ArticlePDF Available

Search for a light charged Higgs boson in tH±bt \rightarrow H^{\pm } b decays, with H±csH^{\pm } \rightarrow cs, in pp collisions at s=13 TeV\sqrt{s}={13}\hbox { TeV} with the ATLAS detector

Authors:

Abstract

A search for a light charged Higgs boson produced in decays of the top quark, tH±bt \rightarrow H^{\pm } b t → H ± b with H±csH^{\pm } \rightarrow cs H ± → c s , is presented. This search targets the production of top-quark pairs ttˉWbH±bt\bar{t} \rightarrow Wb H^{\pm } b t t ¯ → W b H ± b , with WνW \rightarrow \ell \nu W → ℓ ν ( =e,μ\ell = e, \mu ℓ = e , μ ), resulting in a lepton-plus-jets final state characterised by an isolated electron or muon and at least four jets. The search exploits b -quark and c -quark identification techniques as well as multivariate methods to suppress the dominant ttˉt\bar{t} t t ¯ background. The data analysed correspond to 140 fb1140\hbox { fb}^{-1} 140 fb - 1 of pp pp collisions at s=13 TeV\sqrt{s} = 13\hbox { TeV} s = 13 TeV recorded with the ATLAS detector at the LHC between 2015 and 2018. Observed (expected) 95% confidence-level upper limits on the branching fraction B(tH±b)\mathscr {B}(t\rightarrow H^{\pm } b) B ( t → H ± b ) , assuming B(tWb)+B(tH±(cs)b)=1.0\mathscr {B}(t\rightarrow Wb) + \mathscr {B}(t \rightarrow H^{\pm } (\rightarrow cs)b)=1.0 B ( t → W b ) + B ( t → H ± ( → c s ) b ) = 1.0 , are set between 0.066% (0.077%) and 3.6% (2.3%) for a charged Higgs boson with a mass between 60 and 168 GeV.
Eur. Phys. J. C (2025) 85:153
https://doi.org/10.1140/epjc/s10052-024-13715-4
Regular Article - Experimental Physics
Search for a light charged Higgs boson in tH±bdecays, with
H±cs,in pp collisions at s=13 TeV with the ATLAS
detector
ATLAS Collaboration
CERN,1211 Geneva 23, Switzerland
Received: 16 July 2024 / Accepted: 17 December 2024
© CERN for the benefit of the ATLAS Collaboration 2025
Abstract A search for a light charged Higgs boson pro-
duced in decays of the top quark, tH±bwith H±cs,
is presented. This search targets the production of top-quark
pairs t¯
tWbH±b, with Wν (=e), result-
ing in a lepton-plus-jets final state characterised by an iso-
lated electron or muon and at least four jets. The search
exploits b-quark and c-quark identification techniques as well
as multivariate methods to suppress the dominant t¯
tback-
ground. The data analysed correspond to 140 fb1of pp
collisions at s=13 TeV recorded with the ATLAS detec-
tor at the LHC between 2015 and 2018. Observed (expected)
95% confidence-level upper limits on the branching fraction
B(tH±b), assuming B(tWb)+B(tH±(
cs)b)=1.0, are set between 0.066% (0.077%) and 3.6%
(2.3%) for a charged Higgs boson with a mass between 60
and 168 GeV.
Contents
1 Introduction ......................
2 ATLAS detector ....................
3 Data and simulated event samples ...........
4 Object definition and event selection .........
5 Background modelling .................
6 Analysis strategy ....................
6.1 t¯
t-system reconstruction .............
6.2 Multivariate signal extraction ...........
7 Systematic uncertainties ................
8 Statistical interpretation ................
9 Results .........................
10 Conclusions ......................
References .........................
e-mail: atlas.publications@cern.ch
1 Introduction
The discovery of the Higgs boson at the Large Hadron Col-
lider (LHC) in 2012 was a great achievement of the ATLAS
and CMS Collaborations [1,2], and has led to numerous mea-
surements to determine its properties [3,4]. One of the main
goals of these studies is to establish if the discovered Higgs
boson is the single fundamental scalar particle of the Stan-
dard Model (SM) or rather the first observed particle of an
extended scalar sector.
Extensions to the scalar sector are motivated by the solu-
tions they provide to several open questions in particle
physics. An extended scalar sector can modify the elec-
troweak phase transition and facilitate baryogenesis [5],
enhance vacuum stability, provide a dark-matter candi-
date [6,7] or yield a solution to the strong CP problem [8].
Many physics models beyond the SM (BSM) require an
extended scalar sector. For example, in the minimal super-
symmetric extension of the SM the existence of two Higgs
doublets is required [9]. In models with a Type-II seesaw
mechanism, Higgs triplets [1014] are required.
Two-Higgs-doublet models (2HDMs) [15,16] are popu-
lar and simple extensions of the scalar sector and predict
the existence of two charged Higgs bosons, H+and H,
and two neutral Higgs bosons in addition to the discovered
neutral one. The various 2HDMs are categorised into types
defined by the Yukawa couplings of the fermions to the Higgs
doublets. The production mechanisms and decay modes of
charged Higgs bosons depend on the Yukawa couplings and
other model parameters, especially the ratio of the two Higgs-
doublet vacuum expectation values (tan β) and the charged
Higgs boson’s mass (mH±). Many phenomenology studies
advocate searching for a light charged Higgs bosons (below
the top-quark mass) in the decays to a charm quark and a
strange quark, H±cs,1to a charm quark and a bot-
1Unless explicitly stated otherwise, charge conjugation is implied in
this paper; the notation cs is used in place of c¯s/¯cs.
0123456789().: V,-vol 123
153 Page 2 of 34 Eur. Phys. J. C (2025) 85:153
tom quark, H±cb, and to a τ-lepton and a τ-neutrino,
H±τν
τ[6,15]. The branching fraction for H±cb
is typically smaller than for H±cs, due to the differ-
ent values of the CKM matrix elements, Vcs Vcb.Inthe
Type-I 2HDM, only the τν
τand cs decay modes are relevant.
In Type-II and Type-X (or “lepton-specific”) models the cs
channel is dominant for values of tan β<1. In Type-Y (or
“flipped”) models the cs and cb channels are important for
tan β>5[6]. For a 2HDM model where one doublet cou-
ples mainly to the third generation, while the other doublet
couples mainly to the first and second generations, the cs
and cb channels are dominant [17]. This is also the case for
leptophobic multiple-Higgs-doublet models [6].
Searches for H±cs in top-quark decays have been
performed by the ATLAS and CMS Collaborations, based
on 4.7fb
1and 35.9fb
1of proton–proton (pp) collision
data collected at centre-of-mass energies of s=7TeV
and s=13 TeV, respectively. The search performed by the
ATLAS Collaboration obtained 95% confidence level (CL)
observed (expected) upper limits on the branching fraction
B(tH±b)ranging from 1.2% (1.5%) to 5.1% (8%),
assuming B(H±cs)=1.0, for mH±between 90 and
150 GeV [18]. The search performed by the CMS Collab-
oration obtained 95% CL observed (expected) upper limits
on B(tH±b)ranging from 0.25% (0.29%) to 1.68%
(2.39%), assuming B(H±cs)=1.0, for mH±between
80 and 160 GeV [19]. Related searches for H±cb in
top-quark decays were performed by the ATLAS and CMS
Collaborations using 139 fb1and 19.7fb
1of pp collision
data collected at s=13 TeV [20] and 8 TeV [21], respec-
tively. The most stringent observed limits on B(tH±b)×
B(H±cb)are set by ATLAS and range from 0.15 to
0.42% for mH±between 60 GeV and 160 GeV. In that analy-
sis a moderate excess of signal events is observed in the vicin-
ity of 130 GeV, with a global significance of 2.5σ. Searches
for H±τνin 36.1fb
1of pp collision data recorded with
the ATLAS and CMS detectors at s=13 TeV were carried
out over a wide mass range, from 90 to 2000 GeV [22]orfrom
80 to 3000 GeV [23] respectively, covering the masses of light
and heavy charged Higgs bosons. The ATLAS (CMS) Col-
laboration set observed upper limits on the branching frac-
tion B(tH±b)×B(H±τν) ranging from 0.25 to
0.031% (0.36–0.079%) in the mass range between 90 GeV
(80 GeV) and 160 GeV. In the absence of other new physics,
measurements of the process bsγexclude in Type-II
and Type-Y models a charged Higgs boson with mass below
580 GeV independent of tan β[24].
This analysis searches for a charged Higgs boson with
a mass below the top-quark mass. In this regime the main
production mode for charged Higgs bosons is via t¯
tevents,
with the charged Higgs boson emerging from rare top-
quark decays: tH±b. This analysis focuses on the
t¯
tWbH±bprocess, with Wν (=e) and
Fig. 1 Illustrative Feynman diagram of the signal process
H±cs, resulting in a lepton-plus-jets final state (see
Fig. 1). Only events with an electron or muon, including
those produced via leptonically decaying τ-leptons, denoted
by τlep, are considered.
This paper is based on 140 fb1of pp collision data at
s=13 TeV. In contrast to previous H±cs searches,
multivariate analysis techniques are deployed here to search
for a potential signal in the data. This approach exploits both
the kinematic properties of signal events, including the H±
candidate mass, and their flavour composition, which differs
from that of the mostly SM t¯
tbackground events. The kine-
matics of the top-quark decays are derived by reconstructing
the t¯
tevent topology. Flavour-tagging algorithms are utilised
to tag jets as b-jets, c-jets or light-flavour jets. A dedicated
flavour-tagging scheme which facilitates simultaneous tag-
ging of b-jets and c-jets is adopted.
2 ATLAS detector
The ATLAS detector [25] at the LHC covers nearly the entire
solid angle around the collision point.2It consists of an
inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic (ECAL) and hadronic calorime-
2ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the cen-
tre of the LHC ring, and the y-axis points upwards. Polar coordi-
nates (r) are used in the transverse plane, φbeing the azimuthal
angle around the z-axis. The pseudorapidity is defined in terms of
the polar angle θas η=−ln tan/2)and is equal to the rapidity
y=(1/2)ln (E+pz)/(Epz)in the relativistic limit. Angular
distance is measured in units of R(y)2+(φ)2.
123
Eur. Phys. J. C (2025) 85:153 Page 3 of 34 153
ters, and a muon spectrometer (MS) incorporating three large
superconducting air-core toroidal magnets.
The inner-detector system (ID) is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range |η|<2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measure-
ments per track, the first hit generally being in the insertable
B-layer (IBL) installed before Run 2 [26,27]. It is followed
by the SemiConductor Tracker (SCT), which usually pro-
vides eight measurements per track. These silicon detectors
are complemented by the transition radiation tracker (TRT),
which enables radially extended track reconstruction up to
|η|=2.0. The TRT also provides electron identification
information based on the fraction of hits (typically 30 in
total) above a higher energy-deposit threshold correspond-
ing to transition radiation.
The calorimeter system covers the pseudorapidity range
|η|<4.9. Within the region |η|<3.2, electromag-
netic calorimetry is provided by barrel and endcap high-
granularity lead/liquid-argon (LAr) calorimeters, with an
additional thin LAr presampler covering |η|<1.8 to cor-
rect for energy loss in material upstream of the calorimeters.
Hadronic calorimetry is provided by the steel/scintillator-
tile calorimeter, segmented into three barrel structures within
|η|<1.7, and two copper/LAr hadronic endcap calorime-
ters. The solid angle coverage is completed with forward cop-
per/LAr and tungsten/LAr calorimeter modules optimised for
electromagnetic and hadronic energy measurements respec-
tively.
The MS comprises separate trigger and high-precision
tracking chambers measuring the deflection of muons in a
magnetic field generated by the superconducting air-core
toroidal magnets. The field integral of the toroids ranges
between 2.0 and 6.0 T m across most of the spectrometer.
Three layers of precision chambers, each consisting of layers
of monitored drift tubes, cover the region |η|<2.7, com-
plemented by cathode-strip chambers in the forward region,
where the background is highest. The muon trigger system
covers the range |η|<2.4 with resistive-plate chambers in
the barrel, and thin-gap chambers in the endcap regions.
The luminosity is measured mainly by the LUCID-2 [28]
detector that records Cherenkov light produced in the quartz
windows of photomultipliers located close to the beam pipe.
Events are selected by the first-level trigger system imple-
mented in custom hardware, followed by selections made by
algorithms implemented in software in the high-level trig-
ger [29]. The first-level trigger accepts events from the 40
MHz bunch crossings at a rate below 100 kHz, which the
high-level trigger further reduces in order to record complete
events to disk at about 1 kHz.
A software suite [30] is used in data simulation, in the
reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition
systems of the experiment.
3 Data and simulated event samples
This search is based on data collected from pp collisions
at the ATLAS experiment during LHC Run 2 at a centre-
of-mass energy of s=13 TeV. After applying quality
requirements, the dataset corresponds to an integrated lumi-
nosity of 140.1±1.2fb
1[28,31]. Signal and background
processes, except multijet processes, were simulated using
Monte Carlo (MC) event generators.
The main background in this search is SM t¯
tpro-
duction. The production of t¯
tand single-top-quark events
in the tW-, s- and t-channels was modelled with the
Powheg Box v2 [3235] generator at next-to-leading order
(NLO), using the five-flavour scheme (four-flavour scheme
for single-top-quark t-channel events) with the NNPDF
[3.0nlo] [36] parton distribution function (PDF) set and the
hdamp parameter3set to 1.5mtop [37]. The events were inter-
faced to Pythia 8.230 [38] to model the parton shower
(PS), hadronisation, and underlying event. For all sam-
ples in this search, Pythia 8usedtheNNPDF2.3lo set
of PDFs [39], and its parameter values were set to those
of the A14 tune [40]. The decays of bottom and charm
hadrons were performed by EvtGen 1.6.0 [41]. To assess
the uncertainty in the matching of NLO matrix elements
(ME) to the PS, the nominal samples were compared with
samples of t¯
tand single-top-quark events generated with
MadGraph5_aMC@NLO 2.6.0 and 2.6.2 [42] respectively,
using the NNPDF3.0nlo set of PDFs, and interfaced with
Pythia 8.230. The impact of using a different PS and
hadronisation model was evaluated by comparing the nom-
inal samples with alternative samples produced with the
Powheg Box v2 generator using the NNPDF3.0nlo PDF
set and interfaced with Herwig [43,44]. Herwig 7.13 and
Herwig 7.16 were used for t¯
tand single-top-quark events,
respectively, and both used the Herwig 7.1 default set
of tuned parameters [44,45] and the MMHT2014lo PDF
set [46]. The t¯
ttW interference was handled using the dia-
gram removal scheme [47]. The uncertainty associated with
this choice is estimated by comparing the nominal sample
with an alternative sample generated using the diagram sub-
traction scheme [37,47]. The t¯
tproduction cross-section
is calculated at next-to-next-to-leading-order and next-to-
next-to-leading-logarithm (NNLO+NNLL) accuracy [48].
The cross-sections for the three single-top-quark production
3The hdamp parameter is a resummation damping factor and one of the
parameters that controls the matching of Powheg matrix elements to
the parton shower and thus effectively regulates the high-pTradiation
against which the t¯
tsystem recoils.
123
153 Page 4 of 34 Eur. Phys. J. C (2025) 85:153
channels are calculated at NLO [4951]. Simulated t¯
tevents
are categorised according to the flavour of additional jets in
the event, using the procedure described in Ref. [52]. Events
with at least one additional b-flavour or c-flavour jet are
labelled as t¯
t+HF (where HF stands for “heavy-flavour”).
The remaining events are labelled as t¯
t+LF (where LF
stands for “light-flavour”). This category is split into t¯
t(ud)
and t¯
t(cs)subcategories according to the decay of the W
bosons. If at least one Wboson decays as Wcs the event
falls into the t¯
t(cs)category, otherwise it falls into the t¯
t(ud)
category. This categorisation is motivated by the fact that the
final state is identical for t¯
t(cs)and signal events.
The rare top-quark processes considered in this analy-
sis are t¯
tH,t¯
tW,t¯
tZ,t¯
tt¯
t,t¯
tt,tHjb,tWH,tWZ and
tZq.Thet¯
tH events were modelled with the same gen-
erators and versions as the exclusive t¯
tevents. The t¯
tW,
t¯
tZ,tWZ and t¯
tt¯
tprocesses were modelled using Mad-
Graph5_aMC@NLO 2.3.3, the t¯
tt process using Mad-
Graph5_aMC@NLO 2.2.2, and the tHjb and tWH pro-
cesses using MadGraph5_aMC@NLO 2.6.2, in all cases
at NLO with the NNPDF3.0nlo PDF (NNPDF3.1nlo for
the t¯
tt¯
tprocess). The t¯
tt and tZq processes were modelled
with MadGraph 2.2.2 at LO with the NNPDF2.3nlo PDF.
The events were then interfaced with Pythia 8.186–8.235
and the decays of bottom and charm hadrons were simu-
lated using the EvtGen 1.2.0–1.6.0 program. The t¯
tH,t¯
tW
and t¯
tZ samples were normalised using cross-sections cal-
culated at NLO QCD and NLO EW accuracy using Mad-
Graph5_aMC@NLO as reported in Ref. [53].
The production of a Wor Z boson in association
with jets (V+jets) and of dibosons (VV) was modelled
with the Sherpa 2.2.11 [54] and Sherpa 2.2.1 generators,
respectively, for both the ME and PS. The only exception
is the VV ννν process, which was modelled with
Sherpa 2.2.2. The NLO ME for up to two partons (one
parton) and leading-order ME for up to five (three) partons
were calculated with the Comix [55] and OpenLoops [56
58] libraries for V+jets (VV) events. They were matched
with the Sherpa PS [59]usingtheMEPS@NLO prescrip-
tion [6063] and the set of tuned parameters developed by
the Sherpa authors. The NNPDF3.0nnlo set of PDFs was
used.
Signal events were modelled by first generating top-
quark pairs, similar to the SM t¯
tbackground, using the
Powheg Box v2 generator at NLO with the NNPDF3.0nlo
PDF set and the hdamp parameter set to 1.5mtop. The decays
tH±band tW±bwere modelled by MadSpin [64]
using the Type-II 2HDM [15,65] for BSM decays. Sub-
sequent decays of the H±and W±bosons, as well as
the showering of the final-state hadrons, were modelled by
Pythia 8.307. The W±were forced to decay leptonically,
with all three lepton flavours allowed. The H±were forced to
decay into a cs-quark pair. The decays of bottom and charm
hadrons were performed by EvtGen 1.7.0. Signal samples
were generated with zero decay width for twelve charged-
Higgs-boson mass points: eleven in steps of 10 GeV from 60
GeV to 160 GeV, and one at 168 GeV. The signal samples
are denoted by H±
x, where xis the mass of the charged Higgs
boson in GeV. If the mass difference between the H±and
Wbosons is smaller than one of their total widths, the inter-
ference term might be of the order of a few percent of the
H±contribution. The size and the sign of the interference
term depend on the model [66]. For larger mass differences,
the interference term can be omitted with high accuracy. The
interference term is neglected in this analysis for all mass
points. Production of charged Higgs bosons via single-top-
quark processes is neglected in this analysis because such
events usually do not contain a prompt lepton and are there-
fore suppressed by the event selection (cf. Sect. 4), and also
because the production cross-section is much smaller than
for t¯
tprocesses.
The effect of multiple interactions in the same and
neighbouring bunch crossings (pile-up) was modelled by
overlaying the simulated hard-scattering event with inelas-
tic pp events generated with Pythia 8.186 [67]usingthe
NNPDF2.3lo PDF set and the A3 set of tuned parame-
ters [68]. Events in the nominal background samples were
passed through the full ATLAS detector simulation [69]
based on Geant4 [70]. Signal, t¯
tt¯
t,tH and alternative sam-
ples were passed through a fast simulation in which the
response of the calorimeter is parameterised [71]. Both sim-
ulation methods were found to provide a similar level of
modelling accuracy for the physics objects used in the anal-
ysis. A full list of samples used in this search is summarised
in Table 1.
4 Object definition and event selection
Tracks are required to have transverse momentum (pT)
greater than 500 MeV, |η|<2.5, and at least seven hits
in the pixel and SCT detectors. A maximum of one (two)
of the expected hits may be missing from the pixel (SCT)
detector, and no more than one hit may be shared with other
tracks [72]. Events are required to have at least one primary
vertex reconstructed from two or more associated tracks [73].
If multiple vertices are found, the one with the highest scalar
sum of the p2
Tof associated tracks is selected as the primary
vertex.
Electrons are reconstructed from topological energy clus-
ters in the ECAL that are matched to tracks in the ID [74].
Electrons are required to have pT>10 GeV and |η|<
2.47, excluding the barrel–endcap transition region 1.37 <
|η|<1.52. They must pass track-quality requirements fol-
lowed by a loose likelihood-based selection that requires
the shower profile to be compatible with that of the electro-
123
Eur. Phys. J. C (2025) 85:153 Page 5 of 34 153
Tabl e 1 Generators used to simulate the signal and background pro-
cesses. The symbol qis used for u,d,c,squarks. For the signal pro-
cesses the subscript x is a placeholder for the mass of the charged
Higgs boson in GeV. For the “Other top” and VV processes, only the
range of used generator versions is quoted. The exact generator version
used for each process is described in Sect. 3
Name Process ME generator PS and hadronisation
Signal
H±
xt¯
tH±(cs)W(ν)b¯
bPowheg Box v2 MadSpin +Pythia 8.307 +
EvtGen 1.7.0
Top-quark
t¯
t(ud)t¯
tW±(ν)W(ud)b¯
bPowheg Box v2 Pythia 8.230 + EvtGen 1.6.0
t¯
t(cs)t¯
tW±(ν)W(cs)b¯
b
t¯
t+HF t¯
tW±(ν)W(
q¯q)b¯
b+≥1c/b
t¯
t(allHad)t¯
tW±(q¯q)W(q¯q)
tW tW
Single top single t-quark s-&t-channel
t¯
tH t¯
tH
Other top t¯
tW,t¯
tZ,t¯
tt¯
t,tHjb,tW H,tWZ,MadGraph5_aMC@NLO 2.3.3–
2.6.2
Pythia 8.186–8.230 +
EvtGen 1.2.0–1.6.0
t¯
tt,tZq MadGraph2.2.2–2.3.3
Weak-boson
W+jets W+jets Sherpa 2.2.11 Sherpa 2.2.11
Z+jets Z+jets
VV WW,WZ,ZZ Sherpa 2.2.1–2.2.2 Sherpa 2.2.1– 2.2.2
magnetic shower. Electrons are required to have transverse
(d0) and longitudinal (z0) impact parameters, measured rel-
ative to the beam-line and primary vertex respectively, sat-
isfying |d0| (d0)<5 and |z0sin θ|<0.5 mm. Isolation
requirements are applied via a boosted decision tree (BDT)
which was trained on track-isolation, cluster-isolation, and
secondary-vertex information, referred to as “non-prompt-
lepton BDT” [75,76]. The electron energy scale and reso-
lution calibrations are obtained from Zee events and
applied to data and simulations, respectively [74].
Muon candidates are reconstructed by matching MS tracks
to ID tracks. In the absence of full tracks in the MS, muons can
be reconstructed from ID tracks extrapolated to the MS which
match at least three loosely aligned MS hits. The information
from the ID and the MS, and the energy loss in the calorime-
ters, are then used in a combined track fit [77]. Muons have
to satisfy pT>10 GeV and |η|<2.5, and pass quality
requirements based on the number of hits used to reconstruct
the tracks. Muons are also required to satisfy |d0| (d0)<3
and |z0sin θ|<0.5 mm. Lastly, isolation requirements are
also made based on the non-prompt-lepton BDT.
Jets are reconstructed with the anti-ktjet clustering algo-
rithm [78,79] with a radius parameter R=0.4. The clus-
tering is applied to noise-suppressed positive-energy topo-
logical energy clusters [80,81] and charged-particle tracks,
processed using a particle-flow algorithm [82]. Jet ener-
gies are corrected for contributions from pile-up, calibrated
using energy- and η-dependent correction factors determined
from comparisons between particle-level objects and recon-
structed physics objects in simulated events, and then correc-
tions are applied to account for effects due to the initiating-
parton type and hadron composition [83]. In data, a residual
in situ correction is applied in order to correct for differences
relative to simulation. Jets in the analysis are required to have
pT>25 GeV and |η|<2.5. Jets with pT<60 GeV and
|η|<2.4 also have to pass a jet-vertex-tagger [84] require-
ment to reduce the number of selected jets which originate
from pile-up.
Jets containing b-orc-hadrons are identified with the
DL1r tagger [85], which is a multivariate classification algo-
rithm based on a deep neural network using information
about the impact parameters of tracks, the jet kinematics,
and displaced vertices. The b- and c-tagging scores are based
on log-likelihood ratios of the neural-network output scores.
To assign jets to top quarks or to H±boson candidates,
one needs to identify b- and c-quark-initiated jets simultane-
ously and distinguish them from the light-flavour jets. Cor-
rection factors are applied to the simulated events to com-
pensate for differences between data and simulation in the
b- and c-tagging efficiencies or misidentification rates for b-
jets, c-jets and light-flavour jets [8688]. This search uses a
pseudo-continuous flavour-tagging (PCFT) calibration with
five exclusive calibrated bins. Jets passing a fixed b-tagging
working point (WP) defined by b-jet efficiencies, measured
123
153 Page 6 of 34 Eur. Phys. J. C (2025) 85:153
in t¯
tevents, of 70% and 60% have PCFT scores of 3 and 4,
respectively. These two b-tagging WPs have background tag-
ging efficiencies for c-jets (light-jets) of 7.9% (0.18%) and
2.7% (0.05%), respectively [89]. Other jets (b-veto) receive
a PCFT score of 1 or 2 if they pass a fixed c-tagging score
defined by a c-jet efficiency of 45% or 24%, respectively.
These two c-tagging WPs have background tagging efficien-
cies for b-jets (light-jets) of 16.3% (7.4%) and 4.8% (0.9%),
respectively [89]. Jets passing none of the b- and c-tagging
WPs (untagged) are assigned a PCFT score of 0. Any jet
passing the loosest calibrated b(c)-tagging WP is referred to
as a b(c)-tagged jet.
The missing transverse momentum (pmiss
T) is defined as
the negative vector sum of the transverse momenta of all
reconstructed and calibrated leptons and jets, and all tracks
matched to the primary vertex but not to other reconstructed
objects in the event [90]. The absolute value of pmiss
Tis
denoted by Emiss
T.
An overlap-removal procedure is applied to resolve ambi-
guities where multiple physical objects are reconstructed
from the same detector signature. The angular distance R
is used to measure the overlap of two reconstructed objects.
The following procedure is applied in order:
1. any calorimeter-tagged muon [77] sharing a track with an
electron is removed;
2. any electron sharing a track with a muon is removed;
3. any jet within R=0.2 of an electron is removed;
4. any electron within R=0.4 of a jet is removed;
5. any jet with less than 3 tracks that is within R=0.2of
a muon is removed;
6. any jet with less than 3 tracks that has a muon ID track
ghost-associated [78,91] with it is removed;
7. any muon within R=0.4 of a jet is removed.
Events were recorded with a single-electron or single-
muon trigger with a threshold requirement imposed on the
lepton pT. For the data-taking periods 2015 and 2016–2018,
the lowest electron pTthreshold was 24 GeV or 26 GeV
respectively, and similarly the lowest muon-pTthreshold
was 20 GeV or 26 GeV. The trigger includes lepton iden-
tification and isolation requirements based on ID or ECAL
measurements [9294]. Furthermore, events are required to
have exactly one offline reconstructed lepton with pT>
27 GeV that meets the “medium” identification and isola-
tion criteria [74,77]. Events with an additional lepton with
pT>10 GeV that satisfies the medium identification criteria
are vetoed to reduce dileptonic t¯
tand Z+ jets backgrounds.
The offline reconstructed lepton is required to be geometri-
cally matched (R<0.1) to the online reconstructed lepton
which fired the trigger. At least four jets with pT>25 GeV
have to be present, and at least one is required to be b-
tagged. Finally, events in the signal region are required to
have exactly one “tight” identified and isolated lepton and at
least two b-tagged jets [74,77]. The t¯
tbackground contribu-
tion in the signal region is about 92%.
5 Background modelling
The main background in this search is t¯
tproduction in asso-
ciation with jets. As in many other analyses targeting a kine-
matic phase space similar to the signal region of this search,
differences between MC-based background predictions and
data are observed in multiple kinematic quantities [20,95].
This disagreement can be attributed to missing higher-order
QCD and electroweak corrections in t¯
tMC simulation lead-
ing to harder top-quark pTspectra in simulation than in
data [96]. A data-driven correction is derived to improve the
modelling of the t¯
tbackground and signal, particularly of
pT-dependent variables.
The correction is derived as a function of ST.TheSTvari-
able is defined as the sum of the scalar transverse momenta
of all calibrated objects in the event, i.e. jets, leptons and
Emiss
T, and is therefore related to the transverse momenta of
individual top quarks. The corrections are derived in bins of
the number of jets in the event (Njets =4,5,6,7,8,9), as
this quantity also shows discrepancies between MC events
and data and is correlated with ST. The correction is derived
in the signal region, since the t¯
tcontribution is around 92%
in that region, and is applied to signal events as well as t¯
t
events because the mismodelling is expected to affect the
signal MC prediction in the same way. It was checked that
the STdistribution in bins of Njets is similar for t¯
tand signal
events. A possible signal contribution in data will therefore
not change the correction weights and the correction will not
bias the signal extraction.
The t¯
tcorrection weights are defined as the ratio of data
templates (with non-t¯
tbackgrounds subtracted) to MC t¯
t
templates. In order to mitigate the effects of statistical fluctu-
ations in the data and simulation samples, a linear + exponen-
tial function is fitted to the derived t¯
tcorrection weights. The
fit is performed separately for even and odd event numbers to
avoid overfitting. The weights from the fit to even-numbered
events are applied to odd-numbered events and vice versa.
Figure 2shows the STand lepton-pTdistributions after
applying the t¯
tcorrection. The red dashed line represents
the total background prediction before applying the correc-
tion. Agreement between the data and MC prediction clearly
improves for STand other related distributions, especially at
high values. The STand lepton-pTdistributions of the alter-
native t¯
tMC samples differ significantly from those of the
nominal t¯
tsample. Hence, alternative t¯
tcorrection weights
are derived and applied to these events.
Multijet (MJ) processes can contribute to the background
when jets are misidentified as leptons or when real non-
123
Eur. Phys. J. C (2025) 85:153 Page 7 of 34 153
Fig. 2 Distribution of aSTand blepton pTafter applying the t¯
tcorrec-
tion. The processes t¯
t(allHad),tW, Single top, t¯
tH, Other top, W+jets,
Z+ jets, and VV listed in Table 1are combined with the multijet back-
ground in the “Other” category. The uncertainty band represents the
combined statistical and systematic uncertainty of the prediction. The
red dashed line represents the total background prediction before apply-
ing the correction
prompt leptons are produced in the decays of heavy-flavour
hadrons. A data-driven method commonly called the ABCD
method (see e.g. Ref. [97]) is used to estimate the MJ back-
ground in the signal region. The lepton isolation requirement
and the number of b-tagged jets are used to define the four
ABCD regions. The shape of the MJ background is esti-
mated from a region with a looser lepton-isolation require-
ment. The normalisation is derived from events with exactly
one b-tagged jet. The ABCD method is applied separately
to electron and muon events. The size of the total MJ back-
ground in the signal region is about 0.3% of the total esti-
mated background.4
6 Analysis strategy
The presence of a potential signal in data is quantified first
by reconstructing the t¯
tevent topology, and then extracting
the signal using a BDT. The t¯
t-system is reconstructed by
using calibrated physics objects, i.e. leptons, pmiss
Tand jets,
4The MJ background is considered when deriving the t¯
tcorrection.
The t¯
tcorrection weights are also applied in the MJ-enriched regions.
The reciprocal dependence of the MJ background estimate and the
t¯
tcorrection is considered when deriving the correction weights. The
impact on the correction weights is minor due to the overall small MJ
contribution.
as proxies for the lepton, neutrino and quarks from the top-
quark decays. Kinematic properties of the reconstructed t¯
t-
system are then used to train a BDT to classify events as
signal or background.
6.1 t¯
t-system reconstruction
The t¯
t-system consists of a semileptonically decaying top
quark (tlep) and a hadronically decaying top quark (thad). The
tlep decays into a b-quark (blep) and a Wboson, which decays
into a lepton and neutrino. The thad decays into a b-quark
(bhad) and a H±or Wboson, which decays into c- and s-
quarks or other quarks ( j1,j2), respectively.
The lepton from the W-boson decay is unambiguously
identified as the single reconstructed lepton. The momentum
of the neutrino from the W-boson decay is reconstructed
using pmiss
Tand a W-boson mass constraint. The neutrino
pseudorapidity, ην, is calculated by setting the invariant mass
of the lepton and neutrino equal to the W-boson mass, mW=
80.379 GeV [98]:
ην=η±arccosh m2
W
2pν
Tp
T+cos (φνφ).
This equation generally has two solutions and the one that is
chosen depends on the jet labelling, described below. If the
123
153 Page 8 of 34 Eur. Phys. J. C (2025) 85:153
argument of arccosh is exactly one, there is only one solution
(ην=η). Due to reconstruction inefficiencies or additional
neutrinos in the event, e.g. from the decay of τlep,itmayalso
happen that the argument of arccosh is smaller than one, for
which arccosh is not defined. In this case the argument of
arccosh is set to one. This means ην=η, in which case
the invariant mass of the lepton and the neutrino exceeds
mW. The latter case occurs for about 35% of the simulated
t¯
tevents.
The labelling of the jets as blep,bhad,j1and j2suffers
from a combinatorics problem, which the analysis tries to
resolve by comparing the top-quark candidate’smass with the
predicted top-quark mass. Because the mass resolution dif-
fers between semileptonically and hadronically decaying top
quarks, the approach adopted uses probability density func-
tions of the reconstructed top-quark masses (PDFt). These
are built from t¯
tMC events, using reconstructed jets matched
to the generator-level (“truth”) quarks. Since there is only one
lepton candidate, no matching is applied for it. For the neu-
trino, if there are two solutions for ην, the one closest to the
true value of ηνis selected. The “truth” quarks are geometri-
cally matched to the closest reconstructed jet within R=
0.4. The b- and c-quarks are only matched if the reconstructed
jet has a respective “truth” hadron (pT>5 GeV) associated
with it. Other quark types are only matched to the recon-
structed jet if no heavy-flavour hadron is associated with it.
If multiple “truth” quarks are matched to the same recon-
structed jet, ambiguities are resolved by minimising the sum
of the (four) Rvalues between the “truth” quarks and any
reconstructed jet within R=0.4 of the “truth” quarks. In
roughly 53% of the events, at least one “truth” quark cannot
be matched to a reconstructed jet. Such cases are typically
associated with “truth” quarks produced outside the detector
acceptance. Such events are not considered in the PDFt.In
order to get a smooth prediction over the full top-quark mass
range, Crystal Ball + Cauchy and Crystal Ball + Gaussian
functions [99101]arefittedtothetlep -mass and thad-mass
PDFt, respectively. The PDFtare shown with the correspond-
ing fits in Fig. 3.
The derived top-quark mass PDFtare then used to label
jets in an event. All possible permutations of blep,bhad,j1,
j2labellings and ηνsolutions are built simultaneously. The
permutation with the largest product of the tlep-mass and
thad-mass PDFt, i.e. PDFtlep (mcand
tlep )×PDFthad (mcand
thad ), is cho-
sen, and the jets are labelled accordingly. The highest PDFt
product value is denoted by Pt¯
t, and Pt¯
tdivided by the sum
of PDFtproduct values for all considered permutations is
denoted by Pt¯
t.
However, a few physics-motivated requirements are
applied to limit the number of jet permutations. A maximum
of six jets are considered when building the permutations.
The b-jets are always considered, whereas the highest-pT
non-b-jets are considered first. The jets labelled as blep-jets
or bhad-jets have to be b-tagged and their PCFT scores are
required to be greater than or equal to the PCFT scores of
j1and j2. It is also required that the pTof j1is greater than
the pTof j2. This requirement removes redundant permuta-
tions, since interchanging j1and j2yields identical values for
the top-quark and charged-Higgs-boson candidate masses.
Finally, if multiple jets among bhad,j1,j2are b-tagged and
the b-tagged jets have the same PCFT score, multiple per-
mutations will yield the same top-quark candidate mass. In
these rare cases the b-tagged jet with the larger pTis labelled
as the bhad-jet. In 64% of the events entering the PDFt,all
four jets are labelled correctly. The performance for signal
events is comparable.
6.2 Multivariate signal extraction
The multivariate signal extraction exploits differences
between the characteristics of the charged Higgs boson and
the Wboson. These are the boson mass, spin and decay prop-
erties. These differences are seen in many variables related
to flavour-tagging and the kinematics of the top-quark decay
products. The discriminating variables are combined into a
single discriminant through the use of BDTs.
The BDT classifies events as signal-like or background-
like. Background-like events receive BDT scores close to
0, whereas signal-like events receive BDT scores close to 1.
Separate BDTs are trained for each signal mass-point hypoth-
esis with 5-fold cross-training and using the gradient boosting
technique [102]. All simulated background samples listed
in Sect. 3are used in the BDT training. Events included
in the training have to pass the event selection described in
Sect. 4. Training and application are carried out within the
XGBoost [103]framework.
Any variable describing the properties of top quarks and
their decay products is considered as an input to the BDT
training. The final set of BDT input variables is obtained by
recursively removing variables with relatively small power to
separate the signal from the background, and low importance
in the BDT training, until a statistically significant loss in per-
formance is observed. The performance is quantified by the
area under the receiver-operating-characteristic curve. This
optimisation is performed with the 130 GeV signal sample.
The signal and t¯
tbackground kinematics are very similar for
the signal mass points close to the W-boson mass but differ
greatly for signal mass points closer to the top-quark mass;
the intermediate 130 GeV mass point covers both cases.
The final BDT uses the 26 input variables which are
listed in Table 2. The variables can be sorted into three cat-
egories: top-quark kinematic variables, event variables, and
flavour-tagging variables. The first category contains vari-
ables related to the kinematics of the top quarks and their
decay products. These variables are mainly sensitive to the
mass difference between the H±and Wbosons. If the mass
123
Eur. Phys. J. C (2025) 85:153 Page 9 of 34 153
Fig. 3 Probability density functions of the reconstructed mass for asemileptonically and bhadronically decaying top quarks
Tabl e 2 Final list of BDT input
variables used in the training Variable type Variable name Definition
Top-quark kinematic variables
thad j1pTpTof j1-labelled jet
j2pTpTof j2-labelled jet
bhad pTpTof bhad-jet
bthadrest
had pMomentum of bhad-jet in thad rest frame
dijet mass Invariant mass of j1+j2jets
(j1+bhad) mass Invariant mass of j1+bhad jets
(j2+bhad) mass Invariant mass of j2+bhad jets
cos θBosonspinsensitivevariable
tlep blep pTpTof blep-jet
Lepton pTpTof reconstructed lepton
Wmass Invariant mass of reconstructed Wboson
tlep mass Invariant mass of reconstructed tlep
tlep pTpTof reconstructed tlep
t¯
t-system R(blep,bhad )Rbetween the blep-jet and bhad-jet
t¯
tmass Invariant mass of thad+tlep
Event variables
Event level Njets Number of jets in the event
STScalar pTsum of all calibrated objects
Pt¯
tNormalised probability of correct jet labelling
Flavour-tagging variables
Flavour-tagging score j1PCFT PCFT score of j1
j2PCFT PCFT score of j2
bhad PCFT PCFT score of bhad-jet
blep PCFT PCFT score of blep-jet
Number of tags Nc-tagLo Number of jets passing loose c-tag WP (b-veto)
Nc-tagTi Number of jets passing tight c-tag WP (b-veto)
Nb-tag70 Number of jets passing 70% b-tag WP
Nb-tag60 Number of jets passing 60% b-tag WP
123
153 Page 10 of 34 Eur. Phys. J. C (2025) 85:153
difference is comparable to or larger than the dijet mass reso-
lution [83], the kinematic variables exhibit larger separation
power than variables in the other categories. The most impor-
tant variables (in order of decreasing area under the receiver-
operating-characteristic curve) are the invariant mass of j1
and j2and the transverse momentum of the bhad-jet, fol-
lowed by the invariant mass of j1and bhad-jet, the invariant
mass of j2and bhad-jet, and the transverse momenta of j1and
j2. Variables related to the t¯
t-system, the tlep-quark and the
decay products provide separation power between signal and
non-t¯
tbackgrounds. In addition, they can carry information
about possible wrong jet labelling and add information via
correlation with other input variables.
The cos θvariable is the only variable that is sensitive
to the spin of the boson from the thad decay and there-
fore shows separation power for any H±boson mass. The
angle θis defined as the angle between the bhad-jet and the
up-type-quark-initiated jet from the hadronically decaying
boson (H±or W) in the boson’s rest frame. The up-type-
quark-initiated jet is identified with the help of the PCFT
scores of j1and j2.Thec-tagged jets are prioritised over b-
tagged jets, which in turn are prioritised over untagged jets.
If the PCFT scores of j1and j2are identical, j1is assigned
to be the jet from the up-type quark. The cos θdistribution is
flat for spin-0 particles, like the H±boson. For spin-1 par-
ticles, like the Wboson, the distribution is more complex
because polarisation effects play a role, and there are fewer
events close to 1 and 1. However, it is difficult to identify
the quark flavours in the decay of the boson. In addition, the
cos θdistribution is heavily affected by jet resolution effects
because three jets are used in the calculation.
The second category of variables involves event variables.
The Pt¯
tvariable facilitates the identification of wrongly
labelled jets and can also reject non-t¯
tbackground. The Njets
and STvariables are correlated with most top-quark kine-
matic variables. For example, an event with small bhad-jet
pTand large STsuggests a signal event with a high-mass
charged Higgs boson.
The third category contains flavour-tagging variables,
which are the PCFT scores of the four labelled jets and the
number of jets passing a given PCFT working point. Of spe-
cial interest are the PCFT scores of j1and j2,astheyare
sensitive to the different decay characteristics of the charged
Higgs boson. While all signal events involve a c-quark in the
boson decay, only about 50% of the t¯
tbackground events
share the same characteristic. Other flavour-tagging variables
are useful in rejecting non-t¯
tbackground and add informa-
tion via correlations with other variables. The distributions
of selected BDT input variables of different types and with
large separation power are shown in Fig. 4.
The optimisation of the BDT input variables was per-
formed with a baseline set of hyperparameters including
tree depth and learning rate determined by a lightweight
BDT hyperparameter scan. For the final training, the optimal
configuration of the BDT hyperparameters is determined for
each signal mass point separately with the help of the hyper-
opt [104] tool. The hyperopt tool performs a Bayesian opti-
misation using Tree-structured Parzen Estimators to obtain
the optimal parameter set from a given parameter range. It is
more efficient than grid or random searches because it uses
previous training steps to learn where the optimum is going to
be. To avoid any bias between the hyperparameter optimisa-
tion dataset and the final test dataset, the scan was carried out
using nested cross-training. For each of the 5-folds the scan
is performed using 4-fold cross-training on the other four
folds. For the final training the BDTs are retrained using all
four folds as training data. The BDT-score distributions after
training with the H±
80,H±
110,H±
130 and H±
150 signal samples
are shown in Fig. 5.
7 Systematic uncertainties
This section discusses systematic uncertainties the analysis is
sensitive to, including those affecting the detector response,
theoretical uncertainties, and modelling of signal and back-
ground processes that affect the normalisation and shapes of
the simulated signal and background distributions. The indi-
vidual systematic uncertainties are considered to be uncor-
related, while correlations for a given systematic uncertainty
are maintained across signal and background processes.
The uncertainty in the combined 2015–2018 integrated
luminosity is 0.83% [31], obtained using the LUCID-2 detec-
tor [28] for the primary luminosity measurements, com-
plemented by measurements using the inner detector and
calorimeters. This uncertainty is assigned to all physics pro-
cesses whose normalisations are taken from simulation. An
uncertainty in the correction of the pile-up distribution [105]
in simulation to that in data is taken into account as well.
Uncertainties in the calibration of physics objects affect all
simulated samples. Uncertainties associated with the trigger,
reconstruction, identification and isolation efficiency calibra-
tion [74,77], as well as the impact of the energy (momentum)
scale and resolution uncertainties [74,106] on the selection
efficiency are considered for electrons (muons). Jet energy
scale (JES) [107] and resolution (JER) [108] uncertainties
and the uncertainty in the efficiency of matching jets to the
primary vertex [84] are taken into account. The energy scale
and resolution uncertainties for leptons and jets are propa-
gated to the Emiss
T. In addition, the uncertainty in the Emiss
T
from tracks matched to the primary vertex but not to other
reconstructed objects [90] is considered. Corrections to simu-
lations to match the flavour-tagging and mistagging efficien-
cies in data are taken into account in bins of the jet pT[86
88].
123
Eur. Phys. J. C (2025) 85:153 Page 11 of 34 153
Fig. 4 Distributions of selected BDT input variables. The variables
are defined in Table 2. The processes t¯
t(allHad),tW, Single top, t¯
tH,
Other top, W+jets,Z+jets,VV listed in Table 1are combined with
the multijet background in the “Other” category. The uncertainty band
represents the combined statistical and systematic uncertainty of the
prediction. Overlaid are the shapes for the H±
80 and H±
150 signal samples
normalised to the total background prediction
Uncertainties in the modelling of different processes are
assumed to be uncorrelated. Modelling uncertainties for pro-
cesses making a small contribution to the total background
yield (t¯
t(allHad),t¯
tH and Other top samples) are neglected.
Some modelling uncertainties are estimated in the same way
for all processes. These are the uncertainties due to miss-
123
153 Page 12 of 34 Eur. Phys. J. C (2025) 85:153
Fig. 5 BDT-score distributions for the training with the a80 GeV, b
110 GeV, c130 GeV and d150 GeV signal mass hypotheses after
performing background-only binned-likelihood fits to the distributions
as described in Sect. 8. The processes t¯
t(allHad),tW, Single top, t¯
tH,
Other top, W+jets,Z+jets,VV listed in Table 1are combined with the
multijet background in the “Other” category. The background yields are
normalised to their best-fit values. The uncertainty band represents the
combined statistical and systematic uncertainty of the prediction. Over-
laid is the signal shape normalised to B(tH±(cs)b)=1%. The
binning procedure for the BDT score is defined in Sect. 8
ing higher orders in the perturbative expansion of the par-
tonic cross-section, which are estimated by varying the renor-
malisation (μr) and factorisation (μf) scales by a factor of
two. The uncertainties associated with the choice of PDF
are evaluated by using dedicated PDF error eigensets. The
PDF uncertainties are combined by calculating their standard
123
Eur. Phys. J. C (2025) 85:153 Page 13 of 34 153
deviation with respect to the nominal set or by summing the
differences in quadrature for Hessian sets. The uncertainty
related to the choice of strong coupling constant value αsis
evaluated by comparing predictions using PDF sets obtained
with two alternative αsvalues. The uncertainties in the pro-
duction cross-sections are included as normalisation uncer-
tainties [109112] for all processes whose normalisations are
taken from simulation.
For top-quark processes the uncertainties associated with
the choice of generator for ME and PS simulation are assessed
by comparing the nominal sample with alternative samples
generated with aMC@NLO instead of Powheg Box and
with Herwig 7 instead of Pythia, respectively. The uncer-
tainty due to the choice of hdamp parameter value is deter-
mined by comparison with an alternative sample generated
with hdamp =3mtop instead of 1.5mtop. The alternative
samples are described in detail in Sect. 3. The interference
between tW(b)and t¯
tprocesses [47] is handled using the dia-
gram removal scheme, which removes diagrams with inter-
mediate top quarks. The uncertainty associated with this pro-
cedure is evaluated with the help of an alternative tW sample
where a subtraction term is added to the matrix element to
cancel out the resonant top-quark pole contribution.
For top-quark and signal processes the uncertainties in the
amounts of initial- and final-state QCD radiation (ISR and
FSR) are estimated by varying the corresponding parame-
ter (Var3c) of the A14 PS tune and by varying the FSR
scale (μFSR
r) by a factor of two, respectively. The system-
atic uncertainty introduced by the t¯
tcorrection, described in
Sect. 5, is estimated by performing an eigenvalue decompo-
sition of the fitted parameters and varying the eigenvalues
separately by one standard deviation. Uncertainties related
to the t¯
tME, PS, hdamp parameter and FSR show, among the
considered systematic uncertainties, the largest shape differ-
ences in the high BDT-score regions and are therefore the
dominant uncertainties in this search.
For weak-boson processes, electroweak corrections at
next-to-leading order are estimated using the electroweak vir-
tual approximation. The electroweak and QCD components
are combined using an exponentiated prescription [113,114].
CKKW and QSF are two parameters of Sherpa that define
the scale for merging/matching jets from the ME with the PS,
and the scale used for resummation of soft gluon emissions,
respectively. Their impact on the BDT input observables is
measured at generator-level with the help of alternative sam-
ples in which the nominal values are varied. The observed
differences are covered by a 17% normalisation uncertainty.
The effect of NNLO correction factors on the cross-section
of single-boson processes is 5%. This is added as a normali-
sation uncertainty to all weak-boson processes.
To evaluate the systematic uncertainty of the multijet
background estimate, an alternative estimate is made in
which, instead of the lepton isolation criterion, a looser lepton
identification is used to define the ABCD regions. In addi-
tion, a conservative 50% normalisation uncertainty is added
to account for statistical uncertainties of the transfer factor
and MC uncertainties in regions B,Cand D.
The uncertainty in the expected event count in each bin,
due to the finite MC sample sizes, is accounted for by one
Gaussian-constrained parameter per bin, which represents
the total uncertainty of the MC event content in that bin [115].
8 Statistical interpretation
The presence of a charged Higgs boson signal in data is quan-
tified with the help of binned maximum-likelihood fits to
the BDT-score distributions. The statistical model is imple-
mented using the Histfactory format [116]. Minimisation
of the likelihood function is performed in the pyhf frame-
work [117].
The parameter of interest is the branching fraction of the
process tH±b(BH±), which is constrained to BH±
[0,0.1],5while assuming B(tWb)+B(tH±(
cs)b)=1.0. The t¯
tcross-section scaling factor (μt¯
t) and the
fraction of t¯
t+HF events among t¯
tbackground events ( fHF)
are unconstrained parameters in the fit, with nominal values
of 1.0 and 0.1364, respectively. These parameters relate the
signal and background yields before the fit (pre-fit) and after
the fit (post-fit) as follows:6
NH±(post-fit)=μt¯
t×2(1BH±)BH±
×NH±(pre-fit),
Nt¯
t+LF (post-fit)=μt¯
t×(1fHF)×(1BH±)2
×Nt¯
t+LF (pre-fit),
Nt¯
t+HF (post-fit)=μt¯
t×fHF ×(1BH±)2
×Nt¯
t+HF (pre-fit).
The systematic uncertainties described in Sect. 7are
implemented as Gaussian-constrained nuisance parameters
(NPs) in the fit. Systematic uncertainties with just one com-
ponent are symmetrised by mirroring the nominal template.
All two-point systematic uncertainties and some reweight-
ing systematic uncertainties with large statistical fluctuations
are smoothed. Uncertainties with a negligible impact on the
uncertainty of BH±are removed from the likelihood fit to
improve numerical performance.
The discovery significance of a signal in data is calculated
in a likelihood ratio test where the background-only hypoth-
5The upper bound on BH±is justified by measurements setting lower
bounds on B(tWb)[118].
6The event yields before the fit are set to the total expected t¯
tyield, so
that NH±(pre-fit) = Nt¯
t+LF (pre-fit) = Nt¯
t+HF (pre-fit). For the nominal
values of μt¯
tand fHF,andBH±=0, one recovers the SM expectation.
123
153 Page 14 of 34 Eur. Phys. J. C (2025) 85:153
esis is compared with the signal-plus-background hypoth-
esis [119]. The asymptotic approximation is used to esti-
mate the probability distribution of the test statistic [120].
Upper limits on BH±are set by determining the BH±value
which can be rejected in 95% of the cases, i.e. at 95% con-
fidence level (CL), with respect to the best-fit signal-plus-
background hypothesis. The modified frequentist technique
(CLs)[121] is used to avoid excluding signal models where
the analysis has little sensitivity. The median upper limit,
referred to as the expected upper limit, and its 1σand 2σ
expected variations are derived from a background-only Asi-
mov dataset [120].
The BDT-score templates are binned in such a way that the
number of bins is minimised, while maximising the expected
sensitivity and ensuring the stability of the fit and the validity
of the asymptotic approximation. This is achieved by starting
from templates with 10,000 equal-width bins and iteratively
merging bins from right to left starting from the most dis-
criminating bins until a bin in question fulfils all conditions.
Each bin is required to contain at least 20 expected back-
ground events, and the signal and background MC statistical
uncertainties have to be less than 20% and 10%, respectively.
Each bin has to pass a given S/Bthreshold defined by the
S/Bratio7in the first merged bin. In order to retain shape
information in the low discriminating BDT-score region, a
maximum of 1000 bins may be merged into a single bin.
Additionally, the S/Bthreshold may be adjusted for BDT
scores with very high or very low separation power such that
each template has at least 19 and no more than 49 bins.
9 Results
The binned maximum-likelihood fit described in Sect. 8is
performed per signal mass-point hypothesis on the respec-
tive BDT-score distribution. Table 3shows the data and back-
ground yields after the background-only fit of the BDT-score
distribution trained with the 130 GeV signal mass point.
The fitted μt¯
tvalues agree within their uncertainties with
the SM prediction of 1.0 for all mass points. The fHF param-
eter is measured to be 0.19 ±0.02 for the H±
80 fit, which is
the most precise fit. The measured values of fHF in other
fits agree with this value within their uncertainties. This is a
larger heavy-flavour fraction than predicted by simulations,
but agrees with many other ATLAS analyses [20,122126].
The fitted BH±values are equal to, or compatible with, zero
for most signal mass hypotheses. The largest signal signifi-
cance observed in data is for the 110 GeV mass point, with
a local p-value of 5% (1.5σ).
7Sis the signal and Bthe total background prediction in the respective
bin.
Tabl e 3 Data and background yields after the background-only fit of
the BDT-score distribution for the 130 GeV signal mass BDT training.
For comparison, the expected signal yield for BH±=1% is added.
The sample names are defined in Table 1
Name Post-fit yields
t¯
t(ud)1,400,000 ±76,000
t¯
t(cs)1,200,000 ±92,000
t¯
t+HF 710,000 ±150,000
tW 100,000 ±23,000
Single top 68,000 ±28,000
W+ jets 70,000 ±29,000
Z+jets&VV 21,000 ±9500
Other top & t¯
t(allHad)&t¯
tH 17,000 ±450
Multijet (MJ) 12,000 ±6800
Total background 3,600,000 ±11,000
Data 3,600,000
H±
130 (BH±=1%) 38,000
The impact of systematic uncertainties on the BH±mea-
surement’s accuracy is estimated by fixing the NP under con-
sideration to its post-fit value, performing the fit and compar-
ing the uncertainty of the fitted BH±with the one from the
nominal fit. The results of these fits when fixing a group of
systematic uncertainties are summarised in Table 4.Forthe
80 GeV signal hypothesis the kinematics are very similar for
the signal and t¯
tprocesses. Therefore, the flavour-tagging
uncertainties have the largest impact on BH±. For other sig-
nal hypotheses the t¯
tmodelling NPs, especially those for the
ME, PS, FSR and hdamp uncertainties, have the largest impact
on the BH±uncertainty. MC statistical uncertainties natu-
rally become more important with finer BDT-score binning.
Less impactful but still important are jet, single-top-quark
and weak-boson modelling uncertainties. Least impactful are
luminosity, pile-up, lepton and Emiss
T-related uncertainties.
Figure 6shows the expected limits on BH±with their 1σ
and 2σuncertainty bands. The expected limits are least strin-
gent for the 80 GeV mass point, at about 2.3%, as this signal
mass point is closest to the W-boson mass. For this mass
point, the flavour-tagging information is the most powerful
discriminant between signal and background. Moving away
from the W-boson mass the top-quark kinematics start to dif-
fer more and the limits improve. The most stringent limits are
expected for the 150 GeV mass point, at about 0.077%. Close
to the top-quark mass threshold the limits weaken again as the
acceptance decreases. The small acceptance is caused by the
low average momentum of the bhad-quark so that the result-
ing jets often fail the kinematic requirements. The solid line
in Fig. 6represents the observed limits. The observed limits
vary between 0.066 to 3.6%. Expected and observed limits
agree within uncertainties.
123
Eur. Phys. J. C (2025) 85:153 Page 15 of 34 153
Tabl e 4 Breakdown of the relative contributions to the uncertainty in
the extracted BH±in the likelihood fit to data. The contributions are
obtained by fixing the relevant NPs to their post-fit values in the likeli-
hood fit. The square root of the difference of the squares of the nominal
uncertainty and obtained uncertainty is divided by the nominal uncer-
tainty to obtain the relative impact. The sum in quadrature of the indi-
vidual components differs from the total uncertainty due to correlations
between uncertainties in the different groups. The uncertainty from data
statistical uncertainties is determined from fits with all NPs fixed to their
post-fit values. The total uncertainty in BH±for the fits with H±
80 and
H±
150 is 1.2% and 0.04%, respectively
H±
80 H±
150
Category Relative contribution Category Relative contribution
Data statistical 6% Data statistical 38%
Systematic 99.8% Systematic 93%
Flavour-tagging 64% t¯
tmodelling 72%
MC statistical 64% MC statistical 35%
t¯
tmodelling 50% Weak-boson and MJ modelling 27%
μt¯
tand fLF 21% Single-top-quark modelling 25%
Jet 19% μt¯
tand fLF 24%
Single-top-quark modelling 16% Jet 23%
Luminosity and pile-up 15% Flavour-tagging 20%
Weak-boson and MJ modelling 12% Lepton and Emiss
T8%
Signal modelling 8% Luminosity and pile-up 7%
Lepton and Emiss
T7% Signal modelling 5%
Fig. 6 Observed (solid line) and expected (dotted line) upper limits on
BH±for charged Higgs boson with masses between 60 and 168 GeV,
assuming B(tWb)+B(tH±(cs)b)=1.0. The ±1σand
±2σvariations around the expected upper limit are indicated by the
green and yellow bands, respectively
10 Conclusions
A search for a light charged Higgs boson produced in decays
of the top quark, tH±b, with H±cs is performed in
the H±mass range from 60 to 168 GeV. The data analysed
corresponds to 140 fb1of pp collisions at s=13 TeV
recorded with the ATLAS detector at the LHC between 2015
and 2018. This analysis focuses on the lepton-plus-jets final
state, characterised by an isolated electron or muon and
at least four jets. The search exploits b-quark and c-quark
identification techniques as well as multivariate methods to
suppress the dominant t¯
tbackground. No significant sig-
nal excess is found in data. Observed and expected 95% CL
upper limits on the branching fraction B(tH±b), assum-
ing B(tWb)+B(tH±(cs)b)=1.0, are found
to range from 0.066 to 3.6% and 0.077 to 2.3%, respectively,
depending on the mass of the charged Higgs boson. These
are the first direct limits on B(tH±b)in the H±cs
channel for charged Higgs bosons with masses of 60 GeV,
70 GeV and 168 GeV, and currently the most stringent limits
for masses between 120 GeV and 160 GeV.
Acknowledgements We thank CERN for the very successful oper-
ation of the LHC and its injectors, as well as the support staff at
CERN and at our institutions worldwide without whom ATLAS could
not be operated efficiently. The crucial computing support from all
WLCG partners is acknowledged gratefully, in particular from CERN,
the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Den-
mark, Norway,Sweden), CC-IN2P3 (France), KIT/GridKA (Germany),
INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (UK)
and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG
resource providers. Major contributors of computing resources are listed
in Ref. [127]. We gratefully acknowledge the support of ANPCyT,
Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Aus-
tria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC
and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC,
China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF
and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France;
SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece;
RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel;
INFN, Italy; MEXT and JSPS, Japan; CNRST,Morocco; NWO, Nether-
lands; RCN, Norway; MNiSW, Poland; FCT, Portugal; MNE/IFA,
Romania; MSTDI, Serbia; MSSR, Slovakia; ARIS and MVZI, Slove-
123
153 Page 16 of 34 Eur. Phys. J. C (2025) 85:153
nia; DSI/NRF, South Africa; MICIU/AEI, Spain; SRC and Wallenberg
Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva,
Switzerland; NSTC, Taipei; TENMAK, Türkiye; STFC/UKRI, United
Kingdom; DOE and NSF, United States of America. Individual groups
and members have received support from BCKDF, CANARIE, CRC
and DRAC, Canada; CERN-CZ, FORTE and PRIMUS, Czech Repub-
lic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU and
Marie Skłodowska-Curie Actions, European Union; Investissements
d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG
and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-
grammes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-
NSF and MINERVA, Israel; NCN and NAWA, Poland; La Caixa Bank-
ing Foundation, CERCA Programme Generalitat de Catalunya and
PROMETEO and GenT Programmes Generalitat Valenciana, Spain;
Göran Gustafssons Stiftelse, Sweden; The Royal Society and Lev-
erhulme Trust, United Kingdom. In addition, individual members
wish to acknowledge support from Armenia: Yerevan Physics Insti-
tute (FAPERJ); CERN: European Organization for Nuclear Research
(CERN PJAS); Chile: Agencia Nacional de Investigación y Desar-
rollo (FONDECYT 1230812, FONDECYT 1230987, FONDECYT
1240864); China: Chinese Ministry of Science and Technology(MOST-
2023YFA1605700), National Natural Science Foundation of China
(NSFC-12175119, NSFC 12275265, NSFC-12075060); Czech Repub-
lic: Czech Science Foundation (GACR-24-11373S), Ministry of Edu-
cation Youth and Sports (FORTE CZ.02.01.01/00/22_008/0004632),
PRIMUS Research Programme (PRIMUS/21/SCI/017); EU: H2020
European Research Council (ERC - 101002463); European Union:
European Research Council (ERC-948254, ERC 101089007), Hori-
zon 2020 Framework Programme (MUCCA - CHIST-ERA-19-XAI-
00), European Union, Future Artificial Intelligence Research (FAIR-
NextGenerationEU PE00000013), Italian Center for High Performance
Computing, Big Data and Quantum Computing (ICSC, NextGenera-
tionEU); France: Agence Nationale de la Recherche (ANR-20-CE31-
0013, ANR-21-CE31-0013, ANR-21-CE31-0022, ANR-22-EDIR-00
02), Investissements d’Avenir Labex (ANR-11-LABX-0012); Ger-
many: Baden-Württemberg Stiftung (BW Stiftung-Postdoc Elitepro-
gramme), Deutsche Forschungsgemeinschaft (DFG-469666862, DFG-
CR 312/5-2); Italy: Istituto Nazionale di Fisica Nucleare (ICSC,
NextGenerationEU), Ministero dell’Università e della Ricerca (PRIN-
20223N7F8K-PNRR M4.C2.1.1); Japan: Japan Society for the Pro-
motion of Science (JSPS KAKENHI JP22H01227, JSPS KAK-
ENHI JP22H04944, JSPS KAKENHI JP22KK0227, JSPS KAK-
ENHI JP23KK0245); Netherlands: Netherlands Organisation for Scien-
tific Research (NWO Veni 2020-VI.Veni.202.179); Norway: Research
Council of Norway (RCN-314472); Poland: Ministry of Science and
Higher Education (IDUB AGH, POB8, D4 no 9722), Polish National
Agency for Academic Exchange (PPN/PPO/2020/1/00002/U/00001),
Polish National Science Centre (NCN 2021/42/E/ST2/00350, NCN
OPUS nr 2022/47/B/ST2/03059, NCN UMO-2019/34/E/ST2/00393,
NCN and H2020 MSCA 945339, UMO-2020/37/B/ST2/01043, UMO-
2021/40/C/ST2/00187, UMO-2022/47/O/ST2/00148, UMO-2023/49/
B/ST2/04085, UMO-2023/51/B/ST2/00920); Slovenia: Slovenian
Research Agency (ARIS grant J1-3010); Spain: Generalitat Valenciana
(Artemisa, FEDER, IDIFEDER/2018/048), Ministry of Science and
Innovation (MCIN and NextGenEU PCI2022-135018-2, MICIN and
FEDER PID2021-125273NB, RYC2019-028510-I, RYC2020-030254-
I, RYC2021-031273-I, RYC2022-038164-I), PROMETEO and GenT
Programmes Generalitat Valenciana (CIDEGENT/2019/027); Swe-
den: Swedish Research Council (Swedish Research Council 2023-
04654, VR 2018-00482, VR 2022-03845, VR 2022-04683, VR 2023-
03403, VR grant 2021-03651), Knut and Alice Wallenberg Foun-
dation (KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, KAW
2022.0358); Switzerland: Swiss National Science Foundation (SNSF-
PCEFP2_194658); United Kingdom: Leverhulme Trust (Leverhulme
Trust RPG-2020-004), Royal Society (NIF-R1-231091); United States
of America: U.S. Department of Energy (ECA DE-AC02-76SF00515),
Neubauer Family Foundation.
Data Availability Statement My manuscript has associated data in
a data repository. [Author’s comment: HepData Link: https://www.
hepdata.net/record/154176].
Code Availability Statement My manuscript has associated code/
software in a data repository. [Author’s comment: ATLAS collaboration
software is open source, and all code necessary to recreate an analysis is
publicly available. The Athena (http://gitlab.cern.ch/atlas/athena)soft-
ware repository provides all code needed for calibration and uncertainty
application, with configuration files that are also publicly available via
Docker containers and cvmfs. The specific code and configurations
written in support of this analysis are not public; however, these are
internally preserved.]
Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.
References
1. ATLAS Collaboration, Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at
the LHC. Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.
physletb.2012.08.020.arXiv:1207.7214 [hep-ex]
2. CMS Collaboration, Observation of a new boson at a mass of
125 GeV with the CMS experiment at the LHC. Phys. Lett. B
716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021.
arXiv:1207.7235 [hep-ex]
3. ATLAS Collaboration, A detailed map of Higgs boson
interactions by the ATLAS experiment ten years after the
discovery. Nature 607, 52 (2022). https://doi.org/10.1038/
s41586-022-04893-w.arXiv:2207.00092 [hep-ex]. [Erratum:
https://doi.org/10.1038/s41586-022-05581-5Nature 612 (2022)
E24]
4. CMS Collaboration, A portrait of the Higgs boson by the CMS
experiment ten years after the discovery. Nature 607, 60 (2022).
https://doi.org/10.1038/s41586-022-04892-x.arXiv:2207.00043
[hep-ex]. [Erratum: 10.1038/s41586-023-06164-8 Nature 623
(2023) E4]
5. A. Riotto, M. Trodden, Recent progress in baryogenesis. Annu.
Rev. Nucl. Part. Sci. 49, 35 (1999). https://doi.org/10.1146/
annurev.nucl.49.1.35.arXiv:hep-ph/9901362
6. A.G. Akeroyd et al., Prospects for charged Higgs searches at the
LHC. Eur. Phys. J. C 77, 276 (2017). https://doi.org/10.1140/epjc/
s10052-017-4829-2.arXiv:1607.01320 [hep-ph]
7. G. Arcadi, A. Djouadi, M. Raidal, Dark matter through the
Higgs portal. Phys. Rep. 842, 1 (2020). https://doi.org/10.1016/j.
physrep.2019.11.003.arXiv:1903.03616 [hep-ph]
123
Eur. Phys. J. C (2025) 85:153 Page 17 of 34 153
8. R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseu-
doparticles. Phys. Rev. Lett. 38, 1440 (1977). https://doi.org/10.
1103/PhysRevLett.38.1440
9. S.P. Martin, A supersymmetry primer. Adv. Ser. Direct.
High Energy Phys. 18, 1 (1998). https://doi.org/10.1142/
9789812839657_0001.arXiv:hep-ph/9709356
10. T.P. Cheng, L.-F. Li, Neutrino masses, mixings, and oscillations
in SU(2)×U(1) models of electroweak interactions. Phys. Rev. D
22, 2860 (1980). https://doi.org/10.1103/PhysRevD.22.2860
11. J. Schechter, J.W.F. Valle, Neutrino masses in SU(2) U(1)
theories. Phys. Rev. D 22, 2227 (1980). https://doi.org/10.1103/
PhysRevD.22.2227
12. G. Lazarides, Q. Shafi, C. Wetterich, Proton lifetime and fermion
masses in an SO(10) model. Nucl. Phys. B 181, 287 (1981). https://
doi.org/10.1016/0550-3213(81)90354-0
13. M.S. Chanowitz, M. Golden, Higgs boson triplets with MW=
MZcos θW.Phys.Lett.B165, 105 (1985). https://doi.org/10.
1016/0370-2693(85)90700-2
14. J.F. Gunion, R. Vega, J. Wudka, Higgs triplets in the standard
model. Phys. Rev. D 42, 1673 (1990). https://doi.org/10.1103/
PhysRevD.42.1673
15. G.C. Branco et al., Theory and phenomenology of two-Higgs-
doublet models. Phys. Rep. 516, 1 (2012). https://doi.org/10.
1016/j.physrep.2012.02.002.arXiv:1106.0034 [hep-ph]
16. J.F. Gunion, H.E. Haber, CP-conserving two-Higgs-doublet
model: the approach to the decoupling limit. Phys. Rev. D 67,
075019 (2003). https://doi.org/10.1103/PhysRevD.67.075019.
arXiv:hep-ph/0207010
17. W. Altmannshofer et al., Collider signatures of flavorful Higgs
bosons. Phys. Rev. D 94, 115032 (2016). https://doi.org/10.1103/
PhysRevD.94.115032.arXiv:1610.02398 [hep-ph]
18. ATLAS Collaboration, Search for a light charged Higgs boson
in the decay channel H+c¯sin t¯
tevents using pp collisions
at s=7 TeV with the ATLAS detector. Eur. Phys. J. C 73,
2465 (2013). https://doi.org/10.1140/epjc/s10052-013-2465-z.
arXiv:1302.3694 [hep-ex]
19. C.M.S. Collaboration, Search for a light charged Higgs boson
in the H±cs channel in proton–proton collisions at s=
13 TeV. Phys. Rev. D 102, 072001 (2020). https://doi.org/10.
1103/PhysRevD.102.072001.arXiv:2005.08900 [hep-ex]
20. ATLAS Collaboration, Search for a light charged Higgs boson
in tH±bdecays, with H±cb, in the lepton+jets
final state in proton–proton collisions at s=13 TeV with the
ATLAS detector. JHEP 09, 004 (2023). https://doi.org/10.1007/
JHEP09(2023)004.arXiv:2302.11739 [hep-ex]
21. C.M.S. Collaboration, Search for a charged Higgs boson decay-
ing to charm and bottom quarks in proton–proton collisions at
s=8TeV. JHEP 11, 115 (2018). https://doi.org/10.1007/
JHEP11(2018)115.arXiv:1808.06575 [hep-ex]
22. ATLAS Collaboration, Search for charged Higgs bosons decay-
ing via H±τ±ντin the τ+jets and τ+lepton final states
with 36 fb1of pp collision data recorded at s=13 TeV with
the ATLAS experiment. JHEP 09, 139 (2018). https://doi.org/10.
1007/JHEP09(2018)139.arXiv:1807.07915 [hep-ex]
23. C.M.S. Collaboration, Search for charged Higgs bosons in the
H±τ±ντdecay channel in proton–proton collisions at
s=13 TeV. JHEP 07, 142 (2019). https://doi.org/10.1007/
JHEP07(2019)142.arXiv:1903.04560 [hep-ex]
24. M. Misiak, M. Steinhauser, Weak radiative decays of the B
meson and bounds on MH±in the two-Higgs-doublet model.
Eur. Phys. J. C 77, 201 (2017). https://doi.org/10.1140/epjc/
s10052-017-4776-y.arXiv:1702.04571 [hep-ph]
25. ATLAS Collaboration, The ATLAS Experiment at the CERN
Large Hadron Collider. JINST 3, S08003 (2008). https://doi.org/
10.1088/1748-0221/3/08/S08003
26. ATLAS Collaboration, ATLAS Insertable B-layer: technical
design report, ATLAS-TDR-19; CERN-LHCC-2010-013, 2010,
Addendum: ATLAS-TDR-19-ADD-1; CERN-LHCC-2012-009
(2012). https://cds.cern.ch/record/1291633.https://cds.cern.ch/
record/1451888
27. B. Abbott et al., Production and integration of the ATLAS
Insertable B-Layer. JINST 13, T05008 (2018). https://doi.org/10.
1088/1748-0221/13/05/T05008.arXiv:1803.00844 [physics.ins-
det]
28. G. Avoni et al., The new LUCID-2 detector for luminosity mea-
surement and monitoring in ATLAS. JINST 13, P07017 (2018).
https://doi.org/10.1088/1748-0221/13/07/P07017
29. ATLAS Collaboration, Performance of the ATLAS trigger system
in 2015. Eur. Phys. J. C 77, 317 (2017). https://doi.org/10.1140/
epjc/s10052-017-4852-3.arXiv:1611.09661 [hep-ex]
30. ATLAS Collaboration, Software and computing for Run 3 of the
ATLAS experiment at the LHC. (2024). arXiv:2404.06335 [hep-
ex]
31. ATLAS Collaboration, Luminosity determination in pp colli-
sions at s=13 TeV using the ATLAS detector at the LHC.
Eur.Phys.J.C83, 982, (2023). https://doi.org/10.1140/epjc/
s10052-023-11747-w.arXiv:2212.09379 [hep-ex]
32. S. Frixione, G. Ridolfi, P. Nason, A positive-weight next-to-
leading-order Monte Carlo for heavy flavour hadroproduction.
JHEP 09, 126 (2007). https://doi.org/10.1088/1126-6708/2007/
09/126.arXiv:0707.3088 [hep-ph]
33. P. Nason, A new method for combining NLO QCD with shower
Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.
1088/1126-6708/2004/11/040.arXiv:hep-ph/0409146
34. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD compu-
tations with parton shower simulations: the POWHEG method.
JHEP 11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/
11/070.arXiv:0709.2092 [hep-ph]
35. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for
implementing NLO calculations in shower Monte Carlo pro-
grams: the POWHEG BOX. JHEP 06, 043 (2010). https://doi.
org/10.1007/JHEP06(2010)043.arXiv:1002.2581 [hep-ph]
36. NNPDF Collaboration, R.D. Ball et al., Parton distributions for
the LHC run II. JHEP 04, 040 (2015). https://doi.org/10.1007/
JHEP04(2015)040.arXiv:1410.8849 [hep-ph]
37. ATLAS Collaboration, Studies on top-quark Monte Carlo mod-
elling for Top2016, ATL-PHYS-PUB-2016-020 (2016). https://
cds.cern.ch/record/2216168
38. T. Sjöstrand et al., An introduction to PYTHIA 8.2. Comput.
Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.
2015.01.024.arXiv:1410.3012 [hep-ph]
39. NNPDF Collaboration, R.D. Ball et al., Parton distributions with
LHC data. Nucl. Phys. B 867, 244 (2013). https://doi.org/10.1016/
j.nuclphysb.2012.10.003.arXiv:1207.1303 [hep-ph]
40. ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data,
ATL-PHYS-PUB-2014-021 (2014). https://cds.cern.ch/record/
1966419
41. D.J. Lange, The EvtGen particle decay simulation package. Nucl.
Instrum. Methods A 462, 152 (2001). https://doi.org/10.1016/
S0168-9002(01)00089-4
42. J. Alwall et al., The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to
parton shower simulations. JHEP 07, 079 (2014). https://doi.org/
10.1007/JHEP07(2014)079.arXiv:1405.0301 [hep-ph]
43. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58,
639 (2008). https://doi.org/10.1140/epjc/s10052-008-0798-9.
arXiv:0803.0883 [hep-ph]
44. J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note.
Eur. Phys. J. C 76, 196 (2016). https://doi.org/10.1140/epjc/
s10052-016-4018-8.arXiv:1512.01178 [hep-ph]
123
153 Page 18 of 34 Eur. Phys. J. C (2025) 85:153
45. J. Bellm et al., Herwig 7.1 Release Note. (2017).
arXiv:1705.06919 [hep-ph]
46. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne,
Parton distributions in the LHC era: MMHT 2014 PDFs.
Eur. Phys. J. C 75, 204 (2015). https://doi.org/10.1140/epjc/
s10052-015-3397-6.arXiv:1412.3989 [hep-ph]
47. S. Frixione, E. Laenen, P. Motylinski, C. White, B.R. Webber,
Single-top hadroproduction in association with a Wboson. JHEP
07, 029 (2008). https://doi.org/10.1088/1126-6708/2008/07/029.
arXiv:0805.3067 [hep-ph]
48. M. Czakon, A. Mitov, Top++: a program for the calculation
of the top-pair cross-section at hadron colliders. Comput. Phys.
Commun. 185, 2930 (2014). https://doi.org/10.1016/j.cpc.2014.
06.021.arXiv:1112.5675 [hep-ph]
49. N. Kidonakis, Next-to-next-to-leading-order collinear and soft
gluon corrections for t-channel single top quark production. Phys.
Rev. D 83, 091503 (2011). https://doi.org/10.1103/PhysRevD.83.
091503.arXiv:1103.2792 [hep-ph]
50. N. Kidonakis, Next-to-next-to-leading logarithm resummation
for s-channel single top quark production. Phys. Rev. D 81,
054028 (2010). https://doi.org/10.1103/PhysRevD.81.054028.
arXiv:1001.5034 [hep-ph]
51. N. Kidonakis, Two-loop soft anomalous dimensions for sin-
gle top quark associated production with a Wor H.Phys.
Rev. D 82, 054018 (2010). https://doi.org/10.1103/PhysRevD.82.
054018.arXiv:1005.4451 [hep-ph]
52. ATLAS Collaboration, Search for the Standard Model Higgs
boson produced in association with top quarks and decaying into
b¯
bin pp collisions at s=8 TeV with the ATLAS detec-
tor. Eur. Phys. J. C 75, 349 (2015). https://doi.org/10.1140/epjc/
s10052-015-3543-1.arXiv:1503.05066 [hep-ex]
53. D. de Florian et al., Handbook of LHC Higgs cross sections: 4.
Deciphering the nature of the Higgs sector. (2017). https://doi.
org/10.23731/CYRM-2017-002.arXiv:1610.07922 [hep-ph]
54. E. Bothmann et al., Event generation with Sherpa 2.2. SciPost
Phys. 7, 034 (2019). https://doi.org/10.21468/SciPostPhys.7.3.
034.arXiv:1905.09127 [hep-ph]
55. T. Gleisberg, S. Höche, Comix, a new matrix element generator.
JHEP 12, 039 (2008). https://doi.org/10.1088/1126-6708/2008/
12/039.arXiv:0808.3674 [hep-ph]
56. F. Buccioni et al., OpenLoops 2. Eur. Phys. J. C 79,
866 (2019). https://doi.org/10.1140/epjc/s10052-019-7306-2.
arXiv:1907.13071 [hep-ph]
57. F. Cascioli, P. Maierhöfer, S. Pozzorini, Scattering amplitudes
with open loops. Phys. Rev. Lett. 108, 111601 (2012). https://doi.
org/10.1103/PhysRevLett.108.111601.arXiv:1111.5206 [hep-
ph]
58. A. Denner, S. Dittmaier, L. Hofer, Collier: a Fortran-based com-
plex one-loop library in extended regularizations. Comput. Phys.
Commun. 212, 220 (2017). https://doi.org/10.1016/j.cpc.2016.
10.013.arXiv:1604.06792 [hep-ph]
59. S. Schumann, F. Krauss, A parton shower algorithm based
on Catani–Seymour dipole factorisation. JHEP 03, 038
(2008). https://doi.org/10.1088/1126-6708/2008/03/038.
arXiv:0709.1027 [hep-ph]
60. S. Höche, F. Krauss, M. Schönherr, F. Siegert, A critical appraisal
of NLO + PS matching methods. JHEP 09, 049 (2012). https://
doi.org/10.1007/JHEP09(2012)049.arXiv:1111.1220 [hep-ph]
61. S. Höche, F. Krauss, M. Schönherr, F. Siegert, QCD matrix
elements + parton showers, the NLO case. JHEP 04, 027 (2013).
https://doi.org/10.1007/JHEP04(2013)027.arXiv:1207.5030
[hep-ph]
62. S. Catani, F. Krauss, B.R. Webber, R. Kuhn,QCD matrix elements
+ parton showers. JHEP 11, 063 (2001). https://doi.org/10.1088/
1126-6708/2001/11/063.arXiv:hep-ph/0109231
63. S. Höche, F. Krauss, S. Schumann, F. Siegert, QCD matrix ele-
ments and truncated showers. JHEP 05, 053 (2009). https://doi.
org/10.1088/1126-6708/2009/05/053.arXiv:0903.1219 [hep-ph]
64. P. Artoisenet, R. Frederix, O. Mattelaer, R. Rietkerk, Auto-
matic spin-entangled decays of heavy resonances in Monte
Carlo simulations. JHEP 03, 015 (2013). https://doi.org/10.1007/
JHEP03(2013)015.arXiv:1212.3460 [hep-ph]
65. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks,
FeynRules 2.0—a complete toolbox for tree-level phenomenol-
ogy. Comput. Phys. Commun. 185, 2250 (2014). https://doi.org/
10.1016/j.cpc.2014.04.012.arXiv:1310.1921 [hep-ph]
66. S.M. Moosavi Nejad, S. Abbaspour, R. Farashahian, Interfer-
ence effects for the top quark decays tb+W+/H+(
τ+ντ). Phys. Rev. D 99, 095012 (2019). https://doi.org/10.1103/
PhysRevD.99.095012.arXiv:1904.09680 [hep-ph]
67. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to
PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). https://
doi.org/10.1016/j.cpc.2008.01.036.arXiv:0710.3820 [hep-ph]
68. ATLAS Collaboration, The Pythia 8 A3 tune description of
ATLAS minimum bias and inelastic measurements incorporating
the Donnachie–Landshoff diffractive model, ATL-PHYS-PUB-
2016-017. (2016). https://cds.cern.ch/record/2206965
69. ATLAS Collaboration, The ATLAS Simulation Infrastructure.
Eur. Phys. J. C 70, 823 (2010). https://doi.org/10.1140/epjc/
s10052-010-1429-9.arXiv:1005.4568 [physics.ins-det]
70. S. Agostinelli et al., Geant4-a simulation toolkit. Nucl.
Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/
S0168-9002(03)01368-8
71. ATLAS Collaboration, The simulation principle and perfor-
mance of the ATLAS fast calorimeter simulation FastCaloSim,
ATL-PHYS-PUB-2010-013. (2010). https://cds.cern.ch/record/
1300517
72. ATLAS Collaboration, Performance of the ATLAS track recon-
struction algorithms in dense environments in LHC Run 2.
Eur. Phys. J. C 77, 673 (2017). https://doi.org/10.1140/epjc/
s10052-017-5225-7.arXiv:1704.07983 [hep-ex]
73. ATLAS Collaboration, Vertex reconstruction performance of the
ATLAS detector at s=13 TeV, ATL-PHYS-PUB-2015-026.
(2015). https://cds.cern.ch/record/2037717
74. ATLAS Collaboration, Electron and photon performance mea-
surements with the ATLAS detector using the 2015–2017 LHC
proton–proton collision data. JINST 14, P12006 (2019). https://
doi.org/10.1088/1748-0221/14/12/P12006.arXiv:1908.00005
[hep-ex]
75. ATLAS Collaboration, Evidence for the associated production of
the Higgs boson and a top quark pair with the ATLAS detec-
tor. Phys. Rev. D 97, 072003 (2018). https://doi.org/10.1103/
PhysRevD.97.072003.arXiv:1712.08891 [hep-ex]
76. ATLAS Collaboration, Tools for estimating fake/non-prompt lep-
ton backgrounds with the ATLAS detector at the LHC. JINST
18, T11004 (2023). https://doi.org/10.1088/1748-0221/18/11/
T11004.arXiv:2211.16178 [hep-ex]
77. ATLAS Collaboration, Muon reconstruction and identification
efficiency in ATLAS using the full Run 2 pp collision data set
at s=13 TeV. Eur. Phys. J. C 81, 578 (2021). https://doi.org/
10.1140/epjc/s10052-021-09233-2.arXiv:2012.00578 [hep-ex]
78. M. Cacciari, G.P. Salam, G. Soyez, The anti-ktjet clustering algo-
rithm. JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/
2008/04/063.arXiv:0802.1189 [hep-ph]
79. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual.
Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/
s10052-012-1896-2.arXiv:1111.6097 [hep-ph]
80. ATLAS Collaboration, Topological cell clustering in the ATLAS
calorimeters and its performance in LHC Run 1. Eur. Phys. J. C 77,
490 (2017). https://doi.org/10.1140/epjc/s10052-017-5004-5.
arXiv:1603.02934 [hep-ex]
123
Eur. Phys. J. C (2025) 85:153 Page 19 of 34 153
81. ATLAS Collaboration, Properties of jets and inputs to jet recon-
struction and calibration with the ATLAS detector using proton–
proton collisions at s=13TeV, ATL-PHYS-PUB-2015-036.
(2015). https://cds.cern.ch/record/2044564
82. ATLAS Collaboration, Jet reconstruction and performance using
particle flow with the ATLAS Detector, Eur. Phys. J. C 77
466, (2017). https://doi.org/10.1140/epjc/s10052-017-5031-2.
arXiv:1703.10485 [hep-ex]
83. ATLAS Collaboration, Jet energy scale and resolution measured
in proton–proton collisions at s=13 TeV with the ATLAS
detector. Eur. Phys. J. C 81, 689 (2021). https://doi.org/10.1140/
epjc/s10052-021-09402-3.arXiv:2007.02645 [hep-ex]
84. ATLAS Collaboration, Performance of pile-up mitigation tech-
niques for jets in pp collisions at s=8 TeV using the ATLAS
detector. Eur. Phys. J. C 76, 581 (2016). https://doi.org/10.1140/
epjc/s10052-016-4395-z.arXiv:1510.03823 [hep-ex]
85. ATLAS Collaboration, ATLAS flavour-tagging algorithms for
the LHC Run 2 pp collision dataset. Eur. Phys. J. C 83,
681 (2023). https://doi.org/10.1140/epjc/s10052-023-11699-1.
arXiv:2211.16345 [physics.data-an]
86. ATLAS Collaboration, ATLAS b-jet identification performance
and efficiency measurement with t¯
tevents in pp collisions at
s=13 TeV. Eur. Phys. J. C 79, 970 (2019). https://doi.org/10.
1140/epjc/s10052-019-7450-8.arXiv:1907.05120 [hep-ex]
87. ATLAS Collaboration, Measurement of the c-jet mistagging
efficiency in t¯
tevents using pp collision data at s=
13 TeV collected with the ATLAS detector. Eur. Phys. J. C 82,
95 (2022). https://doi.org/10.1140/epjc/s10052-021-09843-w.
arXiv:2109.10627 [hep-ex]
88. ATLAS Collaboration, Calibration of the light-flavour jet mistag-
ging efficiency of the b-tagging algorithms with Z+jets events
using 139 fb
1of ATLAS proton–proton collision data at s=
13 TeV. Eur. Phys. J. C 83, 728 (2023). https://doi.org/10.1140/
epjc/s10052-023-11736-z.arXiv:2301.06319 [hep-ex]
89. ATLASCollaboration, Measurements of WH and ZHproduction
with Higgs boson decays into bottom quarks and direct constraints
on the charm Yukawa coupling in 13TeV pp collisions with the
ATLAS detector. (2024). arXiv:2410.19611 [hep-ex]
90. ATLAS Collaboration, The performance of missing transverse
momentum reconstruction and its significance with the ATLAS
detector using 140 fb
1of s=13 TeV pp collisions. (2024).
arXiv:2402.05858 [hep-ex]
91. M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets.
JHEP 04, 005 (2008). https://doi.org/10.1088/1126-6708/2008/
04/005.arXiv:0802.1188 [hep-ph]
92. ATLAS Collaboration, Performance of the ATLAS muon trig-
gers in Run 2. JINST 15, P09015 (2020). https://doi.org/10.1088/
1748-0221/15/09/p09015.arXiv:2004.13447 [physics.ins-det]
93. ATLAS Collaboration, Performance of electron and photon
triggers in ATLAS during LHC Run 2. Eur. Phys. J. C
80, 47 (2020). https://doi.org/10.1140/epjc/s10052-019-7500-2.
arXiv:1909.00761 [hep-ex]
94. ATLAS Collaboration, Operation of the ATLAS trigger system
in Run 2. JINST 15, P10004 (2020). https://doi.org/10.1088/
1748-0221/15/10/P10004.arXiv:2007.12539 [hep-ex]
95. ATLAS Collaboration, Measurement of the t¯
tproduction cross-
section in the lepton+jets channel at s=13 TeV with the
ATLAS experiment. Phys. Lett. B 810, 135797 (2020). https://doi.
org/10.1016/j.physletb.2020.135797.arXiv:2006.13076 [hep-ex]
96. M. Czakon et al., Top-pair production at the LHC through NNLO
QCD and NLO EW. JHEP 10, 186 (2017). https://doi.org/10.
1007/JHEP10(2017)186.arXiv:1705.04105 [hep-ph]
97. C.D.F. Collaboration, A Measurement of σB(Weν) and
σB(Z0e+e)in pp collisions at s=1800 GeV. Phys. Rev.
D44, 29 (1991). https://doi.org/10.1103/PhysRevD.44.29
98. Particle Data Group, P. Zyla et al., Review of particle physics.
Prog. Theor. Exp. Phys. 2020, 083C01 (2020). https://doi.org/10.
1093/ptep/ptaa104
99. J. E. Gaiser, Charmonium spectroscopy from radiative decays of
the J and ψ, Appendix F, Ph.D. thesis (1982)
100. M. Oreglia, A Study of the Reactions ψγγψ, Appendix D,
Ph.D. thesis (1980)
101. T. Skwarnicki, A study of the radiative CASCADE transitions
between the Upsilon-Prime and Upsilon resonances, Appendix
E, Ph.D. thesis: Cracow, INP (1986)
102. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statisti-
cal Learning: Data Mining, Inference and Prediction, 2nd edn.
(Springer, Berlin, 2009)
103. T. Chen, C. Guestrin, XGBoost: a scalable tree boost-
ing system. (2016), https://doi.org/10.1145/2939672.2939785.
arXiv:1603.02754 [cs.LG]
104. J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D.D. Cox, Hyper-
opt: a Python library for model selection and hyperparameter opti-
mization. Comput. Sci. Discov. 8, 014008 (2015). https://doi.org/
10.1088/1749-4699/8/1/014008
105. ATLAS Collaboration, Measurement of the inelastic proton–
proton cross section at s=13 TeV with the ATLAS detector
at the LHC. Phys. Rev. Lett. 117, 182002 (2016). https://doi.org/
10.1103/PhysRevLett.117.182002.arXiv:1606.02625 [hep-ex]
106. ATLAS Collaboration, Studies of the muon momentum calibra-
tion and performance of the ATLAS detector with pp collisions
at s=13 TeV. Eur. Phys. J. C 83, 686 (2023). https://doi.org/
10.1140/epjc/s10052-023-11584-x.arXiv:2212.07338 [hep-ex]
107. ATLAS Collaboration, Jet energy scale measurements and
their systematic uncertainties in proton–proton collisions at
s=13 TeV with the ATLAS detector. Phys. Rev. D 96,
072002 (2017). https://doi.org/10.1103/PhysRevD.96.072002.
arXiv:1703.09665 [hep-ex]
108. ATLASCollaboration, Jet energy resolution in proton–proton col-
lisions at s=7 TeV recorded in 2010 with the ATLAS detec-
tor. Eur. Phys. J. C 73, 2306 (2013). https://doi.org/10.1140/epjc/
s10052-013-2306-0.arXiv:1210.6210 [hep-ex]
109. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distribu-
tions for the LHC. Eur. Phys. J. C 63, 189 (2009). https://doi.org/
10.1140/epjc/s10052-009-1072-5.arXiv:0901.0002 [hep-ph]
110. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties
on α_Sin global PDF analyses and implications for predicted
hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). https://doi.
org/10.1140/epjc/s10052-009-1164-2.arXiv:0905.3531 [hep-
ph]
111. M. Aliev et al., HATHOR-HAdronic Top and Heavy
quarks crOss section calculatoR. Comput. Phys. Commun.
182, 1034 (2011). https://doi.org/10.1016/j.cpc.2010.12.040.
arXiv:1007.1327 [hep-ph]
112. P. Kant et al., HatHor for single top-quark production:
updated predictions and uncertainty estimates for single top-
quark production in hadronic collisions. Comput. Phys. Com-
mun. 191, 74 (2015). https://doi.org/10.1016/j.cpc.2015.02.001.
arXiv:1406.4403 [hep-ph]
113. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schön-
herr, NLO electroweak automation and precise predictions for W
+ multijet production at the LHC. JHEP 04, 012 (2015). https://
doi.org/10.1007/JHEP04(2015)012.arXiv:1412.5157 [hep-ph]
114. ATLAS Collaboration, Modelling and computational improve-
ments to the simulation of single vector-boson plus jet processes
for the ATLAS experiment. JHEP 08, 089 (2022). https://doi.org/
10.1007/JHEP08(2022)089.arXiv:2112.09588 [hep-ex]
115. R. Barlow, C. Beeston, Fitting using finite Monte Carlo samples.
Comput. Phys. Commun. 77, 219 (1993). https://doi.org/10.1016/
0010-4655(93)90005-W
123
153 Page 20 of 34 Eur. Phys. J. C (2025) 85:153
116. K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke, Hist-
Factory: a tool for creating statistical models for use with RooFit
and RooStats. Technical report, New York U. (2012). https://cds.
cern.ch/record/1456844
117. L. Heinrich, M. Feickert, G. Stark, K. Cranmer, pyhf: pure-Python
implementation of HistFactory statistical models. J. Open Source
Softw. 6, 2823 (2021). https://doi.org/10.21105/joss.02823
118. D0 Collaboration, Determination of the width of the top quark.
Phys. Rev. Lett. 106, 022001 (2011). https://doi.org/10.1103/
PhysRevLett.106.022001.arXiv:1009.5686 [hep-ex]
119. R.D. Cousins, J.T. Linnemann, J. Tucker, Evaluation of three
methods for calculating statistical significance when incorpo-
rating a systematic uncertainty into a test of the background-
only hypothesis for a Poisson process. Nucl. Instrum. Methods
A595, 480 (2008). https://doi.org/10.1016/j.nima.2008.07.086.
arXiv:physics/0702156 [physics.data-an]
120. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formu-
lae for likelihood-based tests of new physics. Eur. Phys. J. C 71,
1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0.
arXiv:1007.1727 [physics.data-an]. [Erratum: Eur. Phys. J. C 73
(2013) 2501. 10.1140/epjc/s10052-013-2501-z]
121. A.L. Read, Presentation of search results: the CL_Stechnique. J.
Phys. G 28, 2693 (2002). https://doi.org/10.1088/0954-3899/28/
10/313
122. ATLAS Collaboration, Measurements of fiducial cross-sections
for t¯
tproduction with one or two additional b-jets in pp colli-
sions at s=8 TeV using the ATLAS detector. Eur. Phys. J. C
76, 11 (2016). https://doi.org/10.1140/epjc/s10052-015-3852-4.
arXiv:1508.06868 [hep-ex]
123. ATLASCollaboration, Measurements of inclusive and differential
fiducial cross-sections of t¯
tproduction with additional heavy-
flavour jets in proton–proton collisions at s=13 TeV with the
ATLAS detector. JHEP 04, 046 (2019). https://doi.org/10.1007/
JHEP04(2019)046.arXiv:1811.12113 [hep-ex]
124. CMS Collaboration, Measurement of the cross section for t¯
t
production with additional jets and bjets in pp collisions at
s=13 TeV. JHEP 07, 125 (2020). https://doi.org/10.1007/
JHEP07(2020)125.arXiv:2003.06467 [hep-ex]
125. ATLASCollaboration, Search for charged Higgs bosons decaying
into a top quark and a bottom quark at s=13 TeV with the
ATLAS detector. JHEP 06, 145 (2021). https://doi.org/10.1007/
JHEP06(2021)145.arXiv:2102.10076 [hep-ex]
126. ATLAS Collaboration, Measurement of the t¯
tt¯
tproduction cross
section in pp collisions at s=13 TeV with the ATLAS detector.
JHEP 11, 118 (2021). https://doi.org/10.1007/JHEP11(2021)118.
arXiv:2106.11683 [hep-ex]
127. ATLAS Collaboration, ATLAS Computing Acknowledgements,
ATL-SOFT-PUB-2023-001. (2023). https://cds.cern.ch/record/
2869272
123
Eur. Phys. J. C (2025) 85:153 Page 21 of 34 153
ATLAS Collaboration
G. Aad104 , E. Aakvaag17 , B. Abbott123 , S. Abdelhameed119a , K. Abeling56 , N.J. Abicht50 ,
S.H. Abidi30 , M. Aboelela45 , A. Aboulhorma36e , H. Abramowicz155 , H. Abreu154 , Y. Abulaiti120 ,
B.S. Acharya70a,70b,k, A. Ackermann64a , C. Adam Bourdarios4, L. Adamczyk87a , S.V. Addepalli27 ,
M.J. Addison103 , J. Adelman118 , A. Adiguzel22c , T. Adye137 , A.A. Affolder139 ,Y.Ak
40 ,M.N.Agaras
13 ,
J. Agarwala74a,74b , A. Aggarwal102 , C. Agheorghiesei28c , F. Ahmadov39,y, W.S. Ahmed106 , S. Ahuja97 ,
X. Ai63e , G. Aielli77a,77b ,A.Aikot
166 , M. Ait Tamlihat36e , B. Aitbenchikh36a , M. Akbiyik102 ,
T.P.A. Åkesson100 ,A.V.Akimov
38 , D. Akiyama171 , N.N. Akolkar25 , S. Aktas22a , K. Al Khoury42 ,
G.L. Alberghi24b , J. Albert168 , P. Albicocco54 , G.L. Albouy61 , S. Alderweireldt53 , Z.L. Alegria124 ,
M. Aleksa37 , I.N. Aleksandrov39 ,C.Alexa
28b , T. Alexopoulos10 , F. Alfonsi24b ,M.Algren
57 ,
M. Alhroob170 ,B.Ali
135 , H.M.J. Ali93 ,s,S.Ali
32 , S.W. Alibocus94 , M. Aliev34c , G. Alimonti72a ,
W. Alkakhi56 , C. Allaire67 , B.M.M. Allbrooke150 , J.S. Allen103 , J.F. Allen53 , C.A. Allendes Flores140f ,
P.P. Allport21 , A. Aloisio73a,73b , F. Alonso92 , C. Alpigiani142 , Z.M.K. Alsolami93 , M. Alvarez Estevez101 ,
A. Alvarez Fernandez102 , M. Alves Cardoso57 , M.G. Alviggi73a,73b ,M.Aly
103 , Y. Amaral Coutinho84b ,
A. Ambler106 , C. Amelung37, M. Amerl103 , C.G. Ames111 , D. Amidei108 , B. Amini55 , K.J. Amirie158 ,
S.P. Amor Dos Santos133a , K.R. Amos166 , D. Amperiadou156 ,S.An
85, V. Ananiev128 , C. Anastopoulos143 ,
T. Andeen11 , J.K. Anders37 , A.C. Anderson60 , S.Y. Andrean48a,48b , A. Andreazza72a,72b , S. Angelidakis9,
A. Angerami42 , A.V. Anisenkov38 , A. Annovi75a , C. Antel57 , E. Antipov149 , M. Antonelli54 ,
F. Anulli76a , M. Aoki85 , T. Aoki157 , M.A. Aparo150 , L. Aperio Bella49 , C. Appelt19 , A. Apyan27 ,
S.J. Arbiol Val88 , C. Arcangeletti54 , A.T.H. Arce52 , J-F. Arguin110 , S. Argyropoulos55 , J.-H. Arling49 ,
O. Arnaez4, H. Arnold149 , G. Artoni76a ,76b , H. Asada113 ,K.Asai
121 ,S.Asai
157 , N.A. Asbah37 ,
R.A. Ashby Pickering170 , K. Assamagan30 , R. Astalos29a , K.S.V. Astrand100 ,S.Atashi
162 , R.J. Atkin34a ,
M. Atkinson165, H. Atmani36f, P.A. Atmasiddha131 , K. Augsten135 , S. Auricchio73a,73b , A.D. Auriol21 ,
V.A. Austrup103 , G. Avolio37 , K. Axiotis57 , G. Azuelos110,ad , D. Babal29b , H. Bachacou138 ,
K. Bachas156,o, A. Bachiu35 , F. Backman48a,48b , A. Badea40 , T.M. Baer108 , P. Bagnaia76a,76b ,
M. Bahmani19 , D. Bahner55 ,K.Bai
126 , J.T. Baines137 , L. Baines96 , O.K. Baker175 , E. Bakos16 ,
D. Bakshi Gupta8, L.E. Balabram Filho84b , V. Balakrishnan123 , R. Balasubramanian4, E.M. Baldin38 ,
P. Balek87a , E. Ballabene24b,24a , F. Balli138 , L.M. Baltes64a , W.K. Balunas33 ,J.Balz
102 , I. Bamwidhi119b ,
E. Banas88 , M. Bandieramonte132 , A. Bandyopadhyay25 , S. Bansal25 , L. Barak155 , M. Barakat49 ,
E.L. Barberio107 , D. Barberis58a,58b , M. Barbero104 , M.Z. Barel117 , T. Barillari112 , M-S. Barisits37 ,
T. Ba rklow147 , P. Baron125 , D.A. Baron Moreno103 , A. Baroncelli63a ,A.J.Barr
129 ,J.D.Barr
98 ,
F. Barrei ro101 , J. Barreiro Guimarães da Costa14 ,U.Barron
155 , M.G. Barros Teixeira133a ,S.Barsov
38 ,
F. Bartel s64a , R. Bartoldus147 , A.E. Barton93 ,P.Bartos
29a , A. Basan102 , M. Baselga50 , A. Bassalat67 ,b,
M.J. Basso159a , S. Bataju45 ,R.Bate
167 , R.L. Bates60 , S. Batlamous101, B. Batool145 , M. Battaglia139 ,
D. Battulga19 , M. Bauce76a,76b , M. Bauer80 , P. Bauer25 , L.T. Bazzano Hurrell31 , J.B. Beacham52 ,
T. Beau130 , J.Y. Beaucamp92 , P.H. Beauchemin161 , P. Bechtle25 , H.P. Beck20,n, K. Becker170 , A.J. Beddall83 ,
V.A. Bednyakov39 ,C.P. Bee
149 , L.J. Beemster16 , T.A. Beermann37 , M. Begalli84d , M. Begel30 , A. Behera149 ,
J.K. Behr49 ,J.F.Beirer
37 , F. Beisiegel25 ,M.Belfkir
119b , G. Bella155 , L. Bellagamba24b , A. Bellerive35 ,
P. Bellos21 , K. Beloborodov38 , D. Benchekroun36a , F. Bendebba36a , Y. Benhammou155 , K.C. Benkendorfer62 ,
L. Beresford49 , M. Beretta54 , E. Bergeaas Kuutmann164 , N. Berger4, B. Bergmann135 , J. Beringer18a ,
G. Bernardi5, C. Bernius147 , F.U. Bernlochner25 , F. Bernon37 , A. Berrocal Guardia13 ,T.Berry
97 ,P.Berta
136 ,
A. Berthold51 , S. Bethke112 , A. Betti76a,76b , A.J. Bevan96 , N.K. Bhalla55 , S. Bhatta149 , D.S. Bhattacharya169 ,
P. Bhattarai147 , K.D. Bhide55 , V.S. Bhopatkar124 , R.M. Bianchi132 , G. Bianco24b,24a , O. Biebel111 ,
R. Bielski126 , M. Biglietti78a , C. S. Billingsley45, Y. Bimgdi36f , M. Bindi56 , A. Bingul22b ,C.Bini
76a,76b ,
G.A. Bird33 ,M.Birman
172 ,M.Biros
136 , S. Biryukov150 , T. Bisanz50 , E. Bisceglie44a,44b , J.P. Biswal137 ,
D. Biswas145 , I. Bloch49 ,A.Blue
60 , U. Blumenschein96 , J. Blumenthal102 , V.S. Bobrovnikov38 ,
M. Boehler55 , B. Boehm169 , D. Bogavac37 , A.G. Bogdanchikov38 , L.S. Boggia130 , C. Bohm48a ,
V. Bo i s ve r t97 , P. Bokan37 ,T.Bold
87a , M. Bomben5, M. Bona96 , M. Boonekamp138 , C. D. Booth97 ,
A. G. Borbély60 , I.S. Bordulev38 , G. Borissov93 , D. Bortoletto129 , D. Boscherini24b ,M.Bosman
13 ,
J.D. Bossio Sola37 , K. Bouaouda36a , N. Bouchhar166 , L. Boudet4, J. Boudreau132 , E.V. Bouhova-Thacker93 ,
D. Boumediene41 , R. Bouquet58a,58b , A. Boveia122 ,J.Boyd
37 ,D.Boye
30 , I.R. Boyko39 , L. Bozianu57 ,
J. Bracinik21 , N. Brahimi4, G. Brandt174 , O. Brandt33 ,F.Braren
49 ,B.Brau
105 ,J.E.Brau
126 ,
123
153 Page 22 of 34 Eur. Phys. J. C (2025) 85:153
R. Brener172 , L. Brenner117 , R. Brenner164 , S. Bressler172 , G. Brianti79a,79b , D. Britton60 , D. Britzger112 ,
I. Brock25 , R. Brock109 , G. Brooijmans42 , E.M. Brooks159b , E. Brost30 ,L.M.Brown
168 , L.E. Bruce62 ,
T.L. Bruckler129 , P.A. Bruckman de Renstrom88 , B. Brüers49 , A. Bruni24b , G. Bruni24b , M. Bruschi24b ,
N. Bruscino76a,76b , T. Buanes17 , Q. Buat142 , D. Buchin112 , A.G. Buckley60 , O. Bulekov38 , B. A. Bullard147 ,
S. Burdin94 ,C.D.Burgard
50 , A. M. Burger37 , B. Burghgrave8, O. Burlayenko55 ,J.Burleson
165 ,
J. T. P. Burr33 , J. C. Burzynski146 , E. L. Busch42 , V. Büscher102 ,P.J.Bussey
60 , J. M. Butler26 ,
C. M. Buttar60 , J. M. Butterworth98 , W. Buttinger137 , C. J. Buxo Vazquez109 , A. R. Buzykaev38 ,
S. Cabrera Urbán166 , L. Cadamuro67 , D. Caforio59 ,H.Cai
132 ,Y.Cai
14,114c ,Y.Cai
114a ,V.M.M.Cairo
37 ,
O. Cakir3a , N. Calace37 , P. Calafiura18a , G. Calderini130 , P. Calfayan69 , G. Callea60 , L. P. Caloba84b,
D. Calvet41 ,S.Calvet
41 , M. Calvetti75a,75b , R. Camacho Toro130 , S. Camarda37 , D. Camarero Munoz27 ,
P. Camarri77a,77b , M.T. Camerlingo73a,73b , D. Cameron37 , C. Camincher168 , M. Campanelli98 ,
A. Camplani43 , V. Canale73a,73b , A.C. Canbay3a , E. Canonero97 , J. Cantero166 ,Y.Cao
165 , F. Capocasa27 ,
M. Capua44b,44a , A. Carbone72a,72b , R. Cardarelli77a , J.C.J. Cardenas8, G. Carducci44a,44b ,T.Carli
37 ,
G. Carlino73a , J.I. Carlotto13 , B.T. Carlson132,p, E.M. Carlson168 ,159a , J. Carmignani94 , L. Carminati72a,72b ,
A. Carnelli138 , M. Carnesale37 , S. Caron116 , E. Carquin140f ,I.B.Carr
107 ,S.Carrá
72a , G. Carratta24a,24b ,
A.M. Carroll126 , M.P. Casado13,h, M. Caspar49 , F.L. Castillo4, L. Castillo Garcia13 , V. Castillo Gimenez166 ,
N.F. Castro133a,133e , A. Catinaccio37 ,J.R.Catmore
128 , T. Cavaliere4, V. Cavaliere30 , N. Cavalli24a,24b ,
L.J. Caviedes Betancourt23b , Y.C. Cekmecelioglu49 , E. Celebi83 , S. Cella37 , M.S. Centonze71a ,71b ,
V. Cepaitis57 ,K.Cerny
125 , A.S. Cerqueira84a ,A.Cerri
150 , L. Cerrito77a,77b , F. Cerutti18a ,B.Cervato
145 ,
A. Cervelli24b , G. Cesarini54 , S.A. Cetin83 , D. Chakraborty118 , J. Chan18a , W.Y. Chan157 , J.D. Chapman33 ,
E. Chapon138 , B. Chargeishvili153b , D.G. Charlton21 , M. Chatterjee20 , C. Chauhan136 ,Y.Che
114a ,
S. Chekanov6, S.V. Chekulaev159a , G.A. Chelkov39,a, A. Chen108 , B. Chen155 , B. Chen168 , H. Chen114a ,
H. Chen30 , J. Chen63c , J. Chen146 , M. Chen129 , S. Chen89 , S.J. Chen114a , X. Chen63c , X. Chen15,ac ,
Y. Chen63a , C.L. Cheng173 , H.C. Cheng65a , S. Cheong147 , A. Cheplakov39 , E. Cheremushkina49 ,
E. Cherepanova117 , R. Cherkaoui El Moursli36e , E. Cheu7, K. Cheung66 , L. Chevalier138 , V. Chiarella54 ,
G. Chiarelli75a , N. Chiedde104 , G. Chiodini71a , A.S. Chisholm21 , A. Chitan28b , M. Chitishvili166 ,
M.V. Chizhov39,q, K. Choi11 , Y. Chou142 , E.Y.S. Chow116 ,K.L.Chu
172 ,M.C.Chu
65a ,X.Chu
14,114c ,
Z. Chubinidze54 , J. Chudoba134 , J.J. Chwastowski88 ,D.Cieri
112 , K.M. Ciesla87a , V. Cindro95 , A. Ciocio18a ,
F. Cirotto73a,73b , Z.H. Citron172 , M. Citterio72a , D. A. Ciubotaru28b,A.Clark
57 , P.J. Clark53 ,N.ClarkeHall
98 ,
C. Clarry158 , J.M. Clavijo Columbie49 , S.E. Clawson49 , C. Clement48a,48b , Y. Coadou104 , M. Cobal70a,70c ,
A. Coccaro58b , R.F. Coelho Barrue133a , R. Coelho Lopes De Sa105 , S. Coelli72a ,B.Cole
42 , J. Collot61 ,
P. Conde Muiño133a,133g , M.P. Connell34c , S.H. Connell34c , E.I. Conroy129 , F. Conventi73a,ae , H.G. Cooke21 ,
A.M. Cooper-Sarkar129 , F.A. Corchia24a ,24b , A. Cordeiro Oudot Choi130 , L.D. Corpe41 , M. Corradi76a,76b ,
F. Corriveau106,x, A. Cortes-Gonzalez19 , M.J. Costa166 , F. Costanza4, D. Costanzo143 ,B.M.Cote
122 ,
J. Couthures4,G.Cowan
97 , K. Cranmer173 ,L.Cremer
50 , D. Cremonini24a,24b , S. Crépé-Renaudin61 ,
F. Crescioli130 , M. Cristinziani145 , M. Cristoforetti79a,79b ,V.Croft
117 , J.E. Crosby124 , G. Crosetti44a,44b ,
A. Cueto101 ,H.Cui
98 ,Z.Cui
7, W.R. Cunningham60 , F. Curcio166 ,J.R.Curran
53 , P. Czodrowski37 ,
M.J. Da Cunha Sargedas De Sousa58a,58b , J.V. Da Fonseca Pinto84b ,C.DaVia
103 , W. Dabrowski87a ,
T. Dado37 , S. Dahbi152 ,T.Dai
108 , D. Dal Santo20 , C. Dallapiccola105 ,M.Dam
43 ,G.Damen
30 ,
V. D’Amico111 ,J.Damp
102 , J.R. Dandoy35 , D. Dannheim37 , M. Danninger146 ,V.Dao
149 , G. Darbo58b ,
S.J. Das30 , F. Dattola49 ,S.DAuria
72a,72b , A. D’Avanzo73a,73b ,C.David
34a , T. Davidek136 ,I.Dawson
96 ,
H.A. Day-hall135 ,K.De
8, R. De Asmundis73a ,N.DeBiase
49 ,S.DeCastro
24a,24b , N. De Groot116 ,
P. de Jong117 ,H.DelaTorre
118 ,A.DeMaria
114a , A. De Salvo76a , U. De Sanctis77a,77b , F. De Santis71a,71b ,
A. De Santo150 , J.B. De Vivie De Regie61 , J. Debevc95 , D. V. Dedovich39, J. Degens94 , A.M. Deiana45 ,
F. Del Cors o24a,24b , J. Del Peso101 , L. Delagrange130 , F. Deliot138 , C.M. Delitzsch50 , M. Della Pietra73a,73b ,
D. Della Volpe57 , A. Dell’Acqua37 , L. Dell’Asta72a,72b , M. Delmastro4, P.A. Delsart61 , S. Demers175 ,
M. Demichev39 , S.P. Denisov38 ,L.DEramo
41 , D. Derendarz88 , F. Derue130 ,P.Dervan
94 , K. Desch25 ,
C. Deutsch25 , F.A. Di Bello58a,58b , A. Di Ciaccio77a,77b , L. Di Ciaccio4, A. Di Domenico76a,76b ,
C. Di Donato73a,73b , A. Di Girolamo37 , G. Di Gregorio37 , A. Di Luca79a,79b , B. Di Micco78a,78b ,
R. Di Nardo78a,78b , K.F. Di Petrillo40 , M. Diamantopoulou35 , F.A. Dias117 ,T.DiasDoVale
146 ,
M.A. Diaz140a,140b , F.G. Diaz Capriles25 , A.R. Didenko39 , M. Didenko166 , E.B. Diehl108 , S. Díez Cornell49 ,
C. Diez Pardos145 , C. Dimitriadi164 , A. Dimitrievska21 , J. Dingfelder25 , T. Dingley129 ,I-M.Dinu
28b ,
S.J. Dittmeier64b , F. Dittus37 ,M.Divisek
136 , B. Dixit94 ,F.Djama
104 , T. Djobava153b , C. Doglioni100,103 ,
123
Eur. Phys. J. C (2025) 85:153 Page 23 of 34 153
A. Dohnalova29a , J. Dolejsi136 , Z. Dolezal136 , K. Domijan87a , K.M. Dona40 , M. Donadelli84d , B. Dong109 ,
J. Donini41 , A. D’Onofrio73a,73b , M. D’Onofrio94 , J. Dopke137 ,A.Doria
73a , N. Dos Santos Fernandes133a ,
P. Dougan103 ,M.T.Dova
92 , A.T. Doyle60 , M.A. Draguet129 , M.P. Drescher56 , E. Dreyer172 ,
I. Drivas-koulouris10 ,M.Drnevich
120 , M. Drozdova57 ,D.Du
63a ,T.A.duPree
117 , F. Dubinin38 ,
M. Dubovsky29a , E. Duchovni172 , G. Duckeck111 , O.A. Ducu28b , D. Duda53 , A. Dudarev37 , E.R. Duden27 ,
M. D’uffizi103 , L. Duflot67 , M. Dührssen37 , I. Duminica28g , A.E. Dumitriu28b , M. Dunford64a ,
S. Dungs50 , K. Dunne48a,48b , A. Duperrin104 , H. Duran Yildiz3a , M. Düren59 , A. Durglishvili153b ,
B.L. Dwyer118 , G.I. Dyckes18a , M. Dyndal87a , B.S. Dziedzic37 , Z.O. Earnshaw150 , G.H. Eberwein129 ,
B. Eckerova29a , S. Eggebrecht56 , E. Egidio Purcino De Souza84e ,L.F.Ehrke
57 , G. Eigen17 , K. Einsweiler18a ,
T. Ekelof164 , P.A. Ekman100 , S. El Farkh36b , Y. El Ghazali63a , H. El Jarrari37 , A. El Moussaouy36a ,
V. Ellajosyula164 , M. Ellert164 , F. Ellinghaus174 , N. Ellis37 , J. Elmsheuser30 ,M.Elsawy
119a , M. Elsing37 ,
D. Emeliyanov137 , Y. Enari85 ,I.Ene
18a , S. Epari13 , P.A. Erland88 , D. Ernani Martins Neto88 , M. Errenst174 ,
M. Escalier67 , C. Escobar166 , E. Etzion155 , G. Evans133a , H. Evans69 , L.S. Evans97 , A. Ezhilov38 ,
S. Ezzarqtouni36a , F. Fabbri24a,24b , L. Fabbri24a,24b , G. Facini98 , V. Fadeyev139 , R.M. Fakhrutdinov38 ,
D. Fakoudis102 , S. Falciano76a , L.F. Falda Ulhoa Coelho37 , F. Fallavollita112 , G. Falsetti44a,44b ,
J. Faltova136 ,C.Fan
165 ,K.Y.Fan
65b ,Y.Fan
14 , Y. Fang14,114c , M. Fanti72a,72b , M. Faraj70a,70b ,
Z. Farazpay99 , A. Farbin8, A. Farilla78a , T. Farooque109 , S.M. Farrington53 , F. Fassi36e , D. Fassouliotis9,
M. Faucci Giannelli77a,77b , W.J. Fawcett33 , L. Fayard67 , P. Federic136 , P. Federicova134 , O.L. Fedin38 ,a,
M. Feickert173 , L. Feligioni104 , D.E. Fellers126 , C. Feng63b , Z. Feng117 , M.J. Fenton162 , L. Ferencz49 ,
R.A.M. Ferguson93 , S.I. Fernandez Luengo140f , P. Fernandez Martinez68 , M.J.V. Fernoux104 , J. Ferrando93 ,
A. Ferrari164 , P. Ferrari116 ,117 , R. Ferrari74a , D. Ferrere57 , C. Ferretti108 , D. Fiacco76a,76b , F. Fiedler102 ,
P. Fiedler135 , S. Filimonov38 , A. Filipˇciˇc95 , E.K. Filmer1, F. Filthaut116 , M.C.N. Fiolhais133a,133c,c,
L. Fiorini166 , W.C. Fisher109 , T. Fitschen103 , P. M. Fitzhugh138, I. Fleck145 , P. Fleischmann108 , T. Flick174 ,
M. Flores34d,aa , L.R. Flores Castillo65a , L. Flores Sanz De Acedo37 , F.M. Follega79a,79b ,N.Fomin
33 ,
J.H. Foo158 , A. Formica138 , A.C. Forti103 , E. Fortin37 , A.W. Fortman18a ,M.G.Foti
18a , L. Fountas9,i,
D. Fournier67 ,H.Fox
93 , P. Francavilla75a,75b , S. Francescato62 , S. Franchellucci57 , M. Franchini24b,24a ,
S. Franchino64a , D. Francis37, L. Franco116 , V. Franco Lima37 , L. Franconi49 , M. Franklin62 , G. Frattari27 ,
Y.Y. F r i d155 , J. Friend60 , N. Fritzsche37 , A. Froch55 , D. Froidevaux37 , J.A. Frost129 ,Y.Fu
63a ,
S. Fuenzalida Garrido140f , M. Fujimoto104 , K.Y. Fung65a , E. Furtado De Simas Filho84e , M. Furukawa157 ,
J. Fuster166 ,A.Gaa
56 , A. Gabrielli24a,24b , A. Gabrielli158 , P. Gadow37 , G. Gagliardi58a,58b ,
L.G. Gagnon18a ,S.Gaid
163 , S. Galantzan155 , J. Gallagher1, E.J. Gallas129 , B.J. Gallop137 ,K.K.Gan
122 ,
S. Ganguly157 ,Y.Gao
53 , F.M. Garay Walls140a,140b , B. Garcia30, C. García166 , A. Garcia Alonso117 ,
A.G. Garcia Caffaro175 , J.E. García Navarro166 , M. Garcia-Sciveres18a , G.L. Gardner131 , R.W. Gardner40 ,
N. Garelli161 ,D.Garg
81 ,R.B.Garg
147 ,J.M.Gargan
53 , C. A. Garner158, C.M. Garvey34a , V. K. Gassmann161,
G. Gaudio74a , V. Gautam13 , P. Gauzzi76a,76b , J. Gavranovic95 , I.L. Gavrilenko38 , A. Gavrilyuk38 ,C.Gay
167 ,
G. Gaycken126 , E.N. Gazis10 , A.A. Geanta28b ,C.M.Gee
139 ,A.Gekow
122, C. Gemme58b , M.H. Genest61 ,
A.D. Gentry115 , S. George97 , W.F. George21 , T. Geralis47 , P. Gessinger-Befurt37 , M.E. Geyik174 ,
M. Ghani170 , K. Ghorbanian96 , A. Ghosal145 , A. Ghosh162 , A. Ghosh7, B. Giacobbe24b , S. Giagu76a,76b ,
T. Giani117 , A. Giannini63a , S.M. Gibson97 , M. Gignac139 , D.T. Gil87b , A.K. Gilbert87a , B.J. Gilbert42 ,
D. Gillberg35 , G. Gilles117 , L. Ginabat130 , D.M. Gingrich2,ad , M.P. Giordani70a,70c , P.F. Giraud138 ,
G. Giugliarelli70a,70c , D. Giugni72a , F. Giuli77a,77b , I. Gkialas9,i, L.K. Gladilin38 ,C.Glasman
101 ,
G.R. Gledhill126 ,G.Glemža
49 , M. Glisic126, I. Gnesi44b ,Y.Go
30 , M. Goblirsch-Kolb37 , B. Gocke50 ,
D. Godin110, B. Gokturk22a , S. Goldfarb107 , T. Golling57 , M.G.D. Gololo34g , D. Golubkov38 , J.P. Gombas109 ,
A. Gomes133a,133b , G. Gomes Da Silva145 , A.J. Gomez Delegido166 , R. Gonçalo133a , L. Gonella21 ,
A. Gongadze153c , F. Gonnella21 , J.L. Gonski147 , R.Y. González Andana53 , S. González de la Hoz166 ,
R. Gonzalez Lopez94 , C. Gonzalez Renteria18a , M.V. Gonzalez Rodrigues49 , R. Gonzalez Suarez164 ,
S. Gonzalez-Sevilla57 , L. Goossens37 ,B.Gorini
37 ,E.Gorini
71a,71b , A. Gorišek95 , T.C. Gosart131 ,
A.T. Goshaw52 , M.I. Gostkin39 ,S.Goswami
124 , C.A. Gottardo37 ,S.A.Gotz
111 , M. Gouighri36b ,
V. Goumarre49 , A.G. Goussiou142 , N. Govender34c , R.P. Grabarczyk129 , I. Grabowska-Bold87a , K. Graham35 ,
E. Gramstad128 , S. Grancagnolo71a,71b , C.M.Grant
1,138, P.M. Gravila28f , F.G. Gravili71a,71b ,H.M.Gray
18a ,
M. Greco71a,71b , M.J. Green1, C. Grefe25 , A.S. Grefsrud17 , I.M. Gregor49 , K.T. Greif162 , P. Grenier147 ,
S. G. Grewe112, A.A. Grillo139 ,K.Grimm
32 , S. Grinstein13,t,J.-F.Grivaz
67 , E. Gross172 , J. Grosse-Knetter56 ,
L. Guan108 , J.G.R. Guerrero Rojas166 , G. Guerrieri37 , R. Gugel102 , J.A.M. Guhit108 , A. Guida19 ,
123
153 Page 24 of 34 Eur. Phys. J. C (2025) 85:153
E. Guilloton170 , S. Guindon37 ,F.Guo
14,114c ,J.Guo
63c ,L.Guo
49 ,Y.Guo
108 , A. Gupta50 , R. Gupta132 ,
S. Gurbuz25 , S.S. Gurdasani55 , G. Gustavino76a,76b , P. Gutierrez123 , L.F. Gutierrez Zagazeta131 , M. Gutsche51 ,
C. Gutschow98 , C. Gwenlan129 , C.B. Gwilliam94 , E.S. Haaland128 , A. Haas120 , M. Habedank60 ,
C. Haber18a , H.K. Hadavand8, A. Hadef51 , S. Hadzic112 , A.I. Hagan93 , J.J. Hahn145 , E.H. Haines98 ,
M. Haleem169 ,J.Haley
124 , G.D. Hallewell104 ,L.Halser
20 , K. Hamano168 , M. Hamer25 , E.J. Hampshire97 ,
J. Han63b ,L.Han
114a ,L.Han
63a ,S.Han
18a ,Y.F.Han
158 , K. Hanagaki85 , M. Hance139 , D.A. Hangal42 ,
H. Hanif146 , M.D. Hank131 , J.B. Hansen43 , P.H. Hansen43 , D. Harada57 , T. Harenberg174 , S. Harkusha38 ,
M.L. Harris105 ,Y.T.Harris
25 , J. Harrison13 , N.M. Harrison122 , P.F.Harrison
170, N.M. Hartman112 ,
N.M. Hartmann111 , R.Z. Hasan97,137 , Y. Hasegawa144 , F. Haslbeck129 , S. Hassan17 , R. Hauser109 ,
C.M. Hawkes21 , R.J. Hawkings37 , Y. Hayashi157 , D. Hayden109 , C. Hayes108 , R.L. Hayes117 , C.P. Hays129 ,
J.M. Hays96 , H.S. Hayward94 ,F.He
63a ,M.He
14,114c ,Y.He
49 ,Y.He
98 , N.B. Heatley96 , V. Hedberg100 ,
A.L. Heggelund128 , N.D. Hehir96,*, C. Heidegger55 , K.K. Heidegger55 , J. Heilman35 ,S.Heim
49 ,
T. He im18a , J.G. Heinlein131 , J.J. Heinrich126 , L. Heinrich112,ab , J. Hejbal134 ,A.Held
173 , S. Hellesund17 ,
C.M. Helling167 , S. Hellman48a,48b , R. C. W. Henderson93, L. Henkelmann33 , A. M. Henriques Correia37,
H. Herde100 , Y. Hernández Jiménez149 , L.M. Herrmann25 , T. Herrmann51 ,G.Herten
55 , R. Hertenberger111 ,
L. Hervas37 , M.E. Hesping102 , N.P. Hessey159a , J. Hessler112 , M. Hidaoui36b , N. Hidic136 , E. Hill158 ,
S.J. Hillier21 , J.R. Hinds109 , F. Hinterkeuser25 ,M.Hirose
127 ,S.Hirose
160 , D. Hirschbuehl174 ,
T.G. Hitchings103 , B. Hiti95 , J. Hobbs149 , R. Hobincu28e ,N.Hod
172 , M.C. Hodgkinson143 ,
B.H. Hodkinson129 , A. Hoecker37 , D.D. Hofer108 , J. Hofer166 ,T.Holm
25 , M. Holzbock37 ,
L.B.A.H. Hommels33 , B.P. Honan103 , J.J. Hong69 , J. Hong63c , T.M. Hong132 , B.H. Hooberman165 ,
W.H. Hopkins6, M.C. Hoppesch165 ,Y.Horii
113 , M.E. Horstmann112 ,S.Hou
152 ,A.S.Howard
95 ,
J. Howarth60 ,J.Hoya
6, M. Hrabovsky125 , A. Hrynevich49 , T. Hryn’ova4,P.J.Hsu
66 ,S.-C.Hsu
142 ,
T. Hs u67 ,M.Hu
18a ,Q.Hu
63a , S. Huang65b , X. Huang14,114c , Y. Huang143 , Y. Huang102 , Y. Huang14 ,
Z. Huang103 , Z. Hubacek135 , M. Huebner25 , F. Huegging25 , T.B. Huffman129 , M. Hufnagel Maranha De Faria84a,
C.A. Hugli49 , M. Huhtinen37 , S.K. Huiberts17 , R. Hulsken106 , N. Huseynov12,f,J.Huston
109 ,J.Huth
62 ,
R. Hyneman147 , G. Iacobucci57 , G. Iakovidis30 , L. Iconomidou-Fayard67 , J.P. Iddon37 , P. Iengo73a,73b ,
R. Iguchi157 , Y. Iiyama157 ,T.Iizawa
129 ,Y.Ikegami
85 , N. Ilic158 ,H.Imam
84c , G. Inacio Goncalves84d ,
T. Ingebretsen Carlson48a,48b , J.M. Inglis96 , G. Introzzi74a,74b , M. Iodice78a , V. Ippolito76a,76b , R.K. Irwin94 ,
M. Ishino157 , W. Islam173 , C. Issever19 , S. Istin22a,ah ,H.Ito
171 , R. Iuppa79a,79b , A. Ivina172 ,
J.M. Izen46 , V. Izzo73a , P. Jacka134 , P. Jackson1, C.S. Jagfeld111 ,G.Jain
159a ,P.Jain
49 , K. Jakobs55 ,
T. Jakoubek172 ,J.Jamieson
60 , W. Jang157 , M. Javurkova105 , P. Jawahar103 , L. Jeanty126 , J. Jejelava153a,z,
P. Jenni55,e, C.E. Jessiman35 ,C.Jia
63b ,H.Jia
167 ,J.Jia
149 ,X.Jia
14,114c ,Z.Jia
114a , C. Jiang53 ,
S. Jiggins49 , J. Jimenez Pena13 ,S.Jin
114a , A. Jinaru28b , O. Jinnouchi141 , P. Johansson143 , K.A. Johns7,
J.W. Johnson139 , F.A. Jolly49 , D.M. Jones150 , E. Jones49 , K. S. Jones8, P. Jones33 , R.W.L. Jones93 ,
T.J. Jones94 , H.L. Joos56 ,37 , R. Joshi122 , J. Jovicevic16 ,X.Ju
18a , J.J. Junggeburth105 , T. Junkermann64a ,
A. Juste Rozas13,t, M.K. Juzek88 , S. Kabana140e , A. Kaczmarska88 , M. Kado112 , H. Kagan122 , M. Kagan147 ,
A. Kahn131 , C. Kahra102 ,T.Kaji
157 , E. Kajomovitz154 , N. Kakati172 , I. Kalaitzidou55 , C.W. Kalderon30 ,
N.J. Kang139 ,D.Kar
34g ,K.Karava
129 , M.J. Kareem159b , E. Karentzos55 , O. Karkout117 , S.N. Karpov39 ,
Z.M. Karpova39 , V. Kartvelishvili93 , A.N. Karyukhin38 ,E.Kasimi
156 , J. Katzy49 , S. Kaur35 , K. Kawade144 ,
M.P. Kawale123 , C. Kawamoto89 , T. Kawamoto63a ,E.F.Kay
37 , F.I. Kaya161 , S. Kazakos109 , V.F. Kazanin38 ,
Y. Ke149 , J.M. Keaveney34a , R. Keeler168 , G.V. Kehris62 , J.S. Keller35 , J.J. Kempster150 , O. Kepka134 ,
B.P. Kerridge137 , S. Kersten174 , B.P. Kerševan95 , L. Keszeghova29a , S. Ketabchi Haghighat158 , R.A. Khan132 ,
A. Khanov124 , A.G. Kharlamov38 , T. Kharlamova38 , E.E. Khoda142 , M. Kholodenko133a , T.J. Khoo19 ,
G. Khoriauli169 , J. Khubua153b,*, Y.A.R. Khwaira130 , B. Kibirige34g,D.Kim
6, D.W. Kim48a,48b , Y.K. Kim40 ,
N. Kimura98 , M.K. Kingston56 , A. Kirchhoff56 ,C.Kirfel
25 ,F.Kirfel
25 ,J.Kirk
137 , A.E. Kiryunin112 ,
S. Kita160 , C. Kitsaki10 ,O.Kivernyk
25 , M. Klassen161 , C. Klein35 , L. Klein169 , M.H. Klein45 ,
S.B. Klein57 , U. Klein94 , A. Klimentov30 , T. Klioutchnikova37 , P. Kluit117 , S. Kluth112 , E. Kneringer80 ,
T.M. Knight158 , A. Knue50 , D. Kobylianskii172 , S.F. Koch129 , M. Kocian147 , P. Kodyš136 , D.M. Koeck126 ,
P.T. Koenig25 ,T.Koffas
35 , O. Kolay51 , I. Koletsou4, T. Komarek88 , K. Köneke55 , A.X.Y. Kong1,
T. Kono121 , N. Konstantinidis98 , P. Kontaxakis57 , B. Konya100 , R. Kopeliansky42 , S. Koperny87a ,
K. Korcyl88 , K. Kordas156,d,A.Korn
98 ,S.Korn
56 , I. Korolkov13 , N. Korotkova38 , B. Kortman117 ,
O. Kortner112 , S. Kortner112 , W.H. Kostecka118 , V.V. Kostyukhin145 , A. Kotsokechagia37 ,A.Kotwal
52 ,
A. Koulouris37 , A. Kourkoumeli-Charalampidi74a,74b , C. Kourkoumelis9, E. Kourlitis112,ab , O. Kovanda126 ,
123
Eur. Phys. J. C (2025) 85:153 Page 25 of 34 153
R. Kowalewski168 , W. Kozanecki126 , A.S. Kozhin38 , V.A. Kramarenko38 , G. Kramberger95 ,P.Kramer
102 ,
M.W. Krasny130 , A. Krasznahorkay37 , A.C. Kraus118 , J.W. Kraus174 ,J.A.Kremer
49 , T. Kresse51 ,
L. Kretschmann174 , J. Kretzschmar94 , K. Kreul19 , P. Krieger158 ,M. Krivos
136 , K. Krizka21 , K. Kroeninger50 ,
H. Kroha112 ,J.Kroll
134 ,J.Kroll
131 , K.S. Krowpman109 , U. Kruchonak39 , H. Krüger25 , N. Krumnack82,
M.C. Kruse52 , O. Kuchinskaia38 , S. Kuday3a , S. Kuehn37 , R. Kuesters55 , T. Kuhl49 , V. Kukhtin39 ,
Y. Kulchitsky38,a, S. Kuleshov140b,140d , M. Kumar34g , N. Kumari49 , P. Kumari159b , A. Kupco134 , T. Kupfer50,
A. Kupich38 , O. Kuprash55 , H. Kurashige86 , L.L. Kurchaninov159a , O. Kurdysh67 , Y.A. Kurochkin38 ,
A. Kurova38 , M. Kuze141 ,A.K.Kvam
105 , J. Kvita125 ,T.Kwan
106 , N.G. Kyriacou108 , L.A.O. Laatu104 ,
C. Lacasta166 , F. Lacava76a,76b , H. Lacker19 , D. Lacour130 ,N.N.Lad
98 , E. Ladygin39 , A. Lafarge41 ,
B. Laforge130 , T. Lagouri175 , F.Z. Lahbabi36a ,S.Lai
56 , J.E. Lambert168 , S. Lammers69 , W. Lampl7,
C. Lampoudis156,d, G. Lamprinoudis102 , A.N. Lancaster118 , E. Lançon30 , U. Landgraf55 , M.P.J. Landon96 ,
V.S. Lang55 , O.K.B. Langrekken128 , A.J. Lankford162 , F. Lanni37 , K. Lantzsch25 , A. Lanza74a ,
M. Lanzac Berrocal166 , J.F. Laporte138 ,T.Lari
72a , F. Lasagni Manghi24b , M. Lassnig37 , V. Latonova134 ,
A. Laurier154 , S.D. Lawlor143 , Z. Lawrence103 , R. Lazaridou170, M. Lazzaroni72a,72b ,B.Le
103, H.D.M. Le109 ,
E.M. Le Boulicaut175 , L.T. Le Pottier18a , B. Leban24a,24b , A. Lebedev82 , M. LeBlanc103 , F. Ledroit-Guillon61 ,
S.C. Lee152 ,S.Lee
48a,48b ,T.F.Lee
94 , L.L. Leeuw34c , H.P. Lefebvre97 , M. Lefebvre168 , C. Leggett18a ,
G. Lehmann Miotto37 , M. Leigh57 , W.A. Leight105 , W. Leinonen116 ,A.Leisos
156,r, M.A.L. Leite84c ,
C.E. Leitgeb19 , R. Leitner136 , K.J.C. Leney45 , T. Lenz25 , S. Leone75a , C. Leonidopoulos53 , A. Leopold148 ,
R. Les109 , C.G. Lester33 , M. Levchenko38 , J. Levêque4, L.J. Levinson172 ,G.Levrini
24a,24b , M.P. Lewicki88 ,
C. Lewis142 , D.J. Lewis4, L. Lewitt143 ,A.Li
30 ,B.Li
63b ,C.Li
63a,C-Q.Li
112 ,H.Li
63a ,H.Li
63b ,
H. Li114a ,H.Li
15 ,H.Li
63b ,J.Li
63c ,K.Li
14 ,L.Li
63c ,M.Li
14,114c ,S.Li
14,114c ,S.Li
63c,63d ,
T. Li 5,X.Li
106 ,Z.Li
157 ,Z.Li
14,114c ,Z.Li
63a , S. Liang14,114c , Z. Liang14 , M. Liberatore138 ,
B. Liberti77a ,K.Lie
65c , J. Lieber Marin84e ,H.Lien
69 ,H.Lin
108 ,K.Lin
109 , R.E. Lindley7, J.H. Lindon2,
J. Ling62 , E. Lipeles131 , A. Lipniacka17 , A. Lister167 , J.D. Little69 ,B.Liu
14 , B.X. Liu114b ,D.Liu
63c,63d ,
E.H.L. Liu21 , J.B. Liu63a , J.K.K. Liu33 ,K.Liu
63d ,K.Liu
63c,63d ,M.Liu
63a , M.Y. Liu63a ,P.Liu
14 ,
Q. Liu63c,63d,142 ,X.Liu
63a ,X.Liu
63b ,Y.Liu
114b,114c , Y.L. Liu63b , Y.W. Liu63a , S.L. Lloyd96 ,
E.M. Lobodzinska49 , P. Loch7, E. Lodhi158 , T. Lohse19 , K. Lohwasser143 , E. Loiacono49 , M. Lokajicek134 ,*,
J.D. Lomas21 , J.D. Long42 , I. Longarini162 , R. Longo165 , I. Lopez Paz68 , A. Lopez Solis49 ,
N.A. Lopez-canelas7, N. Lorenzo Martinez4,A.M.Lory
111 , M. Losada119a , G. Löschcke Centeno150 ,
O. Loseva38 ,X.Lou
48a,48b ,X.Lou
14,114c , A. Lounis67 , P.A. Love93 ,G.Lu
14,114c ,M.Lu
67 ,S.Lu
131 ,
Y.J . L u 66 , H.J. Lubatti142 , C. Luci76a,76b , F.L. Lucio Alves114a , F. Luehring69 , O. Lukianchuk67 ,
B.S. Lunday131 , O. Lundberg148 , B. Lund-Jensen148,*, N.A. Luongo6,M.S.Lutz
37 ,A.B.Lux
26 , D. Lynn30 ,
R. Lysak134 ,E.Lytken
100 , V. Lyubushkin39 , T. Lyubushkina39 , M.M. Lyukova149 , M.Firdaus M. Soberi53 ,
H. Ma30 ,K.Ma
63a ,L.L.Ma
63b ,W.Ma
63a ,Y.Ma
124 , J.C. MacDonald102 , P.C. Machado De Abreu Farias84e ,
R. Madar41 , T. Madula98 , J. Maeda86 , T. Maeno30 , H. Maguire143 , V. Maiboroda138 ,A.Maio
133a,133b,133d ,
K. Maj87a , O. Majersky49 ,S.Majewski
126 , N. Makovec67 , V. Maksimovic16 , B. Malaescu130 ,
Pa. Malecki88 , V.P. Maleev38 , F. Malek61,m,M.Mali
95 , D. Malito97 , U. Mallik81,*, S. Maltezos10,
S. Malyukov39, J. Mamuzic13 , G. Mancini54 , M.N. Mancini27 , G. Manco74a,74b , J.P. Mandalia96 ,
S.S. Mandarry150 , I. Mandi´c95 , L. Manhaes de Andrade Filho84a , I.M. Maniatis172 , J. Manjarres Ramos91 ,
D.C. Mankad172 , A. Mann111 , S. Manzoni37 ,L.Mao
63c , X. Mapekula34c , A. Marantis156,r, G. Marchiori5,
M. Marcisovsky134 , C. Marcon72a , M. Marinescu21 ,S.Marium
49 , M. Marjanovic123 , A. Markhoos55 ,
M. Markovitch67 , E.J. Marshall93 , Z. Marshall18a , S. Marti-Garcia166 , J. Martin98 , T.A. Martin137 ,
V.J. Martin53 , B. Martin dit Latour17 , L. Martinelli76a ,76b , M. Martinez13 ,t, P. Martinez Agullo166 ,
V.I. Martinez Outschoorn105 , P. Martinez Suarez13 , S. Martin-Haugh137 , G. Martinovicova136 , V.S. Martoiu28b ,
A.C. Martyniuk98 , A. Marzin37 , D. Mascione79a ,79b , L. Masetti102 ,J.Masik
103 , A.L. Maslennikov38 ,
S.L. Mason42 , P. Massarotti73a,73b , P. Mastrandrea75a,75b , A. Mastroberardino44a,44b , T. Masubuchi127 ,
T.T. M athew126 , T. Mathisen164 , J. Matousek136 , D.M. Mattern50 , J. Maurer28b , T. Maurin60 ,
A.J. Maury67 ,B.Maˇcek95 , D.A. Maximov38 ,A.E.May
103 , R. Mazini152 , I. Maznas118 , M. Mazza109 ,
S.M. Mazza139 , E. Mazzeo72a,72b ,C.McGinn
30 ,J.P.McGowan
168 ,S.P.McKee
108 , C.A. Mc Lean6,
C.C. McCracken167 , E.F. McDonald107 , A.E. McDougall117 , J.A. Mcfayden150 , R.P. McGovern131 ,
R.P. Mckenzie34g , T.C. Mclachlan49 , D.J. Mclaughlin98 , S.J. McMahon137 , C.M. Mcpartland94 ,
R.A. McPherson168,x, S. Mehlhase111 , A. Mehta94 , D. Melini166 , B.R. Mellado Garcia34g ,A.H.Melo
56 ,
F. Meloni49 , A.M. Mendes Jacques Da Costa103 , H.Y. Meng158 , L. Meng93 , S. Menke112 , M. Mentink37 ,
123
153 Page 26 of 34 Eur. Phys. J. C (2025) 85:153
E. Meoni44a,44b , G. Mercado118 , S. Merianos156 , C. Merlassino70a,70c , L. Merola73a,73b , C. Meroni72a ,72b ,
J. Metcalfe6,A.S.Mete
6, E. Meuser102 , C. Meyer69 , J-P. Meyer138 , R.P. Middleton137 , L. Mijovi´c53 ,
G. Mikenberg172 , M. Mikestikova134 , M. Mikuž95 , H. Mildner102 , A. Milic37 , D.W. Miller40 , E.H. Miller147 ,
L.S. Miller35 , A. Milov172 , D.A.Milstead
48a,48b,T.Min
114a, A.A. Minaenko38 , I.A. Minashvili153b ,
L. Mince60 , A.I. Mincer120 , B. Mindur87a , M. Mineev39 ,Y.Mino
89 , L.M. Mir13 , M. Miralles Lopez60 ,
M. Mironova18a , M.C. Missio116 , A. Mitra170 , V.A. Mitsou166 , Y. Mitsumori113 ,O.Miu
158 ,
P.S. Miyagawa96 , T. Mkrtchyan64a , M. Mlinarevic98 , T. Mlinarevic98 , M. Mlynarikova37 , S. Mobius20 ,
P. Mogg111 , M.H. Mohamed Farook115 , A.F. Mohammed14,114c , S. Mohapatra42 , G. Mokgatitswane34g ,
L. Moleri172 , B. Mondal145 , S. Mondal135 , K. Mönig49 , E. Monnier104 , L. Monsonis Romero166 ,
J. Montejo Berlingen13 , A. Montella48a,48b , M. Montella122 , F. Montereali78a,78b , F. Monticelli92 ,
S. Monzani70a,70c , A. Morancho Tarda43 , N. Morange67 , A.L. Moreira De Carvalho49 , M. Moreno Llácer166 ,
C. Moreno Martinez57 , J. M. Moreno Perez23b, P. Morettini58b , S. Morgenstern37 ,M.Morii
62 , M. Morinaga157 ,
M. Moritsu90 , F. Morodei76a,76b , P. Moschovakos37 , B. Moser129 , M. Mosidze153b , T. Moskalets45 ,
P. Moskvitina116 ,J.Moss
32,j, P. Moszkowicz87a , A. Moussa36d , E.J.W. Moyse105 , O. Mtintsilana34g ,
S. Muanza104 , J. Mueller132 , D. Muenstermann93 , R. Müller37 , G.A. Mullier164 , A. J. Mullin33 ,
J. J. Mullin131,A.E.Mulski
62 , D.P. Mungo158 , D. Munoz Perez166 , F.J. Munoz Sanchez103 ,M.Murin
103 ,
W.J. Murray170,137 , M. Muškinja95 ,C.Mwewa
30 , A.G. Myagkov38,a, A.J. Myers8, G. Myers108 ,
M. Myska135 , B.P. Nachman18a , O. Nackenhorst50 , K. Nagai129 , K. Nagano85 , R. Nagasaka157,
J.L. Nagle30,af , E. Nagy104 ,A.M.Nairz
37 , Y. Nakahama85 , K. Nakamura85 , K. Nakkalil5, H. Nanjo127 ,
E.A. Narayanan45 , I. Naryshkin38 , L. Nasella72a,72b , M. Naseri35 , S. Nasri119b ,C.Nass
25 , G. Navarro23a ,
J. Navarro-Gonzalez166 , R. Nayak155 , A. Nayaz19 , P.Y. Nechaeva38 , S. Nechaeva24b,24a , F. Nechansky134 ,
L. Nedic129 , T.J. Neep21 ,A.Negri
74a,74b ,M.Negrini
24b , C. Nellist117 ,C.Nelson
106 ,K.Nelson
108 ,
S. Nemecek134 , M. Nessi37,g, M.S. Neubauer165 , F. Neuhaus102 , J. Neundorf49 ,J.Newell
94 , P.R. Newman21 ,
C.W. Ng132 , Y.W.Y. Ng49 ,B.Ngair
119a , H.D.N. Nguyen110 , R.B. Nickerson129 , R. Nicolaidou138 ,
J. Nielsen139 , M. Niemeyer56 , J. Niermann56 , N. Nikiforou37 , V. Nikolaenko38,a, I. Nikolic-Audit130 ,
K. Nikolopoulos21 , P. Nilsson30 , I. Ninca49 , G. Ninio155 ,A.Nisati
76a ,N.Nishu
2, R. Nisius112 ,J-
E. Nitschke51 , E.K. Nkadimeng34g , T. Nobe157 , T. Nommensen151 , M.B. Norfolk143 ,B.J.Norman
35 ,
M. Noury36a ,J.Novak
95 ,T.Novak
95 , L. Novotny135 , R. Novotny115 , L. Nozka125 , K. Ntekas162 ,
N.M.J. Nunes De Moura Junior84b , J. Ocariz130 , A. Ochi86 , I. Ochoa133a , S. Oerdek49,u, J.T. Offermann40 ,
A. Ogrodnik136 ,A.Oh
103 ,C.C.Ohm
148 ,H.Oide
85 ,R.Oishi
157 , M.L. Ojeda37 , Y. Okumura157 ,
L.F. Oleiro Seabra133a , I. Oleksiyuk57 , S.A. Olivares Pino140d , G. Oliveira Correa13 , D. Oliveira Damazio30 ,
J.L. Oliver162 , Ö.O. Öncel55 , A.P. O’Neill20 , A. Onofre133a ,133e , P.U.E. Onyisi11 , M.J. Oreglia40 ,
G.E. Orellana92 , D. Orestano78a,78b , N. Orlando13 ,R.S.Orr
158 , L.M. Osojnak131 , R. Ospanov63a ,
Y. Os u m i113, G. Otero y Garzon31 , H. Otono90 , P.S. Ott64a , G.J. Ottino18a , M. Ouchrif36d , F. Ould-Saada128 ,
T. Ovsiannikova142 , M. Owen60 , R.E. Owen137 , V.E. Ozcan22a , F. Ozturk88 , N. Ozturk8, S. Ozturk83 ,
H.A. Pacey129 , A. Pacheco Pages13 , C. Padilla Aranda13 , G. Padovano76a,76b , S. Pagan Griso18a ,
G. Palacino69 , A. Palazzo71a,71b , J. Pampel25 ,J.Pan
175 ,T.Pan
65a , D.K. Panchal11 , C.E. Pandini117 ,
J.G. Panduro Vazquez137 , H.D. Pandya1, H. Pang15 , P. Pani49 , G. Panizzo70a,70c , L. Panwar130 ,
L. Paolozzi57 , S. Parajuli165 , A. Paramonov6, C. Paraskevopoulos54 , D. Paredes Hernandez65b , A. Pareti74a,74b ,
K.R. Park42 ,T.H.Park
158 ,M.A.Parker
33 , F. Parodi58a,58b ,E.W.Parrish
118 , V.A. Parrish53 , J.A. Parsons42 ,
U. Parzefall55 , B. Pascual Dias110 , L. Pascual Dominguez101 , E. Pasqualucci76a , S. Passaggio58b ,F.Pastore
97 ,
P. Patel88 , U.M. Patel52 , J.R. Pater103 , T. Pauly37 , F. Pauwels136 , C.I. Pazos161 , M. Pedersen128 ,
R. Pedro133a , S.V. Peleganchuk38 , O. Penc37 , E.A. Pender53 , S. Peng15 , G.D. Penn175 , K.E. Penski111 ,
M. Penzin38 , B.S. Peralva84d , A.P. Pereira Peixoto142 , L. Pereira Sanchez147 , D.V. Perepelitsa30,af ,
G. Perera105 , E. Perez Codina159a , M. Perganti10 , H. Pernegger37 , S. Perrella76a,76b , O. Perrin41 ,
K. Peters49 , R.F.Y. Peters103 , B.A. Petersen37 , T.C. Petersen43 , E. Petit104 , V. Petousis135 , C. Petridou156,d,
T. Petru136 , A. Petrukhin145 , M. Pettee18a , A. Petukhov38 , K. Petukhova37 , R. Pezoa140f , L. Pezzotti37 ,
G. Pezzullo175 , A.J. Pfleger37 , T.M. Pham173 , T. Pham107 , P.W. Phillips137 , G. Piacquadio149 , E. Pianori18a ,
F. Piazza126 , R. Piegaia31 , D. Pietreanu28b , A.D. Pilkington103 , M. Pinamonti70a,70c , J.L. Pinfold2,
B.C. Pinheiro Pereira133a , J. Pinol Bel13 , A.E. Pinto Pinoargote138 , L. Pintucci70a,70c , K.M. Piper150 ,
A. Pirttikoski57 , D.A. Pizzi35 , L. Pizzimento65b , A. Pizzini117 , M.-A. Pleier30 ,V.Pleskot
136 , E. Plotnikova39,
G. Poddar96 , R. Poettgen100 , L. Poggioli130 , I. Pokharel56 , S. Polacek136 , G. Polesello74a , A. Poley146,159a ,
A. Polini24b , C.S. Pollard170 , Z.B. Pollock122 , E. Pompa Pacchi76a,76b , N.I. Pond98 , D. Ponomarenko69 ,
123
Eur. Phys. J. C (2025) 85:153 Page 27 of 34 153
L. Pontecorvo37 , S. Popa28a , G.A. Popeneciu28d , A. Poreba37 , D.M. Portillo Quintero159a , S. Pospisil135 ,
M.A. Postill143 , P. Postolache28c , K. Potamianos170 , P.A. Potepa87a , I.N. Potrap39 , C.J. Potter33 , H. Potti151 ,
J. Poveda166 , M.E. Pozo Astigarraga37 , A. Prades Ibanez77a,77b ,J.Pretel
168 ,D.Price
103 ,M.Primavera
71a ,
L. Primomo70a,70c , M.A. Principe Martin101 , R. Privara125 , T. Procter60 , M.L. Proffitt142 , N. Proklova131 ,
K. Prokofiev65c ,G.Proto
112 , J. Proudfoot6, M. Przybycien87a , W.W. Przygoda87b , A. Psallidas47 ,
J.E. Puddefoot143 , D. Pudzha55 , D. Pyatiizbyantseva38 ,J.Qian
108 , D. Qichen103 ,Y.Qin
13 ,T.Qiu
53 ,
A. Quadt56 , M. Queitsch-Maitland103 , G. Quetant57 , R.P. Quinn167 , G. Rabanal Bolanos62 , D. Rafanoharana55 ,
F. Raffaeli77a,77b , F. Ragusa72a,72b , J.L. Rainbolt40 , J.A. Raine57 , S. Rajagopalan30 , E. Ramakoti38 ,
L. Rambelli58b,58a , I.A. Ramirez-Berend35 ,K.Ran
49,114c , D.S. Rankin131 , N.P. Rapheeha34g , H. Rasheed28b ,
V. Ra s k in a 130 , D.F. Rassloff64a , A. Rastogi18a ,S.Rave
102 ,S.Ravera
58b,58a ,B.Ravina
56 , I. Ravinovich172 ,
M. Raymond37 , A.L. Read128 , N.P. Readioff143 , D.M. Rebuzzi74a ,74b , G. Redlinger30 , A.S. Reed112 ,
K. Reeves27 , J.A. Reidelsturz174 , D. Reikher126 ,A.Rej
50 , C. Rembser37 , M. Renda28b , F. Renner49 ,
A.G. Rennie162 , A.L. Rescia49 , S. Resconi72a , M. Ressegotti58b,58a , S. Rettie37 , J.G. Reyes Rivera109 ,
E. Reynolds18a , O.L. Rezanova38 , P. Reznicek136 , H. Riani36d , N. Ribaric52 , E. Ricci79a ,79b ,
R. Richter112 , S. Richter48a,48b , E. Richter-Was87b , M. Ridel130 , S. Ridouani36d , P. Rieck120 , P. Riedler37 ,
E.M. Riefel48a,48b , J.O. Rieger117 , M. Rijssenbeek149 , M. Rimoldi37 , L. Rinaldi24b,24a , P. Rincke56,164 ,
T.T. R inn30 , M.P. Rinnagel111 , G. Ripellino164 ,I.Riu
13 , J.C. Rivera Vergara168 , F. Rizatdinova124 ,
E. Rizvi96 , B.R. Roberts18a , S.S. Roberts139 , S.H. Robertson106,x, D. Robinson33 , M. Robles Manzano102 ,
A. Robson60 , A. Rocchi77a,77b , C. Roda75a,75b , S. Rodriguez Bosca37 , Y. Rodriguez Garcia23a ,
A. Rodriguez Rodriguez55 , A.M. Rodríguez Vera118 ,S.Roe
37, J.T. Roemer37 , A.R. Roepe-Gier139 , O. Røhne128 ,
R.A. Rojas105 , C.P.A. Roland130 , J. Roloff30 , A. Romaniouk80 , E. Romano74a,74b , M. Romano24b ,
A.C. Romero Hernandez165 , N. Rompotis94 , L. Roos130 , S. Rosati76a , B.J. Rosser40 , E. Rossi129 ,
E. Rossi73a,73b , L.P. Rossi62 , L. Rossini55 ,R.Rosten
122 , M. Rotaru28b , B. Rottler55 , C. Rougier91 ,
D. Rousseau67 , D. Rousso49 ,A.Roy
165 , S. Roy-Garand158 , A. Rozanov104 , Z.M.A. Rozario60 , Y. Rozen154 ,
A. Rubio Jimenez166 , A.J. Ruby94 , V.H. Ruelas Rivera19 , T.A. Ruggeri1, A. Ruggiero129 , A. Ruiz-Martinez166 ,
A. Rummler37 ,Z.Rurikova
55 , N.A. Rusakovich39 , H.L. Russell168 , G. Russo76a,76b , J.P. Rutherfoord7,
S. Rutherford Colmenares33 , M. Rybar136 ,E.B.Rye
128 , A. Ryzhov45 , J.A. Sabater Iglesias57 ,H.F-
W. Sadrozinski139 , F. Safai Tehrani76a , B. Safarzadeh Samani137 , S. Saha1, M. Sahinsoy83 , A. Saibel166 ,
M. Saimpert138 , M. Saito157 , T. Saito157 , A. Sala72a,72b , D. Salamani37 , A. Salnikov147 , J. Salt166 ,
A. Salvador Salas155 , D. Salvatore44a,44b , F. Salvatore150 , A. Salzburger37 , D. Sammel55 , E. Sampson93 ,
D. Sampsonidis156,d, D. Sampsonidou126 , J. Sánchez166 , V. Sanchez Sebastian166 , H. Sandaker128 ,
C.O. Sander49 , J.A. Sandesara105 , M. Sandhoff174 , C. Sandoval23b , L. Sanfilippo64a , D.P.C. Sankey137 ,
T. Sano89 , A. Sansoni54 , L. Santi37 ,76b , C. Santoni41 , H. Santos133a,133b , A. Santra172 , E. Sanzani24a,24b ,
K.A. Saoucha163 , J.G. Saraiva133a,133d , J. Sardain7, O. Sasaki85 , K. Sato160 , C. Sauer64b, E. Sauvan4,
P. Sava r d 158 ,ad , R. Sawada157 , C. Sawyer137 , L. Sawyer99 , C. Sbarra24b , A. Sbrizzi24a ,24b , T. Scanlon98 ,
J. Schaarschmidt142 , U. Schäfer102 , A.C. Schaffer45,67 , D. Schaile111 , R.D. Schamberger149 , C. Scharf19 ,
M.M. Schefer20 , V.A. Schegelsky38 , D. Scheirich136 , M. Schernau162 , C. Scheulen56 , C. Schiavi58a,58b ,
M. Schioppa44a,44b , B. Schlag147 , S. Schlenker37 , J. Schmeing174 , M.A. Schmidt174 , K. Schmieden102 ,
C. Schmitt102 , N. Schmitt102 , S. Schmitt49 , L. Schoeffel138 , A. Schoening64b , P.G. Scholer35 , E. Schopf129 ,
M. Schott25 , J. Schovancova37 , S. Schramm57 , T. Schroer57 , H-C. Schultz-Coulon64a , M. Schumacher55 ,
B.A. Schumm139 , Ph. Schune138 , A.J. Schuy142 , H.R. Schwartz139 , A. Schwartzman147 , T.A. Schwarz108 ,
Ph. Schwemling138 , R. Schwienhorst109 , F.G. Sciacca20 , A. Sciandra30 , G. Sciolla27 , F. Scuri75a ,
C.D. Sebastiani94 , K. Sedlaczek118 , S.C. Seidel115 , A. Seiden139 , B.D. Seidlitz42 , C. Seitz49 , J.M. Seixas84b ,
G. Sekhniaidze73a , L. Selem61 , N. Semprini-Cesari24a ,24b , D. Sengupta57 , V. Senthilkumar166 , L. Serin67 ,
M. Sessa77a,77b ,H.Severini
123 ,F.Sforza
58a,58b , A. Sfyrla57 , Q. Sha14 , E. Shabalina56 , A.H. Shah33 ,
R. Shaheen148 , J.D. Shahinian131 , D. Shaked Renous172 , L.Y. Shan14 , M. Shapiro18a , A. Sharma37 ,
A.S. Sharma167 , P. Sharma81 , P.B. Shatalov38 , K. Shaw150 , S.M. Shaw103 , Q. Shen63c , D.J. Sheppard146 ,
P. Sherwood98 , L. Shi98 , X. Shi14 , S. Shimizu85 , C.O. Shimmin175 , J.D. Shinner97 , I.P.J. Shipsey129,*,
S. Shirabe90 , M. Shiyakova39,v, M.J. Shochet40 , D.R. Shope128 , B. Shrestha123 , S. Shrestha122,ag ,
I. Shreyber38 , M.J. Shroff168 , P. Sicho134 , A.M. Sickles165 , E. Sideras Haddad34g , A.C. Sidley117 ,
A. Sidoti24b , F. Siegert51 , Dj. Sijacki16 , F. Sili92 , J.M. Silva53 , I. Silva Ferreira84b , M.V. Silva Oliveira30 ,
S.B. Silverstein48a , S. Simion67, R. Simoniello37 , E.L. Simpson103 , H. Simpson150 , L.R. Simpson108 ,
S. Simsek83 , S. Sindhu56 , P. Sinervo158 , S. Singh158 , S. Sinha49 , S. Sinha103 , M. Sioli24a,24b ,I.Siral
37 ,
123
153 Page 28 of 34 Eur. Phys. J. C (2025) 85:153
E. Sitnikova49 , J. Sjölin48a,48b , A. Skaf56 ,E.Skorda
21 , P. Skubic123 , M. Slawinska88 , V. Smakhtin172,
B.H. Smart137 , S.Yu. Smirnov38 ,Y.Smirnov
38 ,L.N.Smirnova
38,a,O.Smirnova
100 , A.C. Smith42 ,
D. R. Smith162, E.A. Smith40 , J.L. Smith103 , R. Smith147, M. Smizanska93 ,K.Smolek
135 , A.A. Snesarev38 ,
H.L. Snoek117 , S. Snyder30 , R. Sobie168,x, A. Soffer155 , C.A. Solans Sanchez37 , E.Yu. Soldatov38 ,
U. Soldevila166 , A.A. Solodkov38 , S. Solomon27 , A. Soloshenko39 , K. Solovieva55 , O.V. Solovyanov41 ,
P. Sommer51 , A. Sonay13 , W.Y. Song159b , A. Sopczak135 , A.L. Sopio53 , F. Sopkova29b , J.D. Sorenson115 ,
I.R. Sotarriva Alvarez141 , V. Sothilingam64a, O.J. Soto Sandoval140c,140b , S. Sottocornola69 , R. Soualah163 ,
Z. Soumaimi36e , D. South49 , N. Soybelman172 , S. Spagnolo71a,71b , M. Spalla112 , D. Sperlich55 ,
G. Spigo37 , B. Spisso73a,73b , D.P. Spiteri60 , M. Spousta136 , E.J. Staats35 ,R.Stamen
64a , A. Stampekis21 ,
E. Stanecka88 , W. Stanek-Maslouska49 , M.V. Stange51 , B. Stanislaus18a , M.M. Stanitzki49 , B. Stapf49 ,
E.A. Starchenko38 , G.H. Stark139 ,J.Stark
91 , P. Staroba134 , P. Starovoitov64a ,S.Stärz
106 , R. Staszewski88 ,
G. Stavropoulos47 ,A.Ste
37 , P. Steinberg30 , B. Stelzer146,159a , H.J. Stelzer132 , O. Stelzer-Chilton159a ,
H. Stenzel59 , T.J. Stevenson150 , G.A. Stewart37 , J.R. Stewart124 , M.C. Stockton37 , G. Stoicea28b ,
M. Stolarski133a , S. Stonjek112 , A. Straessner51 , J. Strandberg148 , S. Strandberg48a,48b , M. Stratmann174 ,
M. Strauss123 , T. Strebler104 , P. Strizenec29b , R. Ströhmer169 , D.M. Strom126 , R. Stroynowski45 ,
A. Strubig48a,48b , S.A. Stucci30 , B. Stugu17 , J. Stupak123 , N.A. Styles49 ,D.Su
147 ,S.Su
63a ,
W. Su63d ,X.Su
63a , D. Suchy29a , K. Sugizaki157 , V.V. Sulin38 , M.J. Sullivan94 , D.M.S. Sultan129 ,
L. Sultanaliyeva38 , S. Sultansoy3b , T. Sumida89 , S. Sun173 , O. Sunneborn Gudnadottir164 , N. Sur104 ,
M.R. Sutton150 , H. Suzuki160 ,M.Svatos
134 , M. Swiatlowski159a , T. Swirski169 , I. Sykora29a , M. Sykora136 ,
T. Sykora136 ,D.Ta
102 , K. Tackmann49,u,A.Taffard
162 , R. Tafirout159a , J.S. Tafoya Vargas67 , Y. Takubo85 ,
M. Talby104 , A.A. Talyshev38 ,K.C.Tam
65b , N.M.Tamir
155, A. Tanaka157 , J. Tanaka157 , R. Tanaka67 ,
M. Tanasini149 ,Z.Tao
167 , S. Tapia Araya140f , S. Tapprogge102 , A. Tarek Abouelfadl Mohamed109 ,
S. Tarem154 ,K.Tariq
14 , G. Tarna28b , G.F. Tartarelli72a , M.J. Tartarin91 ,P.Tas
136 ,M.Tasevsky
134 ,
E. Tassi44a,44b ,A.C.Tate
165 , G. Tateno157 , Y. Tayalati36e,w, G.N. Taylor107 , W. Taylor159b ,
R. Teixeira De Lima147 , P. Teixeira-Dias97 , J.J. Teoh158 , K. Terashi157 ,J.Terron
101 , S. Terzo13 ,M.Testa
54 ,
R.J. Teuscher158,x, A. Thaler80 , O. Theiner57 , T. Theveneaux-Pelzer104 , O. Thielmann174 , D. W. Thomas97,
J.P. Thomas21 , E.A. Thompson18a , P.D. Thompson21 , E. Thomson131 , R.E. Thornberry45 ,C.Tian
63a ,
Y. Tian 57 , V. Tikhomirov38,a, Yu.A. Tikhonov38 , S. Timoshenko38,D.Timoshyn
136 , E.X.L. Ting1,
P. Tipton175 , A. Tishelman-Charny30 , S.H. Tlou34g , K. Todome141 , S. Todorova-Nova136 , S. Todt51,
L. Toffolin70a,70c ,M.Togawa
85 ,J.Tojo
90 , S. Tokár29a , K. Tokushuku85 , O. Toldaiev69 , M. Tomoto85,113 ,
L. Tompkins147,l, K.W. Topolnicki87b , E. Torrence126 ,H.Torres
91 , E. Torró Pastor166 , M. Toscani31 ,
C. Tosciri40 ,M.Tost
11 , D.R. Tovey143 , I.S. Trandafir28b , T. Trefzger169 , A. Tricoli30 , I.M. Trigger159a ,
S. Trincaz-Duvoid130 , D.A. Trischuk27 , B. Trocmé61 , A. Tropina39, L. Truong34c , M. Trzebinski88 ,
A. Trzupek88 ,F.Tsai
149 ,M.Tsai
108 ,A.Tsiamis
156 , P. V. Tsiareshka38, S. Tsigaridas159a , A. Tsirigotis156 ,r,
V. Tsiskaridze158 , E.G. Tskhadadze153a , M. Tsopoulou156 , Y. Tsujikawa89 , I.I. Tsukerman38 , V. Tsulaia18a ,
S. Tsuno85 ,K.Tsuri
121 , D. Tsybychev149 ,Y.Tu
65b , A. Tudorache28b , V. Tudorache28b , A.N. Tuna62 ,
S. Turchikhin58a,58b , I. Turk Cakir3a ,R.Turra
72a , T. Turtuvshin39 ,P.M.Tuts
42 , S. Tzamarias156,d,
E. Tzovara102 ,F.Ukegawa
160 , P.A. Ulloa Poblete140c,140b , E.N. Umaka30 , G. Unal37 , A. Undrus30 ,
G. Unel162 , J. Urban29b , P. Urrejola140a ,G.Usai
8, R. Ushioda141 ,M.Usman
110 , F. Ustuner53 , Z. Uysal83 ,
V. Vacek135 , B. Vachon106 , T. Vafeiadis37 , A. Vaitkus98 , C. Valderanis111 , E. Valdes Santurio48a ,48b ,
M. Valente159a , S. Valentinetti24a,24b , A. Valero166 , E. Valiente Moreno166 , A. Vallier91 , J.A. Valls Ferrer166 ,
D.R. Van Arneman117 , T.R. Van Daalen142 , A. Van Der Graaf50 , P. Van Gemmeren6, M. Van Rijnbach37 ,
S. Van Stroud98 , I. Van Vulpen117 , P. Vana136 , M. Vanadia77a,77b , U.M. Vande Voorde148 , W. Vandelli37 ,
E.R. Vandewall124 , D. Vannicola155 , L. Vannoli54 ,R.Vari
76a , E.W. Varnes7, C. Varni18b , T. Varol152 ,
D. Varouchas67 , L. Varriale166 , K.E. Varvell151 , M.E. Vasile28b , L. Vaslin85 , G.A. Vasquez168 , A. Vasyukov39 ,
L.M. Vaughan124 , R. Vavricka102, T. Vazquez Schroeder37 , J. Veatch32 , V. Vecchio103 , M.J. Veen105 ,
I. Veliscek30 , L.M. Veloce158 , F. Veloso133a ,133c , S. Veneziano76a , A. Ventura71a,71b , S. Ventura Gonzalez138 ,
A. Verbytskyi112 , M. Verducci75a,75b , C. Vergis96 , M. Verissimo De Araujo84b ,W.Verkerke
117 ,
J.C. Vermeulen117 , C. Vernieri147 , M. Vessella105 , M.C. Vetterli146,ad , A. Vgenopoulos102 , N. Viaux Maira140f ,
T. Vickey 143 , O.E. Vickey Boeriu143 , G.H.A. Viehhauser129 , L. Vigani64b ,M.Vigl
112 , M. Villa24b,24a ,
M. Villaplana Perez166 , E. M. Villhauer53, E. Vilucchi54 , M.G. Vincter35 , A. Visibile117, C. Vittori37 ,
I. Vivarelli24a,24b , E. Voevodina112 , F. Vogel111 , J.C. Voigt51 , P. Vokac135 , Yu. Volkotrub87b , E. Von Toerne25 ,
B. Vormwald37 , V. Vorobel136 , K. Vorobev38 ,M.Vos
166 ,K.Voss
145 , M. Vozak117 , L. Vozdecky123 ,
123
Eur. Phys. J. C (2025) 85:153 Page 29 of 34 153
N. Vranjes16 , M. Vranjes Milosavljevic16 , M. Vreeswijk117 ,N.K.Vu
63c,63d , R. Vuillermet37 , O. Vujinovic102 ,
I. Vukotic40 , I.K. Vyas35 , S. Wada160 , C. Wagner147, J.M. Wagner18a , W. Wagner174 , S. Wahdan174 ,
H. Wahlberg92 , J. Walder137 ,R.Walker
111 , W. Walkowiak145 ,A.Wall
131 , E.J. Wallin100 , T. Wamorkar6,
A.Z. Wang139 , C. Wang102 , C. Wang11 , H. Wang18a , J. Wang65c , P. Wang98 , R. Wang62 , R. Wang6,
S.M. Wang152 , S. Wang63b , S. Wang14 , T. Wang63a , W.T. Wang81 , W. Wang14 , X. Wang114a , X. Wang165 ,
X. Wang63c , Y. Wang63d , Y. Wang114a , Y. Wang63a , Z. Wang108 , Z. Wang52,63c,63d , Z. Wang108 ,
A. Warburton106 ,R.J.Ward
21 , N. Warrack60 , S. Waterhouse97 ,A.T.Watson
21 ,H.Watson
53 ,M.F.Watson
21 ,
E. Watton60,137 , G. Watts142 , B.M. Waugh98 , J.M. Webb55 , C. Weber30 , H.A. Weber19 , M.S. Weber20 ,
S.M. Weber64a ,C.Wei
63a ,Y.Wei
55 , A.R. Weidberg129 ,E.J.Weik
120 , J. Weingarten50 ,C.Weiser
55 ,
C.J. Wells49 , T. Wenaus30 , B. Wendland50 , T. Wengler37 , N. S. Wenke112,N.Wermes
25 , M. Wessels64a ,
A.M. Wharton93 , A.S. White62 , A. White8, M.J. White1, D. Whiteson162 , L. Wickremasinghe127 ,
W. Wiedenmann173 , M. Wielers137 , C. Wiglesworth43 , D.J.Wilbern
123, H.G. Wilkens37 , J.J.H. Wilkinson33 ,
D.M. Williams42 , H. H. Williams131, S. Williams33 , S. Willocq105 , B.J. Wilson103 , P.J. Windischhofer40 ,
F.I. Winkel31 , F. Winklmeier126 , B.T. Winter55 , J.K. Winter103 , M. Wittgen147, M. Wobisch99 , T. Wojtkowski61,
Z. Wolffs117 , J. Wollrath162, M.W. Wolter88 , H. Wolters133a,133c , M.C.Wong
139, E.L. Woodward42 ,
S.D. Worm49 , B.K. Wosiek88 ,K.W.Wo´zniak88 , S. Wozniewski56 , K. Wraight60 ,C.Wu
21 ,M.Wu
114b ,
M. Wu116 ,S.L.Wu
173 ,X.Wu
57 ,Y.Wu
63a ,Z.Wu
4, J. Wuerzinger112,ab , T.R. Wyatt103 , B.M. Wynne53 ,
S. Xella43 ,L.Xia
114a ,M.Xia
15 ,M.Xie
63a ,S.Xin
14,114c , A. Xiong126 , J. Xiong18a ,D.Xu
14 ,
H. Xu63a ,L.Xu
63a ,R.Xu
131 ,T.Xu
108 ,Y.Xu
15 ,Z.Xu
53 ,Z.Xu
114a, B. Yabsley151 , S. Yacoob34a ,
Y. Yamaguchi85 , E. Yamashita157 , H. Yamauchi160 , T. Yamazaki18a , Y. Yamazaki86 ,S.Yan
60 ,Z.Yan
105 ,
H.J. Yang63c,63d , H.T. Yang63a , S. Yang63a , T. Yang65c , X. Yang37 , X. Yang14 , Y. Yang45 , Y. Yang63a,
Z. Yang63a ,W-M.Yao
18a ,H.Ye
114a ,H.Ye
56 ,J.Ye
14 ,S.Ye
30 ,X.Ye
63a ,Y.Yeh
98 , I. Yeletskikh39 ,
B. Yeo18b , M.R. Yexley98 , T.P. Yildirim129 ,P.Yin
42 , K. Yorita171 , S. Younas28b , C.J.S. Young37 ,
C. Young147 ,C.Yu
14,114c ,Y.Yu
63a , J. Yuan14,114c , M. Yuan108 ,R.Yuan
63d,63c ,L.Yue
98 , M. Zaazoua63a ,
B. Zabinski88 ,E.Zaid
53,Z.K.Zak
88 , T. Zakareishvili166 , S. Zambito57 , J.A. Zamora Saa140d,140b , J. Zang157 ,
D. Zanzi55 , O. Zaplatilek135 , C. Zeitnitz174 , H. Zeng14 , J.C. Zeng165 , D.T. Zenger Jr27 , O. Zenin38 ,
T. Ženiš29a , S. Zenz96 , S. Zerradi36a ,D.Zerwas
67 , M. Zhai14,114c , D.F. Zhang143 , J. Zhang63b , J. Zhang6,
K. Zhang14,114c , L. Zhang63a , L. Zhang114a , P. Zhang14 ,114c , R. Zhang173 , S. Zhang108 , S. Zhang91 ,
T. Zhang157 , X. Zhang63c , X. Zhang63b , Y. Zhang63c , Y. Zhang98 , Y. Zhang114a , Z. Zhang18a , Z. Zhang63b ,
Z. Zhang67 , H. Zhao142 , T. Zhao63b , Y. Zhao139 , Z. Zhao63a , Z. Zhao63a , A. Zhemchugov39 , J. Zheng114a ,
K. Zheng165 , X. Zheng63a , Z. Zheng147 , D. Zhong165 , B. Zhou108 , H. Zhou7, N. Zhou63c , Y. Zhou15 ,
Y. Zhou114a , Y. Zhou7,C.G.Zhu
63b ,J.Zhu
108 ,X.Zhu
63d,Y.Zhu
63c ,Y.Zhu
63a , X. Zhuang14 , K. Zhukov69 ,
N.I. Zimine39 , J. Zinsser64b , M. Ziolkowski145 ,Livkovi´c16 , A. Zoccoli24b ,24a , K. Zoch62 , T.G. Zorbas143 ,
O. Zormpa47 ,W.Zou
42 , L. Zwalinski37
1Department of Physics, University of Adelaide, Adelaide, Australia
2Department of Physics, University of Alberta, Edmonton, AB, Canada
3(a)Department of Physics, Ankara University, Ankara, Turkey; (b)Division of Physics, TOBB University of Economics
and Technology, Ankara, Turkey
4LAPP, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
5APC, Université Paris Cité, CNRS/IN2P3, Paris, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7Department of Physics, University of Arizona, Tucson, AZ, USA
8Department of Physics, University of Texas at Arlington, Arlington, TX, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, University of Texas at Austin, Austin, TX, USA
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15 Physics Department, Tsinghua University, Beijing, China
16 Institute of Physics, University of Belgrade, Belgrade, Serbia
17 Department for Physics and Technology, University of Bergen, Bergen, Norway
123
153 Page 30 of 34 Eur. Phys. J. C (2025) 85:153
18 (a)Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; (b)University of California, Berkeley,
CA, USA
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern,
Switzerland
21 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
22 (a)Department of Physics, Bogazici University, Istanbul, Turkey; (b)Department of Physics Engineering, Gaziantep
University, Gaziantep, Turkey; (c)Department of Physics, Istanbul University, Istanbul, Turkey
23 (a)Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia; (b)Departamento
de Física, Universidad Nacional de Colombia, Bogotá, Colombia
24 (a)Dipartimento di Fisica e Astronomia A. Righi, Universitá di Bologna, Bologna, Italy; (b)INFN Sezione di Bologna,
Bologna, Italy
25 Physikalisches Institut, Universität Bonn, Bonn, Germany
26 Department of Physics, Boston University, Boston, MA, USA
27 Department of Physics, Brandeis University, Waltham, MA, USA
28 (a)Transilvania University of Brasov, Brasov, Romania; (b)Horia Hulubei National Institute of Physics and Nuclear
Engineering, Bucharest, Romania; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi,
Iasi, Romania; (d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics
Department, Cluj-Napoca, Romania; (e)National University of Science and Technology Politechnica, Bucharest,
Romania; (f)West University in Timisoara, Timisoara, Romania; (g)Faculty of Physics, University of Bucharest,
Bucharest, Romania
29 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia; (b)Department of
Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
30 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
31 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto
de Físca de Buenos Aires (IFIBA), Buenos Aires, Argentina
32 California State University, Los Angeles, CA, USA
33 Cavendish Laboratory, University of Cambridge, Cambridge, UK
34 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)iThemba Labs, Western Cape, South
Africa; (c)Department of Mechanical Engineering Science, University of Johannesburg,
Johannesburg, South Africa; (d)National Institute of Physics, University of the Philippines Diliman (Philippines), Quezon
City, Philippines; (e)University of South Africa, Department of Physics, Pretoria, South Africa; (f)University of Zululand,
KwaDlangezwa, South Africa; (g)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
35 Department of Physics, Carleton University, Ottawa, ON, Canada
36 (a)Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, Casablanca, Morocco; (b)Faculté des Sciences,
Université Ibn-Tofail, Kénitra, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech,
Marrakech, Morocco; (d)LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda, Morocco; (e)Faculté des
sciences, Université Mohammed V, Rabat, Morocco; (f)Institute of Applied Physics, Mohammed VI Polytechnic
University, Ben Guerir, Morocco
37 CERN, Geneva, Switzerland
38 Affiliated with an institute covered by a cooperation agreement with CERN, Geneva, Switzerland
39 Affiliated with an international laboratory covered by a cooperation agreement with CERN, Geneva, Switzerland
40 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
41 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
42 Nevis Laboratory, Columbia University, Irvington, NY, USA
43 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
44 (a)Dipartimento di Fisica, Università della Calabria, Rende, Italy; (b)INFN Gruppo Collegato di Cosenza, Laboratori
Nazionali di Frascati, Italy
45 Physics Department, Southern Methodist University, Dallas, TX, USA
46 Physics Department, University of Texas at Dallas, Richardson, TX, USA
47 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
48 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)Oskar Klein Centre, Stockholm, Sweden
49 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
123
Eur. Phys. J. C (2025) 85:153 Page 31 of 34 153
50 Fakultät Physik , Technische Universität Dortmund, Dortmund, Germany
51 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
52 Department of Physics, Duke University, Durham, NC, USA
53 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
54 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
55 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
56 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
57 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
58 (a)Dipartimento di Fisica, Università di Genova, Genoa, Italy; (b)INFN Sezione di Genova, Genoa, Italy
59 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
60 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
61 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
62 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
63 (a)Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science
and Technology of China, Hefei, China; (b)Institute of Frontier and Interdisciplinary Science and Key Laboratory of
Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China; (c)School of Physics and
Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC,
Shanghai, China; (d)Tsung-Dao Lee Institute, Shanghai, China; (e)School of Physics, Zhengzhou University, China
64 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
65 (a)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b)Department of Physics,
University of Hong Kong, Hong Kong, China; (c)Department of Physics and Institute for Advanced Study, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
66 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
67 IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France
68 Centro Nacional de Microelectrónica (IMB-CNM-CSIC), Barcelona, Spain
69 Department of Physics, Indiana University, Bloomington, IN, USA
70 (a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b)ICTP, Trieste, Italy; (c)Dipartimento Politecnico
di Ingegneria e Architettura, Università di Udine, Udine, Italy
71 (a)INFN Sezione di Lecce, Lecce, Italy; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
72 (a)INFN Sezione di Milano, Milan, Italy; (b)Dipartimento di Fisica, Università di Milano, Milan, Italy
73 (a)INFN Sezione di Napoli, Naples, Italy; (b)Dipartimento di Fisica, Università di Napoli, Naples, Italy
74 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
75 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
76 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
77 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome,
Italy
78 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
79 (a)INFN-TIFPA, Rome, Italy; (b)Università degli Studi di Trento, Trento, Italy
80 Universität Innsbruck, Department of Astro and Particle Physics, Innsbruck, Austria
81 University of Iowa, Iowa City, IA, USA
82 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
83 Istinye University, Sariyer, Istanbul, Turkey
84 (a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF),
Juiz de Fora, Brazil; (b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (c)Instituto de
Física, Universidade de São Paulo, São Paulo, Brazil; (d)Rio de Janeiro State University, Rio de Janeiro, Brazil
;(e)Federal University of Bahia, Bahia, Brazil
85 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
86 Graduate School of Science, Kobe University, Kobe, Japan
87 (a)AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland; (b)Marian
Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
88 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
89 Faculty of Science, Kyoto University, Kyoto, Japan
123
153 Page 32 of 34 Eur. Phys. J. C (2025) 85:153
90 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka , Japan
91 L2IT, Université de Toulouse, CNRS/IN2P3, UPS, Toulouse, France
92 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
93 Physics Department, Lancaster University, Lancaster, UK
94 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
95 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana,
Ljubljana, Slovenia
96 School of Physics and Astronomy, Queen Mary University of London, London, UK
97 Department of Physics, Royal Holloway University of London, Egham, UK
98 Department of Physics and Astronomy, University College London, London, UK
99 Louisiana Tech University, Ruston, LA, USA
100 Fysiska institutionen, Lunds universitet, Lund, Sweden
101 Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
102 Institut für Physik, Universität Mainz, Mainz, Germany
103 School of Physics and Astronomy, University of Manchester, Manchester, UK
104 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
105 Department of Physics, University of Massachusetts, Amherst, MA, USA
106 Department of Physics, McGill University, Montreal, QC, Canada
107 School of Physics, University of Melbourne, Victoria, Australia
108 Department of Physics, University of Michigan, Ann Arbor, MI, USA
109 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
110 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
111 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
112 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
113 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
114 (a)Department of Physics, Nanjing University, Nanjing, China; (b)School of Science, Shenzhen Campus of Sun Yat-sen
University, Shenzhen, China; (c)University of Chinese Academy of Science (UCAS), Beijing, China
115 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
116 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, The Netherlands
117 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
118 Department of Physics, Northern Illinois University, DeKalb, IL, USA
119 (a)New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; (b)United Arab Emirates University, Al Ain,
United Arab Emirates
120 Department of Physics, New York University, New York, NY, USA
121 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
122 Ohio State University, Columbus, OH, USA
123 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
124 Department of Physics, Oklahoma State University, Stillwater, OK, USA
125 Palacký University, Joint Laboratory of Optics, Olomouc, Czech Republic
126 Institute for Fundamental Science, University of Oregon, Eugene, OR, USA
127 Graduate School of Science, Osaka University, Osaka, Japan
128 Department of Physics, University of Oslo, Oslo, Norway
129 Department of Physics, Oxford University, Oxford, UK
130 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
131 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
132 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
133 (a)Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisbon, Portugal; (b)Departamento de Física,
Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Departamento de Física, Universidade de Coimbra,
Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Física,
Universidade do Minho, Braga, Portugal; (f)Departamento de Física Teórica y del Cosmos, Universidad de Granada,
Granada, Spain; (g)Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
134 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
135 Czech Technical University in Prague, Prague, Czech Republic
123
Eur. Phys. J. C (2025) 85:153 Page 33 of 34 153
136 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
137 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
138 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
140 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b)Millennium Institute for
Subatomic physics at high energy frontier (SAPHIR), Santiago, Chile; (c)Instituto de Investigación Multidisciplinario en
Ciencia y Tecnología y Departamento de Física, Universidad de La Serena, La Serena, Chile; (d)Universidad Andres
Bello, Department of Physics, Santiago, Chile; (e)Instituto de Alta Investigación, Universidad de Tarapacá,
Arica, Chile; (f)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
141 Department of Physics, Institute of Science, Tokyo, Japan
142 Department of Physics, University of Washington, Seattle, WA, USA
143 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
144 Department of Physics, Shinshu University, Nagano, Japan
145 Department Physik, Universität Siegen, Siegen, Germany
146 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
147 SLAC National Accelerator Laboratory, Stanford, CA, USA
148 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
150 Department of Physics and Astronomy, University of Sussex, Brighton, UK
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy
Physics Institute, Tbilisi State University, Tbilisi, Georgia; (c)University of Georgia, Tbilisi, Georgia
154 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
157 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, ON, Canada
159 (a)TRIUMF, Vancouver, BC, Canada; (b)Department of Physics and Astronomy, York University, Toronto, ON, Canada
160 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences,
University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
162 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
163 University of Sharjah, Sharjah, United Arab Emirates
164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
165 Department of Physics, University of Illinois, Urbana, IL, USA
166 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
167 Department of Physics, University of British Columbia, Vancouver, BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
169 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
170 Department of Physics, University of Warwick, Coventry, UK
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, WI, USA
174 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal,
Germany
175 Department of Physics, Yale University, New Haven, CT, USA
aAlso Affiliated with an Institute Covered by a Cooperation Agreement with CERN, Geneva, Switzerland
bAlso at An-Najah National University, Nablus, Palestine
cAlso at Borough of Manhattan Community College, City University of New York, New York, NY, USA
dAlso at Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
eAlso at CERN, Geneva, Switzerland
123
153 Page 34 of 34 Eur. Phys. J. C (2025) 85:153
fAlso at CMD-AC UNEC Research Center, Azerbaijan State University of Economics (UNEC), Azerbaijan
gAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
hAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
iAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
jAlso at Department of Physics, California State University, Sacramento, USA
kAlso at Department of Physics, King’s College London, London, UK
lAlso at Department of Physics, Stanford University, Stanford, CA, USA
mAlso at Department of Physics, Stellenbosch University, South Africa
nAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland
oAlso at Department of Physics, University of Thessaly, Greece
pAlso at Department of Physics, Westmont College, Santa Barbara, USA
qAlso at Faculty of Physics, Sofia University, ’St. Kliment Ohridski’, Sofia, Bulgaria
rAlso at Hellenic Open University, Patras, Greece
sAlso at Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
tAlso at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
uAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
vAlso at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia,
Bulgaria
wAlso at Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
xAlso at Institute of Particle Physics (IPP), Ottawa, Canada
yAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
zAlso at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
aa Also at National Institute of Physics, University of the Philippines Diliman (Philippines), Philippines
ab Also at Technical University of Munich, Munich, Germany
ac Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
ad Also at TRIUMF, Vancouver, BC, Canada
ae Also at Università di Napoli Parthenope, Naples, Italy
af Also at University of Colorado Boulder, Department of Physics, Colorado, USA
ag Also at Washington College, Chestertown, MD, USA
ah Also at Yeditepe University, Physics Department, Istanbul, Turkey
Deceased
123
... In light of the large branching ratio for A → W AE H ∓ (with, say, the W Table III fixes the other model parameters. 12 Note that charged Higgs boson searches are not constraining for our setup [119] and we checked with HiggsTools [120] that also no other search channels implemented there are violated for this benchmark point. Additionally, for the parameter space explaining the excesses without violating other bounds, we checked for consistency with vacuum stability and perturbative unitarity. ...
Article
Full-text available
We examine the correlations between new scalar boson decays to photons and electric dipole moments (EDMs) in the C P -violating flavor-aligned two-Higgs-doublet model (2HDM). It is convenient to work in the Higgs basis { H 1 , H 2 } where only the first Higgs doublet field H 1 acquires a vacuum expectation value. In light of the LHC Higgs data, which agree well with Standard Model (SM) predictions, it follows that the parameters of the 2HDM are consistent with the Higgs alignment limit. In this parameter regime, the observed SM-like Higgs boson resides almost entirely in H 1 , and the other two physical neutral scalars, which reside almost entirely in H 2 , are approximate eigenstates of C P (denoted by the C P -even H and the C P -odd A ). In the Higgs basis, the scalar potential term Z ¯ 7 H 1 † H 2 H 2 † H 2 + H . c . governs the charged-Higgs loop contributions to the decay of H and A to photons. If Re Z ¯ 7 Im Z ¯ 7 ≠ 0 , then C P -violating effects are present and allow for an H + H − A coupling, which can yield a sizable branching ratio for A → γ γ . These C P -violating effects also generate nonzero EDMs for the electron, the neutron and the proton. We examine these correlations for the cases of m A = 95 GeV and m A = 152 GeV where interesting excesses in the diphoton spectrum have been observed at the LHC. These excesses can be explained via the decay of A while being consistent with the experimental bound for the electron EDM in regions of parameter space that can be tested with future neutron and proton EDM measurements. This allows for the interesting possibility where the 95 GeV diphoton excess can be identified with A , while m H ≃ 98 GeV can account for the best fit to the LEP excess in e + e − → Z H with H → b b ¯ . Published by the American Physical Society 2025
Article
Full-text available
The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pp collisions at a centre-of-mass energy s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosity for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1\hbox {fb}^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017–2018 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1\hbox {pb}^{-1}.
Article
Full-text available
A bstract A search for a charged Higgs boson, H ± , produced in top-quark decays, t → H ± b , is presented. The search targets H ± decays into a bottom and a charm quark, H ± → cb . The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying W boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing b -hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy s \sqrt{s} s = 13 TeV between 2015 and 2018 with the ATLAS detector at CERN’s Large Hadron Collider, amounting to an integrated luminosity of 139 fb − 1 . Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions B \mathcal{B} B ( t → H ± b ) × B ( H ± → cb ) for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs.
Article
Full-text available
A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26−15+17 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24−6+7 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb.
Article
Full-text available
A bstract This paper presents updated Monte Carlo configurations used to model the production of single electroweak vector bosons ( W , Z/γ ∗ ) in association with jets in proton-proton collisions for the ATLAS experiment at the Large Hadron Collider. Improvements pertaining to the electroweak input scheme, parton-shower splitting kernels and scale-setting scheme are shown for multi-jet merged configurations accurate to next-to-leading order in the strong and electroweak couplings. The computational resources required for these set-ups are assessed, and approximations are introduced resulting in a factor three reduction of the per-event CPU time without affecting the physics modelling performance. Continuous statistical enhancement techniques are introduced by ATLAS in order to populate low cross-section regions of phase space and are shown to match or exceed the generated effective luminosity. This, together with the lower per-event CPU time, results in a 50% reduction in the required computing resources compared to a legacy set-up previously used by the ATLAS collaboration. The set-ups described in this paper will be used for future ATLAS analyses and lay the foundation for the next generation of Monte Carlo predictions for single vector-boson plus jets production.
Article
Full-text available
In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 gigaelectronvolts. Ten years later, and with the data corresponding to the production of a 30-times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin–parity quantum numbers, determined its mass and measured its production cross-sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from proton–proton collisions at a centre-of-mass energy of 13 teraelectronvolts. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next 15 years, will help deepen our understanding of this crucial sector. The most up-to-date combination of results on the properties of the Higgs boson is reported, which indicate that its properties are consistent with the standard model predictions, within the precision achieved to date.
Article
Full-text available
The standard model of particle physics1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5–9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (τ)) are well measured and indications of interactions with a second-generation particle (muons, μ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model. Ten years after the discovery of the Higgs boson, the ATLAS experiment at CERN probes its kinematic properties with a significantly larger dataset from 2015–2018 and provides further insights on its interaction with other known particles.
Article
Full-text available
A technique is presented to measure the efficiency with which c-jets are mistagged as b-jets (mistagging efficiency) using tt¯ events, where one of the W bosons decays into an electron or muon and a neutrino and the other decays into a quark–antiquark pair. The measurement utilises the relatively large and known W→cs branching ratio, which allows a measurement to be made in an inclusive c-jet sample. The data sample used was collected by the ATLAS detector at s=13 TeV and corresponds to an integrated luminosity of 139 fb-1. Events are reconstructed using a kinematic likelihood technique which selects the mapping between jets and tt¯ decay products that yields the highest likelihood value. The distribution of the b-tagging discriminant for jets from the hadronic W decays in data is compared with that in simulation to extract the mistagging efficiency as a function of jet transverse momentum. The total uncertainties are in the range 3–17%. The measurements generally agree with those in simulation but there are some differences in the region corresponding to the most stringent b-jet tagging requirement.
Article
Full-text available
Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36–81 fb-1 of proton–proton collision data with a centre-of-mass energy of s=13 TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti-kt jet algorithm with radius parameter R=0.4 is the primary jet definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets (|η|<1.2) vary from 1% for a wide range of high-pT jets (2502.5TeV). The relative jet energy resolution is measured and ranges from (24±1.5)% at 20 GeV to (6±0.5)% at 300 GeV.
Article
Full-text available
This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 fb-1 of pp collision data at s=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z→μμ and J/ψ→μμ decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |η|<2.7.