering its composition and affecting metabolic health. This interaction introduces concerns regarding insulin sensitivity and the risk of insulin resistance, with studies reporting conflicting findings. This comprehensive review highlights the importance of a nuanced approach to understanding the implications of artificial sweeteners in diabetes management. Given the mixed evidence on their health effects, there is a clear need for further research to fully elucidate the role of artificial sweeteners in metabolic health and their suitability as part of dietary interventions for diabetes.
Article
Full-text available
In this study, the general goal is to optimize the production of cell-free culture extract (CFC) containing bioactive peptides by co-cultivation of Limosilactobacillus fermentum and Saccharomyces cerevisiae in whey sludge bed and to investigate its biological properties. Temperature, time, and type of inoculation were considered as variables to optimize wet biomass production using the response surface method (RSM), and tests of ACE inhibitory activity, antioxidant activity, antimicrobial activity, proteolytic activity, and cell viability were performed on CFC prepared from the optimal treatment. The results of the central composite design (CCD) showed that the highest wet biomass production occurred at 34.86 • C with simultaneous inoculation for 43.1 h. The results obtained from CFC tests show the highest antimicrobial activity against Staphylococcus aureus and the highest DPPH radical activity of about 79.89 %. The value of IC50 in cytotoxicity assay against HT-29 cancer cells was 80.17 mg/mL.
Article
Full-text available
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs’ digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut–brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Article
Full-text available
The beneficial microorganisms in food are diverse and complex in structure. These beneficial microorganisms can produce different and unique flavors in the process of food fermentation. The unique flavor of these fermented foods is mainly produced by different raw and auxiliary materials, fermentation technology, and the accumulation of flavor substances by dominant microorganisms during fermentation. The succession and metabolic accumulation of microbial flora significantly impacts the distinctive flavor of fermented foods. The investigation of the role of microbial flora changes in the production of flavor substances during fermentation can reveal the potential connection between microbial flora succession and the formation of key flavor compounds. This paper reviewed the evolution of microbial flora structure as food fermented and the key volatile compounds that contribute to flavor in the food system and their potential relationship. Further, it was a certain guiding significance for food industrial production.
Article
Full-text available
Nutrition has a decisive influence on athletic performance. However, it is not only the nutrient intake during exercise that is important, but the daily diet must also be adapted to the requirements of physical activity in order to optimally promote training adaptations. The goal of prolonged endurance training is to enhance fat oxidation, to maintain aerobic performance at a higher intensity while sparing limited carbohydrate stores. The targeted modification of macronutrient intake is a common method of influencing substrate metabolism, fuel selection, and performance. However, it is not well established whether the glycaemic index of carbohydrates in our daily diet can improve endurance performance by influencing carbohydrate or fat oxidation during training. Therefore, the aim of the following review is to elucidate the possible influence of the glycaemic index on substrate utilization during exercise and to clarify whether the consumption of a long-term high-carbohydrate diet with different glycaemic indices may have an influence on substrate metabolism and endurance performance.
Article
Full-text available
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease affecting millions worldwide. Recent studies suggest that dietary interventions may improve glycemic control and lower the risk of T2DM development. In this regard, lactic acid bacteria (LAB) fermented foods have gained attention due to their potential health benefits, including their ability to modulate the immune system and improve glucose metabolism. This review discusses probiotic LABs and their potential usefullnes in treating metabolic disorders, focusing on diabetes mellitus (DM). The use of LAB in the fermentation mechanism of food can help in disease prevention and immunoregulation along with the benefits of preservation and escalated nutritional properties, and enhanced flavor of food. The probiotics and the metabolites produced during fermentation are involved in modifying the physiopathology and endocrine physiology or generating specific molecules for signaling pathways that may have these effects. Furthermore, this review discusses the effect, therapeutic approaches, and clinical trials of LAB and LAB fermented foods in different comorbidities, pediatric populations, gestational DM, and diabetic dietary supplements. However, there are still some roadblocks to their widespread use, such as ethical, cultural, and religious issues, which can be reduced with more real-life clinical studies. Additionally, further re
Article
Full-text available
In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.
Article
Full-text available
Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.
Article
Full-text available
Legumes are plants of the family Leguminosae with seed pods that split into two halves. Black soybean seed coat contains numerous bioactive compounds having radical scavenging, anti-tumor, and anti-carcinogenic activities. This study was aimed to assess the effect of soaking, germination, natural fermentation, and roasting on nutritional and antinutritional components, minerals (Fe, Zn, Mn, and Cu), and bioactive components of the black soybean. The effect of soaking was studied at 12 and 24 h while that of germination at 24, 48, and 72 h. The results revealed that the phenolic contents augmented significantly (P ≤ 0.05) in germination, fermentation, and roasting by 11.49%, 8.96%, 2.95%. Further, there was an 11.84% and 22.13% increase in the protein contents during the germination and fermentation processes, respectively. The antioxidant activity of processed grains increased significantly (P ≤ 0.05) during germination, fermentation, and roasting by 72.51, 10.14, and 9.64%, respectively. The anti-nutritional compounds such as phytic acid and tannin contents decreased significantly (P ≤ 0.05) during processing treatments. Phytic acid decreased to the extent of 34.04, 51.06, and 13.47% and tannin contents as 47.22, 75, and 38.89%, after germination, fermentation, and roasting processes, respectively. A significant (P ≤ 0.05) increase in mineral contents was observed after the germination, fermentation, and roasting of the black soybean.
Article
Full-text available
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Article
Full-text available
International trends in traditional diabetes complications (cardiovascular, renal, peripheral vascular, ophthalmic, hepatic or neurological diseases) and mortality rates are poorly characterised. An earlier review of studies published up to 2015 demonstrated that most data come from a dozen high-income countries (HICs) in North America, Europe or the Asia–Pacific region and that, in these countries at least, rates of acute glycaemic fluctuations needing medical attention and amputations, myocardial infarction and mortality were all declining over the period. Here, we provide an updated review of published literature on trends in type 2 diabetes complications and mortality in adults since 2015. We also discuss issues related to data collection, analysis and reporting that have influenced global trends in type 2 diabetes and its complications. We found that most data on trends in type 2 diabetes, its complications and mortality come from a small number of HICs with comprehensive surveillance systems, though at least some low- and middle-income countries (LMICs) from Africa and Latin America are represented in this review. The published data suggest that HICs have experienced declines in cardiovascular complication rates and all-cause mortality in people with diabetes. In parallel, cardiovascular complications and mortality rates in people with diabetes have increased over time in LMICs. However, caution is warranted in interpreting trends from LMICs due to extremely sparse data or data that are not comparable across countries. We noted that approaches to case ascertainment and definitions of complications and mortality (numerators) and type 2 diabetes (the denominator) vary widely and influence the interpretation of international data. We offer four key recommendations to more rigorously document trends in rates of type 2 diabetes complications and mortality, over time and worldwide: (1) increasing investments in data collection systems; (2) standardising case definitions and approaches to ascertainment; (3) strengthening analytical capacity; and (4) developing and implementing structured guidelines for reporting of data. Graphical abstract
Article
Full-text available
Soy sauce is a traditional Japanese condiment produced from the fermentation of soybeans, wheat, and salt by three types of microorganisms, namely koji molds, halophilic lactic acid bacteria, and salt-tolerant yeast. The delicate balance between taste, aroma, and color contributes to the characteristic delicious flavor imparted by soy sauce. In soy sauce brewing, protein and starch of the raw materials are hydrolyzed into amino acids and sugars by enzymes derived from koji molds. These enzymatically hydrolyzed products not only directly contribute to the taste but are further metabolized by lactic acid bacteria and yeasts to most of organic acids and aromatic compounds, resulting in its distinctive flavor and aroma. The color of the soy sauce is also due to the chemical reactions between amino acids and sugars during fermentation. Therefore, koji mold, which produces various enzymes for the breakdown of raw materials, is an essential microorganism in soy sauce production and plays an essential role in fermenting the ingredients. In this review, we describe the manufacturing process of Japanese soy sauce, the characteristics of koji molds that are suitable for soy sauce brewing, and the key enzymes produced by koji molds and their roles in the degradation of materials during soy sauce fermentation, focusing on the production of umami taste in soy sauce brewing.
Article
Full-text available
The increasing prevalence of type 2 diabetes (T2D) worldwide calls for effective approaches to its management. Strategies for diabetes have generally focused on optimizing overall glycemic control as assessed by glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG) values. However, since 2001, the American Diabetes Association has established postprandial glucose (PPG) as an independent contributor to both HbA1c and diabetes complications, and increasing evidence suggests that all three glycemic parameters of HbA1c, FPG, and postprandial glucose (PPG) are independently important. Objectives: The objective of this review was to comprehensively summarize the literature on the effects of nutritional strategies incorporating glycemic index (GI)/glycemic load (GL) on the postprandial hyperglycemia in people with T2D, as well as to provide recommendations for effective dietary strategies addressing both the dietary glycemic index and load in clinical practice. Design: An advanced Pubmed search was conducted. A total of 10 randomized controlled studies met the inclusion criteria. Six studies compared low-GI with higher GI meals, three included studies that compared reduced carbohydrate content with higher carbohydrate content, and one study compared meals of low-GI (with high or low fiber) with meals of higher GI (with high or low fiber). Results: Most of the clinical trials resulted in significant improvement (p < 0.05) of postprandial hyperglycemia. Conclusions: Either reducing the amount of carbohydrate in a meal or increasing consumption of soluble fiber has a favorable effect on postprandial glucose excursions.
Article
Full-text available
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term ‘lactobacilli’ will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Article
Full-text available
Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of this review is to define and characterise common fermented foods (kefir, kombucha, sauerkraut, tempeh, natto, miso, kimchi, sourdough bread), their mechanisms of action (including impact on the microbiota), and the evidence for effects on gastrointestinal health and disease in humans. Putative mechanisms for the impact of fermented foods on health include the potential probiotic effect of their constituent microorganisms, the fermentation-derived production of bioactive peptides, biogenic amines, and conversion of phenolic compounds to biologically active compounds, as well as the reduction of anti-nutrients. Fermented foods that have been tested in at least one randomised controlled trial (RCT) for their gastrointestinal effects were kefir, sauerkraut, natto, and sourdough bread. Despite extensive in vitro studies, there are no RCTs investigating the impact of kombucha, miso, kimchi or tempeh in gastrointestinal health. The most widely investigated fermented food is kefir, with evidence from at least one RCT suggesting beneficial effects in both lactose malabsorption and Helicobacter pylori eradication. In summary, there is very limited clinical evidence for the effectiveness of most fermented foods in gastrointestinal health and disease. Given the convincing in vitro findings, clinical high-quality trials investigating the health benefits of fermented foods are warranted.
Article
Full-text available
Consumption of fermented products rich in antioxidants, anti-inflammatory, anti-diabetes, anti-obesity and anti-carcinogenic compounds is growing into a key strategy to fortify antioxidant defense system. Cabbage products produced by lactic-acid fermentation are chosen via their special microbiota. Considering these special medical properties of fermented-cabbage products as pickled cabbage, sauerkraut and kimchi were produced and evaluated. The data demonstrated that pickled cabbage (109.89±4.74 mg ascorbic acid/100 g d.w.) and its brine (208.14±17.29 mg ascorbic acid/100 g d.w.) exhibited the highest vitamin C content, followed by kimchi (77.42±2.87 mg ascorbic acid/100 g d.w.). The highest total phenolic content was detected in kimchi and sauerkraut with 869.64±70.16 and 438.257±25.05 mg gallic acid equivalents/100 g fresh weight (f.w.), respectively. 50% of the scavenging effect (EC50) values of free radical scavenging activity (DPPH) in kimchi 14.6 mg/ml, followed by sauerkraut (15.52 mg/ml) and pickled cabbage (18.88 mg/ml). Results demonstrated that fermented cabbage products have a great potential with content of bioactive compounds, high antioxidant features promising high beneficial impacts.
Article
Full-text available
Some lactic acid bacteria are capable of producing capsular or extracellular polysaccharides, with desirable technological properties and biological activities. Such polysaccharides produced by lactic acid bacteria are called exopolysaccharides and can be used to alter rheological properties, acting in processes involving viscosity, emulsification, and flocculation, among others. They may also be involved in prebiotic, probiotic, and biological activities, as well as having potential application in the food industry. In this mini-review, the objectives were to present some beneficial properties of exopolysaccharides (EPS) produced by Lactobacillus plantarum that have not been commercially explored. For that, the article focused to summarize revision of current publications within the following topics: (1) rheological properties, (2) prebiotic properties, (3) biological activities, and (4) potential application in the food industry. EPS produced by Lb. plantarum can be used as gelling agent, emulsifier, or stabilizer for food products. The glucan nature of the produced EPS enhances probiotic properties of this LAB species. Lactobacillus plantarum EPS has antioxidant, antibiofilm, and antitumor activities. Finally, there is an improvement in texture of fermented food products where Lb. plantarum is used as starter culture which is related to EPS production in situ. Therefore, EPS produced by Lb. plantarum have important and desirable properties to be explored for several applications, including health and food areas.
Article
Full-text available
The increased consumption of high fat-containing foods has been linked to the prevalence of obesity and abnormal metabolic syndromes. Rhizopus oligosporus, a fungus in the family Mucoraceae, is widely used as a starter for homemade tempeh. Although R. oligosporus can prevent the growth of other microorganisms, it grows well with lactic acid bacteria (LAB). Lactobacillus plantarum can produce β-glucosidase, which catalyzes the hydrolysis of glucoside isoflavones into aglycones (with greater bioavailability). Therefore, the development of a soybean-based functional food by the co-inoculation of R. oligosporus and L. plantarum is a promising approach to increase the bioactivity of tempeh. In this study, the ameliorative effect of L. plantarum in soy tempeh on abnormal carbohydrate metabolism in high-fat diet (HFD)-induced hyperglycemic rats was evaluated. The co-incubation of L. plantarum with R. oligosporus during soy tempeh fermentation reduced the homeostatic model assessment of insulin resistance, HbA1c, serum glucose, total cholesterol, triglyceride, free fatty acid, insulin, and low-density lipoprotein contents, and significantly increased the high-density lipoprotein content in HFD rats. It also increased the LAB counts, as well as the bile acid, cholesterol, triglyceride, and short-chain fatty acid contents in the feces of HFD rats. Our results suggested that the modulation of serum glucose and lipid levels by LAB occurs via alterations in the internal microbiota, leading to the inhibition of cholesterol synthesis and promotion of lipolysis. Tempeh, which was produced with both L. plantarum and R. oligosporus, might be a beneficial dietary supplement for individuals with abnormal carbohydrate metabolism.
Article
Full-text available
Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and diabetes mellitus is the ninth major cause of death. About 1 in 11 adults worldwide now have diabetes mellitus, 90% of whom have type 2 diabetes mellitus (T2DM). Asia is a major area of the rapidly emerging T2DM global epidemic, with China and India the top two epicentres. Although genetic predisposition partly determines individual susceptibility to T2DM, an unhealthy diet and a sedentary lifestyle are important drivers of the current global epidemic; early developmental factors (such as intrauterine exposures) also have a role in susceptibility to T2DM later in life. Many cases of T2DM could be prevented with lifestyle changes, including maintaining a healthy body weight, consuming a healthy diet, staying physically active, not smoking and drinking alcohol in moderation. Most patients with T2DM have at least one complication, and cardiovascular complications are the leading cause of morbidity and mortality in these patients. This Review provides an updated view of the global epidemiology of T2DM, as well as dietary, lifestyle and other risk factors for T2DM and its complications.
Article
Full-text available
Different types of fermented foods such as chongkukjang, doenjang, ganjang, gochujang, and kimchi are plentifully available and widely consumed in north eastern Asian countries including Korea. Among them, kimchi is one of the most popular Korean traditional food. It is prepared by fermenting the baechu cabbage together with other vegetables and lactic acid bacteria (LAB) with functional potential. Many types of ingredients are added to kimchi to enhance its taste, flavor, nutritional value, texture etc. A number of bacteria are involved in the fermentation of kimchi, but LAB are the dominant species in the fermentation process. The addition of other sub ingredients and formation of different by-products during fermentation eventually leads to eradication of putrefactive and pathogenic bacteria, and also increase the functionalities, nutritional and nutraceutical potential of kimchi. Kimchi possesses anti-inflammatory, antibacterial, antioxidant, anticancer, antiobesity, probiotic properties, cholesterol reduction, and antiaging properties. In the present review an attempt has been made to review the different types of fermented foods found in the Korean peninsula with detailed scientific research regarding preparation, processing, structure of the microecosystem, and health benefits of kimchi.
Article
Full-text available
Background Elevated levels of blood cholesterol are associated with cardiovascular disease, a leading cause of morbidity and mortality worldwide. Current therapies for addressing elevated blood cholesterol can be inadequate, ineffective or associated with side effects; therefore, the search for additional therapies is ongoing. This study evaluated Daily Body Restore (DBR), a proprietary blend of 9 probiotic organisms of the genera Lactobacillus and Bifidobacterium, and 10 digestive enzymes, for its effects on cholesterol metabolism using an in vitro system and a mouse model. Methods We used a murine model of hypercholesterolemia induced by a high fat diet to evaluate the effects of DBR on blood cholesterol concentrations. Hypercholesterolemic mice were supplemented with DBR in their drinking water for 8 weeks and compared to control mice given low fat diets or unsupplemented high fat diets. To evaluate the effects of DBR on the activity of gut microbiota in vitro, the Shime® system consisting of sequential colon reactors was supplemented with DBR for analysis of short chain fatty acid production. Results Analysis of hypercholesterolemic mice after 4 and 8 weeks of DBR supplementation revealed significant decreases in blood concentrations of low-density lipoprotein (LDL) and increases in high-density lipoprotein (HDL) while triglyceride concentrations were unaltered. Specifically, after 4 weeks of DBR supplementation, there was a 47 % decrease in LDL and a 32 % increase in HDL in peripheral blood compared to unsupplemented, high fat diet-fed mice. After 8 weeks of DBR treatment, LDL concentrations were dramatically reduced by 78 % and HDL was increased by 52 % relative to control mice. Addition of DBR to the Shime® system led to significantly increased production of propionate in colon reactors, indicative of microbial production of short chain fatty acids known to inhibit cholesterol synthesis. Conclusions DBR, a probiotic and digestive enzyme supplement, lowered harmful LDL and increased HDL levels in a mouse model and also exerted in vitro effects consistent with cholesterol-lowering activity. Given the magnitude of the effects of DBR, these findings are promising for clinical implementation of DBR for treating hypercholesterolemia.
Article
Full-text available
Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds ( Alternaria alternata , Alternaria brassicicola , Aspergillus niger , Fusarium latenicum , Geotrichum candidum , and Mucor hiemalis ) and yeasts ( Candida vini ). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.
Article
Full-text available
The positive and negative health effects of dietary carbohydrates are of interest to both researchers and consumers. International experts on carbohydrate research held a scientific summit in Stresa, Italy, in June 2013 to discuss controversies surrounding the utility of the glycemic index (GI), glycemic load (GL) and glycemic response (GR). The outcome was a scientific consensus statement which recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose. There was consensus that diets low in GI and GL were relevant to the prevention and management of diabetes and coronary heart disease, and probably obesity. Moderate to weak associations were observed for selected cancers. The group affirmed that diets low in GI and GL should always be considered in the context of diets otherwise understood as healthy, complementing additional ways of characterizing carbohydrate foods, such as fiber and whole grain content. Diets of low GI and GL were considered particularly important in individuals with insulin resistance. Given the high prevalence of diabetes and pre-diabetes worldwide and the consistency of the scientific evidence reviewed, the expert panel confirmed an urgent need to communicate information on GI and GL to the general public and health professionals, through channels such as national dietary guidelines, food composition tables and food labels. Copyright © 2015 Elsevier B.V. All rights reserved.
Article
Full-text available
Over the last 20 years there has been an increasing interest in the influence of the gastrointestinal tract on appetite regulation. Much of the focus has been on the neuronal and hormonal relationship between the gastrointestinal tract and the brain. There is now mounting evidence that the colonic microbiota and their metabolic activity play a significant role in energy homeostasis. The supply of substrate to the colonic microbiota has a major impact on the microbial population and the metabolites they produce, particularly short chain fatty acids (SCFAs). SCFAs are produced when non-digestible carbohydrates, namely dietary fibres and resistant starch, undergo fermentation by the colonic microbiota. Both the consumption of fermentable carbohydrates and the administration of SCFAs have been reported to result in a wide range of health benefits including improvements in body composition, glucose homeostasis, blood lipid profiles, and reduced body weight and colon cancer risk. However, published studies tend to report the effects that fermentable carbohydrates and SCFAs have on specific tissues and metabolic processes, and fail to explain how these local effects translate into systemic effects and the mitigation of disease risk. Moreover, studies have tended to investigate SCFAs collectively and neglect to report the effects associated with individual SCFAs. Here, we bring together the recent evidence and suggest an overarching model for the effects of SCFAs on one of their beneficial aspects: appetite regulation and energy homeostasis.International Journal of Obesity accepted article preview online, 14 May 2015. doi:10.1038/ijo.2015.84.
Article
Full-text available
Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L−1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application.
Article
Full-text available
Due to the undeniable role of starch in nutrition, 60–70% of total energy consumed by most people around the world is provided by starch-based foods. Because of the low price and the availability of starch-based products, people accept these kinds of products more than ever. On the other hand, the selection of appropriate dietary fiber is vital due to the sensory characteristics' importance in functional foods, which play a key role in specifying consumers' acceptance. Resistant starch (RS) is a small fraction of starch which is resistant to digestion and may be fermented in the large intestine by microbiota. The unique characteristics of RS, such as its natural sources, gentle bland flavor, white color, low water holding capacity, etc. have made it a valuable supplement in the formulation of wide range of functional foods, even in microencapsulation of probiotics. While the aim of this study is to investigate the application of RS in food technology, it briefly reviews manufacturing, determining the amount of RS in the final product and prebiotic dosage needed to exert health benefits on the human gut as well.
Article
Full-text available
Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields.
Article
Full-text available
Objectives of this study were to understand the physicochemical properties of a novel resistant starch (RS) made by complexing high-amylose maize starch VII (HA7) with palmitic acid (PA), and its effects on reducing postprandial plasma-glucose and insulin responses. The HA7 starch was heat-treated and debranched using isoamylase (ISO) to enhance the starch-lipid complex formation. The RS content of the HA7 starch debranched with ISO and complexed with PA (HA7+ISO+PA) was 52.7% determined using AOAC Method 991.43 for dietary fiber, which was greater than that of the HA7 control (35.4%). The increase in the RS content of the HA7+ISO+PA sample was attributed to the formation of retrograded debranched-starch and starch-lipid complex. The postprandial plasma-glucose and insulin responses of 20 male human-subjects after ingesting bread made from 60% (dry basis) HA7+ISO+PA were reduced to 55 and 43%, respectively, when compared with those after ingesting control white bread (as 100%) containing the same amount of total carbohydrates. The results suggested that the HA7+ISO+PA can be used for the interventions of insulin resistance and metabolic syndrome, including diabetes and obesity. 2010 AACC International, Inc.
Article
Full-text available
It was recently observed that Leuconostoc oenos GM, a wine lactic acid bacterium, produced erythritol anaerobically from glucose but not from fructose or ribose and that this production was almost absent in the presence of O2. In this study, the pathway of formation of erythritol from glucose in L. oenos was shown to involve the isomerization of glucose 6-phosphate to fructose 6-phosphate by a phosphoglucose isomerase, the cleavage of fructose 6-phosphate by a phosphoketolase, the reduction of erythrose 4-phosphate by an erythritol 4-phosphate dehydrogenase and, finally, the hydrolysis of erythritol 4-phosphate to erythritol by a phosphatase. Fructose 6-phosphate phosphoketolase was copurified with xylulose 5-phosphate phosphoketolase, and the activity of the latter was competitively inhibited by fructose 6-phosphate, with a Ki of 26 mM, corresponding to the Km of fructose 6-phosphate phosphoketolase (22 mM). These results suggest that the two phosphoketolase activities are borne by a single enzyme. Extracts of L. oenos were also found to contain NAD(P)H oxidase, which must be largely responsible for the reoxidation of NADPH and NADH in cells incubated in the presence of O2. In cells incubated with glucose, the concentrations of glucose 6-phosphate and of fructose 6-phosphate were higher in the absence of O2 than in its presence, explaining the stimulation by anaerobiosis of erythritol production. The increase in the hexose 6-phosphate concentration is presumably the result of a functional inhibition of glucose 6-phosphate dehydrogenase because of a reduction in the availability of NADP.
Article
Full-text available
Six bacteriophages active against Leuconostoc fallax strains were isolated from industrial sauerkraut fermentation brines. These phages were characterized as to host range, morphology, structural proteins, and genome fingerprint. They were exclusively lytic against the species L. fallax and had different host ranges among the strains of this species tested. Morphologically, three of the phages were assigned to the family Siphoviridae, and the three others were assigned to the family Myoviridae. Major capsid proteins detected by electrophoresis were distinct for each of the two morphotypes. Restriction fragment length polymorphism analysis and randomly amplified polymorphic DNA fingerprinting showed that all six phages were genetically distinct. These results revealed for the first time the existence of bacteriophages that are active against L. fallax and confirmed the presence and diversity of bacteriophages in a sauerkraut fermentation. Since a variety of L. fallax strains have been shown to be present in sauerkraut fermentation, bacteriophages active against L. fallax are likely to contribute to the microbial ecology of sauerkraut fermentation and could be responsible for some of the variability observed in this type of fermentation.
Article
Full-text available
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.
Article
A study was conducted to investigate the inclusion effects of sugar beet pulp and rice straw mixture silage with inoculation (BRMS), in place of whole-plant corn silage (CS), on the dry matter intake, total-tract nutrient digestibility, plasma metabolites, rumen fermentation, and lactation performance in high-production dairy cows. Sixteen multiparous Holstein cows (body weight, 622 ± 35 kg; days in milk, 90 ± 11 d; mean ± standard deviation) were used in our experiments; the experiments were based on a repeated 4 × 4 Latin square design for 21 d, and each experimental period consisted of 14 d of adaptation, followed by 7 d of data collection. The 4 dietary treatments used were (dry matter basis): (1) 0% BRMS and 28.6% CS (0BRMS); (2) 4.3% BRMS and 24.3% CS (15BRMS); (3) 8.60% BRMS and 20.0% CS (30BRMS); and (4) 12.9% BRMS and 15.7% CS (45BRMS). The increasing inclusion of dietary BRMS was observed to linearly increase the total volatile fatty acids and the propionate concentration. The dry matter intake and digestibility values of neutral detergent fiber and acid detergent fiber increased linearly as the percentage of BRMS increased up to 45%. Milk yield linearly increased with the increase in the content of BRMS (39.0, 39.8, 40.9, and 40.3 kg/d for 0BRMS, 15BRMS, 30BRMS, and 45BRMS, respectively). The increasing inclusion of dietary BRMS induced a decrease in the ammonia nitrogen and milk urea nitrogen concentration, leading to a linear increase in milk protein production (1.15, 1.26, 1.35, and 1.27 kg/d for 0BRMS, 15BRMS, 30BRMS, and 45BRMS, respectively). In conclusion, the diets with the replacement of CS with BRMS up to 45% were beneficial to the production performance of high-production dairy cows, indicating that this method may be an appropriate use of sugar beet pulp and rice straw.
Article
Acetoin, giving a creamy yogurt aroma and buttery taste, exists in cereal vinegar as an important flavor substance and is mainly produced by the metabolism of Lactobacillus and Acetobacter during multispecies solid-state acetic acid fermentation. However, the impacts of Lactobacillus-Acetobacter interactions on acetoin accumulation and the microbial metabolism during acetic acid fermentation are not completely clear. Here, six strains isolated from vinegar fermentation culture and associated with acetoin metabolism, namely, Lactobacillus reuteri L-0, L. buchneri F2-6, L. brevis 4–20, L. fermentum M10-7, L. casei M1-6 and Acetobacter pasteurianus G3-2, were selected for microbial growth and metabolism analysis in monoculture and coculture fermentations. Lactobacillus sp. and A. pasteurianus G3-2 respectively utilized glucose and ethanol preferentially. In monocultures, L. casei M1-6 (183.7 mg/L) and A. pasteurianus G3-2 (121.0 mg/L) showed better acetoin-producing capacity than the others. In the bicultures with Lactobacillus sp. and A. pasteurianus G3-2, biomass analysis in the stationary phase demonstrated that significant growth depressions of Lactobacillus sp. occurred compared with monocultures, possibly due to intolerance to acetic acid produced by A. pasteurianus G3-2. Synergistic effect between Lactobacillus sp. and A. pasteurianus G3-2 on enhanced acetoin accumulation was identified, however, cocultures of two Lactobacillus strains could not apparently facilitate acetoin accumulation. Coculture of L. casei M1-6 and A. pasteurianus G3-2 showed the best performance in acetoin production amongst all mono-, bi- and triculture combinations, and the yield of acetoin increased from 1827.7 to 7529.8 mg/L following optimization of culture conditions. Moreover, the interactions of L. casei M1-6 and A. pasteurianus G3-2 regulated the global metabolism of vinegar microbiota during fermentation through performing in situ bioaugmentation, which could accelerate the production of acetic acid, lactic acid, acetoin, ethyl acetate, ethyl lactate, ligustrazine and other important flavoring substances. This work provides a promising strategy for the production of acetoin-rich vinegar through Lactobacillus sp.-A. pasteurianus joint bioaugmentation.
Article
The current review was aimed to summarize the nutritional values and various health benefits of fermented soy products. Several previous researches proved that soy products rich in protein can reduce the serum concentrations of total cholesterol, low-density lipoproteins (LDLs), and triglycerides if consumed instead of animal protein. Apart from these lipid-lowering effects, fermented soy products also proved to be effective in attenuating the effects of diabetes mellitus, blood pressure, cardiac disorders and cancer-related issues. The nutritional value of the fermented soy products gains much attention due to its increased levels compared to the non-fermented ones. The origin, compositions, nutritional values of different fermented soy products and health-promoting benefits of fermented soy products were systematically reviewed. Hence the in-depth analysis of the various research findings on fermented soy products, beneficial activities may help the future researchers to derive a conclusion on its beneficial effects on health.
Article
Functional foods can be effective in the prevention of the metabolic syndrome and subsequently the onset of cardiovascular diseases and type II diabetes mellitus. More recently, however, another term was introduced to describe foods with additional health benefits: “superfoods”, for which up to date no generally accepted definition exists. Nonetheless, their consumption might contribute to the prevention of the metabolic syndrome, for example due to the presence of potentially bioactive compounds. This review provides an overview of controlled human intervention studies with foods described as “superfoods” and their effects on metabolic syndrome parameters. First, an Internet search was performed to identify foods described as superfoods. For these superfoods, controlled human interventions trials were identified till April 2017, investigating the effects of superfood consumption on metabolic syndrome parameters: waist circumference or BMI, blood pressure, or concentrations of HDL cholesterol, triacylglycerol or glucose. Seventeen superfoods were identified, including a total of 113 intervention trials: blueberries (8 studies), cranberries (8), goji berries (3), strawberries (7), chili peppers (3), garlic (21), ginger (10), chia seed (5), flaxseed (22), quinoa (1), cocoa (16), maca (1), spirulina (7), wheatgrass (1), acai berries (0), hemp seed (0) and bee pollen (0). Overall, limited evidence was found for effects of the foods described as superfoods on metabolic syndrome parameters, since results were not consistent or the number of controlled interventions trials was limited. Inconsistencies might have been related to intervention-related factors, such as duration or dose. Furthermore, conclusions may be different if other health benefits are considered.
Chapter
Among nutritive sweeteners, there can be distinguished polyhydric alcohols (polyols), also known as sugar alcohols, because they are derived from simple carbohydrates , obtained by the substitution of the aldehyde group by the hydroxy one. They are natural sugar alternatives but are also referred to as semisynthetic sweeteners. There are many advantages of sugar alcohols, so they are becoming more and more popular among both consumers and producers. They are characterized by a lower caloric value and glycemic index than sugars and exhibit prebiotic and anticaries effects. All sugar alcohols can be used as bulking agents , which can substitute sugar or corn syrups 1:1 ratio. However, their sweetness varies from 25 % to 100 % as compared with sucrose, so they are usually combined with intense sweeteners or sugar in order to obtain the required flavor and level of sweetness. Additionally, they promote mouthfeel and eliminate improper taste. Therefore, they can be used as reduced-calorie sugar alternatives.
Article
Dairy products are associated with numerous health benefits. They are good source of nutrients like carbohydrates, protein (bioactive peptides), lipids, minerals and vitamins which are essential for growth, development and maintenance of the human body. Accordingly, dairy bioactive peptides are one of targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as anti-hypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, anti-microbial, opoid, anti-thrombotic, anti-obesity and mineral-binding agents depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, during fermentation and gastrointestinal digestion. For the reason, fermented dairy products like yogurt, cheese and sour milk are gaining popularity worldwide and considered excellent sources of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders and certainly readers.
Article
In spite that lactic acid bacteria (LAB) are used for production of fermented foods and drinks for millennia, their ability to grow using starch as a sole carbon source was noticed by the scientists in the last 30 years. A number of amylolytic LAB (ALAB) strains were isolated and several detailed investigations of biochemical and genetic basis of starch hydrolysis were performed. The purpose of this review is to summarize for the first time the available data about the starch-modifying enzymes in ALAB. The most important amylolytic representatives of the genera Lactobacillus, Lactococcus, Streptococcus, Pediococcus, Carnobacterium, and Weissella are described. Amino acid sequences, corresponding to ALAB amylase enzymes are compared and some features of the gene expression are analyzed. The possible application of ALAB strains for direct production of lactic acid from starch, as well as their participation in food manufacturing is discussed.
Article
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.
Article
Kochujang is a traditional Korean fermented food that is made with red pepper, glutinous rice, salt, and soybean. Kochujang is fermented by naturally occurring microorganisms through which it obtains various health-promoting properties. In this study, the bacterial diversities of 9 local and 2 commercial brands of kochujang were analyzed with a barcoded pyrosequencing technique targeting the hyper-variable regions V1/V2 of the 16S rRNA gene. Through the analysis of 13524 bacterial pyrosequences, 223 bacterial species were identified, most of which converged on the phylum Firmicutes (average 93.1%). All of the kochujang samples were largely populated (>90.9% of abundance) by 12 bacterial families, and Bacillaceae showed the highest abundance in all but one sample. Bacillus subtilis and B. licheniformis were the most dominant bacterial species and were broadly distributed among the kochujang samples. Each sample contained a high abundance of region-specific bacterial species, such as B. sonorensis, B. pumilus, Weissella salipiscis, and diverse unidentified Bacillus species. Phylotype- and phylogeny-based community comparison analysis showed that the microbial communities of the two commercial brands were different from those of the local brands. Moreover, each local brand kochujang sample had region-specific microbial community reflecting the manufacturing environment.
Article
Nineteen bacteriological media were evaluated to assess their suitability to selectively enumerate Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, bifidobacteria, and propionibacteria. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar, MRS-bile agar, MRS-NaCl agar, MRS-lithium chloride agar, MRS-NNLP (nalidixic acid, neomycin sulfate, lithium chloride and paramomycine sulfate) agar, reinforced clostridial agar, sugar-based (such as maltose, galactose, sorbitol, manitol, esculin) media, sodium lactate agar, arabinose agar, raffinose agar, xylose agar, and L. casei agar. Incubations were carried out under aerobic and anaerobic conditions at 27, 30, 37, 43, and 45 degrees C for 24, 72 h, and 7 to 9 d. S. thermophilus agar and aerobic incubation at 37 degrees C for 24 h were suitable for S. thermophilus. L. delbrueckii ssp. bulgaricus could be enumerated using MRS agar (pH 4.58 or pH 5.20) and under anaerobic incubation at 45 degrees C for 72 h. MRS-vancomycine agar and anaerobic incubation at 43 degrees C for 72 h were suitable to enumerate L. rhamnosus. MRS-vancomycine agar and anaerobic incubation at 37 degrees C for 72 h were selective for L. casei. To estimate the counts of L. casei by subtraction method, counts of L. rhamnosus on MRS-vancomycine agar at 43 degrees C for 72 h under anaerobic incubation could be subtracted from total counts of L. casei and L. rhamnosus enumerated on MRS-vancomycine agar at 37 degrees C for 72 h under anaerobic incubation. L. acidophilus could be enumerated using MRS-agar at 43 degrees C for 72 h or Basal agar-maltose agar at 43 degrees C for 72 h or BA-sorbitol agar at 37 degrees C for 72 h, under anaerobic incubation. Bifidobacteria could be enumerated on MRS-NNLP agar under anaerobic incubation at 37 degrees C for 72 h. Propionibacteria could be enumerated on sodium lactate agar under anaerobic incubation at 30 degrees C for 7 to 9 d. A subtraction method was most suitable for counting propionibacteria in the presence of other lactic acid bacteria from a product. For this method, counts of lactic bacteria at d 3 on sodium lactate agar under anaerobic incubation at 30 degrees C were subtracted from counts at d 7 of lactic bacteria and propionibacteria.
Characteristics of Tempeh Edamame Fermented Rhizopus Oligosporus: Effect of Fermentation Time and Inoculum Concentration
  • F Faradilla
  • K F Yunianta
Faradilla F, Yunianta KF. Characteristics of Tempeh Edamame Fermented Rhizopus Oligosporus: Effect of Fermentation Time and Inoculum Concentration.
Secondary metabolites and bioactivity of the Monascus pigments review article
  • M E Mostafa
  • M S Abbady
Mostafa ME, Abbady MS. Secondary metabolites and bioactivity of the Monascus pigments review article. Glob J Biochem Biotechnol. 2014;9(1):01-13.