ArticleLiterature Review

Targeting mitophagy in neurodegenerative diseases

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... NADH and nicotinamide (NAM) are involved in cellular redox reactions and NAD+ metabolism. Increasing NAD+ levels, either directly with NADH or indirectly with NAM (a precursor), has been shown to enhance mitophagy, potentially through SIRT1 activation [144,145]. In terms of ubiquitin-specific Peptidase30 (USP30) inhibitors, USP30 is a deubiquitinase that opposes Parkin-mediated ubiquitination of mitochondrial proteins. ...
... In terms of ubiquitin-specific Peptidase30 (USP30) inhibitors, USP30 is a deubiquitinase that opposes Parkin-mediated ubiquitination of mitochondrial proteins. Inhibiting USP30 can therefore promote mitophagy [145]. In terms of PINK1 activators, directly activating PINK1, the key initiator of the PINK1/Parkin mitophagy pathway, is another potential strategy. ...
... In terms of PINK1 activators, directly activating PINK1, the key initiator of the PINK1/Parkin mitophagy pathway, is another potential strategy. Some small molecules have been identified that can stabilize or activate PINK1 [145]. ...
Article
Full-text available
Mitochondrial dysfunction represents a pivotal characteristic of numerous neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. These conditions, distinguished by unique clinical and pathological features, exhibit shared pathways leading to neuronal damage, all of which are closely associated with mitochondrial dysfunction. The high metabolic requirements of neurons make even minor mitochondrial deficiencies highly impactful, driving oxidative stress, energy deficits, and aberrant protein processing. Growing evidence from genetic, biochemical, and cellular investigations associates impaired electron transport chain activity and disrupted quality-control mechanisms, such as mitophagy, with the initial phases of disease progression. Furthermore, the overproduction of reactive oxygen species and persistent neuroinflammation can establish feedforward cycles that exacerbate neuronal deterioration. Recent clinical research has increasingly focused on interventions aimed at enhancing mitochondrial resilience—through antioxidants, small molecules that modulate the balance of mitochondrial fusion and fission, or gene-based therapeutic strategies. Concurrently, initiatives to identify dependable mitochondrial biomarkers seek to detect pathological changes prior to the manifestation of overt symptoms. By integrating the current body of knowledge, this review emphasizes the critical role of preserving mitochondrial homeostasis as a viable therapeutic approach. It also addresses the complexities of translating these findings into clinical practice and underscores the potential of innovative strategies designed to delay or potentially halt neurodegenerative processes.
... Impaired mitophagy leads to the progressive accumulation of defective mitochondria, which can trigger cellular degeneration and contribute to disease pathology. A recent review by Antico et al. 17 provides comprehensive evidence that mitophagy dysfunction is a hallmark of several neurodegenerative diseases, including AD, prion disease, PD, HD, and ALS. In these conditions, the accumulation of damaged mitochondria results in reduced ATP production, excessive ROS generation, protein misfolding, synaptic dysfunction, and cognitive decline. ...
... Biogen has pioneered Parkin modulators, specifically tetrahydropyrazolo-pyrazines such as BIO-2007817, which enhance Parkin's enzymatic activity under mitochondrial stress. 17 Further advancing the modulation of ubiquitindependent mitophagy, USP30 inhibitors have been developed as another promising strategy. USP30 is the most extensively studied deubiquitylating enzyme known to counteract Parkin-mediated ubiquitination. ...
Article
Full-text available
Mitochondrial dysfunction is a defining feature of numerous neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, where it contributes to impaired energy metabolism, oxidative stress, and neuronal loss. Advances in mitochondrial-targeted therapies have paved the way for innovative interventions, such as mitochondrial transplantation, gene editing, antioxidants, and mitophagy enhancers, each offering unique potential to restore mitochondrial function and provide neuroprotection. This review examines these cutting-edge strategies, addressing their mechanisms of action, therapeutic potential, and the challenges associated with clinical translation.
... In addition, other atypical juvenile genetic forms of PD alter mitochondrial activities and cause mitochondrial fragmentation, impaired mitophagy, and oxidative damage, usually from a very early age [151,153,154,156]. For instance, dopaminergic neurons, due to their extended arborization and high energy demand, are very sensitive to ROS production and oxidative stress, which is strongly connected to mitochondrial dysfunction [257]. ...
Article
Full-text available
Mitochondrial dysfunction is a hallmark of Parkinson’s disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations—accounting for ~10% of PD cases—that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.
... As mitochondrial deficits are early pathological features of LBD, the nominated variants in the current study may ultimately lead to new therapeutic targets that benefit the fast-growing disease population. With the ongoing development of small-molecule mitophagy activators (reviewed in Antico et al.36 ), results from this study may help guide future customized therapies for carriers with specific genetic variants. Together with other recent reports, ...
Article
Full-text available
INTRODUCTION Phosphorylated ubiquitin (p‐S65‐Ub) is generated during PINK1‐PRKN mitophagy as a specific marker of mitochondrial damage. Despite the widespread deposition of p‐S65‐Ub in aged and diseased human brain, the genetic contribution to its accumulation remains unclear. METHODS To identify novel mitophagy regulators, we performed a genome‐wide association study using p‐S65‐Ub level as a quantitative trait in 1012 autopsy‐confirmed Lewy body disease (LBD) samples. RESULTS We identified a significant genome‐wide association with p‐S65‐Ub for rs429358 (apolipoprotein E ε4 [APOE4]) and a suggestive association for rs6480922 (ZMIZ1). APOE4 was associated with higher p‐S65‐Ub levels and greater neuropathological burden. Functional validation in mouse and human induced pluripotent stem cell (iPSC) models confirmed APOE4‐mediated mitophagy alterations. Intriguingly, ZMIZ1 rs6480922 was associated with lower p‐S65‐Ub levels, reduced neuropathological load, and increased brain weight, indicating a potential protective role. DISCUSSION Our findings underscore the importance of mitochondrial quality control in LBD pathogenesis and nominate regulators that may contribute to disease risk or resilience. Highlights p‐S65‐Ub levels were used as a quantitative marker of mitochondrial damage. A GWAS identified two genetic variants that modify mitophagy in LBD autopsy brain. APOE4 was associated with increased p‐S65‐Ub accumulation and neuropathology. APOE4 altered mitophagy via pathology‐dependent and pathology‐independent mechanisms. ZMIZ1 was linked to reduced p‐S65‐Ub and neuropathology indicative of protection.
... Early-onset mitochondrial dysfunctions in the context of neuroinflammation and neurodegeneration could link sub-cellular dysfunctions to later clinical symptoms. Interestingly, alterations of mitochondria and mitochondrial dysfunctions have also been observed in other diseases in which neurodegeneration and/or neuroinflammation play an important role, e.g., in Alzheimer's disease, ageing, autism spectrum disorders, amyotrophic lateral sclerosis (ALS), and others [164][165][166][167][168][169]. At least in some of these diseases, the retina has already been observed to be compromised, most likely because of its high energy demand and resulting high susceptibility to mitochondrial malfunctions [170][171][172][173][174]. ...
Article
Full-text available
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) linked to many neurological disabilities. The visual system is frequently impaired in MS. In previous studies, we observed early malfunctions of rod photoreceptor ribbon synapses in the EAE mouse model of MS that included alterations in synaptic vesicle cycling and disturbances of presynaptic Ca²⁺ homeostasis. Since these presynaptic events are highly energy-demanding, we analyzed whether synaptic mitochondria, which play a major role in synaptic energy metabolism, might be involved at that early stage. Rod photoreceptor presynaptic terminals contain a single large mitochondrion next to the synaptic ribbon. In the present study, we analyzed the expression of functionally relevant mitochondrial proteins (MIC60, ATP5B, COX1, PINK1, DRP1) by high-resolution qualitative and quantitative immunofluorescence microscopy, immunogold electron microscopy and quantitative Western blot experiments. We observed a decreased expression of many functionally relevant proteins in the synaptic mitochondria of EAE photoreceptors at an early stage, suggesting that early mitochondrial dysfunctions play an important role in the early synapse pathology. Interestingly, mitochondria in presynaptic photoreceptor terminals were strongly compromised in early EAE, whereas extra-synaptic mitochondria in photoreceptor inner segments remained unchanged, demonstrating a functional heterogeneity of photoreceptor mitochondria.
Article
Full-text available
Parkinson’s disease (PD), the second most prevalent neurodegenerative disorder globally, imposes substantial healthcare burdens on aging populations. The pathogenesis of PD is complex and multifaceted. Emerging evidence highlights microRNA (miRNA) dysregulation as a critical regulatory layer that drives PD progression. These small noncoding RNAs mediate posttranscriptional gene regulation through target mRNA binding, inducing either transcript degradation or translational repression. This article reviews the distinct miRNAs that orchestrate PD pathogenesis by disrupting mitochondrial homeostasis, lysosomal clearance pathways, ferroptosis regulation, and neuroinflammatory responses. Notably, some miRNAs achieve these effects by selectively targeting risk genes central to PD pathology. Crucially, certain miRNAs exhibit aberrant expression patterns in the brain tissues and biofluids of PD patients or models, highlighting their potential as minimally invasive diagnostic or prognostic biomarkers. Furthermore, this review highlights the novel role of exosomes as miRNA carriers, offering innovative possibilities for PD therapeutic interventions. With the deepening understanding of miRNA research advances in PD, we propose that these insights may not only inform PD treatment strategies but also hold relevance for addressing other genetic disorders.
Preprint
Full-text available
Defective mitochondrial quality control in response to loss of mitochondrial membrane polarization is implicated in Parkinsons disease by mutations in PINK1 and PRKN. Application of in situ cryo-electron tomography (cryo-ET) made it possible to visualize the consequences of mitochondrial depolarization at higher resolution than heretofore attainable. Parkin-expressing U2OS cells were treated with the depolarizing agents oligomycin and antimycin A (OA), subjected to cryo-FIB milling, and mitochondrial structure was characterized by in situ cryo-ET. Phagophores were visualized in association with mitochondrial fragments. Bridge-like lipid transporter (BLTP) densities potentially corresponding to ATG2A were seen connected to mitophagic phagophores. Mitochondria in OA-treated cells were fragmented and devoid of matrix calcium phosphate crystals. The intermembrane gap of cristae was narrowed and the intermembrane volume reduced, and some fragments were devoid of cristae. A subpopulation of ATP synthases re-localized from cristae to the inner boundary membrane (IBM) apposed to the outer membrane (OMM). The structure of the dome-shaped prohibitin complex, a dodecamer of PHB1-PHB2 dimers, was determined in situ by sub-tomogram averaging in untreated and treated cells and found to exist in open and closed conformations, with the closed conformation is enriched by OA treatment. These findings provide a set of native snapshots of the manifold nano-structural consequences of mitochondrial depolarization and provide a baseline for future in situ dissection of Parkin-dependent mitophagy.
Article
Full-text available
Mitochondrial dysfunction is a pivotal instigator of neuroinflammation, with mitochondrial DNA (mtDNA) leakage as a critical intermediary. This review delineates the intricate pathways leading to mtDNA release, which include membrane permeabilization, vesicular trafficking, disruption of homeostatic regulation, and abnormalities in mitochondrial dynamics. The escaped mtDNA activates cytosolic DNA sensors, especially cyclic gmp-amp synthase (cGAS) signalling and inflammasome, initiating neuroinflammatory cascades via pathways, exacerbating a spectrum of neurological pathologies. The therapeutic promise of targeting mtDNA leakage is discussed in detail, underscoring the necessity for a multifaceted strategy that encompasses the preservation of mtDNA homeostasis, prevention of membrane leakage, reestablishment of mitochondrial dynamics, and inhibition the activation of cytosolic DNA sensors. Advancing our understanding of the complex interplay between mtDNA leakage and neuroinflammation is imperative for developing precision therapeutic interventions for neurological disorders.
Article
Full-text available
Mutations in parkin and PINK1 cause early-onset Parkinson’s disease (EOPD). The ubiquitin ligase parkin is recruited to damaged mitochondria and activated by PINK1, a kinase that phosphorylates ubiquitin and the ubiquitin-like domain of parkin. Activated phospho-parkin then ubiquitinates mitochondrial proteins to target the damaged organelle for degradation. Here, we present the mechanism of activation of a new class of small molecule allosteric modulators that enhance parkin activity. The compounds act as molecular glues to enhance the ability of phospho-ubiquitin (pUb) to activate parkin. Ubiquitination assays and isothermal titration calorimetry with the most active compound (BIO-2007817) identify the mechanism of action. We present the crystal structure of a closely related compound (BIO-1975900) bound to a complex of parkin and two pUb molecules. The compound binds next to pUb on RING0 and contacts both proteins. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments confirm that activation occurs through release of the catalytic Rcat domain. In organello and mitophagy assays demonstrate that BIO-2007817 partially rescues the activity of parkin EOPD mutants, R42P and V56E, offering a basis for the design of activators as therapeutics for Parkinson’s disease.
Article
Full-text available
Loss-of-function Parkin mutations lead to early-onset of Parkinson’s disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in trans . Furthermore, we show that the activator element (ACT) of Parkin is required to maintain the enzyme kinetics, and the removal of ACT slows the enzyme catalysis. We also demonstrate that ACT can activate Parkin in trans but less efficiently than when present in the cis molecule. Furthermore, the crystal structure reveals a donor ubiquitin binding pocket in the linker connecting REP and RING2, which plays a crucial role in Parkin activity.
Preprint
Full-text available
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Article
Full-text available
The Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core has evolved over time, beginning with positron emission tomography (PET) imaging of a subsample of participants with [¹⁸F]fluorodeoxyglucose (FDG)‐PET, adding tracers for measurement of β‐amyloid, followed by tau tracers. This review examines the evolution of the ADNI PET Core, the novel aspects of PET imaging in each stage of ADNI, and gives an accounting of PET images available in the ADNI database. The ADNI PET Core has been and continues to be a rich resource that provides quantitative PET data and preprocessed PET images to the scientific community, allowing interrogation of both basic and clinically relevant questions. By standardizing methods across different PET scanners and multiple PET tracers, the Core has demonstrated the feasibility of large‐scale, multi‐center PET studies. Data managed and disseminated by the PET Core has been critical to defining pathophysiological models of Alzheimer's disease (AD) and helped to drive methods used in modern therapeutic trials. Highlights The ADNI PET Core began with FDG‐PET and now includes three amyloid and three tau PET ligands. The PET Core has standardized acquisition and analysis of multitracer PET images. The ADNI PET Core helped to develop methods that have facilitated clinical trials in AD.
Article
Full-text available
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of α-synuclein and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with Antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-synuclein or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying LRRK2 G2019S or Trem2 T66M and R47H mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Preprint
Full-text available
Inhibition of the mitochondrial deubiquitinating enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's Disease and mitophagy-related disorders. We have integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small molecule containing a cyanopyrrolidine reactive group, USP30-I-1. The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells. Enzyme kinetics and Hydrogen Deuterium eXchange mass spectrometry (HDX-MS) infers that the inhibitor binds tightly to regions surrounding the USP30 catalytic cysteine and positions itself to form a binding pocket along the thumb and palm domains of the protein, thereby interfering its interaction with ubiquitin substrates. A comparison to a non-covalent USP30 inhibitor containing a benzosulfonamide scaffold revealed a slightly different binding mode closer to the active site Cys77, which may provide the molecular basis for improved selectivity towards USP30 against other members of the DUB enzyme family. Our results highlight advantages in developing covalent inhibitors, such as USP30-I-1, for targeting USP30 as treatment of disorders with impaired mitophagy.
Article
Full-text available
Purpose of review Amyotrophic lateral sclerosis (ALS) has a strong genetic basis, but the genetic landscape of ALS appears to be complex. The purpose of this article is to review recent developments in the genetics of ALS. Recent findings Large-scale genetic studies have uncovered more than 40 genes contributing to ALS susceptibility. Both rare variants with variable effect size and more common variants with small effect size have been identified. The most common ALS genes are C9orf72 , SOD1 , TARDBP and FUS . Some of the causative genes of ALS are shared with frontotemporal dementia, confirming the molecular link between both diseases. Access to diagnostic gene testing for ALS has to improve, as effective gene silencing therapies for some genetic subtypes of ALS are emerging, but there is no consensus about which genes to test for. Summary Our knowledge about the genetic basis of ALS has improved and the first effective gene silencing therapies for specific genetic subtypes of ALS are underway. These therapeutic advances underline the need for better access to gene testing for people with ALS. Further research is needed to further map the genetic heterogeneity of ALS and to establish the best strategy for gene testing in a clinical setting.
Article
Full-text available
The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson’s disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen’s kappa value of 0.87 (95% CI 0.69–1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at −80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.
Article
Full-text available
Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
Article
Full-text available
Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.
Article
Full-text available
Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson’s disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.
Article
Full-text available
Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A–positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.
Article
Full-text available
Background Mitochondrial function plays a key role in regulating neurotransmission and may contribute to general intelligence. Mitochondrial complex I (MC-I) is the largest enzyme of the respiratory chain. Recently, it has become possible to measure MC-I distribution in vivo, using a novel positron emission tomography tracer [¹⁸F]BCPP-EF, thus, we set out to investigate the association between MC-I distribution and measures of cognitive function in the living healthy brain. Results Analyses were performed in a voxel-wise manner and identified significant associations between [¹⁸F]BCPP-EF DVRCS−1 in the precentral gyrus and parietal lobes and WAIS-IV predicted IQ, WAIS-IV arithmetic and WAIS-IV symbol-digit substitution scores (voxel-wise Pearson’s correlation coefficients transformed to Z-scores, thresholded at Z = 2.3 family-wise cluster correction at p < 0.05, n = 16). Arithmetic scores were associated with middle frontal and post-central gyri tracer uptake, symbol-digit substitution scores were associated with precentral gyrus tracer uptake. RAVLT recognition scores were associated with [¹⁸F]BCPP-EF DVRCS−1 in the middle frontal gyrus, post-central gyrus, occipital and parietal regions (n = 20). Conclusions Taken together, our findings support the theory that mitochondrial function may contribute to general intelligence and indicate that interindividual differences in MC-I should be a key consideration for research into mitochondrial dysfunction in conditions with cognitive impairment.
Article
Full-text available
The pathogenic effect of SNCA gene multiplications indicates that elevation of wild-type α-synuclein levels is sufficient to cause Parkinson’s disease (PD). Mitochondria have been proposed to be a major target of α-synuclein-induced damage. PINK1/parkin/DJ-1-mediated mitophagy is a defense strategy that allows cells to selectively eliminate severely damaged mitochondria. Here, we quantified mitophagic flux and non-mitochondrial autophagic flux in three models of increased α-synuclein expression: 1/ Drosophila melanogaster that transgenically express human wild-type and mutant α-synuclein in flight muscle; 2/human skin fibroblasts transfected with α-synuclein or β-synuclein; and 3/human induced pluripotent stem cell (iPSC)-derived neurons carrying an extra copy of wild-type SNCA under control of a doxycycline-inducible promoter, allowing titratable α-synuclein upregulation. In each model, elevated α-synuclein levels potently suppressed mitophagic flux, while non-mitochondrial autophagy was preserved. In human neurons, a twofold increase in wild-type α-synuclein was already sufficient to induce this effect. PINK1 and parkin activation and mitochondrial translocation of DJ-1 after mitochondrial depolarization were not affected by α-synuclein upregulation. Overexpression of the actin-severing protein cofilin or treatment with CK666, an inhibitor of the actin-related protein 2/3 (Arp2/3) complex, rescued mitophagy in neurons with increased α-synuclein, suggesting that excessive actin network stabilization mediated the mitophagy defect. In conclusion, elevated α-synuclein levels inhibit mitophagic flux. Disruption of actin dynamics may play a key role in this effect.
Article
Full-text available
Parkinson’s disease (PD) is a progressive neurogenerative movement disorder characterized by dopaminergic cell death within the substantia nigra pars compacta (SNpc) due to the aggregation-prone protein α-synuclein. Accumulation of α-synuclein is implicated in mitochondrial dysfunction and disruption of the autophagic turnover of mitochondria, or mitophagy, which is an essential quality control mechanism proposed to preserve mitochondrial fidelity in response to aging and stress. Yet, the precise relationship between α-synuclein accumulation, mitochondrial autophagy, and dopaminergic cell loss remains unresolved. Here, we determine the kinetics of α-synuclein overexpression and mitophagy using the pH-sensitive fluorescent mito-QC reporter. We find that overexpression of mutant A53T α-synuclein in either human SH-SY5Y cells or rat primary cortical neurons induces mitophagy. Moreover, the accumulation of mutant A53T α-synuclein in the SNpc of rats results in mitophagy dysregulation that precedes the onset of dopaminergic neurodegeneration. This study reveals a role for mutant A53T α-synuclein in inducing mitochondrial dysfunction, which may be an early event contributing to neurodegeneration.
Article
Full-text available
Background Rapamycin is an inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, and preclinical data demonstrate that it is a promising candidate for a general gero- and neuroprotective treatment in humans. Results from mouse models of Alzheimer’s disease have shown beneficial effects of rapamycin, including preventing or reversing cognitive deficits, reducing amyloid oligomers and tauopathies and normalizing synaptic plasticity and cerebral glucose uptake. The “Evaluating Rapamycin Treatment in Alzheimer’s Disease using Positron Emission Tomography” (ERAP) trial aims to test if these results translate to humans through evaluating the change in cerebral glucose uptake following six months of rapamycin treatment in participants with early-stage Alzheimer’s disease. Methods ERAP is a six-month-long, single-arm, open-label, phase IIa biomarker-driven study evaluating if the drug rapamycin can be repurposed to treat Alzheimer’s disease. Fifteen patients will be included and treated with a weekly dose of 7 mg rapamycin for six months. The primary endpoint will be change in cerebral glucose uptake, measured using [¹⁸F]FDG positron emission tomography. Secondary endpoints include changes in cognitive measures, markers in cerebrospinal fluid as well as cerebral blood flow measured using magnetic resonance imaging. As exploratory outcomes, the study will assess change in multiple age-related pathological processes, such as periodontal inflammation, retinal degeneration, bone mineral density loss, atherosclerosis and decreased cardiac function. Discussion The ERAP study is a clinical trial using in vivo imaging biomarkers to assess the repurposing of rapamycin for the treatment of Alzheimer’s disease. If successful, the study would provide a strong rationale for large-scale evaluation of mTOR-inhibitors as a potential disease-modifying treatment in Alzheimer’s disease. Trial registration ClinicalTrials.gov ID NCT06022068, date of registration 2023–08-30.
Article
Full-text available
Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson’s disease (PD). 647 patients with PRKN -PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN -PD was also assessed. Among 133 variants in index cases ( n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion ( n = 145, 12.3%), followed by the p.R275W substitution ( n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN -PD respectively ( p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN -PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN -PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.
Article
Full-text available
Pathogenic variants in PRKN cause early‐onset Parkinson's disease (PD), while the role of alpha‐synuclein in PRKN ‐PD remains uncertain. One study performed a blood‐based alpha‐synuclein seed amplification assay (SAA) in PRKN ‐PD, not detecting seed amplification in 17 PRKN ‐PD patients. By applying a methodologically different SAA focusing on neuron‐derived extracellular vesicles, we demonstrated alpha‐synuclein seed amplification in 8 of 13 PRKN ‐PD patients, challenging the view of PRKN ‐PD as a non‐synucleinopathy. Moreover, we performed blinded replication of the neuron‐derived extracellular vesicles‐dependent SAA in idiopathic PD patients and healthy controls. In conclusion, blood‐based neuron‐derived extracellular vesicles‐dependent SAA represents a promising biomarker to elucidate the underpinnings of (monogenic) PD. ANN NEUROL 2024
Article
Full-text available
A key hallmark of Parkinson’s disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.
Article
Full-text available
Background Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. Methods We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. Findings Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. Interpretation Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. Funding Funded by 10.13039/100000864Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 “ERDF A way of making Europe”, grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by 10.13039/501100004587Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 “ESF Investing in your future”.
Article
Full-text available
Rare and common GBA variants are risk factors for both Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (β: −0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0–1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease–risk associations of GBA in PD, PD dementia, and DLB.
Article
Full-text available
Objective One proposed mechanism of disease progression in Parkinson's disease includes the interplay of endogenous dopamine toxicity and mitochondrial dysfunction. However, the in‐vivo effects of exogenous dopamine administration on cerebral bioenergetics are unknown. Methods We performed a double‐blinded, cross‐over, placebo‐controlled trial. Participants received either 200/50 mg levodopa/benserazide or a placebo and vice versa on the second study visit. Clinical assessments and multimodal neuroimaging were performed, including ³¹ phosphorus magnetic resonance spectroscopy of the basal ganglia and the midbrain. Results In total, 20 (6 female) patients with Parkinson's disease and 22 sex‐ and age‐matched healthy controls (10 female) were enrolled. Treatment with levodopa/benserazide but not with placebo resulted in a substantial reduction of high‐energy phosphorus‐containing metabolites in the basal ganglia (patients with Parkinson's disease: −40%; healthy controls: −39%) but not in the midbrain. There were no differences in high‐energy phosphorus‐containing metabolites for patients with Parkinson's disease compared to healthy controls in the OFF state and treatment response. Interpretation Exogenously administered levodopa/benserazide strongly interferes with basal ganglia high‐energy phosphorus‐containing metabolite levels in both groups. The lack of effects on midbrain levels suggests that the observed changes are limited to the site of dopamine action. ANN NEUROL 2024
Article
Full-text available
Ubiquitination of mitochondrial proteins plays an important role in the cellular regulation of mitophagy. The E3 ubiquitin ligase parkin (encoded by PARK2 ) and the ubiquitin-specific protease 30 (USP30) have both been reported to regulate the ubiquitination of outer mitochondrial proteins and thereby mitophagy. Loss of E3 ligase activity is thought to be pathogenic in both sporadic and inherited Parkinson’s disease (PD), with loss-of-function mutations in PARK2 being the most frequent cause of autosomal recessive PD. The aim of the present study was to evaluate whether mitophagy induced by USP30 inhibition provides a functional rescue in isogenic human induced pluripotent stem cell-derived dopaminergic neurons with and without PARK2 knockout (KO). Our data show that healthy neurons responded to CCCP-induced mitochondrial damage by clearing the impaired mitochondria and that this process was accelerated by USP30 inhibition. Parkin-deficient neurons showed an impaired mitophagic response to the CCCP challenge, although mitochondrial ubiquitination was enhanced. USP30 inhibition promoted mitophagy in PARK2 KO neurons, independently of whether left in basal conditions or treated with CCCP. In PARK2 KO, as in control neurons, USP30 inhibition balanced oxidative stress levels by reducing excessive production of reactive oxygen species. Interestingly, non-dopaminergic neurons were the main driver of the beneficial effects of USP30 inhibition. Our findings demonstrate that USP30 inhibition is a promising approach to boost mitophagy and improve cellular health, also in parkin-deficient cells, and support the potential relevance of USP30 inhibitors as a novel therapeutic approach in diseases with a need to combat neuronal stress mediated by impaired mitochondria.
Article
Full-text available
Neuroinflammation is a hallmark of Alzheimer’s disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aβ42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aβ when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.
Article
Full-text available
Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci ( MTF2 , PIK3CA , ADD1 , SYBU , IRS2 , USP8 , PIGL , FASN , MYLK2 , USP25 , EP300 and PPP6R2 ) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations.
Article
Full-text available
Background Brain innate immune activation is associated with Alzheimer’s disease (AD), but degrees of activation may vary between disease stages. Thus, brain innate immune activation must be assessed in longitudinal clinical studies that include biomarker negative healthy controls and cases with established AD pathology. Here, we employ longitudinally sampled cerebrospinal fluid (CSF) core AD, immune activation and glial biomarkers to investigate early (predementia stage) innate immune activation levels and biomarker profiles. Methods We included non-demented cases from a longitudinal observational cohort study, with CSF samples available at baseline (n = 535) and follow-up (n = 213), between 1 and 6 years from baseline (mean 2.8 years). We measured Aβ42/40 ratio, p-tau181, and total-tau to determine Ab (A+), tau-tangle pathology (T+), and neurodegeneration (N+), respectively. We classified individuals into these groups: A−/T−/N−, A+/T−/N−, A+/T+ or N+, or A−/T+ or N+. Using linear and mixed linear regression, we compared levels of CSF sTREM2, YKL-40, clusterin, fractalkine, MCP-1, IL-6, IL-1, IL-18, and IFN-γ both cross-sectionally and longitudinally between groups. A post hoc analysis was also performed to assess biomarker differences between cognitively healthy and impaired individuals in the A+/T+ or N+ group. Results Cross-sectionally, CSF sTREM2, YKL-40, clusterin and fractalkine were higher only in groups with tau pathology, independent of amyloidosis (p < 0.001, A+/T+ or N+ and A−/T+ or N+, compared to A−/T−/N−). No significant group differences were observed for the cytokines CSF MCP-1, IL-6, IL-10, IL18 or IFN-γ. Longitudinally, CSF YKL-40, fractalkine and IFN-γ were all significantly lower in stable A+/T−/N− cases (all p < 0.05). CSF sTREM2, YKL-40, clusterin, fractalkine (p < 0.001) and MCP-1 (p < 0.05) were all higher in T or N+, with or without amyloidosis at baseline, but remained stable over time. High CSF sTREM2 was associated with preserved cognitive function within the A+/T+ or N+ group, relative to the cognitively impaired with the same A/T/N biomarker profile (p < 0.01). Conclusions Immune hypoactivation and reduced neuron–microglia communication are observed in isolated amyloidosis while activation and increased fractalkine accompanies tau pathology in predementia AD. Glial hypo- and hyperactivation through the predementia AD continuum suggests altered glial interaction with Ab and tau pathology, and may necessitate differential treatments, depending on the stage and patient-specific activation patterns.
Article
Full-text available
Nicotinamide adenine dinucleotide (NAD) replenishment therapy using nicotinamide riboside (NR) shows promise for Parkinson’s disease (PD) and other neurodegenerative disorders. However, the optimal dose of NR remains unknown, and doses exceeding 2000 mg daily have not been tested in humans. To evaluate the safety of high-dose NR therapy, we conducted a single-center, randomized, placebo-controlled, double-blind, phase I trial on 20 individuals with PD, randomized 1:1 on NR 1500 mg twice daily (n = 10) or placebo (n = 10) for four weeks. The trial was conducted at the Department of Neurology, Haukeland University Hospital, Bergen, Norway. The primary outcome was safety, defined as the frequency of moderate and severe adverse events. Secondary outcomes were tolerability defined as frequency of mild adverse events, change in the whole blood and urine NAD metabolome, and change in the clinical severity of PD, measured by MDS-UPDRS. All 20 participants completed the trial. The trial met all prespecified outcomes. NR therapy was well tolerated with no moderate or severe adverse events, and no significant difference in mild adverse events. NR therapy was associated with clinical improvement of total MDS-UPDRS scores. However, this change was also associated with a shorter interval since the last levodopa dose. NR greatly augmented the blood NAD metabolome with up to 5-fold increase in blood NAD⁺ levels. While NR-recipients exhibited a slight initial rise in serum homocysteine levels, the integrity of the methyl donor pool remained intact. Our results support extending the dose range of NR in phase II clinical trials to 3000 mg per day, with appropriate safety monitoring. Clinicaltrials.gov identifier: NCT05344404.
Article
Full-text available
Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiqui-tylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30. Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties. These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.
Article
Full-text available
Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson’s disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.
Article
Full-text available
Mechanisms that prevent accidental activation of the PINK1/Parkin mitophagy circuit on healthy mitochondria are poorly understood. On the surface of damaged mitochondria, PINK1 accumulates and acts as the input signal to a positive feedback loop of Parkin recruitment, which in turn promotes mitochondrial degradation via mitophagy. However, PINK1 is also present on healthy mitochondria, where it could errantly recruit Parkin and thereby activate this positive feedback loop. Here, we explore emergent properties of the PINK1/Parkin circuit by quantifying the relationship between mitochondrial PINK1 concentrations and Parkin recruitment dynamics. We find that Parkin is recruited to mitochondria only if PINK1 levels exceed a threshold and then only after a delay that is inversely proportional to PINK1 levels. Furthermore, these two regulatory properties arise from the input-coupled positive feedback topology of the PINK1/Parkin circuit. These results outline an intrinsic mechanism by which the PINK1/Parkin circuit can avoid errant activation on healthy mitochondria.
Preprint
Full-text available
The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; β : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 ⁻²⁵ ) and a genome-wide significant association for ZMIZ1 (rs6480922; β : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 ⁻⁸ ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer’s disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.
Article
Full-text available
Background APOE is the largest genetic risk factor for Alzheimer’s disease (AD), but there is a substantial polygenic component. Polygenic risk scores (PRS) can summarize small effects across the genome but may obscure differential risk across molecular processes and pathways that contribute to heterogeneity of disease presentation. Objective We examined polygenic risk impacting specific AD-associated pathways and its relationship with clinical status and biomarkers of amyloid, tau, and neurodegeneration (A/T/N). Methods We analyzed data from 1,411 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We applied pathway analysis and clustering to identify AD-associated “pathway clusters” and construct pathway-specific PRSs (excluding the APOE region). We tested associations with diagnostic status, abnormal levels of amyloid and ptau, and hippocampal volume. Results Thirteen pathway clusters were identified, and eight pathway-specific PRSs were significantly associated with AD diagnosis. Amyloid-positivity was associated with endocytosis and fibril formation, response misfolded protein, and regulation protein tyrosine PRSs. Ptau positivity and hippocampal volume were both related to protein localization and mitophagy PRS, and ptau-positivity was also associated with an immune signaling PRS. A global AD PRS showed stronger associations with diagnosis and all biomarkers compared to pathway PRSs. Conclusions Pathway PRS may contribute to understanding separable disease processes, but do not add significant power for predictive purposes. These findings demonstrate that AD-phenotypes may be preferentially associated with risk in specific pathways, and defining genetic risk along multiple dimensions may clarify etiological heterogeneity in AD. This approach to delineate pathway-specific PRS can be used to study other complex diseases.
Article
Full-text available
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer’s disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1a, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF–serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Article
Mutations in the E3 ubiquitin ligase parkin cause a familial form of Parkinson’s disease. Parkin and the mitochondrial kinase PTEN-induced kinase 1 assure quality control of mitochondria through selective autophagy of mitochondria (mitophagy). Whereas numerous parkin mutations have been functionally and structurally characterized, several Parkinson’s disease mutations found in the catalytic Rcat domain of parkin remain poorly understood. Here, we characterize two pathogenic Rcat mutants, T415N and P437L. We demonstrate that both mutants exhibit impaired activity using autoubiquitination and ubiquitin vinyl sulfone assays. We determine the minimal ubiquitin-binding segment and show that both mutants display impaired binding of ubiquitin charged on the E2 enzyme. Finally, we use AlphaFold 3 to predict a model of the phospho-parkin:phospho-ubiquitin:ubiquitin-charged E2 complex. The model shows the repressor element of parkin and the N-terminal residues of the catalytic domain form a helix to position ubiquitin for transfer from the E2 to parkin. Our results rationalize the pathogenicity of the parkin mutations and deepen our understanding of the active parkin:E2∼Ub complex.
Article
During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria. The dynamic and liquid-like nature of OPTN condensates is important for mitophagy activity, because reducing the fluidity of OPTN-ubiquitin condensates suppresses the recruitment of ATG9 vesicles and impairs mitophagy. Based on these results, we propose a dynamic liquid-like, rather than a stoichiometric, model of autophagy adaptors to explain the interactions between autophagic membranes (i.e., ATG9 vesicles and isolation membranes) and mitochondrial membranes during Parkin-mediated mitophagy. This model underscores the importance of liquid-liquid phase separation in facilitating membrane-membrane contacts, likely through the generation of capillary forces.
Article
Mitophagy neutralizes mitochondrial damage, thereby preventing cellular dysfunction and apoptosis. Defects in mitophagy have been strongly implicated in age-related neurodegenerative disorders such as Parkinson’s and Alzheimer’s disease. While mitophagy decreases throughout the lifespan of short-lived model organisms, it remains unknown whether such a decline occurs in the aging mammalian brain—a question of fundamental importance for understanding cell type- and region-specific susceptibility to neurodegeneration. Here, we define the longitudinal dynamics of basal mitophagy and macroautophagy across neuronal and non-neuronal cell types within the intact aging mouse brain in vivo. Quantitative profiling of reporter mouse cohorts from young to geriatric ages reveals cell- and tissue-specific alterations in mitophagy and macroautophagy between distinct subregions and cell populations, including dopaminergic neurons, cerebellar Purkinje cells, astrocytes, microglia and interneurons. We also find that healthy aging is hallmarked by the dynamic accumulation of differentially acidified lysosomes in several neural cell subsets. Our findings argue against any widespread age-related decline in mitophagic activity, instead demonstrating dynamic fluctuations in mitophagy across the aging trajectory, with strong implications for ongoing theragnostic development.
Preprint
Defects in neuronal mitophagy have been linked to neurodegenerative diseases including Parkinson's disease. However, despite the importance of mitophagy in neuronal homeostasis, the mechanistic basis for neurodegeneration when mitophagy is defective is unclear. Here, using human neurons, we discover that presynapses are mitophagy pit stops for damaged axonal mitochondria. We show that while mitochondrial damage and PINK1/Parkin activation events are distributed throughout axons, mitophagy initiation and autophagosome formation are restricted to presynapses, which we show contain the machineries required for mitophagy. Being the primary sites of axonal mitophagy, presynapses were vulnerable when PINK1/Parkin mitophagy was defective. We observed local cytochrome c release within presynapses from an accumulation of damaged mitochondria. This resulted in downstream degradative caspase activation, defining a mechanism for neurodegeneration. Pharmacological rescue of axon degeneration was achieved through synthetic upregulation of receptor mediated mitophagy with the clinically approved compound Roxadustat, revealing a potential therapeutic avenue for disease.
Article
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Article
The ubiquitin kinase PINK1 accumulates on damaged mitochondria to trigger mitophagy, and PINK1 loss-of-function mutations cause early onset Parkinson’s disease. Nucleotide analogs such as kinetin triphosphate (KTP) were reported to enhance PINK1 activity and may represent a therapeutic strategy for the treatment of Parkinson’s disease. Here, we investigate the interaction of PINK1 with nucleotides, including KTP. We establish a cryo-EM platform exploiting the dodecamer assembly of Pediculus humanus corporis ( Ph ) PINK1 and determine PINK1 structures bound to AMP-PNP and ADP, revealing conformational changes in the kinase N-lobe that help establish PINK1’s ubiquitin binding site. Notably, we find that KTP is unable to bind Ph PINK1 or human ( Hs ) PINK1 due to a steric clash with the kinase “gatekeeper” methionine residue, and mutation to Ala or Gly is required for PINK1 to bind and use KTP as a phosphate donor in ubiquitin phosphorylation and mitophagy. Hs PINK1 M318G can be used to conditionally uncouple PINK1 stabilization and activity on mitochondria.
Article
Mutations in PRKN are the most common cause of early-onset autosomal recessive inherited PD, with over 140 different mutations spanning the entire gene described as being pathogenic.PD patients with bi-allelic pathogenic mutations in PRKN and with no pathogenic mutations in other genes known to result in monogenic PD were included. The type of mutation in PRKN was analysed for an association with the age at onset and motor severity, considering disease duration as a covariant. 644 patients were included for analysis [age at onset (31.4 ± 11.38 years), disease duration (18 ± 12.5 years)].Mean UPDRS part III (on) score at the time of disease onset was 12.6 ± 1.4 and increased by 3.85 ± 0.6 points every 10 years (n= 310, p= 3.6 e-09). Patients with 2 missense variants had a later age of onset (36.4± 12.3 years), compared to those with 2 structural variants (31.2±10.8 years) (p=0.004). Furthermore, variants located at the N-terminus of the protein (exon 1 – 3), were associated with an earlier age at onset of PD, 30.9 +/- 10.3 years, compared to variants located at the C-terminus (exons 7-12), 34.9 +/- 12.5 (p=0.05) We demonstrate that missense variants and variants located in the N-Ter of the protein are associated with a more benign progression of the disease, a finding which has never before been demonstrated in bi-allelic PRKN-PD.
Article
Mitochondria are believed to have originated through an ancient endosymbiotic process in which proteobacteria were captured and co-opted for energy production and cellular metabolism. Mitochondria segregate during cell division and differentiation, with vertical inheritance of mitochondria and the mitochondrial DNA genome from parent to daughter cells. However, an emerging body of literature indicates that some cell types export their mitochondria for delivery to developmentally unrelated cell types, a process called intercellular mitochondria transfer. In this Review, we describe the mechanisms by which mitochondria are transferred between cells and discuss how intercellular mitochondria transfer regulates the physiology and function of various organ systems in health and disease. In particular, we discuss the role of mitochondria transfer in regulating cellular metabolism, cancer, the immune system, maintenance of tissue homeostasis, mitochondrial quality control, wound healing and adipose tissue function. We also highlight the potential of targeting intercellular mitochondria transfer as a therapeutic strategy to treat human diseases and augment cellular therapies.
Article
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.