ArticlePDF Available

Role of Data-driven Regional Growth Model in Shaping Brain Folding Patterns

Authors:

Abstract

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent...
rsc.li/soft-matter-journal
Soft Matter
rsc.li/soft-matter-journal
ISSN 1744-6848
PAPER
Karsten Baumgarten and Brian P. Tighe
Viscous forces and bulk viscoelasticity near jamming
Volume 13
Number 45
7 December 2017
Pages 8341-8662
Soft Matter
This is an Accepted Manuscript, which has been through the
Royal Society of Chemistry peer review process and has been
accepted for publication.
Accepted Manuscripts are published online shortly after acceptance,
before technical editing, formatting and proof reading. Using this free
service, authors can make their results available to the community, in
citable form, before we publish the edited article. We will replace this
Accepted Manuscript with the edited and formatted Advance Article as
soon as it is available.
You can find more information about Accepted Manuscripts in the
Information for Authors.
Please note that technical editing may introduce minor changes to the
text and/or graphics, which may alter content. The journal’s standard
Terms & Conditions and the Ethical guidelines still apply. In no event
shall the Royal Society of Chemistry be held responsible for any errors
or omissions in this Accepted Manuscript or any consequences arising
from the use of any information it contains.
Accepted Manuscript
View Article Online
View Journal
This article can be cited before page numbers have been issued, to do this please use: J. Hou, Z. Wu, X.
Chen, L. Wang, D. Zhu, T. Liu, G. Li and X. Wang, Soft Matter, 2025, DOI: 10.1039/D4SM01194E.
Role of Data-driven Regional Growth Model in Shaping Brain Folding Patterns


         

          



           



Abstract

      
           

            
           


    
Page 1 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E




          

            
            
          
           

Keywords         

1. Introduction

  
            


   
          

         
         
Page 2 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
           

         
          

     
          




   
      , et al.      

           
   
             

           

      


 

           

Page 3 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E

          
          
    

            

    


Figure 1. Developmental trajectory of surface area in each region. 
             

     

           
   
  
     , et al.      
 
Page 4 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
 
          
     , et al.      
            
            
           



             
            




           


    
           
           
          

Page 5 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
2. Methods
2.1. Biomechanics in modeling brain folding

      
              
          
           
󰇛󰇜

    , et al.
 
󰇛󰇜

󰇛󰇜
󰇛󰇜

󰇛󰇜󰇛󰇜

   




            

 
󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜
Page 6 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
    é        



󰇛󰇜

 󰇛󰇜

  󰇛󰇜
2.2. Symbolic regression for discovering growth models
Inspired by Darwinian principles of natural selection, symbolic regression autonomously
uncovers mathematical relationships exclusively from provided data without requiring prior
knowledge, thereby significantly enhancing the interpretability and flexibility of the model
discovery process.37 It has demonstrated promising applications in model characterization38-40 and
parameter calibration.41 Symbolic regression operates through a process known as genetic
programming (GP). During GP execution, functional expressions are efficiently formatted using a
binary-tree structure, which consists of nodes and branches.
A complete tree structure, as illustrated in Figure 2a, involves variables, mathematical
operators (either unary or binary), and constants. The evolution process experiences the genetic
operations of evaluation, selection, mutation, and crossover, while the latter two are essential for
updating the tree structure. Specifically, the mutation operation amplifies  genetic
diversity by randomly altering some nodes in an expression tree, as exemplified in Figure 2b,
where a new offspring is generated by substituting the exponential operator (exp) with the
hyperbolic tangent (tanh). Conversely, the crossover operation allows the algorithm to create new
offspring by combining building blocks from different parent candidates, as demonstrated in
Figure 2c. This iterative process of evaluation, selection, mutation, and crossover continues until
the optimal expression is obtained or the maximum number of generations is reached, whichever
is reached first.37
Page 7 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Figure 2. Structure and operations of expression tree


In this study, we employed symbolic regression to discover appropriate growth models for the
human brain cortex. The raw data includes the measured surface area of each parcellated region in
the developing brain cortex along with the corresponding gestational ages, as shown in Figure 3a.
To facilitate computational implementation, we first converted the data into unitless growth
ratio 󰇛󰇜 and virtual time using the following formulas:
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
 󰇛󰇜
 󰇛󰇜
where 󰇛󰇜 and 󰇛󰇜 are tangential and radial growth ratio, respectively. and denotes the
surface area and cortical thickness measured at the initial gestational age, (29 postmenstrual
Page 8 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
weeks), respectively.  and  corresponds to the maximum and minimal gestational age
within the measured data range, herein, their values are 29 postmenstrual weeks and 24 postnatal
months of age, respectively. Through the above conversion, the value of ranges from 0 to 1,
which serves as the input for the symbolic regression algorithm to find the optimal growth model
󰇛󰇜 for each region, as illustrated in Figure 3a.
Figure 3. Schematic diagram of this research        
              

              

Page 9 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
          
      SymbolicRegression.jl    
            


              
     


     

            




2.3. Computational modeling of a developing brain
The identified regional growth models (both tangential and radial) were used to construct the
growth tensor , which can be applied to simulate folding evolution using the FEM, as shown in
Figure 3b. The simulation results were then compared with the brain imaging data for model
validation, as illustrated in Figure 3c. To simulate the folding evolution of the developing brain,
we constructed a three-dimensional double-layer patch model based on the geometries of a human
brain at 29 postmenstrual weeks, as depicted in Figure 3b. Initially, the regional brain inner surface
(the interface between the gray matter and white matter) was extracted using the parcellation map
provided by Huang, et al.30. The extracted surface was first extended by 2-5 mm along the
boundarys local curvature. Laplacian smoothing was then applied to the boundary area using a
Page 10 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
smoothing parameter of 0.2, with the number of iterations ranging from 15 to 22 across all
extracted surfaces. During smoothing, the intermediate area remains fixed to preserve the integrity
of the initial geometry (see Figure S1 in the supplementary material). Subsequently, we
interpolated the extended surface with a flat plane of 80 mm × 80 mm and merged these two
surfaces using Boolean operations. The connecting areas were further smoothed to ensure a natural
transition of the curvature. This extension and interpolation ensured that the models dimensions
were large enough compared to the wavelength of folded patterns observed in experiments, thereby
preventing boundary effects.25 Additionally, the squared boundaries significantly simplified the
prescription of boundary conditions during modeling. We then shifted the interpolated surface
upwards by 2 mm to form the initial cortical layer and extended the squared boundary downwards
by 50 mm to generate the initial white matter layer. This design was based on experimental
observations in neonatal human brains, which indicate that the cerebral cortex is a thin layer with
a thickness of 2-3.5 mm, while the core has a much greater thickness of around 50 mm.43
Consequently, the base models dimensions were approximately 80 mm × 80 mm × 50 mm
(excluding cortical thickness), as illustrated in Figure 4a, where , , and
.
All simulations were performed using the commercial software ABAQUS (Dassault Systems,
Paris, France).44 Dynamic-explicit solver was employed due to its superior performance in solving
nonlinear, dynamic, and larger deformation problems.45, 46 Both the gray and white matters were
modeled as incompressible neo-Hookean materials, with elastic stiffness values of 0.31 kPa for
the cortical and 0.45 kPa for the white matter layer.    
 Orthotropic growth was defined for the
cortical layer, while isotropic growth was applied to the white matter layer. In our modeling
approach, growth was simulated using thermal expansion, considering the analogy between the
volumetric growth and the thermal expansion.48 The expansion ratio 󰇛󰇜 correlates to the growth
ratio as 󰇛󰇜󰇛󰇜. Specifically, for the white matter layer, the expansion ratio was defined
as 󰇛󰇜, while for the cortical layer, 󰇛󰇜󰇛󰇜 was applied to out-of-plane growth
Page 11 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
and 󰇛󰇜󰇛󰇜 to in-plane growth, as shown in Figure 4b. The customized growth models
(󰇛󰇜 and 󰇛󰇜), derived from symbolic regression, were implemented into the finite element
algorithm through a user-defined subroutine VUEXPAN. Symmetric boundary conditions were
prescribed on the four sides of the model and the bottom surface of the white matter layer was
fixed. Free boundary conditions were applied to the top surface of the cortical layer, accompanied
by a self-contact constraint to prevent self-penetration. The total simulation time was set to 1 s. 
 the maximum time step was determined as 

             . Temperature
variation was applied using a sigmoidal smooth step function.
Figure 4. Geometric model for modeling regional brain growth 



Structural meshing with the element type C3D8R was conducted for both the cortical and
white matter layer. To determine the appropriate mesh size, we conducted a mesh sensitivity
analysis with mesh size ranging from 0.3 mm to 0.8 mm (Supplementary Material, Figures S2 and
S3). Based on the mesh convergence analysiswhere simulation results with the coarsest mesh
closely matched those of the finest meshwe selected a mesh size of 0.5 mm for all models. This
results in 84,700 elements for the cortical layer and 278,300 elements for the white matter layer.
Page 12 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
During the simulations, we recorded the coordinates and displacements of the region of interest
(ROI) for each frame. The ROI was defined as the smallest square area encompassing the extracted
brain surface region. Although this definition introduces some redundant areas, which potentially
biases the quantitative measurements, it serves our primary goal: to compare the effectiveness of
the regional growth model with the widely used isotropic growth theory. The inclusion of these
redundant areas does not significantly impact this comparative analysis. Additionally, defining the
ROI in this manner simplifies the partitioning process in ABAQUS and facilitates area
reconstructions during postprocessing. All simulations were performed on a Dell workstation
equipped with a 16-core Intel(R) Xeon(R) CPU E52687 W @ 3.1 GHz, and 64 GB of memory.
2.4. Postprocessing and quantitative metrics
After the simulations, the recorded coordinates and displacements were first extracted from
the result file using Python and subsequently imported into MATLAB to reconstruct the deformed
surface. During reconstruction, the surface was interpolated five times to generate a sufficiently
smooth surface, and the original quadrilateral surface mesh was transformed into a triangular mesh,
facilitating the calculation of quantitative features such as curvatures, gyrification index, and sulcal
depth in MATLAB.
Curvatures: The curvature of a surface describes the degree to which it deviates from being
flat at a given point. Normal curvature is defined as the inverse of the radius of the best-
approximated curve from a surface normal slice in a given direction. Considering all directions,
we obtain the curvature matrix, typically represented by the Weingarten matrix. Its principal
decomposition gives the principal curvatures, which correspond to the maximum and minimum
values of the surfaces normal curvature in different directions ( and ). The average of two
principal curvatures denotes the mean curvature (󰇛󰇜
, while the product of the
principal curvatures yields the Gaussian curvature (). In this study, we focused on the
mean curvature due to its extensive application in brain cortical folding analysis.49-51
Page 13 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
The curvatures of the triangular mesh were calculated using the method introduced by Meyer,
et al.52, where finite volume discretization was employed to estimate the local integral of mean
curvature over the normal areas of triangular faces associated with each point. If the surrounding
faces are obtuse triangles, the barycentric area was calculated; otherwise, the Voronoi area was
used. However, the calculated mean curvature is dependent on the geometrys shape or size,
meaning its magnitude varies with brain scales. To address this, we further introduced a non-
dimensional measure of mean curvature using the method provided by Balouchzadeh, et al.53,
where the mean curvature is multiplied by a characteristic length ,


󰇛󰇜
where is the surface area. The dimensionless mean curvature was calculated for each point to
provide a qualitative representation, while the absolute value of the dimensionless mean curvature
was averaged across all model points for quantitative comparison. In the remainder of the
manuscript, we use the term curvature to refer to dimensionless mean curvature for clarity.
Gyrification index. To quantitatively describe the folding complexity of the deformed brain
surface, we introduced a global folding metric: the three-dimensional gyrification index (GI). The
GI is defined as the ratio of the total cortical surface area to the area of convex hull that completely
encloses the convoluted surface 8,

 󰇛󰇜
To calculate the GI, we first defined a fully enclosed convex hull comprising all points of the
deformed cortical surface, then we discretized and filtered this surface to ensure it completely
encloses the deformed surface with minimum surface area. Finally, we measured the area of
discrete convex hull, which serves as the denominator in the GI calculation.
Sulcal depth: Sulcal depth (SulcDepth) is another quantitative measure capable of reflecting
the extent of the folding in brain regions. Although Numerous methods have been suggested for
computing sulcal depth,51, 54 a well-defined computation remains elusive. In this study, we adopted
the approach introduced by Wang, et al.49, calculating SulcDepth as the distance between the
deformed mesh surface and its convex hull, which was previously defined in calculating the GI.
Page 14 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Specifically, for each vertex on the deformed surface, we first determined its projection point on
each discrete triangular surface of the convex hull. Subsequently, we computed the distance
between the vertex and its corresponding projection point, with the shortest distance serving as the
sulcal depth for that vertex. Given the convex nature of the enclosed hull, the shortest distance
always exists between the vertex and a consistent piece of the convex hull, as demonstrated in the
Result section. SulcDepth was calculated for each vertex for qualitative representation, and the
values were averaged across all model points to ensure quantitative comparisons.
Evaluation metrics: To evaluate the accuracy of simulation results for the aforementioned
quantitative features, including curvatures, gyrification index, and sulcal depth, we introduced the
following statistical metrics: , mean absolute percentage error (), and Pearson correlation
coefficient (). Here, measures the goodness-of-fit of the simulation results, formulated as
󰇛󰇜
 󰇛󰇜
, where denotes the number of data points, represents
the actual feature values measured from real brain data, is the mean of actual values, and is
the predicted value from the simulation. An value close to 1 indicates a strong agreement
between the simulation results and real brain imaging data. , expressed as a percentage,
quantifies the average absolute error between predicted () and actual values (). It is calculated
using the formula:

  󰇛󰇜
Moreover, we introduced the Pearson correlation coefficient () to assess the strength and direction
of the linear relationship between the simulation results and real brain measures, with its formula
as:
󰇛󰇜


 󰇛󰇜
 󰇛󰇜
where is the mean of actual values. All these evaluation metrics were calculated in Python using
the sklearn and scipy libraries. Noted, due to the discrepancy in the number of data points between
Page 15 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
the simulation results and the actual data, we applied an interpolation method to resample the
extracted simulation data, ensuring a consistent data size before computing the evaluation metrics.
2.5. Brain imaging data



 
      


            
           





.

       



             


Page 16 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E


 

󰇛󰇜
󰆒󰇛󰇜
Figure 5. Raw data of cortical surface area and thickness for five selected regions  
p
 



  

   compare the effectiveness of the regional growth model
with classic growth theories. Therefore, we selected five representative regions that exhibit
significant distinctions in surface area and cortical thickness. These regions are slow-growing
Page 17 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Region 1, medium-growing Regions 4, 9, and 11, and fast-growing Region 16, corresponding to

         
respectively. As illustrated in Figure 5, the development of the surface area and cortical thickness
from 29 postmenstrual weeks to 2 years of age exhibits significant differences among these regions,
with the p-values all smaller than 0.001. Here, we conducted paired Student t-test to compute the
significance of these differences, with the null hypothesis being no difference in surface area or
cortical thickness between the two regions.
3. Results
    



           



            




3.1. Regional growth models identified from symbolic regression

               
Page 18 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E

postnatal 
󰆒
    
             

            
           


      󰇛󰇜󰇛󰇜󰇛󰇜
     
 
Page 19 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Figure 6. Tangential growth models discovered for five selected regions    
                 

  

Figure 7. Radial growth models discovered for five selected regions     
                 

  


 

󰆒
󰆒 



󰆒 
Page 20 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
          
     
  
, et al.
         

󰇛󰇜
           
    
             


3.2. Regional growth models accurately simulate folding evolutions patterns




      




           

           

Page 21 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E


Figure 8. Longitudinal brain developing patterns for five regions

Page 22 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Figure 9. Simulated folding patterns vs realistic brain images
             
              
            



          

            

Page 23 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
            postnatal-  

              
            






Figure 10. Mean curvature and sulcal depth

Page 24 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Figure 11. Quantitative comparison of mean curvature, sulcal depth, and gyrification index among five
regions. 




Page 25 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E

              


               


           

             




             




              
  
 
  
            
 

     
              
Page 26 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E

             


            

3.3. Regional growth models outperform classic unified growth models

     


        

  
         



     

            



             

Page 27 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
 

Page 28 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Figure 12. Symbolic regression growth model vs classic growth model.  

          
             
         




             

      

  

3.4. Growth ratio values influence folding evolution more than growth trajectory
           




    

           
            
             

󰇛󰇜󰇛󰇜 󰇛󰇜
Page 29 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
           
               

Figure 13. Three distinct growth models for region 9.      

Figure 14. Impact of growth trajectory on the folding patterns. 
               
Page 30 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
 








            

  



, et al.



, et al.          
          

3.5. Multi-region model provides more realistic folding results than single-regional model

          
            

Page 31 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
 

             




Figure 15. Brain folding patterns of a multi-region model. 



Page 32 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
           
  

               

            

Figure 16. Multi-region model vs single-region model. 


      
Page 33 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
   


  







      

4. Discussion





         
           


           
 , et al. 
          

Page 34 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
    
  
      
     



      


            
           
   




          
   


           
         

             

           
Page 35 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E


          


 



             

     

      
             


             
          

Conducting simulations on a single brain region allows for comparative analysis of distinct growth
theories and their effects on brain folding. However, this approach may lead to unrealistic folding
patterns due to the artificially imposed boundary conditions. Our findings indicate that a multi-
region computational model, which considers three adjacent regions simultaneously, offers a more
reliable result by producing more uniformly distributed folding patterns. In the future, a brain-wide
model encompassing all 18 parcellated regions is expected to yield more realistic folding
predictions, by integrating regional growth models derived through symbolic regression. Moreover,
Page 36 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
our study can be improved by addressing the following issues: First, we assumed uniform cortical
thickness across each brain region. Incorporating anatomically accurate cortical thickness,
accounting for both gray and white matter in the model construction process, would provide a
more convincing geometric model. Second, the tangential growth within the cortical layer was
assumed to be uniform. In reality, this growth varies spatially, as evident in differential growth
within the six-layered cortex.90 Future studies should consider adopting a spatially dependent
growth profile, as proposed by Tallinen, et al.8. Third, in current study, the tangential and radial
growth models were characterized based on different datasets, as shown in Figures 6 and 7. Future
studies that integrate surface area and cortical thickness measurements from the same dataset
would significantly enhance the integrity and rigor of the predicted growth model. Last but not
least, the brain tissue in our model was treated as an incompressible hyperelastic material described
by the neo-Hookean strain energy function. Incorporating a regional hyperelastic model with a
degree of compressibility, characterized though symbolic regression, could account for the
heterogeneity in stiffness and further enhance the reliability of our simulation results.
5. Conclusion

           
            
  

          


          

     
Page 37 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E






Author Contributions
        

        

        

Conflicts of Interest
              

Data Availability
           
             
        
.         

Acknowledgements
Page 38 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E


        

            
        

             

Reference
 Cerebral Cortex18
 Cerebral Cortex31
        
Autism research15
 Neuroepidemiology54
 JAMA psychiatry77
  Frontiers in cellular neuroscience13

 Seminars in Cell & Developmental Biology140
         Proceedings of the National Academy of
Sciences111
 Cerebral Cortex22
 Developmental cell52
 Frontiers in Cell and Developmental Biology9
 J Mech Behav Biomed Mater29
 Journal of Neuroscience38
 Nature385
     
 
Cerebral Cortex22

 J Biomech Eng
132
Page 39 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
   
Cerebral Cortex24
 Developmental neuropsychology24
 Science189
 Journal of
Biomechanics139
 Physical Biology10
 Journal of the Mechanics and Physics of Solids72
        
Brain Multiphysics2
 Physical review letters121
 Cerebral Cortex Communications2
 Journal of Theoretical Biology
264
 Extreme Mechanics Letters18
  Cerebral Cortex
34
 Cerebral Cortex19

 Proceedings of the National
Academy of Sciences119
 Proceedings
of the National Academy of Sciences116
 International Journal of Solids and Structures132
 Biomechanics and Modeling in Mechanobiology20

 Scientific Reports6
 Journal of biomechanics27
 Nonlinear solid mechanics: a continuum approach for engineering science

 Archives of Computational Methods in Engineering
30
      International Journal for Numerical Methods in Engineering  125

 arXiv preprint arXiv:2402.05238
           Computer Methods in Applied Mechanics and
Engineering419
 Construction and Building Materials280
 arXiv preprint arXiv:2305.01582
                Journal of
Magnetic Resonance Imaging53
Page 40 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
 Dassault Systemes Simulia Corporation, Providence, RI, USA3
 
Cerebral Cortex33
 Computer Methods in Biomechanics and Biomedical Engineering

 Journal of the Mechanical Behavior
of Biomedical Materials76
 Acta Mechanica Solida Sinica25
 Scientific Reports
11
    
Human Brain Mapping43
 Human Brain
Mapping41
 
 Brain Multiphysics4
 PloS one8
                
Neuroimage173
                  
Magnetic resonance in medicine78
 
Developmental Cognitive Neuroscience63
 
PLOS ONE7
 Cerebral Cortex34
 Medical Image Analysis25
  Human Brain Mapping40

 
Cerebral Cortex25
      
NeuroImage268
 Journal of
Neuroscience29
 
Proceedings of the National Academy of Sciences
116
 Nature Reviews Neuroscience19
 Nature Physics
12
Page 41 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
 Human Brain Mapping
39
 Scientific Reports
13
           Philosophical Transactions of the Royal Society B-
Biological Sciences373
 J Neurosurg Pediatr21
 Neuroimage68

  
PLoS computational biology16
 Scientific Reports5
 Brain
Multiphysics3
 Nature Communications12
  The European Physical Journal
Special Topics229
 Annals of biomedical engineering43
 Malaria Journal11
 Journal of the neurological sciences
216
 Journal of the Mechanical Behavior of Biomedical
Materials150
 arXiv preprint arXiv:2310.10762
 Computer Methods in Applied Mechanics and Engineering
405
 Acta Biomaterialia160
 Journal of the Mechanics and Physics of Solids112
 Brain Multiphysics2
 Extreme Mechanics Letters4
 Human Brain Mapping43
 
Acta biomaterialia99
 PLOS Computational Biology18
 Journal
 
NeuroImage185
Page 42 of 43Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
Data Availability Statement
The original contributions presented in the study are included in the
article/supplemental material. Further inquiries can be directed to the corresponding
authors. The dHCP dataset is publicly available at the Developing Human Connectome
Project repository: http://www.developingconnectome.org. The BCP dataset is publicly
available in NIMH Data Archive: https://nda.nih.gov/edit_collection.html?id=2848.
Page 43 of 43 Soft Matter
Soft Matter Accepted Manuscript
Open Access Article. Published on 02 January 2025. Downloaded on 1/3/2025 10:20:58 AM.
This article is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
DOI: 10.1039/D4SM01194E
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We present a machine learning framework capable of consistently inferring mathematical expressions of hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelastic model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via the PNAM is that (1) it is spanned by a set of univariate basis functions that can be re‐parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi‐variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning‐generated mathematical model also requires fewer arithmetic operations than its deep neural network counterparts during deployment. This latter attribute is crucial for scaling large‐scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state‐of‐the‐art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade‐off between interpretability, accuracy, and precision of the learned symbolic hyperelastic models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics‐based knowledge.
Article
Full-text available
Across mammalia, brain morphology follows specific scaling patterns. Bigger bodies have bigger brains, with surface area outpacing volume growth, resulting in increased foldedness. We have recently studied scaling rules of cortical thickness, both local and global, finding that the cortical thickness difference between thick gyri and thin sulci also increases with brain size and foldedness. Here, we investigate early brain development in humans, using subjects from the Developing Human Connectome Project, scanned shortly after pre-term or full-term birth, yielding magnetic resonance images of the brain from 29 to 43 postmenstrual weeks. While the global cortical thickness does not change significantly during this development period, its distribution does, with sulci thinning, while gyri thickening. By comparing our results with our recent work on humans and 11 non-human primate species, we also compare the trajectories of primate evolution with human development, noticing that the 2 trends are distinct for volume, surface area, cortical thickness, and gyrification index. Finally, we introduce the global shape index as a proxy for gyrification index; while correlating very strongly with gyrification index, it offers the advantage of being calculated only from local quantities without generating a convex hull or alpha surface.
Preprint
Full-text available
The intricate architecture of the human brain exhibits complex mechanical properties and endows it to perform pivotal functions. Traditional computational methods, such as the finite element analysis, have provided valuable insights into uncovering the underlying mechanisms of brain physical behaviors. However, precise predictions of brain physics require effective constitutive models to represent the intricate mechanical properties of brain tissue. In this study, we aimed to identify the most favorable constitutive material model for human brain tissue. To achieve this, we applied artificial neural network and multiple regression methods to a generalization of widely accepted classic models, and compared the results obtained from these two approaches. To evaluate the applicability and efficacy of the model, all setups were kept consistent across both methods, except for the approach to prevent potential overfitting. Our results demonstrate that artificial neural networks are capable of automatically identifying accurate constitutive models from given admissible estimators. Nonetheless, the five-term and two-term neural network models trained under single-mode and multi-mode loading scenarios, were found to be suboptimal and could be further simplified into two-term and single-term, respectively, with higher accuracy using multiple regression. Our findings highlight the importance of hyperparameters for the artificial neural network and emphasize the necessity for detailed cross-validations of regularization parameters to ensure optimal selection at a global level in the development of material constitutive models. This study validates the applicability and accuracy of artificial neural network to automatically discover constitutive material models with proper regularization as well as the benefits in model simplification without compromising accuracy for traditional multivariable regression.
Article
Full-text available
The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.
Article
Full-text available
In utero exposure to maternal stress, anxiety, and depression has been associated with reduced cortical thickness (CT), and CT changes, in turn, to adverse neuropsychiatric outcomes. Here, we investigated global and regional (G/RCT) changes associated with fetal exposure to maternal psychological distress in 265 brain MRI studies from 177 healthy fetuses of low-risk pregnant women. GCT was measured from cortical gray matter (CGM) voxels; RCT was estimated from 82 cortical regions. GCT and RCT in 87% of regions strongly correlated with GA. Fetal exposure was most strongly associated with RCT in the parahippocampal region, ventromedial prefrontal cortex, and supramarginal gyrus suggesting that cortical alterations commonly associated with prenatal exposure could emerge in-utero. However, we note that while regional fetal brain involvement conformed to patterns observed in newborns and children exposed to prenatal maternal psychological distress, the reported associations did not survive multiple comparisons correction. This could be because the effects are more subtle in this early developmental window or because majority of the pregnant women in our study did not experience high levels of maternal distress. It is our hope that the current findings will spur future hypothesis-driven studies that include a full spectrum of maternal mental health scores.
Article
Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.
Article
The human brain development experiences a complex evolving cortical folding from a smooth surface to a convoluted ensemble of folds. Computational modeling of brain development has played an essential role in better understanding the process of cortical folding, but still leaves many questions to be answered. A major challenge faced by computational models is how to create massive brain developmental simulations with affordable computational sources to complement neuroimaging data and provide reliable predictions for brain folding. In this study, we leveraged the power of machine learning in data augmentation and prediction to develop a machine-learning-based finite element surrogate model to expedite brain computational simulations, predict brain folding morphology, and explore the underlying folding mechanism. To do so, massive finite element method (FEM) mechanical models were run to simulate brain development using the predefined brain patch growth models with adjustable surface curvature. Then, a GAN-based machine learning model was trained and validated with these produced computational data to predict brain folding morphology given a predefined initial configuration. The results indicate that the machine learning models can predict the complex morphology of folding patterns, including 3-hinge gyral folds. The close agreement between the folding patterns observed in FEM results and those predicted by machine learning models validate the feasibility of the proposed approach, offering a promising avenue to predict the brain development with given fetal brain configurations.