Article

Comparative analysis of the stress and immune and responses in Atlantic salmon (Salmo salar) inoculated with live and inactivated Piscirickettsia salmonis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Aeromonas salmonicida , a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish ( Cyclopterus lumpus ) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A‐layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron‐regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 10 ⁴ A. salmonicida cells/dose at 8 weeks‐post immunization (wpi). Immunized and non‐immunized fish died within 2 weeks post‐challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm , mhc‐ii and cd4 ) were down‐regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin‐based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.
Article
Full-text available
Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.
Article
Full-text available
Cellular immune responses consist of innate and adaptive cell-mediated immune mechanisms, where all leukocyte subpopulations are included. Among these are vital processes such as cell-mediated cytotoxicity and phagocytosis. The main cellular constituents of the fish immune system are macrophages, granulocytes, dendritic cells, NK cells, and cytotoxic T cells. This review provides the latest information on cellular defense mechanisms of fish and provides an overview of the function of the mucosal immune system in maintaining the general health of fish. Here, we discuss the fundamental ideas that underpin mucosal immune responses in teleosts, as well as the innate and adaptive immune cells and the molecules that play a role in these immune responses. Moreover, cytokine molecules and pathways in teleosts have been reported to focus on several kinds of associated immunity. Importantly, we also review antigen processing and presentation. The knowledge reported here will enable better understanding, determination, and modulation of the pathways responsible for protective immunity, thus consequently improving the health of the fish in aquaculture.
Article
Full-text available
Piscirickettsiosis is the most severe, persistent, and damaging disease that has affected the Chilean salmon industry since its origins in the 1980s. As a preventive strategy for this disease, different vaccines have been developed and used over the last 30 years. However, vaccinated salmon and trout frequently die in the sea cages and the use of antibiotics is still high demonstrating the low efficiency of the available vaccines. The reasons why the vaccines fail so often are still debated, but it could involve different extrinsic and intrinsic factors. Among the extrinsic factors, mainly associated with chronic stress, we can distinguish: 1) biotic including coinfection with sea lice, sealions attacks or harmful algal blooms; 2) abiotic including low oxygen or high temperature; and 3) farm-management factors including overcrowding or chemical delousing treatments. Among the intrinsic factors, we can distinguish: 1) fish-related factors including host’s genetic variability (species, population and individual), sex or age; 2) pathogen-related factors including their variability and ability to evade host immune responses; and 3) vaccine-related factors including low immunogenicity and poor matches with the circulating pathogen strain. Based on the available evidence, in order to improve the development and the efficacy of vaccines against P. salmonis we recommend: a) Do not perform efficacy evaluations by intraperitoneal injection of pathogens because they generate an artificial protective immune response, instead cohabitation or immersion challenges must be used; b) Evaluate the diversity of pathogen strains in the field and ensure a good antigenic match with the vaccines; c) Investigate whether host genetic diversity could be improved, e.g. through selection, in favor of better and longer responses to vaccination; d) To reduce the stressful effects at the cage level, controlling the co-infection of pathogens and avoiding fish overcrowding. To date, we do not know the immunological mechanisms by which the vaccines against P. salmonis may or may not generate protection. More studies are required to identify what type of response, cellular or molecular, is required to develop effective vaccines.
Article
Full-text available
Piscirickettsia salmonis is the etiological agent of Piscirickettsiosis, a severe disease that affects Atlantic salmon (Salmo salar) farmed in Chile and many other areas (Norway, Scotland, Ireland, Canada and the USA). This study investigated the effects of low‐dose P. salmonis infection (1 × 10² CFU/ml) on Atlantic salmon. In this study, we challenged fish with an isolated representative of the EM‐90 genogroup via intraperitoneal injection for 42 days. Infected fish displayed decreased haematocrit and haemoglobin levels at day 13 post‐infection, indicating erythropenia, haemolysis and haemodilution. Conversely, their white blood cell counts increased on days 13 and 21 post‐infection. Additionally, their iron levels decreased from day 2 post‐infection, indicating iron deficiency and an inability to retrieve stored iron before infection. Their magnesium levels also decreased at day 28 post‐infection, possibly due to osmoregulatory problems. Also, we observed an increase in lactate dehydrogenase activity on days 5, 21, and 28 post‐infection, suggesting early symptoms of hepatotoxicity. Later analyses determined a decrease in plasma glucose levels from day 2 post‐infection. This may be attributed to the hypoxic conditions caused by P. salmonis, leading to an excess utilization of stored carbohydrates. Our results suggest that the blood parameters we studied are useful for monitoring the physiological status of Atlantic salmon infected with P. salmonis.
Article
Full-text available
The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis “OMVs”, protein extract of P. salmonis “TP” and lipopolysaccharides of P. salmonis “LPS”) isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1μg of outer membrane vesicles), TP (SHK-1 stimulated with 1μg of total protein extract) and LPS (SHK-1 stimulated with 1μg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.
Article
Full-text available
Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host’s own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics—to control SRS—because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.
Article
Full-text available
Salmonid rickettsial septicaemia (SRS) is a contagious disease caused by Piscirickettsia salmonis , an intracellular bacterium. SRS causes an estimated economic loss of $700 million USD to the Chilean industry annually. Vaccination and antibiotic therapy are the primary prophylactic and control measures used against SRS. Unfortunately, commercially available SRS vaccines have not been shown to have a significant effect on reducing mortality. Most vaccines contain whole inactivated bacteria which results in decreased efficacy due to the limited ability of the vaccine to evoke a cellular mediated immune response that can eliminate the pathogen or infected cells. In addition, SRS vaccine efficacy has been evaluated primarily with Salmo salar (Atlantic salmon). Vaccine studies using Oncorhynchus mykiss (rainbow trout) are scarce, despite SRS being the leading cause of infectious death for this species. In this study, we evaluate an injectable vaccine based on P. salmonis proteoliposome; describing the vaccine security profile, capacity to induce specific anti- P. salmonis IgM and gene expression of immune markers related to T CD8 cell-mediated immunity. Efficacy was determined by experimental challenge with P. salmonis intraperitoneally. Our findings indicate that a P. salmonis proteoliposome-based vaccine is able to protect O. mykiss against challenge with a P. salmonis Chilean isolate and causes a specific antibody response . The transcriptional profile suggests that the vaccine is capable of inducing cellular immunity. This study provides new insights into O. mykiss protection and the immune response induced by a P. salmonis proteoliposome-based vaccine.
Article
Full-text available
The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.
Article
Full-text available
Piscirickettsia salmonis, the etiological agent of the Salmon Rickettsial Septicemia (SRS), is one the most serious health problems for the Chilean salmon industry. Typical antimicrobial strategies used against P. salmonis include antibiotics and vaccines, but these applications have largely failed. A few years ago, the first attenuated-live vaccine against SRS (ALPHA JECT LiVac® SRS vaccine) was released to the market. However, there is no data about the agents involved in the activation of the immune response induced under field conditions. Therefore, in this study we evaluated the expression profile of a set of gene markers related to innate and adaptive immunity in the context of a cellular response in Atlantic salmon (Salmo salar) reared under productive farm conditions and immunized with a live-attenuated vaccine against P. salmonis. We analyzed the expression at zero, 5-, 15- and 45-days post-vaccination (dpv). Our results reveal that the administration of the attenuated live SRS LiVac vaccine induces a short-term upregulation of the cellular-mediated immune response at 5 dpv modulated by the upregulation of ifnα, ifnγ, and the cd4 and cd8α T cell surface markers. In addition, we also registered the upregulation of il-10 and tgfβ. Altogether, the results suggest that a balanced activation of the immune response took place only at early times post-vaccination (5 dpv). The scope of this short-term upregulation of the cellular-mediated immune response against a natural outbreak in fish subjected to productive farm conditions deserves further research.
Article
Full-text available
An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e., Il-1β and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against P. salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.
Article
Full-text available
Piscirickettsiasalmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with numerous negative impacts in the Chilean salmon farming industry. Although transcriptomic studies of P. salmonis and its host have been performed, dual host–pathogen proteomic approaches during infection are still missing. Considering that gene expression does not always correspond with observed phenotype, and bacteriological culture studies inadequately reflect infection conditions, to improve the existing knowledge for the pathogenicity of P. salmonis, we present here a global proteomic profiling of Salmon salar macrophage-like cell cultures infected with P. salmonis LF-89. The proteomic analyses identified several P. salmonis proteins from two temporally different stages of macrophages infection, some of them related to key functions for bacterial survival in other intracellular pathogens. Metabolic differences were observed in early-stage infection bacteria, compared to late-stage infections. Virulence factors related to membrane, lipopolysaccharide (LPS) and surface component modifications, cell motility, toxins, and secretion systems also varied between the infection stages. Pilus proteins, beta-hemolysin, and the type VI secretion system (T6SS) were characteristic of the early-infection stage, while fimbria, upregulation of 10 toxins or effector proteins, and the Dot/Icm type IV secretion system (T4SS) were representative of the late-infection stage bacteria. Previously described virulence-related genes in P. salmonis plasmids were identified by proteomic assays during infection in SHK-1 cells, accompanied by an increase of mobile-related elements. By comparing the infected and un-infected proteome of SHK-1 cells, we observed changes in cellular and redox homeostasis; innate immune response; microtubules and actin cytoskeleton organization and dynamics; alteration in phagosome components, iron transport, and metabolism; and amino acids, nucleoside, and nucleotide metabolism, together with an overall energy and ATP production alteration. Our global proteomic profiling and the current knowledge of the P. salmonis infection process allowed us to propose a model of the macrophage–P. salmonis interaction.
Article
Full-text available
The immune system is composed of two subsystems—the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates—the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Article
Full-text available
Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/μL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.
Article
Full-text available
Eleginops maclovinus is an endemic fish to Chile that lives in proximity to salmonid culture centers, feeding off of uneaten pellet and salmonid feces. Occurring in the natural environment, this interaction between native and farmed fish could result in the horizontal transmission of pathogens affecting the aquaculture industry. The aim of this study was to evaluate the innate and adaptive immune responses of E. maclovinus challenged with P. salmonis. Treatment injections (in duplicate) were as follows: control (100 μL of culture medium), wild type LF-89 strain (100 μL, 1 × 108 live bacteria), and antibiotic resistant strain Austral-005 (100 μL, 1 × 108 live bacteria). The fish were sampled at various time-points during the 35-day experimental period. The gene expression of TLRs (1, 5, and 8), NLRCs (3 and 5), C3, IL-1β, MHCII, and IgMs were significantly modulated during the experimental period in both the spleen and gut (excepting TLR1 and TLR8 spleen expressions), with tissue-specific expression profiles and punctual differences between the injected strains. Anti-P. salmonis antibodies increased in E. maclovinus serum from day 14-28 for the LF-89 strain and from day 14-35 for the Austral-005 strain. These results suggest temporal activation of the innate and adaptive immune responses in E. maclovinus tissues when injected by distinct P. salmonis strains. The Austral-005 strain did not always cause the greatest increases/decreases in the number of transcripts, so the magnitude of the observed immune response (mRNA) may not be related to antibiotic resistance. This is the first immunological study to relate a pathogen widely studied in salmonids with a native fish.
Article
Full-text available
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Article
Full-text available
Piscirickettsia salmonis is a facultative intracellular bacterium that causes the disease called " salmon rickettsial syndrome ". Attempts to control this disease have been unsuccessful , because existing vaccines have not achieved the expected effectiveness and the antibiotics used fail to completely eradicate the pathogen. This is in part the product of lack of scientific information that still lacks on the mechanisms used by this bacterium to overcome infected–cell responses and survive to induce a productive infection in macrophages. For that, this work was focused in determining if P. salmonis is able to modify the expression and the imbalance of IL-12 and IL-10 using an in vitro model. Additionally, we also evaluated the role the antimicrobial peptide hepcidin had in the control of this pathogen in infected cells. Therefore, the expression of IL-10 and IL-12 was evaluated at earlier stages of infection in the RTS11 cell line derived from Oncorhynchus mykiss macrophages. Simultaneously , the hepcidin expression and location was analyzed in the macrophages infected with the pathogen. Our results suggest that IL-10 is clearly induced at early stages of infection with values peaking at 36 hours post infection. Furthermore, infective P. salmonis downregulates the expression of antimicrobial peptide hepcidin and vesicles containing this peptide were unable to merge with the infective bacteria. Our results suggest that P. salmonis is able to manipulate the behavior of host cytokines and likely might constitute a virulence mechanism that promotes intracellular bacterial replication in leukocytes cells lines of trout and salmon. This mechanism involves the generation of an optimum environment for the microorganism and the downregulation of antimicrobial effectors like hepcidin.
Article
Full-text available
Piscirickettsia salmonis is a highly virulent and contagious microorganism that affects net pen-reared salmonid fish worldwide since the last third of the past century, with little knowledge about its intracellular survival mechanisms. Following a number of recent and non-conclusive reports which questioned its obligate intracellular condition, we decided to show additional evidence to challenge this well-established paradigm carrying on both basic biology as well as classical molecular experiments that confirm its facultative intracellular nature. In this report, we unequivocally demonstrate that the bacteria recovered from tissue culture amplification, in vitro grown agar plates or grown in liquid cultures, were the same organism and all of these isolates equally fulfils Koch's postulates. In addition, genomic and proteomic analyses confirmed that bacteria from different growth source conditions belonged to the same LF89 prototype strain as originally described by Fryer in 1992. Notwithstanding, growth of the bacteria both in cell-free media as well as in tissue culture cell lines were definitively suboptimal, and much more analysis are required to fully understand the biology of the pathogen. Interestingly, we were able to grow the bacteria in liquid media but at very slow rate. We conclude that, in addition to previous reports, our results confirmed the facultative intracellular nature of this fish pathogen.
Article
Full-text available
Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies.
Article
Full-text available
Currently, there is a growing demand to determine the protective status of vaccinated fish in order to prevent diseases outbreaks. A set of different parameters that include the infectious and immunological status of vaccinated salmonids from 622 Chilean farms were analyzed during 2011–2014. The aim of this study was to optimize the vaccination program of these centers through the determination of the protective state of vaccinated fish using oral immunizations. This state was determined from the association of the concentration of the immunoglobulin M (IgM) in the serum and the mortality rate of vaccinated fish. Salmonids were vaccinated with different commercial mono- or polyvalent vaccines against salmonid rickettsial septicemia (SRS) and infectious salmon anemia (ISA), first by the intraperitoneal injection of oil-adjuvanted antigens and then by the stimulation of mucosal immunity using oral vaccines as a booster vaccination. The results showed that high levels of specific IgM antibodies were observed after injectable vaccination, reaching a maximum concentration at 600–800 degree-days. Similar levels of antibodies were observed when oral immunizations were administrated. The high concentration of antibodies [above 2750 ng/mL for ISA virus (ISAv) and 3500 ng/mL for SRS] was maintained for a period of 800 degree-days after each vaccination procedure. In this regard, oral immunizations maintained a long-term high concentration of anti-SRS and anti-ISAv specific IgM antibodies. When the concentration of antibodies decreased below 2000 pg/mL, a window of susceptibility to SRS infection was observed in the farm, suggesting a close association between antibody levels and fish protective status. These results demonstrated that, in the field, several oral immunizations are essential to uphold a high level of specific anti-pathogens antibodies and, therefore, the protective status during the whole productive cycle.
Article
Full-text available
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Article
Full-text available
The aim of this study was to evaluate immunological, metabolic and osmoregulatory secondary stress responses in Eleginops maclovinus specimens submitted to three different stocking densities: i) low (3.1 kg m−3), medium (15 kg m−3) and high (60 kg m−3) during 10 days, alone or in combination with a previous treatment of a protein extract of the pathogen Piscirickettsia salmonis (0.5 μg g weight body−1). Plasma, liver, gill and kidney samples were obtained at the end of both experiments. Plasma cortisol and amino acid levels increased, while plasma glucose, triglyceride and lactate levels decreased at higher stocking densities. However, no effects were observed on serum Immunoglobulin type M (IgM anti P. salmonis level) values. Gill Na+, K+-ATPase activity enhanced under these experimental conditions, suggesting an osmotic imbalance. Energy metabolism changes, assessed by metabolite concentrations and enzyme activities, indicated a reallocation of energetic substrates at higher stocking densities. Specimens inoculated with a protein extract of P. salmonis and maintained at different stocking densities showed primary stress response, as all groups enhanced plasma cortisol concentrations. Serum IgM levels increased after treatment with P. salmonis extract but a negative influence of high stocking density on IgM production was observed when immune system was activated. Furthermore, treatment with P. salmonis protein extract evoked deep changes in the metabolite stores in all tissues tested, indicating a mobilization of energy substrates in response to infection. The results show that stocking density induced immunological, metabolic and osmoregulatory secondary stress responses in E. maclovinus specimens and that previous treatment with P. salmonis compromise these changes.
Article
Full-text available
Piscirickettsiosis or salmonid rickettsial septicaemia (SRS) caused by Piscirickettsia salmonis constitutes one of the main problems in farmed salmonid and marine fishes. Since the first reports of the disease, it has been successfully isolated and maintained in eukaryotic cell--culture systems, but these systems are time-consuming, the media are costly, and eliminating heavily contaminated host cell debris is difficult. In this report, we describe a marine-based broth supplemented with L-cysteine, named AUSTRAL-SRS broth, that facilitates superior growth of P. salmonis strains. Strains reached an optical density of approximately 1.8 when absorbance was measured at 600 nm after 6 d incubation at 18°C. Several passages (n = 6) did not alter the culture kinetics. We report for the first time the purification of DNA, lipopolysaccharide (LPS) and whole membrane protein obtained from P. salmonis grown in this liquid medium, and thus provide a suitable platform to simplify the preparation of P. salmonis cells for genetic and serological studies. Moreover, the results of the cytopathic effect test showed that P. salmonis grown in AUSTRAL-SRS broth maintained their virulence properties, inducing apoptosis after 3 d. This makes the medium a good candidate for the successful growth of P. salmonis and an excellent basis for the development of low cost vaccines.
Article
Full-text available
The bacterium Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia (SRS), a severe disease that causes major economic losses to the Atlantic salmon aquaculture industry every year. Little is known about the infective strategy of P. salmonis, which is able to infect, survive within, and replicate inside salmonid macrophages as an intracellular parasite. Similarly there is little knowledge concerning the fish host's response to invasion by this pathogen. We have examined the transcriptional response of postsmolt Atlantic salmon (Salmo salar) to P. salmonis at 48 h following infection in three tissues, liver, head kidney, and muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The infection led to a large alteration of transcriptional activity in all the tissues studied. In infected salmon 886, 207, and 153 transcripts were differentially expressed in liver, head kidney, and muscle, respectively. Assessment of enrichment for particular biological pathways by gene ontology analysis showed an upregulation of genes involved in oxidative and inflammatory responses in infected fish, indicative of the activation of the innate immune response. The downregulation of genes involved in the adaptive immune response, G protein signaling pathway, and apoptotic process in infected fish may be reflective of mechanisms used by P. salmonis to survive, replicate, and escape host defenses. There was also evidence of differential responses between studied tissues, with protein metabolism being decreased in muscle of infected fish and with a concomitant increase being shown in liver.
Article
Full-text available
ABSTRACT: Over the last 10 years or so, infections caused by bacteria belonging to a particular branch of the genus Francisella have become increasingly recognised in farmed fish and molluscs worldwide. While the increasing incidence of diagnoses may in part be due to the development and widespread availability of molecular detection techniques, the domestication of new organisms has undoubtedly instigated emergence of clinical disease in some species. Francisellosis in fish develops in a similar fashion independent of host species and is commonly characterised by the presence of multi-organ granuloma and high morbidity, with varying associated mortality levels. A number of fish species are affected including Atlantic cod, Gadus morhua; tilapia, Oreochromis sp.; Atlantic salmon, Salmo salar; hybrid striped bass, Morone chrysops × M. saxatilis and three-lined grunt, Parapristipoma trilinineatum. The disease is highly infectious and often prevalent in affected stocks. Most, if not all strains isolated from teleost fish belong to either F. noatunensis subsp. orientalis in warm water fish species or Francisella noatunensis subsp. noatunensis in coldwater fish species. The disease is quite readily diagnosed following histological examination and identification of the aetiological bacterium by culture on cysteine rich media or PCR. The available evidence may indicate a degree of host specificity for the various Francisella strains, although this area requires further study. No effective vaccine is currently available. Investigation of the virulence mechanisms and host response shows similarity to those known from Francisella tularensis infection in mammals. However, no evidence exists for zoonotic potential amongst the fish pathogenic Francisella.
Article
Full-text available
We have used the expression library immunization technology to study the protection of Coho salmon Oncorhynchus kisutch to the infection with Piscirickettsia salmonis. Purified DNA from this bacterium was sonicated and the fragments were cloned in the expression vector pCMV-Bios. Two libraries were obtained containing 22,000 and 28,000 colonies and corresponding to approximately 8 and 10 times the genome of the pathogen, respectively. On average, the size of the inserts ranged between 300 and 1,000 bp. The plasmid DNA isolated from one of these libraries was purified and 20 micrograms were injected intramuscularly into 60 fish followed by a second dose of 10 micrograms applied 40 days later. As control, fish were injected with the same amount of DNA of the vector pCMV-Bios without insert. The titer of IgM anti-P. salmonis of vaccinated fish, evaluated 60 days post-injection, was significantly higher than that of the control group injected with the vector alone. Moreover, this response was specific against P. salmonis antigens, since no cross reaction was detected with Renibacterium salmoninarum and Yersinia ruckeri. The vaccinated and control fish were challenged 60 days after the second dose of DNA with 2.5 x 10(7) P. salmonis corresponding to 7.5 times the LD50. At 30 days post-challenge, 100% mortality was obtained with the control fish while 20% of the vaccinated animals survived. All surviving fish exhibited a lower bacterial load in the kidney than control fish. The expression library was also tested in Balb/c mice and it was found that the humoral immune response was specific to P. salmonis and it was dependent on the amount of DNA injected.
Article
Full-text available
Piscirickettsia salmonis is the intracellular bacterium that causes salmonid rickettsial septicemia, an infectious disease that kills millions of farmed fish each year. The mechanisms used by P. salmonis to survive and replicate within host cells are not known. Piscirickettsiosis causes severe necrosis of hematopoietic kidney. Microarray-based experiments with QPCR validation were used to identify Atlantic salmon macrophage and hematopoietic kidney genes differentially transcribed in response to P. salmonis infection. Infections were confirmed by microscopy and RT-PCR with pathogen-specific primers. In infected salmon macrophages, 71 different transcripts were upregulated and 31 different transcripts were downregulated. In infected hematopoietic kidney, 30 different transcripts were upregulated and 39 different transcripts were downregulated. Ten antioxidant genes, including glutathione S-transferase, glutathione reductase, glutathione peroxidase, and cytochrome b558 alpha- and beta-subunits, were upregulated in infected macrophages but not in infected hematopoietic kidney. Changes in redox status of infected macrophages may allow these cells to tolerate P. salmonis infection, raising the possibility that treatment with antioxidants may reduce hematopoietic tissue damage caused by this rickettsial infection. The downregulation of transcripts involved in adaptive immune responses (e.g., T cell receptor alpha-chain and C-C chemokine receptor 7) in infected hematopoietic kidney but not in infected macrophages may contribute to infection-induced kidney tissue damage. Molecular biomarkers of P. salmonis infection, characterized by immune-relevant functional annotations and high fold differences in expression between infected and noninfected samples, may aid in the development of anti-piscirickettsial vaccines and therapeutics.
Article
Piscirickettsia salmonis, the primary bacterial disease in Chilean salmon farming, necessitates a constant refinement of control strategies. This study hypothesized that the current vaccination strategy for SRS control in the Chilean Atlantic salmon aquaculture industry, which has been in place since 2017 (ALPHA JECT® 5.1 plus LiVac®), solely relies on vaccines formulated with the EM-90 genogroup of P. salmonis (PS-EM-90), triggering a partial cross-immunity response in fish infected with the LF-89 genogroup (PS-LF-89). Relative Percent Survival (RPS) and cell-mediated immune (CMI) response were evaluated in Atlantic salmon post-smolts vaccinated with the standard vaccination strategy but challenged with both PS-EM-90 and PS-LF-89, in addition to other vaccination strategies considering primo vaccination and booster with other commercial vaccines and the possible enhancing effects of the combination with a natural immunomodulator (PAQ-Xtract®) administered orally. The intraperitoneal (I.P.) challenge was performed after 2395 degree-days (DD) after the start of the immunostimulant delivery, 1905 DD after the primo vaccination, and 1455 DD after the booster vaccination. Unvaccinated fish showed 73.6 and 41.7% mortality when challenged with PS-EM-90 and PS-LF-89, respectively. Fish infected with PS-LF-89 died significantly faster (21 days post-infection, dpi) than fish challenged with PS-EM-90 (28 dpi) (p = 0.0043) and had a higher probability of death (0.4626) than fish challenged with PS-EM-90. RPS had a significant positive correlation with the PS-EM-90 load of the P. salmonis genogroup (r = 0.540, p < 0.01) but not with the PS-LF-89 load (r = 0.155, p > 0.05). This demonstrated that the immunization strategies were more effective in lowering PS-EM-90 loads, resulting in higher survival rates in fish challenged with PS-EM-90. The current industry vaccination strategy recorded a 100% RPS when fish were challenged with PS-EM-90, but the RPS dropped significantly to 77% when fish were challenged with PS-LF-89, meaning that the strategy did not show complete cross-protection. But after adding PAQ-Xtract®, the RPS improved from 77% to 92% in fish that were vaccinated with the standard method but then challenged with PS-LF-89. The most effective vaccination strategy was based on LiVac® as primo vaccination and ALPHA JECT® 5.1 plus LiVac® as booster vaccination, with or without PAQ-Xtract®, in both PS-EM-90 (100%) and PS-LF-89 (96%) challenged fish. The serum concentration of anti-P. salmonis IgM did not show a correlation with the protection of immunization strategies expressed in survival. Low serum IL-12 and high serum IFNγ concentrations showed a correlation with higher bacterial loads and lower survival. Aggregate analysis showed a significant correlation between higher numbers of CD8+ cells in the head-kidney, higher fish survival, and a lower bacterial load. The immunization strategies were safe for fish and induced only mild microscopic lesions in the gut. Taken together, our results help to better understand the biological interaction between P. salmonis and post-smolt vaccinated Atlantic salmon to deepen the knowledge on vaccine-induced protection, CMI immune response, and cross-immunity applied to improve the current immunization strategy for SRS control in the Chilean salmon industry.
Article
Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 μg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 μg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-β were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 μg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.
Article
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Article
Fluctuations in ambient temperature along with the presence of pathogenic microorganisms can induce important cellular changes that alter the homeostasis of ectothermic fish. The aim of this study was to evaluate how sudden or gradual changes in environmental temperature together with the administration of Piscirickettsia salmonis modulate the transcription of genes involved in cellular stress response in the liver of Eleginops maclovinus. Fish were subjected to the following experimental conditions in duplicate: C− 12 °C: Injection only with culture medium, C+ 12 °C: Injection with P. salmonis, AM 18 °C: Injection only with culture medium under acclimation at 18 °C, AB 18 °C: Injection with P. salmonis under acclimation at 18 °C, SM 18 °C: Injection only with culture medium and thermal shock at 18 °C and SB 18 °C: Injection with P. salmonis and thermal shock at 18 °C and sampling at 4-, 8-, 12-, 16- and 20-day post injection (dpi). The genes implied in the heat shock response (HSP70, HSC70, HSP90, and GRP78), apoptosis pathway (BAX and SMAC/Diablo), ubiquitination (E2, E3, ubiquitin, and CHIP), and 26 proteasome complex (PSMB7, PSMC1, and PSMA2) showed expression profiles dependent on time and type of injection applied. All the genes greatly increased their expression levels at day 16 and showed moderate increases at day 20, except for PSMA2 which showed a higher increase between 4- and 12-day post challenges. Our results suggest that the changes observed at the final days of the experiment are due to temperature more than P. salmonis.
Article
Pathogen interactions with cultured fish populations are well studied, but their effects on native fishes have not been characterized. In Chile, the bacterial Piscirickettsia salmonis, represents one of the main diseases issues and is one of the main pathogens in aquaculture, and have been found either in native fish. Therefore, it is necessary to understand the impact of P. salmonis on native species of local commercial value, as well as, the potential impact associated with the emergence of antibiotic-resistant strains of P. salmonis. Due to this, the native fish Eleginops maclovinus was used in our study. Fish were randomly distributed in tanks and intraperitoneally inoculated with two strains of P. salmonis. No mortality was recorded during the experiment. Cortisol, glucose and total α-amino acid levels increased in fish injected with AUSTRAL-005 strain compared to sham-injected and LF-89 inoculated fish. Moreover, results showed an increase in the activity of carbohydrates and lipids metabolism in liver; and an increase in the carbohydrates, lipids and total α-amino acids metabolism in muscle after injection with AUSTRAL-005. Our results suggest that P. salmonis modulate the physiology of E. maclovinus and the physiological impact increase in presence of the antibiotic-resistant strain AUSTRAL-005.
Article
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The aim of this study was to describe and comparatively quantify the immune response of post-smolt Atlantic salmon infected by cohabitation with fish bearing LF-89-like and EM-90-like Piscirickettsia salmonis. The expression of 17 genes related to the immune response was studied in head kidney from cohabitant fish by RT-qPCR. Our results at the transcriptomic level suggest that P. salmonis is able to manipulate the kinetics of cytokine production in a way that might constitute a virulence mechanism that promotes intracellular bacterial replication in cells of Atlantic salmon. This strategy involves the creation of an ideal environment for the microorganism based on induction of the inflammatory and IFN-mediated response, modulation of Th1 polarization, reduced antigen processing and presentation, modulation of the evasion of the immune response mediated by CD8+ T cells and promotion of the CD4+ T-cell response during the late stage of infection as a mechanism to escape host defences. This response was significantly exacerbated in fish infected by PS-EM-90 compared with fish infected by PS-LF-89, a finding that is probably associated with the higher pathogenicity of PS-EM-90.
Article
Piscirickettsiosis (SRS) is the most prevalent bacterial disease in Chilean salmon aquaculture and is responsible for high economic losses. The aim of this study was to comparatively characterize the pathogenesis of SRS in post-smolt Atlantic salmon during the early and late stages of infection with Piscirickettsia salmonis LF-89-like (PS-LF-89) and EM-90-like (PS-EM-90) using a cohabitation challenge. The pathogenesis of cohabitant fish infected with the two isolates was relatively different due to cohabitant fish infected with PS-EM-90 showing higher cumulative mortality and shorter time until death compared with PS-LF-89 fish. PS-LF-89 caused an SRS infection characterized by kidney and liver lesions, whereas PS-EM-90 caused systemic and haemorrhagic disease characterized by kidney, liver, heart, brain, skeletal muscle and intestine lesions. Decreased serum concentration of total proteins and albumin as well as increased serum ALT, AST and creatinine levels in fish infected with both isolates confirmed that changes in liver and kidney function occurred during infection. Tissue damage, expressed as an SRS histoscore, showed a strong positive correlation with the bacterial load expressed as abundance of P. salmonis 16S rRNA transcripts in the livers and kidneys of fish affected with either isolate, but the correlation was significantly higher in fish infected with PS-EM-90. The results contribute to improving the understanding of the bacteria–host interaction.
Article
Teleost fish have undergone several rounds of genome duplication in their evolutionary history. The duplication and deletion of their genes has had a profound effect on their immune system and responses. Teleosts have all of the familiar elements of the vertebrate immune system: B cells, T cells, recombining receptors, etc. However, in many cases the structure and regulation of these immune effectors differs from mammalian equivalents. For example, teleost IgM multimers are tetramers, not pentamers, and secondary responses are nonexistent. This is in part due to the altered genetic structure and divergent evolutionary path of teleosts, but differences seen here also reflect the fact that teleost fish are cold-blooded, and thus their environment has profound effects on their metabolism and immune response.
Article
In fish, the innate immune system is the primary response against infection. Toll-like receptors (TLRs) recognize pathogens through pathogen-associated molecular patterns (PAMPs), and some target molecules of TLRs are homologous between fish and mammals. Piscirickettsia salmonis is one of the main pathogens affecting the salmon industry in Chile. Better knowledge of mechanisms underlying its invasive capacity and recognition of target cells is crucial for vaccine development. Therefore, Salmo salar L. TLR1, TLR22, membrane TLR5M and soluble TLR5S sequences were cloned, and expression kinetics were analysed by RT-qPCR in salmon head kidney cells (SHK-1) infected with three different P. salmonis preparations: alive, formaldehyde treated, extract. Clearly, all analysed TLRs were expressed and transcription level changes were revealed at 2 hpi, 12 or 16 hpi and 24 hpi depending on P. salmonis infection scheme. Increased IL1-beta expression confirmed TLR pathway response. Furthermore, significant expression modulations of several members of the TLR pathway in this in vitro model suggest that P. salmonis extract rather than formaldehyde-inactivated bacteria might strengthen the salmon immune system. © 2015 John Wiley & Sons Ltd.
Article
B.: Neuroendocrinología e inmunología de la respuesta al estrés en peces. Rev. Acad. Colomb. Cienc. 32(123): 267-284, 2008. ISSN 0370-3908. En los peces, al igual que en los mamíferos, se ha visto una íntima comunicación entre los sistemas nervioso, endocrino e inmune. Esta comunicación bi-direccional es posible gracias a que las señales moleculares sintetizadas por células y tejidos de los tres sistemas son similares y en algún caso idénticas. Esta estrecha interrelación es fundamental, entre otras cosas, para hacer frente de manera coordinada y eficaz a las situaciones de estrés. El estrés se puede definir como cualquier situación que somete al organismo a unas condiciones fuera del rango fisiológico estable o normal (enfermedades, cambios extremos en las condiciones medio ambientales, etc.). El conjunto de cambios en los tres sistemas orgánicos que genera la situación de estrés como respuesta a dicha situación se conoce genéricamente como síndrome de adaptación general (SAG). Las situaciones de estrés en los peces y los mamíferos guardan gran similitud, aunque existen diferencias en cuanto a los órganos implicados y el tiempo de respuesta, siendo éste un factor importante para la recuperación de la homeostasis. Los parámetros utilizados para identificar los peces estresados son los relacionados con las diferentes fases de la respuesta al estrés: respuesta primaria (adrenalina y cortisol), secundaria (glucosa, lactato y iones del plasma) y las proteínas de fase aguda (APP); además de indicadores inmunes como los indicadores fagocíticos, las enzimas líticas del sistema alternativo del complemento, las aglutininas y los precipitinas (opsoninas, sobre todo lectinas), los anticuerpos naturales, los citoquinas, los quimiomoquinas y los peptidos anti-bacterianos. Todo ello cobra gran relevancia desde el punto de vista econó-mico, por cuanto la producción industrial de recursos pesqueros (piscifactorías) muestra cada vez mayor importancia económica en todo el mundo debido al crecimiento de su demanda y a la creciente calidad del producto comercial. Abstract In fish, like in mammals, an intimate communication between the nervous, endocrine and immune systems has been observed. This bidirectional communication is possible thanks to the molecular signals synthesized by cells and tissues of the three systems are similar or in some cases identical. This intimate interrelation is fundamental, among other factors to cope, in coordinated and effective manner, with the stress situations. Stress can be defined as any situation that puts the organism under the conditions outside the stable or normal physiological range (extreme diseases, changes in the environmental conditions, etc.). The changes in the three regulatory systems that the stress situation generates as a response to this situation is known generically as the general adaptation syndrome (GAS). The stress situations in fish and the mammals keep great similarities, although there exist differences in terms of the organs involved and the response time, being this, an important factor for the recovery of the homeostasis. The parameters used to identify a stressed fish are the ones related to the different response phases after stress: primary response (adrenalin and cortisol), secondary (glucose, lactate and ions of the plasma) and the proteins of acute phase (APP). In addition, immune parameters like phagoctytosis indicators, lytic enzymes of the alternative system of the complement, the aglutinines and precipitines (opsonines, mainly lectines), the natural antibodies, the anti-bacterial cytokines, chemokines and peptides, may be indicative of stress episodes. All of it sows great relevance from the economic point of view, inasmuch as the industrial production of fishing resources (fish farms) anywhere in the world shows greater economic importance due to the growth of their demand and to the increasing quality of the commercial product.
Article
The innate system's recognition of non-self and danger signals is mediated by a limited number of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are single, non-catalytic, membrane-spanning PRRs present in invertebrates and vertebrates. They act by specifically recognizing PAMPs of a variety of microbes and activate signaling cascades to induce innate immunity. A large number of TLRs have been identified in various aquatic animals of phyla Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. TLRs of aquatic and warm-blooded higher animals exhibit some distinctive features due to their diverse evolutionary lineages. However, majority of them share conserve signaling pathways in pathogen recognition and innate immunity. Functional analysis of novel TLRs in aquatic animals are very important in understanding the comparative immunology between warm-blooded and aquatic animals. In additions to innate immunity, recent reports have highlighted the additional roles of TLRs in adaptive immunity. Therefore, vaccines against many critical diseases of aquatic animals may be made more effective by supplementing TLR activators which will stimulate dendritic cells. This article describes updated information of TLRs in aquatic animals and their structural and functional relationship with warm-blooded animals.
Article
The bacterium Piscirickettsia salmonis is the aetiological agent of piscirickettsiosis a severe disease that has caused major economic losses in the aquaculture industry since its appearance in 1989. Recent reports of P. salmonis or P. salmonis-like organisms in new fish hosts and geographical regions have increased interest in the bacterium. Because this gram-negative bacterium is still poorly understood, many relevant aspects of its life cycle, virulence and pathogenesis must be investigated before prophylactic procedures can be properly designed. The development of effective control strategies for the disease has been limited due to a lack of knowledge about the biology, intracellular growth, transmission and virulence of the organism. Piscirickettsiosis has been difficult to control; the failure of antibiotic treatment is common, and currently used vaccines show variable long-term efficacy. This review summarizes the biology and characteristics of the bacterium, including its virulence; the infective strategy of P. salmonis for survival and evasion of the host immune response; the host immune response to invasion by this pathogen; and newly described features of the pathology, pathogenesis, epidemiology and transmission. Current approaches to the prevention of and treatment for piscirickettsiosis are discussed.
Article
Physical, chemical and perceived stressors can all evoke non-specific responses in fish, which are considered adaptive to enable the fish to cope with the disturbance and maintain its homeostatic state. If the stressor is overly severe or long-lasting to the point that the fish is not capable of regaining homeostasis, then the responses themselves may become maladaptive and threaten the fish's health and well-being. Physiological responses to stress are grouped as primary, which include endocrine changes such as in measurable levels of circulating catecholamines and corticosteroids, and secondary, which include changes in features related to metabolism, hydromineral balance, and cardiovascular, respiratory and immune functions. In some instances, the endocrine responses are directly responsible for these secondary responses resulting in changes in concentration of blood constituents, including metabolites and major ions, and, at the cellular level, the expression of heat-shock or stress proteins. Tertiary or whole-animal changes in performance, such as in growth, disease resistance and behavior, can result from the primary and secondary responses and possibly affect survivorship. Fishes display a wide variation in their physiological responses to stress, which is clearly evident in the plasma corticosteroid changes, chiefly cortisol in actinopterygian fishes, that occur following a stressful event. The characteristic elevation in circulating cortisol during the first hour after an acute disturbance can vary by more than two orders of magnitude among species and genetic history appears to account for much of this interspecific variation. An appreciation of the factors that affect the magnitude, duration and recovery of cortisol and other physiological changes caused by stress in fishes is important for proper interpretation of experimental data and design of effective biological monitoring programs.
Article
A novel intracellular pathogen morphologically similar to the ehrlichiae has been isolated in cell culture and identified as the cause of an epizootic disease of salmonid fish. Like the ehrlichiae, the salmonid pathogen, designated strain LF-89, replicates within membrane-bound cytoplasmic vacuoles in host cells. This agent is the first with characteristics of this type to be isolated from a fish. Analysis of the LF-89 16S rRNA indicated that, unlike the ehrlichiae, LF-89 is a gamma proteobacterium distantly related to Coxiella burnetii and perhaps Wolbachia persica. A new genus and species (Piscirickettsia salmonis gen. nov., sp. nov.) are proposed for this organism, with ATCC(R) VR 1361 as the type strain.
Article
The stress response in teleost fish shows many similarities to that of the terrestrial vertebrates. These concern the principal messengers of the brain-sympathetic-chromaffin cell axis (equivalent of the brain-sympathetic-adrenal medulla axis) and the brain-pituitary-interrenal axis (equivalent of the brain-pituitary-adrenal axis), as well as their functions, involving stimulation of oxygen uptake and transfer, mobilization of energy substrates, reallocation of energy away from growth and reproduction, and mainly suppressive effects on immune functions. There is also growing evidence for intensive interaction between the neuroendocrine system and the immune system in fish. Conspicuous differences, however, are present, and these are primarily related to the aquatic environment of fishes. For example, stressors increase the permeability of the surface epithelia, including the gills, to water and ions, and thus induce systemic hydromineral disturbances. High circulating catecholamine levels as well as structural damage to the gills and perhaps the skin are prime causal factors. This is associated with increased cellular turnover in these organs. In fish, cortisol combines glucocorticoid and mineralocorticoid actions, with the latter being essential for the restoration of hydromineral homeostasis, in concert with hormones such as prolactin (in freshwater) and growth hormone (in seawater). Toxic stressors are part of the stress literature in fish more so than in mammals. This is mainly related to the fact that fish are exposed to aquatic pollutants via the extensive and delicate respiratory surface of the gills and, in seawater, also via drinking. The high bioavailability of many chemicals in water is an additional factor. Together with the variety of highly sensitive perceptive mechanisms in the integument, this may explain why so many pollutants evoke an integrated stress response in fish in addition to their toxic effects at the cell and tissue levels. Exposure to chemicals may also directly compromise the stress response by interfering with specific neuroendocrine control mechanisms. Because hydromineral disturbance is inherent to stress in fish, external factors such as water pH, mineral composition, and ionic calcium levels have a significant impact on stressor intensity. Although the species studied comprise a small and nonrepresentative sample of the almost 20,000 known teleost species, there are many indications that the stress response is variable and flexible in fish, in line with the great diversity of adaptations that enable these animals to live in a large variety of aquatic habitats.
Article
Piscirickettsiosis is a septicaemic disease of salmonid fish caused by the obligated intracellular rickettsia, Piscirickettsia salmonis. This disease was first reported in 1989 in salmon cultured in sea water netpens in southern Chile where it is still a major problem causing high mortality among cultured salmonids. In recent years related agents have been reported in farmed salmonids from Ireland, Canada and Norway. Mortality, however, at these locations has been reported to be low. Because of the recent description of piscirickettsiosis and its aetiological agent, knowledge about the immune response of fish against this organism is limited. At present, there is only one paper in the literature dealing with this subject. To standardise challenge methods for testing the efficacy of vaccination, lethal dose 50% and infectivity dose 50% were determined for coho salmon (Oncorhynchus kisutch) and rainbow trout (O. mykiss) using intraperitoneal (i.p.) injections of P. salmonis. Experiments using bath challenge methods failed to reproduce the disease using rainbow trout although low levels of infection in their tissues were found. In a field trial, using formalin killed bacterins injected i.p. into pre-smolt coho salmon, the fish were naturally challenged by placing them in sea water where endemic piscirickettsiosis occurred. The results showed that some of the vaccinated fish groups experienced lower cumulative mortality than the non-vaccinated control group (X < 0.05), suggesting an immunoprotective response in these animals. A trial was also conducted with formalin-killed bacterins in rainbow trout using different antigen concentrations with and without booster injections. Fish were challenged by IP injection of P. salmonis. Vaccinated fish showed less mortality than their respective infected control. Unfortunately the challenge was not strong enough because mortality in the infected control fish was low (20%). Antibody levels measured by radio-immuno-assay increased until day 40 post vaccination. The highest levels of antibody were obtained in the sera of fish vaccinated with concentrated antigen using booster injections.
Article
The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data.