ArticlePDF Available

Abstract and Figures

This study aimed to determine the possibility of deploying an innovative electrical method and to establish the usefulness of conductivity and dielectric parameters for assessing the quality of Polish honeys, as well as for distinguishing their botanical origin. An attempt was also made to determine which standard physicochemical parameter could be replaced by conductivity and dielectric parameters. The experimental material consisted of seven varieties of honey (linden, rapeseed, buckwheat, goldenrod, phacelia, multifloral, acacia), obtained from beekeepers from northern Poland. Their quality was assessed based on their physicochemical parameters, biological activity, and color. Electrical parameters were measured using a measuring system consisting of an LCR meter, and own-construction sensor. Conductivity (Z, G) and dielectric (Cs, Cp) parameters were measured. Statistical analysis of the results of measurements of electrical parameters of the seven types of honey tested allowed classifying them in terms of their conductivity properties into two groups of single-flower honeys and one group of multi-flower honeys. This proves the feasibility of identifying their botanical origin using the electrical method, which is characterized by non-invasiveness, measurement speed, and high sensitivity. The usefulness of parameters Z and G in replacing quality parameters was confirmed mainly for single-flower honeys: buckwheat, linden, rapeseed, and phacelia.
This content is subject to copyright.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Honey is one of the most valuable components of the human diet. It is considered to be a functional food with health-promoting properties. Honey has bactericidal and bacteriostatic effects; is used to treat wounds and ulcers; relieves stress; supports the treatment of diseases of the digestive and respiratory systems; improves kidney function; and aids in convalescence. The healing and prophylactic effects of honey are closely related to its chemical composition. According to the literature, honey contains over 300 substances belonging to various groups of chemical compounds, some with antioxidant activity, including vitamins and phenolic compounds, mainly flavonoids and phenolic acids. This article provides insight into honey’s chemical composition and its pro-health activities. The antioxidant properties of honey were prioritized.
Article
Full-text available
Impedance Spectroscopy (IS) is a general term for the technique referring to small-signal measurements of the linear electrical response of a domain of interest. This method is based on the analysis of the system’s electrical response to yield helpful information about its domain-dependent physicochemical properties (generally, the analysis is carried out in the frequency domain). Nowadays, there are many areas of application where IS can be used to evaluate or enhance the development of emerging products and processes. As a contribution to this field of research, this paper presents relevant theoretical–practical aspects of the interpretation and analysis of the electrical behavior of materials based on IS and IS modelling. The work starts by historically introducing IS and then goes through different domains of application of the technique, such as Materials Science and correlated areas. Afterwards, an introduction to IS usage for constructing equivalent electrical circuits is presented, aiming at modelling the materials’ electrical behavior, followed by examples from the literature that use the two possible circuit development approaches, the series and the parallel association of circuit elements. Lastly, the authors present a case study of their most recent efforts of a circuit model development of relative humidity (RH) sensors based on heterogeneous mixed metal oxide (MMO) nanostructures, used to understand and identify existing contributions to the overall electrical response of the sensors to moisture; in their case, the electrical response of the MMO sensors was modelled with a high level of superposition between the experimental and fitted data, using a parallel combination of circuit elements, which is an unconventional one.
Article
Full-text available
The authenticity of honey currently poses challenges to food quality control, thus requiring continuous modernization and improvement of related analytical methodologies. This review provides a comprehensively overview of honey authenticity challenges and related analytical methods. Firstly, direct and indirect methods of honey adulteration were described in detail, commenting the existing challenges in current detection methods and market supervision approaches. As an important part, the integrated metabolomic workflow involving sample processing procedures, instrumental analysis techniques, and chemometric tools in honey authenticity studies were discussed, with a focus on their advantages, disadvantages, and scopes. Among them, various improved microscale extraction methods, combined with hyphenated instrumental analysis techniques and chemometric data processing tools, have broad application potential in honey authenticity research. The future of honey authenticity determination will involve the use of simplified and portable methods, which will enable on-site rapid detection and transfer detection technologies from the laboratory to the industry.
Article
Full-text available
The aim of this study was to review methods of honey testing in the assessment of its quality and authenticity. The quality of honey, like other food products, is multidimensional. This quality can be assessed not only on the basis of the characteristics evaluated by the consumer during purchase and consumption, but also on the basis of various physicochemical parameters. A number of research methods are used to verify the quality of honeys and to confirm their authenticity. Obligatory methods of assessing the quality of honey are usually described in legal acts. On the other hand, other, non-normative methods of honey quality assessment are used worldwide; they can be used to determine not only the elementary chemical composition of individual types of honey, but also the biological activity of honey and its components. However, so far, there has been no systematization of these methods together with a discussion of problems encountered when determining the authenticity of honeys. Therefore, the aim of our study was to collect information on the methods of assessing the quality and authenticity of honeys, and to identify the problems that occur during this assessment. As a result, a tabular summary of various research methods was created.
Article
Honey, often referred to as 'liquid gold,' a time-honoured natural food with a rich history, has now ascended to the status of a superfood in today's global market, thanks to its myriad nutraceutical properties. Despite its esteemed position, the global honey industry confronts a formidable challenge posed by the surge in adulteration driven by economic motives. This predicament complicates the authentication process, as sophisticated fraudulent methods come into play. The repercussions of such deceptive practices extend across the honey market, affecting its pricing, quality, and nutritional value, leading to an erosion of consumer trust and potential health risks. Notably, the analytical techniques employed for verifying honey authenticity often yield intricate, data-rich certificates of analysis that may be opaque to stakeholders lacking specialised knowledge. Recent initiatives have emerged to counteract this issue, incorporating modern rapid and sensitive techniques, establishing auditing, implementing certification processes, and garnering the involvement of global regulatory bodies. Collaborative actions are essential to preserve the integrity of honey, protect consumer interests, and foster a resilient and transparent honey industry worldwide. Consequently, this article underscores the comprehensive measures and technological advancements in detection of adulteration, and the layers of authentication processes to ensure ethical practices within the honey industry.
Article
Minerals are reported to dominate the electrical properties of honey and indicate its botanical and geographical origins. In this study, Electrochemical Impedance Spectroscopy (EIS) was used to assess the relation between mineral elements, electrical properties and botanical origin using three honey varieties - Citrus sp., Eucalyptus sp., and Erica sp. These varieties are identified through pollen analysis and market labelling. Flame atomic absorption and emission spectroscopies were used to quantify the concentrations of eight elements (potassium, sodium, calcium, magnesium, manganese, zinc, copper, and iron). Among all the mineral elements, potassium showed a consistent correlation with impedance. The potassium estimation in honey and standard solutions (calibration curve) had similar sensitivities of 153.43 nF/mM and 132.68 nF/mM, respectively. Additionally, the analysis revealed that potassium dominates the mineral composition, with the other species present in minimal quantities. The EIS technique showed high sensitivity to potassium and other ionisable species, making it possible to classify the botanical origin of these three honey types. The EIS technique proved to be both time and cost effective, yielding a classification rate higher than that achieved by analysing mineral composition.
Article
Honey adulteration is a major issue for European Union and its members because of an unfair practice of different producers and beekeepers, many adulterations involve the addition of sweet, concentrated syrups which may appear like honey. In our study we analysed the influence of adulteration of tilia honey with different syrups (such as corn, rice, inverted sugar, agave, maple syrups) in different percentages (5%, 10%, and 20% respectively) on physicochemical parameters (moisture content, L*, hab,cab, pH, free acidity, electrical conductivity (EC), 5-hydroxymetilfurfural (HMF), fructose, glucose, sucrose, turanose, trehalose, melesitose and raffinose) and impedimetric properties using electrochemical impedance spectroscopy. The impedimetric sensing was made using an electrochemical cell composed of two gold electrodes, and the frequency ranged between 0.1 kHz and 100 kHz. The impedimetric parameters (Z′, Z″ and phase) and Randal circuit parameters can distinguish the authentic honeys from the adulterated ones (based on the adulteration agent and adulteration percentage, respectively). The partial least squares – discriminant analysis (PLS-DA) and support vector machines (SVM) were used in a binary mode to separate the authentic honeys from the adulterated ones, and the SVM proved to separate much better than PLS-DA.