Article

Towards leveraging explicit negative statements in knowledge graph embeddings

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
Recently, increasing efforts are put into learning continual representations for symbolic knowledge bases (KBs). However, these approaches either only embed the data-level knowledge (ABox) or suffer from inherent limitations when dealing with concept-level knowledge (TBox), i.e., they cannot faithfully model the logical structure present in the KBs. We present BoxEL, a geometric KB embedding approach that allows for better capturing the logical structure (i.e., ABox and TBox axioms) in the description logic EL++. BoxEL models concepts in a KB as axis-parallel boxes that are suitable for modeling concept intersection, entities as points inside boxes, and relations between concepts/entities as affine transformations. We show theoretical guarantees (soundness) of BoxEL for preserving logical structure. Namely, the learned model of BoxEL embedding with loss 0 is a (logical) model of the KB. Experimental results on (plausible) subsumption reasonings and a real-world application–protein-protein prediction show that BoxEL outperforms traditional knowledge graph embedding methods as well as state-of-the-art EL++ embedding approaches.
Article
Full-text available
Knowledge Graph Embeddings, i.e., projections of entities and relations to lower dimensional spaces, have been proposed for two purposes: (1) providing an encoding for data mining tasks, and (2) predicting links in a knowledge graph. Both lines of research have been pursued rather in isolation from each other so far, each with their own benchmarks and evaluation methodologies. In this paper, we argue that both tasks are actually related, and we show that the first family of approaches can also be used for the second task and vice versa. In two series of experiments, we provide a comparison of both families of approaches on both tasks, which, to the best of our knowledge, has not been done so far. Furthermore, we discuss the differences in the similarity functions evoked by the different embedding approaches.
Chapter
Full-text available
Knowledge graph (KG) embedding models have emerged as powerful means for KG completion. To learn the representation of KGs, entities and relations are projected in a low-dimensional vector space so that not only existing triples in the KG are preserved but also new triples can be predicted. Embedding models might learn a good representation of the input KG, but due to the nature of machine learning approaches, they often lose the semantics of entities and relations, which might lead to nonsensical predictions. To address this issue we propose to improve the accuracy of embeddings using ontological reasoning. More specifically, we present a novel iterative approach ReasonKGE that identifies dynamically via symbolic reasoning inconsistent predictions produced by a given embedding model and feeds them as negative samples for retraining this model. In order to address the scalability problem that arises when integrating ontological reasoning into the training process, we propose an advanced technique to generalize the inconsistent predictions to other semantically similar negative samples during retraining. Experimental results demonstrate the improvements in accuracy of facts produced by our method compared to the state-of-the-art.
Article
Full-text available
Knowledge graphs (KGs) are widely used for modeling scholarly communication, performing scientometric analyses, and supporting a variety of intelligent services to explore the literature and predict research dynamics. However, they often suffer from incompleteness (e.g., missing affiliations, references, research topics), leading to a reduced scope and quality of the resulting analyses. This issue is usually tackled by computing knowledge graph embeddings (KGEs) and applying link prediction techniques. However, only a few KGE models are capable of taking weights of facts in the knowledge graph into account. Such weights can have different meanings, e.g. describe the degree of association or the degree of truth of a certain triple. In this paper, we propose the Weighted Triple Loss, a new loss function for KGE models that takes full advantage of the additional numerical weights on facts and it is even tolerant to incorrect weights. We also extend the Rule Loss, a loss function that is able to exploit a set of logical rules, in order to work with weighted triples. The evaluation of our solutions on several knowledge graphs indicates significant performance improvements with respect to the state of the art. Our main use case is the large-scale AIDA knowledge graph, which describes 21 million research articles. Our approach enables to complete information about affiliation types, countries, and research topics, greatly improving the scope of the resulting scientometrics analyses and providing better support to systems for monitoring and predicting research dynamics.
Article
Full-text available
In this article, we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models, as well as languages used to query and validate knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We conclude with high-level future research directions for knowledge graphs.
Article
Full-text available
Semantic embedding of knowledge graphs has been widely studied and used for prediction and statistical analysis tasks across various domains such as Natural Language Processing and the Semantic Web. However, less attention has been paid to developing robust methods for embedding OWL (Web Ontology Language) ontologies, which contain richer semantic information than plain knowledge graphs, and have been widely adopted in domains such as bioinformatics. In this paper, we propose a random walk and word embedding based ontology embedding method named , which encodes the semantics of an OWL ontology by taking into account its graph structure, lexical information and logical constructors. Our empirical evaluation with three real world datasets suggests that benefits from these three different aspects of an ontology in class membership prediction and class subsumption prediction tasks. Furthermore, often significantly outperforms the state-of-the-art methods in our experiments.
Article
Full-text available
People can affect change in their eating patterns by substituting ingredients in recipes. Such substitutions may be motivated by specific goals, like modifying the intake of a specific nutrient or avoiding a particular category of ingredients. Determining how to modify a recipe can be difficult because people need to 1) identify which ingredients can act as valid replacements for the original and 2) figure out whether the substitution is “good” for their particular context, which may consider factors such as allergies, nutritional contents of individual ingredients, and other dietary restrictions. We propose an approach to leverage both explicit semantic information about ingredients, encapsulated in a knowledge graph of food, and implicit semantics, captured through word embeddings, to develop a substitutability heuristic to rank plausible substitute options automatically. Our proposed system also helps determine which ingredient substitution options are “healthy” using nutritional information and food classification constraints. We evaluate our substitutability heuristic, diet-improvement ingredient substitutability heuristic (DIISH), using a dataset of ground-truth substitutions scraped from ingredient substitution guides and user reviews of recipes, demonstrating that our approach can help reduce the human effort required to make recipes more suitable for specific dietary needs.
Article
Full-text available
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
Article
Full-text available
Motivation: With the ever-increasing number and diversity of sequenced species, the challenge to characterize genes with functional information is even more important. In most species, this characterization almost entirely relies on automated electronic methods. As such, it is critical to benchmark the various methods. The Critical Assessment of protein Function Annotation algorithms (CAFA) series of community experiments provide the most comprehensive benchmark, with a time-delayed analysis leveraging newly curated experimentally supported annotations. However, the definition of a false positive in CAFA has not fully accounted for the open world assumption (OWA), leading to a systematic underestimation of precision. The main reason for this limitation is the relative paucity of negative experimental annotations. Results: This article introduces a new, OWA-compliant, benchmark based on a balanced test set of positive and negative annotations. The negative annotations are derived from expert-curated annotations of protein families on phylogenetic trees. This approach results in a large increase in the average information content of negative annotations. The benchmark has been tested using the naïve and BLAST baseline methods, as well as two orthology-based methods. This new benchmark could complement existing ones in future CAFA experiments. Availability and implementation: All data, as well as code used for analysis, is available from https://lab.dessimoz.org/20_not. Supplementary information: Supplementary data are available at Bioinformatics online.
Chapter
Full-text available
The proliferation of recipes and other food information on the Web presents an opportunity for discovering and organizing diet-related knowledge into a knowledge graph. Currently, there are several ontologies related to food, but they are specialized in specific domains, e.g., from an agricultural, production, or specific health condition point-of-view. There is a lack of a unified knowledge graph that is oriented towards consumers who want to eat healthily, and who need an integrated food suggestion service that encompasses food and recipes that they encounter on a day-to-day basis, along with the provenance of the information they receive. Our resource contribution is a software toolkit that can be used to create a unified food knowledge graph that links the various silos related to food while preserving the provenance information. We describe the construction process of our knowledge graph, the plan for its maintenance, and how this knowledge graph has been utilized in several applications. These applications include a SPARQL-based service that lets a user determine what recipe to make based on ingredients at hand while taking constraints such as allergies into account, as well as a cognitive agent that can perform natural language question answering on the knowledge graph.
Article
Full-text available
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge they contain into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different confidence score modeling strategies. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results, and it consistently outperforms baselines on these tasks.
Conference Paper
Full-text available
An embedding is a function that maps entities from one algebraic structure into another while preserving certain characteristics. Embeddings are being used successfully for mapping relational data or text into vector spaces where they can be used for machine learning, similarity search, or similar tasks. We address the problem of finding vector space embeddings for theories in the Description Logic ??⁺⁺ that are also models of the TBox. To find such embeddings, we define an optimization problem that characterizes the model-theoretic semantics of the operators in ??⁺⁺ within ℝⁿ, thereby solving the problem of finding an interpretation function for an ??⁺⁺ theory given a particular domain Δ. Our approach is mainly relevant to large ??⁺⁺ theories and knowledge bases such as the ontologies and knowledge graphs used in the life sciences. We demonstrate that our method can be used for improved prediction of protein--protein interactions when compared to semantic similarity measures or knowledge graph embeddings.
Article
Full-text available
The construction of high capacity data sharing networks to support increasing government and commercial data exchange has highlighted a key roadblock: the content of existing Internet-connected information remains siloed due to a multiplicity of local languages and data dictionaries. This lack of a digital lingua franca is obvious in the domain of human food as materials travel from their wild or farm origin, through processing and distribution chains, to consumers. Well defined, hierarchical vocabulary, connected with logical relationships—in other words, an ontology—is urgently needed to help tackle data harmonization problems that span the domains of food security, safety, quality, production, distribution, and consumer health and convenience. FoodOn (http://foodon.org) is a consortium-driven project to build a comprehensive and easily accessible global farm-to-fork ontology about food, that accurately and consistently describes foods commonly known in cultures from around the world. FoodOn addresses food product terminology gaps and supports food traceability. Focusing on human and domesticated animal food description, FoodOn contains animal and plant food sources, food categories and products, and other facets like preservation processes, contact surfaces, and packaging. Much of FoodOn’s vocabulary comes from transforming LanguaL, a mature and popular food indexing thesaurus, into a World Wide Web Consortium (W3C) OWL Web Ontology Language-formatted vocabulary that provides system interoperability, quality control, and software-driven intelligence. FoodOn compliments other technologies facilitating food traceability, which is becoming critical in this age of increasing globalization of food networks.
Conference Paper
Full-text available
To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose RippleNet, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the water, RippleNet stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that RippleNet achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.
Article
Full-text available
Learning embeddings of entities and relations is an efficient and versatile method to perform machine learning on relational data such as knowledge graphs. In this work, we propose holographic embeddings (HolE) to learn compositional vector space representations of entire knowledge graphs. The proposed method is related to holographic models of associative memory in that it employs circular correlation to create compositional representations. By using correlation as the compositional operator HolE can capture rich interactions but simultaneously remains efficient to compute, easy to train, and scalable to very large datasets. In extensive experiments we show that holographic embeddings are able to outperform state-of-the-art methods for link prediction in knowledge graphs and relational learning benchmark datasets.
Conference Paper
Full-text available
Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic Programming (ILP) can be used to mine logical rules from the KB. These rules can help deduce and add missing knowledge to the KB. While ILP is a mature field, mining logical rules from KBs is different in two aspects: First, current rule mining systems are easily overwhelmed by the amount of data (state-of-the art systems cannot even run on today's KBs). Second, ILP usually requires counterexamples. KBs, however, implement the open world assumption (OWA), meaning that absent data cannot be used as counterexamples. In this paper, we develop a rule mining model that is explicitly tailored to support the OWA scenario. It is inspired by association rule mining and introduces a novel measure for confidence. Our extensive experiments show that our approach outperforms state-of-the-art approaches in terms of precision and coverage. Furthermore, our system, AMIE, mines rules orders of magnitude faster than state-of-the-art approaches.
Conference Paper
Full-text available
DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. DBpedia allows you to ask sophisticated queries against datasets derived from Wikipedia and to link other datasets on the Web to Wikipedia data. We describe the extraction of the DBpedia datasets, and how the resulting information is published on the Web for human- and machine-consumption. We describe some emerging applications from the DBpedia community and show how website authors can facilitate DBpedia content within their sites. Finally, we present the current status of interlinking DBpedia with other open datasets on the Web and outline how DBpedia could serve as a nucleus for an emerging Web of open data.
Conference Paper
Full-text available
Relational learning is becoming increasingly important in many areas of application. Here, we present a novel approach to relational learning based on the factorization of a three-way tensor. We show that unlike other tensor approaches, our method is able to perform collective learning via the latent components of the model and provide an efficient algorithm to compute the factorization. We substantiate our theoretical considerations regarding the collective learning capabilities of our model by the means of experiments on both a new dataset and a dataset commonly used in entity resolution. Furthermore, we show on common benchmark datasets that our approach achieves better or on-par results, if compared to current state-of-the-art relational learning solutions, while it is significantly faster to compute.
Article
Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Chapter
A knowledge graph is a powerful representation of real-world entities and their relations. The vast majority of these relations are defined as positive statements, but the importance of negative statements is increasingly recognized, especially under an Open World Assumption. Explicitly considering negative statements has been shown to improve performance on tasks such as entity summarization and question answering or domain-specific tasks such as protein function prediction. However, no attention has been given to the exploration of negative statements by knowledge graph embedding approaches despite the potential of negative statements to produce more accurate representations of entities in a knowledge graph. We propose a novel approach, TrueWalks, to incorporate negative statements into the knowledge graph representation learning process. In particular, we present a novel walk-generation method that is able to not only differentiate between positive and negative statements but also take into account the semantic implications of negation in ontology-rich knowledge graphs. This is of particular importance for applications in the biomedical domain, where the inadequacy of embedding approaches regarding negative statements at the ontology level has been identified as a crucial limitation. We evaluate TrueWalks in ontology-rich biomedical knowledge graphs in two different predictive tasks based on KG embeddings: protein-protein interaction prediction and gene-disease association prediction. We conduct an extensive analysis over established benchmarks and demonstrate that our method is able to improve the performance of knowledge graph embeddings on all tasks.
Article
In this paper, we study the problem of embedding uncertain knowledge graphs, where each relation between entities is associated with a confidence score. Observing the existing embedding methods may discard the uncertainty information, only incorporate a specific type of score function, or cause many false-negative samples in the training, we propose the PASSLEAF framework to solve the above issues. PASSLEAF consists of two parts, one is a model that can incorporate different types of scoring functions to predict the relation confidence scores and the other is the semi-supervised learning model by exploiting both positive and negative samples associated with the estimated confidence scores. Furthermore, PASSLEAF leverages a sample pool as a relay of generated samples to further augment the semi-supervised learning. Experiment results show that our proposed framework can learn better embedding in terms of having higher accuracy in both the confidence score prediction and tail entity prediction.
Article
We deal with embedding a large scale knowledge graph composed of entities and relations into a continuous vector space. TransE is a promising method proposed recently, which is very efficient while achieving state-of-the-art predictive performance. We discuss some mapping properties of relations which should be considered in embedding, such as reflexive, one-to-many, many-to-one, and many-to-many. We note that TransE does not do well in dealing with these properties. Some complex models are capable of preserving these mapping properties but sacrifice efficiency in the process. To make a good trade-off between model capacity and efficiency, in this paper we propose TransH which models a relation as a hyperplane together with a translation operation on it. In this way, we can well preserve the above mapping properties of relations with almost the same model complexity of TransE. Additionally, as a practical knowledge graph is often far from completed, how to construct negative examples to reduce false negative labels in training is very important. Utilizing the one-to-many/many-to-one mapping property of a relation, we propose a simple trick to reduce the possibility of false negative labeling. We conduct extensive experiments on link prediction, triplet classification and fact extraction on benchmark datasets like WordNet and Freebase. Experiments show TransH delivers significant improvements over TransE on predictive accuracy with comparable capability to scale up.
Article
In this paper, we propose a novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information. Different from other previous research efforts, we adopt a random surfing model to capture graph structural information directly, instead of using the sampling-based method for generating linear sequences proposed by Perozzi et al. (2014). The advantages of our approach will be illustrated from both theorical and empirical perspectives. We also give a new perspective for the matrix factorization method proposed by Levy and Goldberg (2014), in which the pointwise mutual information (PMI) matrix is considered as an analytical solution to the objective function of the skip-gram model with negative sampling proposed by Mikolov et al. (2013). Unlike their approach which involves the use of the SVD for finding the low-dimensitonal projections from the PMI matrix, however, the stacked denoising autoencoder is introduced in our model to extract complex features and model non-linearities. To demonstrate the effectiveness of our model, we conduct experiments on clustering and visualization tasks, employing the learned vertex representations as features. Empirical results on datasets of varying sizes show that our model outperforms other stat-of-the-art models in such tasks.
Article
Tensor factorization and distanced based models play important roles in knowledge graph completion (KGC). However, the relational matrices in KGC methods often induce a high model complexity, bearing a high risk of overfitting. As a remedy, researchers propose a variety of different regularizers such as the tensor nuclear norm regularizer. Our motivation is based on the observation that the previous work only focuses on the “size” of the parametric space, while leaving the implicit semantic information widely untouched. To address this issue, we propose a new regularizer, namely, Equivariance Regularizer (ER), which can suppress overfitting by leveraging the implicit semantic information. Specifically, ER can enhance the generalization ability of the model by employing the semantic equivariance between the head and tail entities. Moreover, it is a generic solution for both distance based models and tensor factorization based models. Our experimental results indicate a clear and substantial improvement over the state-of-the-art relation prediction methods.
Article
Knowledge bases (KBs) about notable entities and their properties are an important asset in applications such as search, question answering and dialog. All popular KBs capture virtually only positive statements, and abstain from taking any stance on statements not stored in the KB. This paper makes the case for explicitly stating salient statements that do not hold. Negative statements are useful to overcome limitations of question answering systems that are mainly geared for positive questions; they can also contribute to informative summaries of entities. Due to the abundance of such invalid statements, any effort to compile them needs to address ranking by saliency. We present a statistical inference method for compiling and ranking negative statements, based on expectations from positive statements of related entities in peer groups. Experimental results, with a variety of datasets, show that the method can effectively discover notable negative statements, and extrinsic studies underline their usefulness for entity summarization. Datasets and code are released as resources for further research.
Chapter
Embedding models have been successfully exploited for Knowledge Graph refinement. In these models, the data graph is projected into a low-dimensional space, in which graph structural information are preserved as much as possible, enabling an efficient computation of solutions. We propose a solution for injecting available background knowledge (schema axioms) to further improve the quality of the embeddings. The method has been applied to enhance existing models to produce embeddings that can encode knowledge that is not merely observed but rather derived by reasoning on the available axioms. An experimental evaluation on link prediction and triple classification tasks proves the improvement yielded implementing the proposed method over the original ones.
Article
There are many weighted graphs in the real-world networks, such as social networks, communication networks, citation networks, etc. Along with successful application of deep learning in graph embedding, we study how to embed weight graph, because weights on the edges also play an important role in the graph. We propose a novel algorithm called ProbWalk, which take advantage of edge weights and convert the weights into transition probabilities. Our proposed method specifies the strategy of sampling the surrounding vertices by weights and generate the random walk for graph embedding according to transition probability. We evaluate our methods on tasks including multi-label classification and link prediction. Experimental results show that our method performs better than competed method on several weighted graph datasets.
Article
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users' preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold-start problems. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the above mentioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field, and group them into three categories, i.e., embedding-based methods, connection-based methods, and propagation-based methods. Also, we further subdivide each category according to the characteristics of these approaches. Moreover, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. Finally, we propose several potential research directions in this field.
Article
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Conference Paper
Learning embeddings of entities and relations using neural architectures is an effective method of performing statistical learning on large-scale relational data, such as knowledge graphs. In this paper, we consider the problem of regularizing the training of neural knowledge graph embeddings by leveraging external background knowledge. We propose a principled and scalable method for leveraging equivalence and inversion axioms during the learning process, by imposing a set of model-dependent soft constraints on the predicate embeddings. The method has several advantages: (i) the number of introduced constraints does not depend on the number of entities in the knowledge base; (ii) regularities in the embedding space effectively reflect available background knowledge; (iii) it yields more accurate results in link prediction tasks over non-regularized methods; and (iv) it can be adapted to a variety of models, without affecting their scalability properties. We demonstrate the effectiveness of the proposed method on several large knowledge graphs. Our evaluation shows that it consistently improves the predictive accuracy of several neural knowledge graph embedding models (for instance, the MRR of TransE on WordNet increases by 11%) without compromising their scalability properties.
Article
Motivation: Ontologies are widely used in biology for data annotation, integration, and analysis. In addition to formally structured axioms, ontologies contain meta-data in the form of annotation axioms which provide valuable pieces of information that characterize ontology classes. Annotation axioms commonly used in ontologies include class labels, descriptions, or synonyms. Despite being a rich source of semantic information, the ontology meta-data are generally unexploited by ontology-based analysis methods such. Results: We propose a novel method, OPA2Vec, to generate vector representations of biological entities in ontologies by combining formal ontology axioms and annotation axioms from the ontology metadata. We apply a Word2Vec model that has been pre-trained on either a corpus or abstracts or full-text articles to produce feature vectors from our collected data. We validate our method in two different ways: first, we use the obtained vector representations of proteins in a similarity measure to predict protein-protein interaction on two different datasets. Second, we evaluate our method on predicting gene-disease associations based on phenotype similarity by generating vector representations of genes and diseases using a phenotype ontology, and applying the obtained vectors to predict gene-disease associations using mouse model phenotypes. We demonstrate that OPA2Vec significantly outperforms existing methods for predicting gene-disease associations. Using evidence from mouse models, we apply OPA2Vec to identify candidate genes for several thousand rare and orphan diseases. OPA2Vec can be used to produce vector representations of any biomedical entity given any type of biomedical ontology. Availability: https://github.com/bio-ontology-research-group/opa2vec.
Article
Knowledge graph (KG) embedding is to embed components of a KG including entities and relations into continuous vector spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. It can benefit a variety of downstream tasks such as KG completion and relation extraction, and hence has quickly gained massive attention. In this article, we provide a systematic review of existing techniques, including not only the state-of-the-arts but also those with latest trends. Particularly, we make the review based on the type of information used in the embedding task. Techniques that conduct embedding using only facts observed in the KG are first introduced. We describe the overall framework, specific model design, typical training procedures, as well as pros and cons of such techniques. After that, we discuss techniques that further incorporate additional information besides facts. We focus specifically on the use of entity types, relation paths, textual descriptions, and logical rules. Finally, we briefly introduce how KG embedding can be applied to and benefit a wide variety of downstream tasks such as KG completion, relation extraction, question answering, and so forth.
Conference Paper
In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.
Conference Paper
Linked Open Data has been recognized as a valuable source for background information in data mining. However, most data mining tools require features in propositional form, i.e., a vector of nominal or numerical features associated with an instance, while Linked Open Data sources are graphs by nature. In this paper, we present RDF2Vec, an approach that uses language modeling approaches for unsupervised feature extraction from sequences of words, and adapts them to RDF graphs. We generate sequences by leveraging local information from graph sub-structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels and graph walks, and learn latent numerical representations of entities in RDF graphs. Our evaluation shows that such vector representations outperform existing techniques for the propositionalization of RDF graphs on a variety of different predictive machine learning tasks, and that feature vector representations of general knowledge graphs such as DBpedia and Wikidata can be easily reused for different tasks.
Article
Motivation: Predicting the biological functions of proteins is one of the key challenges in the post genomic era. Computational models have demonstrated the utility of applying machine learning methods to predict protein function. Most prediction methods explicitly require a set of negative examples- proteins that are known not carrying out a particular function. However, Gene Ontology (GO) almost always only provides the knowledge that proteins carry out a particular function, and functional annotations of proteins are incomplete. GO structurally organizes more than tens of thousands GO terms and a protein is annotated with several (or dozens) of these terms. For these reasons, the negative examples of a protein can greatly help distinguishing true positive examples of the protein from such a large candidate GO space. Results: In this paper, we present a novel approach (called NegGOA) to select negative examples. Specifically, NegGOA takes advantage of the ontology structure, available annotations and potentiality of additional annotations of a protein to choose negative examples of the protein. We compare NegGOA with other negative examples selection algorithms and find that NegGOA produces much fewer false negatives than them. We incorporate the selected negative examples into an efficient function prediction model to predict the functions of proteins in Yeast, Human, Mouse and Fly. NegGOA also demonstrates improved accuracy than these comparing algorithms across various evaluation metrics. In addition, NegGOA is less suffered from incomplete annotations of proteins than these comparing methods. Availability: The Matlab and R codes are available at https://sites.google.com/site/guoxian85/neggoa CONTACT: gxyu@swu.edu.cn SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Article
Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. In fact, an entity may have multiple aspects and various relations may focus on different aspects of entities, which makes a common space insufficient for modeling. In this paper, we propose TransR to build entity and relation embeddings in separate entity space and relation spaces. Afterwards, we learn embeddings by first projecting entities from entity space to corresponding relation space and then building translations between projected entities. In experiments, we evaluate our models on three tasks including link prediction, triple classification and relational fact extraction. Experimental results show significant and consistent improvements compared to state-of-the-art baselines including TransE and TransH.
Article
Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction.
Article
Wikidata allows every user to extend and edit the stored information, even without creating an account. A form based interface makes editing easy. Wikidata's goal is to allow data to be used both in Wikipedia and in external applications. Data is exported through Web services in several formats, including JavaScript Object Notation, or JSON, and Resource Description Framework, or RDF. Data is published under legal terms that allow the widest possible reuse. The value of Wikipedia's data has long been obvious, with many efforts to use it. The Wikidata approach is to crowdsource data acquisition, allowing a global community to edit the data. This extends the traditional wiki approach of allowing users to edit a website. In March 2013, Wikimedia introduced Lua as a scripting language for automatically creating and enriching parts of articles. Lua scripts can access Wikidata, allowing Wikipedia editors to retrieve, process, and display data. Many other features were introduced in 2013, and development is planned to continue for the foreseeable future.
Article
We consider the problem of embedding entities and relationships of multi relational data in low-dimensional vector spaces. Our objective is to propose a canonical model which is easy to train, contains a reduced number of parameters and can scale up to very large databases. Hence, we propose TransE, a method which models relationships by interpreting them as translations operating on the low-dimensional embeddings of the entities. Despite its simplicity, this assumption proves to be powerful since extensive experiments show that TransE significantly outperforms state-of-the-art methods in link prediction on two knowledge bases. Besides, it can be successfully trained on a large scale data set with 1M entities, 25k relationships and more than 17M training samples.
Conference Paper
We present a sound and complete, tractable inference method for reasoning with localized closed world assumptions (LCWA's) which can be used in applications where a reasoning or planning agent can not assume complete information about planning or reasoning states. This Open World Assumption is generally necessary in most realistic robotics applications. The inference procedure subsumes that described in Etzioni et al [9], and others. In addition, it provides a great deal more expressivity, permitting limited use of negation and disjunction in the representation of LCWA's, while still retaining tractability. The approach is based on the use of circumscription and quantifier elimination techniques and inference is viewed as querying a deductive database. Both the preprocessing of the database using circumscription and quantifier elimination, and the inference method itself, have polynomial time and space complexity.