Available via license: CC BY 4.0
Content may be subject to copyright.
Eur. Phys. J. C (2024) 84:1309
https://doi.org/10.1140/epjc/s10052-024-13190-x
Regular Article - Experimental Physics
Measurement of the W-boson mass and width with the ATLAS
detector using proton–proton collisions at √s=7TeV
ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland
Received: 22 March 2024 / Accepted: 2 August 2024
© CERN for the benefit of the ATLAS Collaboration 2024
Abstract Proton–proton collision data recorded by the
ATLAS detector in 2011, at a centre-of-mass energy of 7 TeV,
have been used for an improved determination of the W-
boson mass and a first measurement of the W-boson width
at the LHC. Recent fits to the proton parton distribution
functions are incorporated in the measurement procedure
and an improved statistical method is used to increase the
measurement precision. The measurement of the W-boson
mass yields a value of mW=80,366.5±9.8(stat.)±
12.5(syst.)MeV =80,366.5±15.9 MeV, and the width
is measured as W=2202 ±32 (stat.)±34 (syst.)MeV =
2202 ±47 MeV. The first uncertainty components are sta-
tistical and the second correspond to the experimental and
physics-modelling systematic uncertainties. Both results are
consistent with the expectation from fits to electroweak pre-
cision data. The present measurement of mWis compatible
with and supersedes the previous measurement performed
using the same data.
Contents
1 Introduction ......................
2 ATLAS detector ....................
3 Measurement overview and analysis strategy .....
3.1 Data samples and event simulation ........
3.2 Selection of electrons and muons and recon-
struction of the recoil ...............
3.3 W-boson kinematics and event selection .....
3.4 W-boson mass analysis updates ..........
3.5 Statistical analysis .................
4 Experimental corrections and uncertainties ......
4.1 Uncertainty propagation ..............
4.2 Sources of uncertainty ...............
5 Physics corrections and uncertainties .........
5.1 Electroweak uncertainties .............
5.2 QCD model and uncertainties ..........
e-mail: atlas.publications@cern.ch
6 Improved measurement of the W-boson mass .....
6.1 Results with CT10nnlo and consistency tests ...
6.2 Impact of updated parton distribution functions .
6.3 Results and discussion ..............
6.4 Combination ....................
7 Measurement of the W-boson width ..........
7.1 Overview .....................
7.2 Results and discussion ..............
7.3 Combination ....................
8 Simultaneous determination of the W-boson mass
and width .......................
9 Conclusion .......................
References .........................
1 Introduction
At lowest order in the Standard Model (SM) electroweak the-
ory [1–3]theW-boson mass, mW, can be expressed solely
as a function of the Z-boson mass, mZ, the fine-structure
constant, α, and the Fermi constant, GF. Higher-order cor-
rections introduce an additional dependence of the W-boson
mass on the gauge couplings and the masses of the heavy
particles of the SM, such as the top-quark mass, mt, and the
Higgs boson mass, mH[4,5]. In extended theories, the loop
corrections receive contributions from additional particles
and interactions. The consistency of the SM and potential
effects of new physics can therefore be probed by compar-
ing the measured values of mWwith the results of global
fits to the relevant physical parameters [6–8]. The SM fit
yields mSM
W=80,355 ±6MeV[6,7]. The present exper-
imental situation is characterised by a significant tension
between the precise measurement from the CDF Collabo-
ration, mW=80,433.5±9.4MeV[9], and the average of
the LEP [10], D0 [11], ATLAS [12] and LHCb [13] mea-
surements, mW=80,369.2±13.3MeV[14].
The electroweak theory also predicts the total decay width
of the Wboson, W. It is expected to be equal to the sum of
the partial widths over three generations of lepton doublets
0123456789().: V,-vol 123
1309 Page 2 of 36 Eur. Phys. J. C (2024) 84:1309
and two generations of quark doublets, yielding an expected
value of SM
W=2088 ±1MeV[6]. New particle candidates
that couple to the Wboson and are lighter than mWwould
open a new decay channel and alter W[15]. Examples are
supersymmetric models in which the Wboson decays into
the lightest super-partner of the charged gauge bosons and
the lightest super-partner of the neutral gauge bosons [16].
The current world average of W-boson width determinations
yields a value of W=2085±42 MeV [17], and is based on
measurements at LEP-2 [10] and the Tevatron [18,19]. No
measurement of Whas been previously performed at the
Large Hadron Collider (LHC).
In this paper, an improved measurement of the W-boson
mass as well as a first measurement of its width is presented,
which is based on data from √s=7 TeV recorded by the
ATLAS detector in 2011, i.e., the same data as was used for
the first measurement of mWat the LHC [12]. This was based
onaχ2considering statistical uncertainties only, where sys-
tematic uncertainties were included a posteriori through vari-
ations of the physics and calibration models within their
uncertainties (the so-called ‘offset’ method).
The present analysis uses an improved statistic based on
the profile likelihood (PLH) [20]. This technique performs a
simultaneous determination of mWtogether with a set of nui-
sance parameters describing the experimental and modelling
uncertainties. The nuisance parameters are adjusted to opti-
mally describe the data, yielding an overall improved model
and some reduction in uncertainty compared with the fitting
technique used previously. With few sub-dominant excep-
tions, the sources of uncertainty considered in this measure-
ment are either of experimental nature, or phenomenologi-
cal, with model parameters derived from the data. A nuisance
parameter representation is therefore adequate and the PLH
technique can be applied. The measurement of Wrelies on
the same PLH statistic and on the same physics, detector
and background model as those used for the determination
of mW.
Recent parton distribution functions (PDFs) are studied
within this work, and the dependence of the measurement
results on the assumed PDF set is presented and discussed.
The present analysis also aims at consolidating the earlier
result of ATLAS, in the perspective of the latest measurement
by CDF.
2 ATLAS detector
The ATLAS experiment [21] is a multipurpose particle detec-
tor with a forward–backward symmetric cylindrical geome-
try. It consists of an inner tracking detector surrounded by a
thin superconducting solenoid, electromagnetic and hadronic
calorimeters, and a muon spectrometer incorporating three
large superconducting toroid magnets1.
The inner-detector system (ID) is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range of |η|<2.5. At small radii, a high-granularity silicon
pixel detector covers the vertex region and typically provides
three measurements per track. It is followed by the silicon
microstrip tracker, which usually provides eight measure-
ment points per track. These silicon detectors are comple-
mented by a gas-filled straw-tube transition radiation tracker,
which enables radially extended track reconstruction within
|η|=2.0. The transition radiation tracker also provides elec-
tron identification information based on the fraction of hits
(typically 35 in total) above a higher energy-deposit thresh-
old corresponding to transition radiation.
The calorimeter system covers the pseudorapidity range
|η|<4.9. Within the region |η|<3.2, electromagnetic (EM)
calorimetry is provided by high-granularity lead/liquid-
argon (LAr) calorimeters, with an additional thin LAr pre-
sampler covering |η|<1.8 to correct for upstream energy-
loss fluctuations. The EM calorimeter is divided into a barrel
section covering |η|<1.475 and two endcap sections cov-
ering 1.375 <|η|<3.2. For |η|<2.5, it is divided into
three layers in depth, which are finely segmented in ηand
φ. Hadronic calorimetry is provided by a steel/scintillator-
tile calorimeter, segmented into three barrel structures within
|η|=1.7 and two copper/LAr hadronic endcap calorimeters
covering 1.5<|η|<3.2. The solid-angle coverage is com-
pleted with forward copper/LAr and tungsten/LAr calorime-
ter modules in 3.1<|η|<4.9, optimised for electromag-
netic and hadronic measurements, respectively.
The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the deflec-
tion of muons in a magnetic field generated by supercon-
ducting air-core toroids. The precision chamber system cov-
ers the region |η|<2.7 with three layers of monitored
drift tubes, complemented by cathode strip chambers in the
forward region. The muon trigger system covers the range
|η|<2.4 with resistive plate chambers in the barrel, and
thin gap chambers in the endcap regions.
A three-level trigger system is used to select events for
offline analysis [22]. The level-1 trigger is implemented in
hardware and uses a subset of detector information to reduce
the event rate to a design value of at most 75 kHz. This is
followed by two software-based trigger levels that together
1ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r,φ) are used in the transverse plane, φbeing the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θas η=−ln tan(θ /2). Angular distance is measured in units of
R≡(η)2+(φ)2.
123
Eur. Phys. J. C (2024) 84:1309 Page 3 of 36 1309
reduce the event rate to about 300 Hz. A software suite [23]
is used in data simulation, in the reconstruction and analysis
of real and simulated data, in detector operations, and in the
trigger and data acquisition systems of the experiment.
3 Measurement overview and analysis strategy
3.1 Data samples and event simulation
The data sample consists of W→eνand W→μν can-
didate events, collected in 2011 with the ATLAS detector
in proton–proton collisions at the LHC, at a centre-of-mass
energy of √s=7 TeV. The data collected with all relevant
detector systems operational correspond to approximately
4.6fb
−1and 4.1fb
−1of integrated luminosity in the elec-
tron and muon channels, respectively.
The Powheg Monte Carlo (MC) generator (v1/r1556)
[24–26] is used for the simulation of W- and Z-boson produc-
tion and decay in the electron, muon, and τ-lepton channels,
and is interfaced to Pythia 8 (v8.170) for the modelling
of the parton shower, hadronisation, and underlying event
[27,28]. Parton shower and underlying event parameters are
set according to the AZNLO tune [29]. The CT10 PDF set
[30] is used for the hard process, and the CTEQ6L1 PDF set
[31] is used in the parton shower. The Z-boson simulation
includes the effect of virtual photon exchange. The W- and
Z-boson rapidity and pTdistributions are reweighted to opti-
mise the description of the data, as described in Sect. 5.2.The
change in the final-state distributions from updating the dis-
tributions to more recent PDFs is evaluated using Powheg.
QED final-state radiation (FSR) is simulated using Pho-
tos (v2.154) [32]. Decays of τ-leptons are handled by
Pythia 8, taking into account polarisation effects. The W-
and Z-boson event yields are normalised according to their
measured cross sections, and the experimental uncertainties
of 1.8% and 2.3% are assigned to the W+/Zand W−/Z
production cross-section ratios, respectively [33]. The W-
boson production samples assume mW=80,399 MeV and
W=2085 MeV.
Background processes such as top-quark pair and single-
top-quark production are modelled using the MC@NLO MC
generator (v4.01) [34–36], interfaced to Herwig and Jimmy
for the parton shower. Gauge-boson pair production (WW,
WZ,ZZ) is simulated with Herwig (v6.520). The CT10
PDF set is used in all these samples.
The response of the ATLAS detector is simulated using
a software suite [37] based on Geant4 [38]. The hard-
scattering process is overlaid with additional proton–proton
interactions, simulated with Pythia 8 (v8.165) using the A2
tune [39]. The distribution of the average number of interac-
tions per bunch crossing μspans the range 2.5–16.0, with
a mean value of approximately 9.0.
3.2 Selection of electrons and muons and reconstruction of
the recoil
Object definitions are unchanged compared to Ref. [12].
Electron candidates are reconstructed from clusters of energy
deposited in the electromagnetic calorimeter and associ-
ated with at least one track in the ID [40,41]. Quality
requirements are applied to the associated tracks in order to
reject poorly reconstructed charged-particle trajectories. The
energy of the electron is reconstructed from the energy col-
lected in calorimeter cells within an area of size η ×φ =
0.075 ×0.175 in the barrel, and 0.125 ×0.125 in the end-
caps. The energy measurement relies on a multivariateregres-
sion algorithm developed and optimised on simulated events.
The kinematic properties of the reconstructed electron are
inferred from the energy measured in the EM calorimeter
and from the pseudorapidity and azimuth of the associated
track. Electron candidates are required to fulfil tight identi-
fication requirements [40], and their transverse momentum,
p
T, and pseudorapidity should satisfy p
T>15 GeV and
|η|<2.4. As in the previous result, the pseudorapidity range
1.2<|η|<1.8 is excluded from the measurement. Back-
ground from jets misidentified as electrons is reduced using
additional isolation requirements using the activity in the ID
and calorimeter nearby the electron candidates passing the
kinematic and identification selections [12].
Muon candidates are reconstructed independently in the
ID and in the MS, and a combined muon candidate is formed
from the statistical combination of the ID and MS track
parameters [42]. The kinematic properties of the recon-
structed muon are defined using the ID track parameters
alone, which allows a simpler calibration procedure. Muon
candidates are required to have p
T>20 GeV and |η|<2.4
[12]. Similarly to the electrons, the multijet background is
reduced by applying an isolation requirement [12].
The recoil, uT, is an estimator of the W-or Z-boson trans-
verse momentum. It is reconstructed from the vector sum of
the transverse energy of all clusters measured in the calorime-
ters, excluding clusters located at a distance R<0.2from
electron or muon candidates. The definition of uTdoes not
involve the explicit reconstruction of jets to avoid possible
pTthreshold effects.
3.3 W-boson kinematics and event selection
The transverse momentum vector of charged leptons from
the W-boson decay, p
T, is measured as summarised in the
previous section. The transverse momentum of the decay
neutrino is inferred from the missing transverse momen-
tum vector, pmiss
T, defined as pmiss
T=−
p
T+uT.The
W-boson transverse mass, mT, is derived from pmiss
Tand
from the transverse momentum of the charged lepton as
123
1309 Page 4 of 36 Eur. Phys. J. C (2024) 84:1309
mT=2p
Tpmiss
T(1−cos φ), where φ is the azimuthal
opening angle between the charged lepton and the missing
transverse momentum.
The W-boson sample is collected using triggers requir-
ing at least one muon candidate with transverse momentum
larger than 18 GeV or at least one electron candidate with
transverse momentum larger than 20 GeV. The transverse-
momentum requirement for the electron candidate was raised
to 22 GeV in later data-taking periods to cope with the
increased instantaneous luminosity delivered by the LHC.
Selected events are required to have a reconstructed primary
vertex with at least three associated tracks.
The sample of W-boson candidate events is selected by
requiring exactly one reconstructed electron or muon can-
didate with p
T>30 GeV. The leptons are required to
match the corresponding trigger signal. The magnitude of
the recoil is required to satisfy uT<30 GeV, the missing
transverse momentum pmiss
T>30 GeV and the transverse
mass mT>60 GeV. Approximately 5.89 ×106candidate
events are selected in the W→eνchannel and 7.84 ×106
events in the W→μν channel.
3.4 W-boson mass analysis updates
The selected W-boson event sample includes events from
various background processes. Background contributions
from Z-boson, W→τν, boson pair, and top-quark pro-
duction are estimated using simulation, and represent about
6.4% of the total sample in the muon channels, and about
3.1% in the electron channels. Contributions from multijet
production are estimated with data-driven techniques, and
are detailed in Ref. [12]. Compared with that reference, the
multijet background yield was re-evaluated using the final
luminosity calibration for Run 1 [43], resulting in a 1–2%
decrease of the contamination of multijet background control
regions by electroweak processes, and a corresponding 20%
increase in the estimated multijet background yield in the
electron channel. This background now represents 1.2% of
the total sample, and agrees with the previous measurement
within uncertainties. The multijet background in the muon
channel is unaffected, due to the smaller contamination in this
case. In addition, uncertainties in the multijet distributions
were previously propagated to the mWmeasurement through
fluctuations of the extrapolation parameters; an eigenvector
decomposition is used in the present analysis.
The results of Ref. [12] were obtained using the CT10nnlo
PDF set and compared with results using the CT14 [44] and
MMHT2014 PDF sets [45]. The present analysis extends
the study of the PDF dependence of the fit results to
the ATLASpdf21 [46], CT18, CT18A [47], MSHT20 [48],
NNPDF3.1 [49] and NNPDF4.0 [50]sets.
In the previous measurement, mWwas determined with
the W-boson width fixed to the SM prediction. In the present
analysis, this assumption is relaxed by treating Was a source
of systematic uncertainty, considering the SM value and
uncertainty of SM
W=2088±1 MeV. The W-boson width is
also extracted assuming the SM prediction and uncertainty
of the W-boson mass, mSM
W=80,355 ±6MeV.
Finally, an improved statistic is used for the fit as described
in the following section.
3.5 Statistical analysis
The previous measurement used separate template fits to
the p
Tand mTdistributions observed in different event
categories. The W-boson candidate events were classified
according to the charge, flavour and pseudorapidity of the
final state lepton, as summarised in Table 1. In the fit, the
χ2of the comparison between data and simulation was min-
imised considering statistical uncertainties only; systematic
uncertainties were included by varying the parameters deter-
mining the templates within their uncertainties, and repeating
the fits.
The present analysis performs a simultaneous optimisa-
tion of mWor W, and of nuisance parameters describing
systematic uncertainties, through a global profile likelihood
fit in all event categories for a given kinematic distribution.
The likelihood function, which describes how compatible
with each other the data and MC distributions are, is given
by
L(n|μ,
θ)=
j
i
Poisson nji|νji (μ,
θ)·Gauss
θ,
(1)
where nrepresents the observed distributions in data, and nji
is the number of events observed in data in bin iof the distri-
bution in a given category j. It is the input to the Poisson dis-
tribution with expectation νji(μ,
θ) =Sji(μ,
θ) +Bji(
θ),
of Sji events from signal and Bji events from background
contributions. The parameter of interest, μ, represents varia-
tions in mWor Wwith respect to a conventional reference,
μref. Uncertainties of the signal and background distributions
are encapsulated as nuisance parameters (NPs), denoted by
θin Eq. (1), for which a normal probability distribution is
assumed. The expected number of events vji is parameterised
as
vji(μ,
θ) =×Snom
ji +μ×Sμ
ji −Snom
ji
+
s
θs×Ss
ji −Snom
ji +Bnom
ji
+
b
θb×Bb
ji −Bnom
ji ,(2)
123
Eur. Phys. J. C (2024) 84:1309 Page 5 of 36 1309
Table 1 Summary of the 28 categories and kinematic distributions used in the mWmeasurement for the electron and muon decay channels
Decay channel W→eνW→μν
Kinematic distributions p
T,mTp
T,mT
Charge categories W+,W−W+,W−
|η|categories [0,0.6],[0.6,1.2],[1.8,2.4][0,0.8],[0.8,1.4],[1.4,2.0],[2.0,2.4]
where is an overall, unconstrained normalisation factor
ensuring that the total W±signal rate always adjusts to the
number of events in data, Snom
ji and Bnom
ji are the nominal
distributions of signal and background, respectively, while
sand brepresent nuisance parameters acting on signal and
background contributions.
Changes in μand
θlead to changes in the expected signal
and background distributions, which are interpolated using a
polynomial morphing procedure. Signal templates for arbi-
trary values of mWor Ware obtained from the same simu-
lation sample through a reweighting of the W-boson Breit–
Wigner distribution. Templates representing systematic vari-
ations are determined from two-sided one- and two-sigma
variations of the corresponding sources of uncertainty. The
effect of varying mWor Won the p
Tand mTdistributions
is illustrated in Fig.1. The procedure to interpolate between
these points during the PLH fit was extensively tested, and
excellent closure was observed.
As the new fitting method allows to better optimise the
total uncertainty of the measurement due to the inclusion of
NPs in the likelihood, the nominal fit ranges for the mWmea-
surement are re-evaluated. The updated optimal fit ranges are
30 <p
T<50 GeV and 60 <mT<100 GeV, in contrast
with 32 <p
T<45 GeV and 66 <mT<99 GeV used in
the previous measurement. For the determination of W,the
same ranges are used as in the mWmeasurement.
The baseline results rely on a numerical minimisation of
the likelihood from Eq. (2). For ancillary studies, such as
the decomposition of uncertainties, fit range variations, and
to estimate the correlation between the mTand p
Tfits, the
following assumptions are made: in the limit where all uncer-
tainties are Gaussian and the dependence of νji(μ,
θ) on μ
and
θis linear, the likelihood can be written as
−2lnL(n|μ,
θ)
=
j
i
⎛
⎝
nji −νji(μref ,
0)−∂νij
∂μ (μ −μref)−t
∂νij
∂θtθt
σji
⎞
⎠
2
+
t
θ2
t,(3)
and the minimisation and uncertainty estimation can be per-
formed analytically [51]. This approach gives results within
2 MeV from the nominal fits and is much faster.
The decomposition of the post-fit uncertainties is per-
formed according to the methods of Ref. [51]. The uncer-
tainty components are defined to represent the contribution
of the pre-fit uncertainty in the corresponding sources to the
total uncertainty of the measurement, consistently with stan-
dard error propagation.
4 Experimental corrections and uncertainties
The p
Tand mTdistributions are affected by the lepton
energy calibration and by the calibration of the recoil. Lepton
momentum corrections are derived exploiting Z→ event
samples and the precisely measured value of mZ[52], and the
recoil response is calibrated using the expected momentum
balance between uTand p
T[12]. Lepton identification and
reconstruction efficiency corrections are determined from W-
and Z-boson events using the tag-and-probe method [40,42].
A precision on the energy and momentum scale for elec-
trons and muons of O(10−4)is achieved, with somewhat
larger uncertainty for the muons in the high-ηregion. The
response and resolution of uT=|uT|is determined with
a precision of a few percent. The experimental precision is
limited by the finite size of the Z-boson sample, and by sys-
tematic uncertainties in the modelling of the distributions
used in the calibration procedures.
4.1 Uncertainty propagation
Systematic uncertainties in the determination of mWand W
are evaluated by varying the calibration model parameters
within their uncertainty. For two-sided systematic uncertain-
ties, separate templates are produced for 68% confidence
level (CL) upwards and downwards variations. Systematic
uncertainties that are estimated independently in many kine-
matic bins are propagated through simultaneous random vari-
ations of the corresponding parameters within their uncer-
tainty and generating templates for each variation. A princi-
pal component analysis (PCA) [53,54]isusedtotransform
these variations into a set of uncorrelated two-sided uncer-
tainties, preserving the total uncertainty. This approach is
used for the statistical uncertainties of the electron and muon
efficiencies, as well as for the recoil calibration, and allows a
faithful representation of these uncertainties using a reduced
set of nuisance parameters.
123
1309 Page 6 of 36 Eur. Phys. J. C (2024) 84:1309
Fig. 1 Simulated kinematic distributions of ap
Tand bmTin W±→μ±νevents, for W-boson mass and width values of mW=80,399 MeV
and W=2085 MeV. The ratio panels represent the relative effect of varying these parameters by ±60 MeV and ±200 MeV, respectively
Because of the finite size of the MC samples, some sys-
tematic variations contribute significant statistical fluctua-
tions in the final-state distributions. A smoothing procedure is
applied to remove such fluctuations, preserving the normali-
sation of each variation. For calibration systematic uncertain-
ties, the effect of the upwards and downwards variations are
symmetrised. The impact of the smoothing and symmetrisa-
tion procedures on the best-fit values and uncertainties are
below 1 and 0.1 MeV, respectively.
The effect of each systematic variation is decomposed into
corresponding uncertainties in the normalisation and in the
shape of the final state distributions. Systematic uncertainties
that yield differences smaller than 0.01% in the normalised
p
Tdistribution and smaller than 0.02% in the normalised
mTdistribution are removed, reducing the number of shape
systematic variations by a factor of two. The change in the
total measurement uncertainty is less than 1% of itself, while
central values change by less than 0.1 MeV. This pruning pro-
cedure simplifies the likelihood, stabilising and accelerating
the fit procedure.
4.2 Sources of uncertainty
The electron calibration and selection efficiencies account
for 75 sources of uncertainty in the p
Tdistribution and 58
in the mTdistribution, including the energy scale and res-
olution as well as the electron identification, isolation, and
trigger efficiencies. Of these uncertainties, 23 originate from
the energy calibration and are treated as two-sided systematic
uncertainties, while 52 (p
T) and 35 (mT) systematic varia-
tions come from the trigger, reconstruction, identification and
isolation efficiencies. PCA is utilised to handle those system-
atic variations. Similarly, the muon response and efficiencies
contribute 83 (p
T) and 76 (mT) sources of uncertainty, of
which 6 are treated as two-sided uncertainties.
The calibration of the hadronic recoil yields 36 sources of
systematic uncertainties for the mTdistributions, but only 7
sources for the p
Tdistributions since the impact on the latter
is only due to the hadronic recoil requirement in the signal
selection. Of these uncertainties, 3 are two-sided uncertain-
ties, while 4 (p
T) and 33 (mT) PCA variations are taken into
account.
5 Physics corrections and uncertainties
5.1 Electroweak uncertainties
The dominant source of electroweak corrections to W-boson
production originates from QED final-state radiation, and
is simulated with Photos. The effect of QED initial-state
radiation (ISR) is also included through the Pythia 8 par-
ton shower (PS). Other sources of electroweak corrections
are not included in the simulated event samples, and their
full effects are considered as systematic uncertainties. Sys-
tematic uncertainties from missing higher-order electroweak
corrections are estimated considering the same sources of
uncertainty as in Ref. [12]. An improvement of the present
analysis is that the corresponding uncertainties are evalu-
ated at detector level instead of generator level, which was
a simplification used in the previous analysis as these are
not leading uncertainties. The detector-level systematic vari-
ations are obtained by applying detector response and effi-
ciency migration matrices derived from samples of simulated
signal events described in Sect.3.1. Their impact on mWis
larger than for generator-level variations by typically 20%.
123
Eur. Phys. J. C (2024) 84:1309 Page 7 of 36 1309
5.2 QCD model and uncertainties
The rapidity, transverse momentum and decay distributions
of the simulated W- and Z-boson samples are reweighted to
include the effects of higher-order QCD corrections, which
improves the agreement between the data and simulation. The
differential cross section as a function of the boson rapidity,
dσ(y)/dy, and the coefficients describing angular distribu-
tions of decay leptons, Ai[55], are calculated at O(α2
s)in
fixed-order QCD. The transverse-momentum spectrum at a
given rapidity, dσ(pT,y)/(dpTdy)·(dσ(y)/dy)−1, is mod-
elled using the Pythia 8 MC generator, with parameters
adjusted to reproduce the measured Z-boson pTdistribu-
tion at √s=7TeV[29]. The resulting tune, called AZ in
the following, predicts W-boson pTdistributions that agree
with measurements at √s=5.02 and 13 TeV [56].
PDF uncertainties are calculated for the CT10, CT14,
CT18, CT18A, MMHT2014, MSHT20, NNPDF3.1,
NNPDF4.0 and ATLASpdf21 sets using the Hessian method
[57], where each eigenvector of the PDF fit covariance matrix
defines a pair of PDF uncertainty variations and a correspond-
ing nuisance parameter in the PLH fit. The CT10, CT14,
CT18 and CT18A variations correspond to 90% CL, and
are rescaled to match the 68% CL. PDF uncertainty vari-
ations are constrained to leave the predicted pZ
Tdistribu-
tion unchanged, propagating only the part of the PDF uncer-
tainty in the pW
Tdistribution that is uncorrelated to pZ
T[12].
To achieve this, the impact of each PDF eigenvector on the
pW
Tand pZ
Tdistributions is calculated, and the corresponding
uncertainty in the pW
Tdistribution is defined from the ratio of
the varied pW
Tand pZ
Tdistributions. This procedure is equiv-
alent to performing an explicit parton shower tune for each
PDF variation but simpler in practice. The uncertainties in the
AZ tune parameters are propagated separately as described
below.
The Pythia 8 parton shower model contributes additional
sources of uncertainty in the pW
Tdistribution. The AZ tune
parameters are assumed universal between Z- and W-boson
production, and their uncertainties are propagated to the W-
boson final-state distributions. The initial-state charm and
bottom quark masses affect the pTspectrum, and the corre-
sponding uncertainties are estimated by varying their respec-
tive masses by ±0.5 GeV and ±0.8 GeV, respectively. Uncer-
tainties in the shower evolution are parameterised through
variations of the factorisation scale, μF, by factors of 0.5 and
2.0 with respect to the central choice μ2
F=p2
T,0+p2
T, where
pT,0is an infrared cut-off, and pTis the evolution variable
of the parton shower [58]. The variations are applied inde-
pendently to the light-quark, charm-quark and bottom-quark-
induced processes, and are propagated considering only the
relative impact on the pW
Tand pZ
Tdistributions, as done for
the PDF uncertainties. Differences between the Pythia 8
and Herwig 7 predictions for this ratio were found to be
negligible.
The accuracy of the next-to-next-to-leading-order (NNLO)
predictions for the angular coefficients A0–A7is validated
by comparing to the corresponding measured values in Z-
boson production [55]. The Z-boson data uncertainties are
propagated to the W-boson predictions, which assumes that
NNLO predictions have similar accuracy for the W- and Z-
boson processes, and are validated within the experimen-
tal precision of the Z-boson data. The observed disagree-
ment between data and prediction for the A2coefficient is
taken as additional uncertainty. Similarly to some experi-
mental uncertainties, random angular coefficient variations
are treated with a PCA to produce uncorrelated two-sided
uncertainties.
The effect of missing higher-order corrections on the
NNLO predictions of the normalised rapidity distributions
and the effect of the LHC beam-energy uncertainty of 0.65%
were both found to be negligible.
6 Improved measurement of the W-boson mass
The improvements to the previous mWmeasurement described
in Sects.3.4 and 3.5 are implemented in several steps. The
impact of the analysis updates is evaluated using the same
statistical method as in the previous measurement, and yields
a change of the measured W-boson mass from 80,369.5±
18.5 MeV to 80,371.9±18.7 MeV, corresponding to a shift
of 2.4 MeV and a minimal increase of the total uncertainty.
The analysis is then repeated using the CT10nnlo PDF set
and unchanged systematic uncertainties but implementing
the PLH approach. This provides a test of the stability of
the measurement under the change of statistic used in the
fit. The final step consists of updating the measurement to
more recent PDF sets, one of which is used to define a new
baseline.
6.1 Results with CT10nnlo and consistency tests
The PLH fits using the CT10nnlo PDF set are first performed
with statistical uncertainties only. Excellent consistency with
the previous results is obtained, which provides a basic vali-
dation for the technical aspects of the fit. The comparison is
repeated for fits including all systematic uncertainties, with
the results summarised in Fig.2. The results of the PLH fits
combining all categories yield mW=80,357.0±15.8MeV
and mW=80,388.2±23.8 MeV for the p
Tand mTdistri-
butions, respectively. Compared to the original ATLAS mea-
surement, this corresponds to shifts of mWof −12.4MeV
and +12.5 MeV, respectively, while the total uncertainties
are reduced by about 3 MeV due to the profiling of some sys-
123
1309 Page 8 of 36 Eur. Phys. J. C (2024) 84:1309
Fig. 2 Overview of the mWfit results in all categories for the ap
Tand
bmTdistributions, with the CT10nnlo PDF set, where qdenotes the
charge of the decay lepton. The results of the PLH fit are compared
with the χ2fit, where systematic uncertainties are propagated using the
offset method [12]. The points labelled as ‘Combination’ correspond
to the result of a joint PLH fit to all categories and to a combination of
individual χ2fits
tematic uncertainties. Repeating the present analysis with the
fit range used in Ref. [12] increases the difference by 3 MeV.
The compatibility between the present and previous
results is tested by repeating the PLH fits for an ensemble
of models where the preferred values of the nuisance param-
eters are varied randomly within their pre-fit uncertainties.
As shown in Fig.3, the spread of fit results from pseudo-
experiments with varied nuisance parameters is about 16
MeV, confirming that the change in central value introduced
by the new statistical method corresponds to about one stan-
dard deviation. The distribution of the nuisance parameter
pulls2is consistent with a normal distribution, indicating an
overall correct estimate of the pre-fit uncertainties.
2For a given nuisance parameter θ, the pull is defined as ˆ
θ/1−σˆ
θ,
where ˆ
θand σˆ
θare the nuisance parameter post-fit value and uncertainty,
respectively.
6.2 Impact of updated parton distribution functions
The impact of a change in the PDFs on the final state dis-
tributions is evaluated using Powheg, both to calculate the
extrapolation from the central CT10nnlo set to CT14, CT18,
CT18A, MMHT2014, MSHT20, NNPDF3.1,NNPDF4.0 and
ATLASpdf21, and to calculate the PDF uncertainty varia-
tions. All calculations are performed at generator level in
full phase space, and the impact on the final-state distribu-
tions is evaluated using migration matrices as in Sect.5.1.
As in Sect.5.2, the PDF extrapolations are constrained to
leave pZ
Tunchanged. The impact of the extrapolations on the
detector-level p
Tdistributions is illustrated in Fig.4.
6.3 Results and discussion
Fit results with updated PDF sets are listed in Table 2.A
satisfactory fit quality is obtained for all PDF sets. Sepa-
rate fits are performed to the p
Tand mTdistributions as
they are projections of the same data, and the corresponding
statistical correlations cannot be accounted for in the frame-
123
Eur. Phys. J. C (2024) 84:1309 Page 9 of 36 1309
Fig. 3 a Distribution of the difference mWbetween the nominal
mWPLH fit result and results obtained for pseudo-experiments using
random variations of the sources of systematic uncertainty. The p
Tdis-
tribution is used. bDistribution of pull significances for the NPs in the
combined PLH fit to the p
Tdistribution
work of Eq. (1) in a straightforward way. Moreover, the PCA
treatment applied for some classes of systematic uncertain-
ties leads to different sets of nuisance parameters for the two
distributions.
The best-fit values of mWobtained with different PDF
sets span a range of about 18 MeV for the p
Tfits, and about
42 MeV for the mTfits. This envelope is dominated by the
NNPDF3.1 and NNPDF4.0 fits, which yield the lowest fit
values; the range spanned by the other sets is only 9 MeV for
p
Tand 21 MeV for mT.
As a cross-check, the influence of the size of the ini-
tial PDF uncertainties on the best-fit values is studied in
Fig.5, where the fits are repeated with pre-fit PDF uncer-
tainties scaled by factors 1–3. Enlarged uncertainties allow
the models to better adapt to the data, resulting in a reduced
PDF model dependence. The differences between the cen-
tral values found for five out of six PDF sets significantly
decrease with larger PDF scaling factors. For factors of 2
and above, the residual model dependence is below 5 MeV
for the p
Tfits, and 25 MeV for the mTfits, with the total
uncertainty increased by less than 1.5 MeV.
The baseline result is defined using CT18 with original
uncertainties, which is compatible with the previous exercise
and yields the most conservative uncertainty among the PDF
sets considered except for ATLASpdf21. CT18 is also the
only recent PDF set that does not include the W- and Z-boson
cross sections measured by ATLAS at 7 TeV [33], which
represent the same data as those used in the present analysis.
The results for all measurement categories and for the CT18
PDF set are summarised in Fig.6. The post-fit, |η|-inclusive
p
Tdistributions obtained with CT18 are shown in Fig.7,
and agree with the data within the uncertainties. Similarly to
CT10nnlo, the distribution of the nuisance parameter pulls is
consistent with a normal distribution.
The compatibility of the results for mWin the different
measurement categories is verified by repeating the fit assum-
ing independent parameters of interest in each category. The
differences to the baseline fit are small compared with the
measurement uncertainties. As a further cross-check, par-
tial fits are performed to the electron and muon channels
separately. The electron and muon fit results are found to
agree within one standard deviation. A similar exercise is
performed for the W+and W−channels, and the same con-
clusion is obtained. Finally, the dependence of the fit result
on the p
Tand mTranges used for the fit is shown in Fig.8,
with good stability.
Figure 9summarises the ten nuisance parameters that
induce the largest shift of mWin fits to the p
Tand mTdis-
tributions. They are related to electron and muon calibration
uncertainties, to the uncertainty in charm-induced produc-
tion for the pW
Tdescription, to specific eigenvectors (EV) of
the CT18 PDF set, and to missing higher-order electroweak
corrections. The corresponding nuisance parameter pulls are
also shown. By construction, the PLH fits induce shifts of the
nuisance parameters from their nominal value and significant
deviations would indicate an underestimation of systematic
uncertainties. All observed pulls are within the expectation.
While uncertainties in the PDFs and in the AZ tune param-
eters have well defined confidence intervals and can be
treated as nuisance parameters, this is more questionable for
the other uncertainties in the W-boson pTdistribution, i.e.,
the factorisation scale and quark-mass variations. It was veri-
fied that the impact of the latter on the final-state distributions
is very similar, in shape, to that of the AZ tune parameters,
123
1309 Page 10 of 36 Eur. Phys. J. C (2024) 84:1309
Fig. 4 Relative effect, with respect to CT10nnlo, of the indicated PDF extrapolations on the detector-level, η-inclusive p
Tdistributions in a,cW+
events and b,dW−events. The thick lines show the central PDF set, and the envelopes show the associated 68% CL uncertainty
Table 2 Best-fit value of mW, total and PDF uncertainties, in MeV, and goodness-of-fit for the p
Tand mTdistributions and the PDF sets described
in the text. Each fit uses 14 event categories with 40 bins, for 558 degrees of freedom
PDF set p
Tfit mTfit
mWσtot σPDF χ2/n.d.f. mWσtot σPDF χ2/n.d.f.
CT14 80,358.3+16.1
−16.24.6 543.3/558 80,401.3+24.3
−24.511.6 557.4/558
CT18 80,362.0+16.2
−16.24.9 529.7/558 80,394.9+24.3
−24.511.7 549.2/558
CT18A 80,353.2+15.9
−15.84.8 525.3/558 80,384.8+23.5
−23.810.9 548.4/558
MMHT2014 80,361.6+16.0
−16.04.5 539.8/558 80,399.1+23.2
−23.510.0 561.5/558
MSHT20 80,359.0+13.8
−15.44.3 550.2/558 80,391.4+23.6
−24.110.0 557.3/558
ATLASpdf21 80,362.1+16.9
−16.94.2 526.9/558 80,405.5+28.2
−27.713.2 544.9/558
NNPDF3.1 80,347.5+15.2
−15.74.8 523.1/558 80,368.9+22.7
−22.99.7 556.6/558
NNPDF4.0 80,343.7+15.0
−15.04.2 539.2/558 80,363.1+21.4
−22.17.7 558.8/558
123
Eur. Phys. J. C (2024) 84:1309 Page 11 of 36 1309
Fig. 5 Variation of the fitted value of mWwith the PDF set used in the fit, for the ap
Tand bmTdistributions and different scalings of the pre-fit
PDF uncertainties. The reference value is defined by the CT18 PDF set
Fig. 6 Overview of the mWPLH fit results in all categories for the ap
Tand bmTdistributions, with the CT18 PDF set. The points labelled as
‘Combination’ correspond to the result of a joint PLH fit to all categories
123
1309 Page 12 of 36 Eur. Phys. J. C (2024) 84:1309
Fig. 7 Post-fit distributions of p
Twith data and MC for aW+→
e+νe,bW−→e−νe,cW+→μ+νμand dW−→μ−νμ,inclusive
over all ηregions, and using the CT18 PDF set. In the bottom panels, the
darker points represent the post-fit ratio of data to MC, while the lighter
points indicate the ratio before the fit. The hatched band represents the
total uncertainty of the data
and that these effects are thus not different from the other
sources of uncertainty in this respect, and can be treated
accordingly. The small post-fit value of the corresponding
uncertainty is due to the strong discrimination between the
effects of mWand pW
Tvariations on the p
Tdistribution.
6.4 Combination
All event categories are statistically independent as long as
only the p
Tor only the mTdistributions are considered. The
correlation between the final p
T- and mT-based results for
mWis determined from an ensemble of fit results obtained by
fluctuating the data and the most probable values of the nui-
sance parameters within their respective uncertainties. The
p
Tand mTresults are then combined using the BLUE pre-
scription [59]. The results of this procedure are given in
Table 3. The weight of the p
Tfit ranges from 86% to 97%,
depending on the PDF set, and dominates the final result. For
the CT18 PDF set, the final result is:
mW=80,366.5±9.8(stat.)±12.5(syst.)MeV
=80,366.5±15.9MeV,
where the first uncertainty component is statistical and the
second corresponds to the total systematic uncertainties.
The decomposition of the post-fit uncertainties is per-
formed according to Ref. [51] and shown in Table 4.Sta-
tistical uncertainties contribute about 10 MeV in the present
fit. This is in contrast with 6 MeV obtained from fits consid-
ering statistical uncertainties only, with all nuisance param-
eters fixed to their best-fit values. The increase reflects the
123
Eur. Phys. J. C (2024) 84:1309 Page 13 of 36 1309
Fig. 8 Difference mWbetween the W-boson mass measured using
the ap
Tand bmTdistribution fit ranges indicated in the figure and
the nominal fit range. The nominal ranges are 30 <p
T<50 GeV and
60 <mT<100 GeV, respectively. The outer dashed lines indicate the
total measurement uncertainty for the nominal range. Results are shown
for the combined fit over all categories, and for the CT18 PDF set
Fig. 9 The ten nuisance parameters inducing the largest shifts on the
fitted value of mWin the combined PLH fits, using the ap
Tand b
mTdistributions and the CT18 PDF set. For a given NP θ, the shift is
defined as the product of its post-fit value ˆ
θand its pre-fit impact on mW.
The points, which are plotted according to the bottom horizontal scale,
show ˆ
θfor each of the nuisance parameters. The error bars show the
corresponding post-fit uncertainties, σˆ
θ. The nuisance parameters are
ranked according to the shift induced on mW, the NPs with the largest
shifts at the top
123
1309 Page 14 of 36 Eur. Phys. J. C (2024) 84:1309
Table 3 Uncertainty correlation between the p
Tand mTfits, combination weights and combination results for mWand the indicated PDF sets
PDF set Correlation Weight (p
T) Weight (mT) Combined mW[MeV]
CT14 52.2% 88% 12% 80,363.6±15.9
CT18 50.4% 86% 14% 80,366.5±15.9
CT18A 53.4% 88% 12% 80,357.2±15.6
MMHT2014 56.0% 88% 12% 80,366.2±15.8
MSHT20 57.6% 97% 3% 80,359.3±14.6
ATLASpdf21 42.8% 87% 13% 80,367.6±16.6
NNPDF3.1 56.8% 89% 11% 80,349.6±15.3
NNPDF4.0 59.5% 90% 10% 80,345.6±14.9
larger number of parameters determined from the same data.
Correspondingly, the systematic uncertainty components are
smaller than systematic ‘impacts’ conventionally reported
for PLH fits.3Systematic uncertainties contribute about 13
MeV, dominated by PDF uncertainties, missing higher-order
electroweak corrections, and electron and muon calibration
uncertainties.
The fits are performed assuming the SM value for the W-
boson width, SM
W=2088 ±1MeV[6]. The fitted value of
mWvaries with the assumed value for Wfollowing mW=
−0.06 W. Assuming an alternate SM prediction of SM
W=
2091 ±1 MeV, as obtained in Ref. [7], does not change the
measured value of the W-boson mass significantly.
The compatibility of the measured value of the W-boson
mass using the CT18 PDF set with the Standard Model expec-
tation is illustrated in Fig.10a, together with selected pre-
vious measurements. The two-dimensional 68% and 95%
confidence limits for the predictions of mWand mtin the
context of the Standard Model electroweak fit are shown in
Fig.10b, and are compared to the present measurement of
mWand to the combined value of the LHC top-quark mass
determinations at 7 and 8 TeV [60].
7 Measurement of the W-boson width
7.1 Overview
The p
Tand mTdistributions are not only sensitive to mWbut
also to W, as shown in Fig.1. In particular, the high tails
of the p
Tand mTdistributions are sensitive to changes of
W. The fit to the mTdistribution is expected to be more
sensitive, because events with high mTare more likely to
come from the tail of the W-boson Breit–Wigner distribution
than events with high p
T. The measurement of Wrelies on
the same statistical framework, the same calibration, and the
3Impacts are obtained from the quadratic subtraction between the total
fit uncertainty and the uncertainty of a fit with selected nuisance param-
eters removed and overestimate the genuine systematic uncertainty.
same distributions as the previously presented measurement
of mW. However, Wis left free in the fit, while the W-
boson mass is treated as NP and set to its SM expectation
within the global electroweak fit, mSM
W=80,355 ±6MeV
[6]. The templates are generated with different values of W,
centred around the reference value used in the Monte Carlo
signal samples. All results are obtained using the same fit
ranges as in the mWmeasurement: 60 <mT<100 GeV
and 30 <p
T<50 GeV. The choice of fitting range is
driven by the uncertainties in the lepton performance and the
hadronic recoil.
7.2 Results and discussion
The results for each measurement category including all sys-
tematic uncertainties for the CT18 PDF set are summarised
in Fig.11 yielding the values of W=2221+68
−76 MeV
and W=2200+47
−48 MeV for p
Tand mTdistributions
respectively. Good agreement between the categories can be
observed.
Contrary to mW, the fitted value of Wdepends more
strongly on the assumed value of the mass. The fitted value of
Wvaries with the assumed value for mWfollowing W=
−1.25 mW. In the Standard Model, the predicted value of
mWmainly depends on the assumed value of mt. The present
result is based on Ref. [6], which uses mt=172.6GeV
and is close to the LHC combined value used in Fig.10b.
Using mt=171.8GeV[62]ormt=173.1GeV[63]yields
mSM
W=80,350 MeV or 80,360 MeV, respectively, with cor-
responding variations of Wby ±6MeV.
The impact of different PDF sets (CT14, CT18, CT18A,
MMHT2014, MSHT20, ATLASpdf21, NNPDF3.1,
NNPDF4.0) on the Wmeasurement is also studied. The
results of full fits for all considered PDF sets are summarised
in Table 5, with again a satisfactory fit quality for all PDF
sets. The PDF dependence of the fit result is weaker than for
mW, and all central values are well within the uncertainties
obtained with CT18. The CT18 PDF set is chosen for the
baseline result, consistently with the mWmeasurement.
123
Eur. Phys. J. C (2024) 84:1309 Page 15 of 36 1309
Table 4 Uncertainty components for the p
T,mTand combined
mWmeasurements using the CT18 PDF set. The first columns give
the total, statistical and overall systematic uncertainty in the measure-
ments. The following columns show the contributions of modelling and
experimental systematic uncertainties, grouped into categories
Unc. [MeV] Total Stat. Syst. PDF AiBackg. EW eμuTLumi WPS
p
T16.2 11.1 11.8 4.9 3.5 1.7 5.6 5.9 5.4 0.9 1.1 0.1 1.5
mT24.4 11.4 21.6 11.7 4.7 4.1 4.9 6.7 6.0 11.4 2.5 0.2 7.0
Combined 15.9 9.8 12.5 5.7 3.7 2.0 5.4 6.0 5.4 2.3 1.3 0.1 2.3
Fig. 10 a Present measured value of mW, compared to SM prediction
from the global electroweak fit [6], and to the measurements of LEP
[10], Tevatron [18,19]andtheLHC[12,13]. bThe 68% and 95% confi-
dence level contours of the mWand mtindirect determinations from the
global electroweak fit [7], compared to the 68% and 95% confidence-
level contours of the present ATLAS measurement of mW, the ATLAS
measurement of mH[61] and the LHC measurement of mt[60]
Table 5 Best-fit value of W, total and PDF uncertainties, in MeV, and goodness-of-fit for the p
Tand mTdistributions and the PDF sets described
in the text. Each fit uses 14 event categories with 40 bins, for 558 degrees of freedom
PDF set p
Tfit mTfit
Wσtot σPDF χ2/n.d.f. Wσtot σPDF χ2/n.d.f.
CT14 2228 +67
−83 24 550.0/558 2202 +48
−48 5 556.8/558
CT18 2221 +68
−76 21 534.5/558 2200 +47
−48 5 548.8/558
CT18A 2207 +68
−75 18 533.0/558 2181 +47
−48 5 550.6/558
MMHT2014 2155 +71
−78 19 546.0/558 2186 +48
−48 5 562.2/558
MSHT20 2206 +66
−79 15 556.5/558 2179 +47
−48 4 559.4/558
ATLASpdf21 2213 +67
−73 18 531.3/558 2190 +47
−48 6 545.6/558
NNPDF31 2203 +65
−78 20 531.7/558 2180 +47
−47 6 560.4/558
NNPDF40 2182 +69
−68 12 550.5/558 2184 +47
−47 4 564.0/558
123
1309 Page 16 of 36 Eur. Phys. J. C (2024) 84:1309
Fig. 11 Overview of the WPLH fit results in all categories for the ap
Tand bmTdistributions, with the CT18 PDF set. The points labelled as
‘Combination’ correspond to the result of a joint PLH fit to all categories
Fig. 12 Difference Wbetween the W-boson width measured using
the ap
Tand bmTdistribution fit ranges indicated in the figure and
the nominal fit range. The nominal ranges are 30 <p
T<50 GeV and
60 <mT<100 GeV, respectively. The outer dashed lines indicate the
total measurement uncertainty for the nominal range. Results are shown
for the combined fit over all categories, and for the CT18 PDF set
123
Eur. Phys. J. C (2024) 84:1309 Page 17 of 36 1309
Fig. 13 The ten nuisance parameters inducing the largest shifts on the
fitted value of Win the combined PLH fits, using the ap
Tand b
mTdistributions and the CT18 PDF set. For a given NP θ, the shift is
defined as the product of its post-fit value ˆ
θand its pre-fit impact on W.
The points, which are plotted according to the bottom horizontal scale,
show ˆ
θfor each of the nuisance parameters. The error bars show the
corresponding post-fit uncertainties, σˆ
θ. The nuisance parameters are
ranked according to the shift induced on W, the NPs with the largest
shifts at the top
Table 6 Uncertainty components for the p
T,mTand combined W
measurements using the CT18 PDF set. The first columns give the total,
statistical and overall systematic uncertainty in the measurements. The
following columns show the contributions of modelling and experimen-
tal systematic uncertainties, grouped into categories
Unc. [MeV] Total Stat. Syst. PDF AiBackg. EW eμuTLumi mWPS
p
T72 27 66 21 14 10 5 13 12 12 10 6 55
mT48 36 32 5 7 10 3 13 9 18 9 6 12
Combined 47 32 34 7 8 9 3 13 9 17 9 6 18
As a check of compatibility, partial fits are performed to
the electron and muon channels separately. These fit results
are found to agree within one standard deviation. Similarly,
separate fits are performed in the W+and W−channels. The
results for the two charges are consistent within the 68% CL
contour of the two-dimensional likelihood function for the
mTfits, while for the p
Tfits the consistency between the two
charges is within two standard deviations. Finally, the depen-
dence of the measurement result on the mTand p
Tranges
used for the fit is studied in Fig.12, with stable results.
Figure 13 summarises the ten nuisance parameters that
induce the largest shift of Win fits to the p
Tand mTdis-
tributions. The largest shifts are related to the multijet (MJ)
background, to the lepton calibration, to specific eigenvectors
of the CT18 PDF set, to the luminosity, and to the uncertainty
in charm-induced production for the pW
Tdescription.
The decomposition of post-fit uncertainties is done with
the same method as in the mWmeasurement, see Sect.6.4.A
summary of the uncertainties contributed by various sources
is given in Table 6. The measurement is dominated by sys-
tematic uncertainties for the p
Tdistribution, while for the
123
1309 Page 18 of 36 Eur. Phys. J. C (2024) 84:1309
Fig. 14 Post-fit distributions of mTwith data and MC for aW+→
e+νe,bW−→e−νe,cW+→μ+νμand dW−→μ−νμ,inclusive
over all ηregions, and using the CT18 PDF set. In the bottom panels, the
darker points represent the post-fit ratio of data to MC, while the lighter
points indicate the ratio before the fit. The hatched band represents the
total uncertainty of the data
mTdistribution statistical and systematic uncertainties are of
similar magnitude. The dominant systematic uncertainties
are due to the parton shower modelling for p
T, and lepton
and recoil performance for mT, respectively.
An overview of selected pre- and post-fit distributions of
mTis shown in Fig.14, where a general better agreement can
be observed for the post-fit case. The post-fit distributions use
the final measured value of W.
7.3 Combination
The combination of results obtained from p
Tand mTdis-
tributions follows the procedure described in Sect.6.4.The
p
Tand mTresults are fully compatible with each other in
terms of central values and nuisance parameters. The results
for all considered PDF sets are presented in Table 7.The
weight of the mTfit ranges from 84% to 89%, depending on
the PDF set, and dominates the final result. For CT18, the
final result yields:
W=2202 ±32 (stat.)±34 (syst.)MeV
=2202 ±47 MeV,
where the first uncertainty component is statistical and the
second corresponds to the total systematic uncertainties. The
compatibility of the measured value with the SM expecta-
tion is illustrated in Fig.15a, together with selected previous
measurements.
123
Eur. Phys. J. C (2024) 84:1309 Page 19 of 36 1309
Table 7 Uncertainty correlation between the p
Tand mTfits, combination weights and combination results for Wand the indicated PDF sets
PDF set Correlation Weight (mT) Weight (p
T) Combined W[MeV]
CT14 50.3% 88% 12% 2204 ±47
CT18 51.5% 87% 13% 2202 ±47
CT18A 50.0% 86% 14% 2184 ±47
MMHT2014 50.8% 88% 13% 2182 ±47
MSHT20 53.6% 89% 11% 2181 ±47
ATLASpdf21 49.5% 84% 16% 2193 ±46
NNPDF31 49.9% 86% 14% 2182 ±46
NNPDF40 51.4% 85% 15% 2184 ±46
Fig. 15 a Present measurement of W, compared to the SM prediction
from the global electroweak fit [6], and to the measurements of LEP
[10] and Tevatron [64]. b68% and 95% CL uncertainty contours for
the simultaneous determination of mWand Wusing the CT18 PDF set
and combining results from the p
Tand mTdistributions. The triangu-
lar marker represents the best fit, while the star corresponds to the SM
prediction of Ref. [6]
8 Simultaneous determination of the W-boson mass
and width
The previously described determination of mWassumes for
the W-boson width its SM value and uncertainty, and simi-
larly the Wmeasurement uses the SM prediction for mW.
To further test the interplay between the two observables,
the PLH fit is also performed with both mWand Wfree
in the fit. This fit with two parameters of interest relies
on the same experimental calibrations and physics mod-
elling. The fit yields values of mW=80,351.8±16.7MeV
and W=2216 ±73 MeV for the p
Tdistributions and
mW=80,369.4±26.8 MeV and W=2186 ±53 MeV for
the mTdistributions using the CT18 PDF set. Compared with
the separate mWand Wfits, the decrease of mWby 10 MeV
and 25 MeV for the p
Tand mTdistributions, respectively, is
consistent with the larger measured value of Wfollowing
the observed anti-correlation of mWand W. The increase
in total uncertainty is due to the removal of the constraints
on Wand mWin the fit.
The combination of results obtained from p
Tand mTdis-
tributions follows the procedure described in Sect.6.4.
The p
Tand mTresults are fully compatible with each other.
For the CT18 PDF set, the combination yields values of
mW=80,354.8±16.1MeV
and
W=2198 ±49 MeV,
with a correlation of −30% that reflects the negative slope
of the dependencies reported in Sects.6.4 and 7.2. The 68%
and 95% CL uncertainty contours are shown in Fig.15b.
9 Conclusion
This paper reports on a first measurement of the W-boson
width at the LHC as well as the reanalysis of the data
123
1309 Page 20 of 36 Eur. Phys. J. C (2024) 84:1309
used in the published W-boson mass measurement, using an
improved fitting technique and updated parton distribution
functions. Both measurements are based on proton–proton
collision data at a centre-of-mass energy of √s=7TeV
recorded by the ATLAS detector at the LHC in 2011, and
corresponding to an integrated luminosity of 4.6 fb−1and
4.1fb
−1in the electron and muon channels, respectively.
The measurements of mWusing the p
Tand mTdistribu-
tions are found to be consistent and their combination yields
mW=80,366.5±9.8(stat.)±12.5(syst.)MeV
=80,366.5±15.9MeV.
The present result is compatible with and supersedes the pre-
vious measurement of mWat ATLAS using the same data. No
significant deviation from the SM expectation is observed.
The PDF dependence of the mWresult is driven by the pre-
fit PDF uncertainties, and is strongly reduced when allowing
for enlarged uncertainties. The final results are obtained using
the CT18 PDF set, which is the most conservative PDF set
for these measurements and compatible with the fits using
enlarged PDF uncertainties of other sets.
The measurements of Wusing the p
Tand mTdistribu-
tions are also found to be consistent and their combination
yields a value of
W=2202 ±32 (stat.)±34 (syst.)MeV =2202 ±47 MeV.
It is the currently most precise single measurement of Wand
agrees with the SM expectation of SM
W=2088 ±1MeV
within 2.4 standard deviations. The dependence of Won the
assumed PDF set is weak compared with the measurement
uncertainties.
Acknowledgements We thank CERN for the very successful oper-
ation of the LHC and its injectors, as well as the support staff
at CERN and at our institutions worldwide without whom ATLAS
could not be operated efficiently. The crucial computing support from
all WLCG partners is acknowledged gratefully, in particular from
CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF
(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Ger-
many), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL
(UK) and BNL (USA), the Tier-2 facilities worldwide and large non-
WLCG resource providers. Major contributors of computing resources
are listed in Ref. [65]. We gratefully acknowledge the support of
ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW
and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil;
NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST
and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Repub-
lic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU,
France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI,
Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Cen-
ter, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco;
NWO, Netherlands; RCN, Norway; MNiSW, Poland; FCT, Portu-
gal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS
and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC
and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of
Bern and Geneva, Switzerland; MOST, Taipei; TENMAK, Turkey;
STFC, UK; DOE and NSF, USA. Individual groups and members
have received support from BCKDF, CANARIE, CRC and DRAC,
Canada; PRIMUS 21/SCI/017, CERN-CZ and FORTE, Czech Repub-
lic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU and
Marie Skłodowska-Curie Actions, European Union; Investissements
d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG
and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-
grammes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-
NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-
2021, Norway; NCN and NAWA, Poland; La Caixa Banking Founda-
tion, CERCA Programme Generalitat de Catalunya and PROMETEO
and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafs-
sons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, UK.
In addition, individual members wish to acknowledge support from
CERN: European Organization for Nuclear Research (CERN PJAS);
Chile: Agencia Nacional de Investigación y Desarrollo (FONDECYT
1190886, FONDECYT 1210400, FONDECYT 1230812, FONDECYT
1230987); China: Chinese Ministry of Science and Technology(MOST-
2023YFA1605700), National Natural Science Foundation of China
(NSFC - 12175119, NSFC 12275265, NSFC-12075060); Czech Repub-
lic: Czech Science Foundation (GACR - 24-11373S), Ministry of Edu-
cation Youth and Sports (FORTE CZ.02.01.01/00/22_008/0004632),
PRIMUS Research Programme (PRIMUS/21/SCI/017); EU: H2020
European Research Council (ERC - 101002463); European Union:
European Research Council (ERC - 948254, ERC 101089007), Hori-
zon 2020 Framework Programme (MUCCA - CHIST-ERA-19-XAI-
00), European Union, Future Artificial Intelligence Research (FAIR-
NextGenerationEU PE00000013), Italian Center for High Performance
Computing, Big Data and Quantum Computing (ICSC, NextGen-
erationEU); France: Agence Nationale de la Recherche (ANR-20-
CE31-0013, ANR-21-CE31-0013, ANR-21-CE31-0022), Investisse-
ments d’Avenir Labex (ANR-11-LABX-0012); Germany: Baden-
Württemberg Stiftung (BW Stiftung-Postdoc Eliteprogramme),
Deutsche Forschungsgemeinschaft (DFG - 469666862, DFG - CR
312/5-2); Italy: Istituto Nazionale di Fisica Nucleare (ICSC, NextGen-
erationEU); Japan: Japan Society for the Promotion of Science (JSPS
KAKENHI JP21H05085, JSPS KAKENHI JP22H01227, JSPS KAK-
ENHI JP22H04944, JSPS KAKENHI JP22KK0227); Netherlands:
Netherlands Organisation for Scientific Research (NWO Veni 2020
- VI.Veni.202.179); Norway: Research Council of Norway (RCN-
314472); Poland: Polish National Agency for Academic Exchange
(PPN/PPO/2020/1/00002/U/00001), Polish National Science Centre
(NCN 2021/42/E/ST2/00350, NCN OPUS nr 2022/47/B/ST2/03059,
NCN UMO-2019/34/E/ST2/00393, UMO-2020/37/B/ST2/01043,
UMO-2021/40/C/ST2/00187, UMO-2022/47/O/ST2/00148, UMO-
2023/49/B/ST2/04085); Slovenia: Slovenian Research Agency (ARIS
grant J1-3010); Spain: Generalitat Valenciana (Artemisa, FEDER,
IDIFEDER/2018/048), Ministry of Science and Innovation (MCIN
& NextGenEU PCI2022-135018-2, MICIN & FEDER PID2021-
125273NB, RYC2019-028510-I,RYC2020-030254-I, RYC2021-031273-
I, RYC2022-038164-I), PROMETEO and GenT Programmes General-
itat Valenciana (CIDEGENT/2019/023, CIDEGENT/2019/027); Swe-
den: Swedish Research Council (Swedish Research Council 2023-
04654, VR 2018-00482, VR 2022-03845, VR 2022-04683, VR 2023-
03403, VR grant 2021-03651), Knut and Alice Wallenberg Foun-
dation (KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, KAW
2022.0358); Switzerland: Swiss National Science Foundation (SNSF
- PCEFP2_194658); UK: Leverhulme Trust (Leverhulme Trust RPG-
2020-004), Royal Society (NIF-R1-231091); USA: U.S. Department of
Energy (ECA DE-AC02-76SF00515), Neubauer Family Foundation.
Data Availability Statement This manuscript has associated data in
a data repository. [Authors’ comment: All ATLAS scientific output is
published in journals, and preliminary results are made available in
Conference Notes. All are openly available, without restriction on use
by external parties beyond copyright law and the standard conditions
agreed by CERN. Data associated with journal publications are also
made available: tables and data from plots (e.g. cross section values,
123
Eur. Phys. J. C (2024) 84:1309 Page 21 of 36 1309
likelihood profiles, selection efficiencies, cross section limits, ...) are
stored in appropriate repositories such as HEPDATA (http://hepdata.
cedar.ac.uk/). ATLAS also strives to make additional material related to
the paper available that allowsa reinterpretation of the data in the context
of new theoretical models. For example, an extended encapsulation of
the analysis is often provided for measurements in the framework of
RIVET (http://rivet.hepforge.org/). This information is taken from the
ATLAS Data Access Policy, which is a public document that can be
downloaded from http://opendata.cern.ch/record/413.]
Code Availability Statement My manuscript has no associated code/
software.] [Authors’ comment: Software sharing not applicable to this
article.]
Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.
References
1. S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys.
22, 579 (1961). https://doi.org/10.1016/0029-5582(61)90469-2
2. A. Salam, J.C. Ward, Electromagnetic and weak interac-
tions. Phys. Lett. 13, 168 (1964). https://doi.org/10.1016/
0031-9163(64)90711-5
3. S. Weinberg, A Model of Leptons. Phys. Rev. Lett. 19, 1264 (1967).
https://doi.org/10.1103/PhysRevLett.19.1264
4. A. Sirlin, Radiative corrections in the SU (2)L×U(1)theory: A
simple renormalization framework. Phys. Rev. D 22, 971 (1980).
https://doi.org/10.1103/PhysRevD.22.971
5. M. Awramik et al., Precise prediction for the W-boson mass in the
standard model. Phys. Rev. D 69, 053006 (2004). https://doi.org/
10.1103/PhysRevD.69.053006.arXiv:hep-ph/0311148
6. J. de Blas et al., Global analysis of electroweak data in the Standard
Model. Phys. Rev. D 106, 033003 (2022). https://doi.org/10.1103/
PhysRevD.106.033003.arXiv:2112.07274 [hep-ph]
7. The GFitter Group, J. Haller et al. Update of the global electroweak
fit and constraints on two-Higgsdoublet models. Eur. Phys. J. C
78, 675 (2018). https://doi.org/10.1140/epjc/s10052-018-6131-3.
arXiv:1803.01853 [hep-ph]
8. J. Erler. Global Fits to Electroweak Data Using GAPP. QCD and
weak boson physics in Run II. Proceedings, Batavia, IL, March
4–6, June 3–4, November 4–6 (1999). arXiv: hep-ph/0005084
9. C.D.F. Collaboration, High-precision measurement of the Wboson
mass with the CDF II detector. Science 376, 170 (2022). https://
doi.org/10.1126/science.abk1781
10. The ALEPH Collaboration, The DELPHI Collaboration, The
L3 Collaboration, The OPAL Collaboration, The LEP Elec-
troweak Working Group. Electroweak measurements in electron-
positron collisions at W-boson-pair energies at LEP. Phys. Rept.
532, 119 (2013). https://doi.org/10.1016/j.physrep.2013.07.004.
arXiv:1302.3415 [hep-ex]
11. D0 Collaboration, Measurement of the W Boson Mass with the D0
Detector. Phys. Rev. Lett. 108, 151804 (2012). https://doi.org/10.
1103/PhysRevLett.108.151804.arXiv:1203.0293 [hep-ex]
12. ATLAS Collaboration. Measurement of the W-boson mass in pp
collisions at √s=7 TeV with the ATLAS detector. Eur. Phys. J. C
78, 110 (2018). https://doi.org/10.1140/epjc/s10052-017-5475- 4.
arXiv:1701.07240 [hep-ex]. Erratum: in: Eur. Phys. J. C 78 (2018),
898. https://doi.org/10.1140/epjc/s10052-018-6354-3
13. LHCb Collaboration. Measurement of the Wboson mass.
JHEP 01, 036 (2022). https://doi.org/10.1007/JHEP01(2022)036.
arXiv:2109.01113 [hep-ex]
14. S. Amoroso et al. Compatibility and combination of world W-
boson mass measurements (2023). arXiv:2308.09417 [hep-ex]
15. M.E. Peskin, T. Takeuchi, Estimation of oblique electroweak cor-
rections. Phys. Rev. D 46, 381 (1992). https://doi.org/10.1103/
PhysRevD.46.381
16. S. Heinemeyer et al., Implications of LHC search results on the W
boson mass prediction in the MSSM. JHEP 12, 084 (2013). https://
doi.org/10.1007/JHEP12(2013)084.arXiv:1311.1663 [hep-ph]
17. Particle Data Group, R. L. Workman et al. Review of Particle
Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/
ptac097
18. C.D.F. Collaboration, Precise measurement of the W-boson
mass with the CDF II detector. Phys. Rev. Lett. 108,
151803 (2012). https://doi.org/10.1103/PhysRevLett.108.151803.
arXiv:1203.0275 [hep-ex]
19. D0 Collaboration, Measurement of the W-boson mass with the D0
detector. Phys. Rev. D 89, 012005 (2014). https://doi.org/10.1103/
PhysRevD.89.012005.arXiv:1310.8628 [hep-ex]
20. W.A. Rólke, A.M. Lopez, J. Conrad, Limits and confidence inter-
vals in the presence of nuisance parameters. Nucl. Instrum. Meth.
A551, 493 (2005). https://doi.org/10.1016/j.nima.2005.05.068.
arXiv:physics/0403059
21. ATLAS Collaboration. The ATLAS Experiment at the CERN Large
Hadron Collider. JINST 3, S08003 (2008). https://doi.org/10.1088/
1748-0221/3/08/S08003
22. ATLAS Collaboration. Performance of the ATLAS Trigger System
in 2010. Eur. Phys. J. C 72, 1849 (2012). https://doi.org/10.1140/
epjc/s10052-011-1849-1.arXiv:1110.1530 [hep-ex]
23. ATLAS Collaboration. The ATLAS Collaboration Software and
Firmware. ATL-SOFT-PUB-2021-001 (2021). https://cds.cern.ch/
record/2767187
24. P. Nason, A new method for combining NLO QCD with shower
Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.
1088/1126-6708/2004/11/040.arXiv:hep-ph/0409146
25. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computa-
tions with parton shower simulations: the POWHEG method. JHEP
11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070.
arXiv:0709.2092 [hep-ph]
26. S. Alioli et al., A general framework for implementing NLO cal-
culations in shower Monte Carlo programs: the POWHEG BOX.
JHEP 06, 043 (2010). https://doi.org/10.1007/JHEP06(2010)043.
arXiv:1002.2581 [hep-ph]
27. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and
manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/
2006/05/026.arXiv:hep-ph/0603175
28. T. Sjostrand, S. Mrenna, P. Skands. A brief introduction to PYTHIA
8.1. Comput. Phys. Commun. 178, 852 (2008). https://doi.org/10.
1016/j.cpc.2008.01.036.arXiv:0710.3820 [hep-ph]
29. ATLAS Collaboration. Measurement of the Z/γ ∗boson transverse
momentum distribution in pp collisions at √s=7 TeV with the
ATLAS detector. JHEP 09, 145 (2014). https://doi.org/10.1007/
JHEP09(2014)145.arXiv:1406.3660 [hep-ex]
30. H.-L. Lai et al., New parton distributions for collider physics. Phys.
Rev. D 82, 074024 (2010). https://doi.org/10.1103/PhysRevD.82.
074024.arXiv:1007.2241 [hep-ph]
123
1309 Page 22 of 36 Eur. Phys. J. C (2024) 84:1309
31. J. Pumplin et al., New Generation of Parton Distribu-
tions with Uncertainties from Global QCD Analysis. JHEP
07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012.
arXiv:hep-ph/0201195
32. P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool
for QED corrections in Zand Wdecays. Eur. Phys. J.
C45, 97 (2006). https://doi.org/10.1140/epjc/s2005-02396-4.
arXiv:hep-ph/0506026
33. ATLAS Collaboration. Precision measurement and interpretation
of inclusive W+,W−and Z/γ ∗production cross sections with the
ATLAS detector. Eur. Phys. J. C 77, 367. (2017). https://doi.org/
10.1140/epjc/s10052-017-4911-9.arXiv:1612.03016 [hep-ex]
34. S. Frixione, B.R. Webber, Matching NLO QCD computations and
parton shower simulations. JHEP 06, 029 (2002). https://doi.org/
10.1088/1126-6708/2002/06/029.arXiv:hep-ph/0204244
35. S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD
and parton showers in heavy flavour production. JHEP
08, 007 (2003). https://doi.org/10.1088/1126-6708/2003/08/007.
arXiv:hep-ph/0305252
36. S. Frixione et al., Single-top production in MC@NLO. JHEP
03, 092 (2006). https://doi.org/10.1088/1126-6708/2006/03/092.
arXiv:hep-ph/0512250
37. ATLAS Collaboration. The ATLAS Simulation Infrastructure.
Eur. Phys. J. C 70, 823 (2010). https://doi.org/10.1140/epjc/
s10052-010-1429-9.arXiv:1005.4568 [physics.ins-det]
38. S. Agostinelli et al. Geant4–asimulationtoolkit.Nucl.
Instrum. Meth. A 506, 250 (2003). https://doi.org/10.1016/
S0168-9002(03)01368-8
39. ATLAS Collaboration. Summary of ATLAS Pythia 8 tunes. ATL-
PHYS-PUB-2012-003 (2012). https://cds.cern.ch/record/1474107
40. ATLAS Collaboration. Electron reconstruction and identifica-
tion efficiency measurements with the ATLAS detector using
the 2011 LHC proton-proton collision data. Eur. Phys. J. C 74,
2941 (2014). https://doi.org/10.1140/epjc/s10052-014-2941-0.
arXiv:1404.2240 [hep-ex]
41. ATLAS Collaboration. Electron and photon energycalibration with
the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74,
3071 (2014). https://doi.org/10.1140/epjc/s10052-014-3071-4.
arXiv:1407.5063 [hep-ex]
42. ATLAS Collaboration. Measurement of the muon reconstruc-
tion performance of the ATLAS detector using 2011 and
2012 LHC proton–proton collision data. Eur. Phys. J. C 74,
3130 (2014). https://doi.org/10.1140/epjc/s10052-014-3130-x.
arXiv:1407.3935 [hep-ex]
43. ATLAS Collaboration. Improved luminosity determination in pp
collisions at √s=7 TeV using the ATLAS detector at the LHC.
Eur. Phys. J. C 73, 2518 (2013). https://doi.org/10.1140/epjc/
s10052-013-2518-3.arXiv:1302.4393 [hep-ex]
44. S. Dulat et al., Newparton distribution functions from a global anal-
ysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016).
https://doi.org/10.1103/PhysRevD.93.033006.arXiv:1506.07443
[hep-ph]
45. L.A. Harland-Lang et al., Parton distributions in the LHC era:
MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). https://doi.
org/10.1140/epjc/s10052-015-3397-6.arXiv:1412.3989 [hep-ph]
46. ATLAS Collaboration. Determination of the parton distribution
functions of the proton using diverse ATLAS data from pp
collisions at √s=7,8 and 13 TeV. Eur. Phys. J. C 82,
438 (2022). https://doi.org/10.1140/epjc/s10052-022-10217-z.
arXiv:2112.11266 [hep-ex]
47. T.-J. Hou et al., New CTEQ global analysis of quantum chro-
modynamics with high-precision data from the LHC. Phys. Rev.
D103, 014013 (2021). https://doi.org/10.1103/PhysRevD.103.
014013.arXiv:1912.10053 [hep-ph]
48. S. Bailey et al., Parton distributions from LHC, HERA, Teva-
tron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81,
341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0.
arXiv:2012.04684 [hep-ph]
49. NNPDF Collaboration. Parton distributions from high-precision
collider data. Eur. Phys. J. C 77, 663 (2017). https://doi.org/10.
1140/epjc/s10052-017-5199-5.arXiv:1706.00428 [hep-ph]
50. NNPDF Collaboration, R. D. Ball et al. The path to proton structure
at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/
10.1140/epjc/s10052-022-10328-7.arXiv:2109.02653 [hep-ph]
51. A. Pinto et al. Uncertainty components in profile likelihood fits
(2023). arXiv:2307.04007 [physics.data-an]
52. The ALEPH Collaboration, The DELPHI Collaboration, The L3
Collaboration, The OPAL Collaboration, The SLD Collaboration,
The LEP Electroweak Working Group, The SLD Electroweak and
Heavy Flavour Groups. Precision electroweak measurements on
the Zresonance. Phys. Rept. 427, 257 (2006). https://doi.org/10.
1016/j.physrep.2005.12.006.arXiv:hep-ex/0509008
53. K. Pearson. LIII. On lines and planes of closest fit to systems of
points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 2, 559
(1901). https://doi.org/10.1080/14786440109462720
54. H. Hotelling. Analysis of a complex of statistical variables into
principal components. J. Educ. Psychol. 417 (1933). https://doi.
org/10.1037/h0071325
55. ATLAS Collaboration. Measurement of the angular coeffi-
cients in Z-boson events using electron and muon pairs
from data taken at √s=8 TeV with the ATLAS detector.
JHEP 08, 159 (2016). https://doi.org/10.1007/JHEP08(2016)159.
arXiv:1606.00689 [hep-ex]
56. ATLAS Collaboration. Precise measurements of Wand Ztrans-
verse momentum spectra with the ATLAS detector at √s=
5.02 TeV and 13 TeV. CERN-EP-2024-080 (2024)
57. J. Pumplin et al. Uncertainties of predictions from parton dis-
tribution functions. II. The Hessian method. Phys. Rev. D
65, 014013 (2001). https://doi.org/10.1103/PhysRevD.65.014013.
arXiv:hep-ph/0101032
58. T. Sjöstrand, P.Z. Skands, Transverse-momentum-ordered show-
ers and interleaved multiple interactions. Eur. Phys. J. C
39, 129 (2005). https://doi.org/10.1140/epjc/s2004-02084-y.
arXiv:hep-ph/0408302
59. L. Lyons, D. Gibaut, P. Clifford, How to combine correlated esti-
mates of a single physical quantity. Nucl. Instrum. Meth. A 270,
110 (1988). https://doi.org/10.1016/0168-9002(88)90018-6
60. ATLAS and CMS Collaborations. Combination of measurements
of the top quark mass from data collected by the ATLAS and CMS
experiments at √s=7 and 8 TeV. (2024). arXiv:2402.08713 [hep-
ex]
61. ATLAS Collaboration. Combined Measurement of the Higgs
Boson Mass from the H→γγ and H→ZZ∗→4Decay Channels
with the ATLAS Detector Using √s=7,8,and13 TeV pp Collision
Data, Phys. Rev. Lett. 131, 251802 (2023). https://doi.org/10.1103/
PhysRevLett.131.251802.arXiv:2308.04775 [hep-ex]
62. J. de Blas et al., Impact of the Recent Measurements of the
Top-Quark and W-Boson Masses on Electroweak Precision Fits.
Phys. Rev. Lett. 129, 271801 (2022). https://doi.org/10.1103/
PhysRevLett.129.271801.arXiv:2204.04204 [hep-ph]
63. J. de Blas et al. The Global Electroweak and Higgs Fits in the LHC
era. PoS EPS-HEP2017 (2017). Ed. by P. Checchia et al., 467.
https://doi.org/10.22323/1.314.0467.arXiv:1710.05402 [hep-ph]
64. The Tevatron Electroweak Working Group. Combination of
CDF and D0 Results on the Width of the W boson (2010).
arXiv:1003.2826 [hep-ex]
65. ATLAS Collaboration. ATLAS Computing Acknowledgements.
ATL-SOFT-PUB-2023-001 (2023). https://cds.cern.ch/record/
2869272
123
Eur. Phys. J. C (2024) 84:1309 Page 23 of 36 1309
ATLAS Collaboration
G. Aad103 , E. Aakvaag16 , B. Abbott121 , S. Abdelhameed117a , K. Abeling55 , N. J. Abicht49 ,S.H.Abidi
29 ,
M. Aboelela44 , A. Aboulhorma35e , H. Abramowicz152 , H. Abreu151 , Y. Abulaiti118 , B. S. Acharya69a,69b,k,
A. Ackermann63a , C. Adam Bourdarios4, L. Adamczyk86a , S. V. Addepalli26 , M.J.Addison
102 ,
J. Adelman116 , A. Adiguzel21c , T. Adye135 , A. A. Affolder137 ,Y. Afik
39 ,M.N.Agaras
13 ,J. Agarwala
73a,73b ,
A. Aggarwal101 , C. Agheorghiesei27c , A. Ahmad36 , F. Ahmadov38,x,W.S.Ahmed
105 , S. Ahuja96 ,X.Ai
62e ,
G. Aielli76a,76b ,A.Aikot
164 , M. Ait Tamlihat35e , B. Aitbenchikh35a , M. Akbiyik101 , T.P.A.Åkesson
99 ,
A. V. Akimov37 , D. Akiyama169 , N.N.Akolkar
24 , S. Aktas21a , K. Al Khoury41 , G. L. Alberghi23b ,
J. Albert166 , P. Albicocco53 , G. L. Albouy60 , S. Alderweireldt52 , Z. L. Alegria122 , M. Aleksa36 ,
I. N. Aleksandrov38 ,C.Alexa
27b , T. Alexopoulos10 , F. Alfonsi23b ,M.Algren
56 , M. Alhroob168 ,B.Ali
133 ,
H. M. J. Ali92 ,S.Ali
31 , S. W. Alibocus93 , M. Aliev33c , G. Alimonti71a , W. Alkakhi55 , C. Allaire66 ,
B. M. M. Allbrooke147 ,J.F.Allen
52 , C. A. Allendes Flores138f ,P.P.Allport
20 , A. Aloisio72a,72b ,F.Alonso
91 ,
C. Alpigiani139 , Z.M.K.Alsolami
92 , M. Alvarez Estevez100 , A. Alvarez Fernandez101 , M. Alves Cardoso56 ,
M. G. Alviggi72a,72b ,M.Aly
102 , Y. Amaral Coutinho83b , A. Ambler105 , C. Amelung36, M. Amerl102 ,
C. G. Ames110 , D. Amidei107 , K.J.Amirie
156 , S. P. Amor Dos Santos131a , K. R. Amos164 ,S.An
84,
V. Ananiev126 , C. Anastopoulos140 , T. Andeen11 , J. K. Anders36 , S. Y. Andrean47a,47b , A. Andreazza71a,71b ,
S. Angelidakis9, A. Angerami41,z, A. V. Anisenkov37 , A. Annovi74a , C. Antel56 , E. Antipov146 ,
M. Antonelli53 , F. Anulli75a , M. Aoki84 , T. Aoki154 , M. A. Aparo147 , L. Aperio Bella48 , C. Appelt18 ,
A. Apyan26 , S.J.ArbiolVal
87 , C. Arcangeletti53 , A.T.H.Arce
51 , E. Arena93 , J-F. Arguin109 ,
S. Argyropoulos54 , J.-H. Arling48 , O. Arnaez4, H. Arnold115 , G. Artoni75a,75b , H. Asada112 ,K.Asai
119 ,
S. Asai154 , N. A. Asbah36 , R. A. Ashby Pickering168 , K. Assamagan29 , R. Astalos28a , K.S.V.Astrand
99 ,
S. Atashi160 , R.J.Atkin
33a , M. Atkinson163, H. Atmani35f, P. A. Atmasiddha129 , K. Augsten133 ,
S. Auricchio72a,72b , A.D.Auriol
20 , V. A. Austrup102 , G. Avolio36 , K. Axiotis56 , G. Azuelos109,ad ,
D. Babal28b , H. Bachacou136 , K. Bachas153 ,o, A. Bachiu34 , F. Backman47a,47b , A. Badea39 ,T.M.Baer
107 ,
P. Bagnaia75a,75b , M. Bahmani18 , D. Bahner54 ,K.Bai
124 , J. T. Baines135 , L. Baines95 , O.K.Baker
173 ,
E. Bakos15 , D. Bakshi Gupta8, V. Balakrishnan121 , R. Balasubramanian115 , E. M. Baldin37 , P. Balek86a ,
E. Ballabene23a,23b , F. Balli136 ,L.M.Baltes
63a , W. K. Balunas32 ,J.Balz
101 , I. Bamwidhi117b , E. Banas87 ,
M. Bandieramonte130 , A. Bandyopadhyay24 , S. Bansal24 , L. Barak152 , M. Barakat48 , E. L. Barberio106 ,
D. Barberis57a,57b , M. Barbero103 , M. Z. Barel115 , K. N. Barends33a , T. Barillari111 , M-S. Barisits36 ,
T. Ba r k l ow144 , P. Baron123 , D. A. Baron Moreno102 , A. Baroncelli62a , G. Barone29 ,A.J.Barr
127 ,
J. D. Barr97 , F. Barreiro100 , J. Barreiro Guimarães da Costa14a ,U.Barron
152 , M.G.BarrosTeixeira
131a ,
S. Barsov37 , F. Bartels63a , R. Bartoldus144 ,A.E.Barton
92 ,P.Bartos
28a , A. Basan101 , M. Baselga49 ,
A. Bassalat66,b, M. J. Basso157a ,R.Bate
165 , R. L. Bates59 , S. Batlamous100, B. Batool142 , M. Battaglia137 ,
D. Battulga18 , M. Bauce75a,75b , M. Bauer36 , P. Bauer24 , L. T. Bazzano Hurrell30 , J. B. Beacham51 ,
T. Beau128 , J. Y. Beaucamp91 , P. H. Beauchemin159 , P. Bechtle24 , H. P. Beck19,n, K. Becker168 ,
A. J. Beddall82 , V. A. Bednyakov38 ,C.P.Bee
146 , L. J. Beemster15 , T. A. Beermann36 , M. Begalli83d ,
M. Begel29 , A. Behera146 , J.K.Behr
48 ,J.F.Beirer
36 , F. Beisiegel24 ,M.Belfkir
117b , G. Bella152 ,
L. Bellagamba23b , A. Bellerive34 , P. Bellos20 , K. Beloborodov37 , D. Benchekroun35a , F. Bendebba35a ,
Y. Benhammou152 , K. C. Benkendorfer61 , L. Beresford48 , M. Beretta53 , E. Bergeaas Kuutmann162 , N. Berger4,
B. Bergmann133 , J. Beringer17a , G. Bernardi5, C. Bernius144 , F. U. Bernlochner24 , F. Bernon36,103 ,
A. Berrocal Guardia13 ,T.Berry
96 ,P.Berta
134 , A. Berthold50 , S. Bethke111 , A. Betti75a,75b , A.J.Bevan
95 ,
N. K. Bhalla54 , M. Bhamjee33c , S. Bhatta146 , D. S. Bhattacharya167 , P. Bhattarai144 , K. D. Bhide54 ,
V. S. Bhopatkar122 , R. M. Bianchi130 , G. Bianco23a ,23b , O. Biebel110 , R. Bielski124 , M. Biglietti77a ,
C. S. Billingsley44, M. Bindi55 , A. Bingul21b ,C.Bini
75a,75b , A. Biondini93 , C. J. Birch-sykes102 ,
G. A. Bird32 ,M.Birman
170 ,M.Biros
134 , S. Biryukov147 , T. Bisanz49 , E. Bisceglie43a,43b , J.P.Biswal
135 ,
D. Biswas142 , I. Bloch48 ,A.Blue
59 , U. Blumenschein95 , J. Blumenthal101 , V. S. Bobrovnikov37 ,
M. Boehler54 , B. Boehm167 , D. Bogavac36 , A. G. Bogdanchikov37 , C. Bohm47a , V. Boisvert96 ,
P. Bokan36 ,T.Bold
86a , M. Bomben5, M. Bona95 , M. Boonekamp136 , C.D.Booth
96 , A. G. Borbély59 ,
I. S. Bordulev37 , H. M. Borecka-Bielska109 , G. Borissov92 , D. Bortoletto127 , D. Boscherini23b ,M.Bosman
13 ,
J. D. Bossio Sola36 , K. Bouaouda35a , N. Bouchhar164 , L. Boudet4, J. Boudreau130 , E. V. Bouhova-Thacker92 ,
D. Boumediene40 , R. Bouquet57a,57b , A. Boveia120 ,J.Boyd
36 ,D.Boye
29 , I.R.Boyko
38 , L. Bozianu56 ,
J. Bracinik20 , N. Brahimi4, G. Brandt172 , O. Brandt32 , F. Braren48 ,B.Brau
104 ,J.E.Brau
124 , R. Brener170 ,
123
1309 Page 24 of 36 Eur. Phys. J. C (2024) 84:1309
L. Brenner115 , R. Brenner162 , S. Bressler170 , D. Britton59 , D. Britzger111 , I. Brock24 , G. Brooijmans41 ,
E. Brost29 ,L.M.Brown
166 , L. E. Bruce61 , T. L. Bruckler127 , P. A. Bruckman de Renstrom87 , B. Brüers48 ,
A. Bruni23b , G. Bruni23b , M. Bruschi23b ,N.Bruscino
75a,75b , T. Buanes16 , Q. Buat139 , D. Buchin111 ,
A. G. Buckley59 , O. Bulekov37 , B. A. Bullard144 , S. Burdin93 ,C.D.Burgard
49 , A. M. Burger36 ,
B. Burghgrave8, O. Burlayenko54 , J.T.P.Burr
32 , J. C. Burzynski143 , E. L. Busch41 , V. Büscher101 ,
P. J. Bussey59 , J.M.Butler
25 , C.M.Buttar
59 , J. M. Butterworth97 , W. Buttinger135 , C. J. Buxo Vazquez108 ,
A. R. Buzykaev37 , S. Cabrera Urbán164 , L. Cadamuro66 , D. Caforio58 ,H.Cai
130 ,Y.Cai
14a,14e ,
Y. Ca i14c , V.M.M.Cairo
36 , O. Cakir3a , N. Calace36 , P. Calafiura17a , G. Calderini128 , P. Calfayan68 ,
G. Callea59 , L. P. Caloba83b,D.Calvet
40 ,S.Calvet
40 , M. Calvetti74a,74b , R. Camacho Toro128 , S. Camarda36 ,
D. Camarero Munoz26 , P. Camarri76a,76b , M. T. Camerlingo72a,72b , D. Cameron36 , C. Camincher166 ,
M. Campanelli97 , A. Camplani42 , V. Canale72a,72b , A. C. Canbay3a , E. Canonero96 , J. Cantero164 ,Y.Cao
163 ,
F. Capocasa26 , M. Capua43a,43b , A. Carbone71a,71b , R. Cardarelli76a , J. C. J. Cardenas8, G. Carducci43a,43b ,
T. Ca r l i 36 , G. Carlino72a , J. I. Carlotto13 , B. T. Carlson130,p, E. M. Carlson157a,166 , J. Carmignani93 ,
L. Carminati71a,71b , A. Carnelli136 , M. Carnesale75a ,75b , S. Caron114 , E. Carquin138f , S. Carrá71a ,
G. Carratta23a,23b ,A.M.Carroll
124 , T.M.Carter
52 , M. P. Casado13,h, M. Caspar48 , F. L. Castillo4,
L. Castillo Garcia13 , V. Castillo Gimenez164 , N.F.Castro
131a,131e , A. Catinaccio36 , J.R.Catmore
126 ,
T. Cavaliere4, V. Cavaliere29 , N. Cavalli23a,23b , Y. C. Cekmecelioglu48 , E. Celebi21a , S. Cella36 ,F.Celli
127 ,
M. S. Centonze70a,70b , V. Cepaitis56 ,K.Cerny
123 , A. S. Cerqueira83a , A. Cerri147 , L. Cerrito76a,76b ,
F. Cerutti17a ,B.Cervato
142 , A. Cervelli23b , G. Cesarini53 , S. A. Cetin82 , D. Chakraborty116 , J. Chan17a ,
W. Y. Chan154 , J. D. Chapman32 , E. Chapon136 , B. Chargeishvili150b , D. G. Charlton20 , M. Chatterjee19 ,
C. Chauhan134 ,Y.Che
14c , S. Chekanov6, S. V. Chekulaev157a ,G.A.Chelkov
38,a, A. Chen107 , B. Chen152 ,
B. Chen166 , H. Chen14c , H. Chen29 , J. Chen62c , J. Chen143 , M. Chen127 , S. Chen154 , S.J.Chen
14c ,
X. Chen62c,136 , X. Chen14b,ac , Y. Chen62a , C. L. Cheng171 , H. C. Cheng64a , S. Cheong144 , A. Cheplakov38 ,
E. Cheremushkina48 , E. Cherepanova115 ,R. Cherkaoui El Moursli35e , E. Cheu7, K. Cheung65 , L. Chevalier136 ,
V. Chiarella53 , G. Chiarelli74a , N. Chiedde103 , G. Chiodini70a , A. S. Chisholm20 , A. Chitan27b ,
M. Chitishvili164 , M. V. Chizhov38 , K. Choi11 , Y. Chou139 ,E.Y.S.Chow
114 ,K.L.Chu
170 ,M.C.Chu
64a ,
X. Chu14a,14e , J. Chudoba132 , J. J. Chwastowski87 ,D.Cieri
111 ,K.M.Ciesla
86a , V. Cindro94 , A. Ciocio17a ,
F. Cirotto72a,72b , Z.H.Citron
170 , M. Citterio71a , D. A. Ciubotaru27b,A.Clark
56 , P.J.Clark
52 ,C.Clarry
156 ,
J. M. Clavijo Columbie48 ,S.E.Clawson
48 , C. Clement47a,47b ,J.Clercx
48 , Y. Coadou103 , M. Cobal69a,69c ,
A. Coccaro57b , R. F. Coelho Barrue131a , R. Coelho Lopes De Sa104 , S. Coelli71a ,B.Cole
41 , J. Collot60 ,
P. Conde Muiño131a,131g , M. P. Connell33c , S. H. Connell33c , E. I. Conroy127 , F. Conventi72a,ae , H. G. Cooke20 ,
A. M. Cooper-Sarkar127 , F. A. Corchia23a,23b , A. Cordeiro Oudot Choi128 , L.D.Corpe
40 , M. Corradi75a ,75b ,
F. Corriveau105,v, A. Cortes-Gonzalez18 , M.J.Costa
164 , F. Costanza4, D. Costanzo140 , B.M.Cote
120 ,
J. Couthures4,G.Cowan
96 , K. Cranmer171 , D. Cremonini23a,23b , S. Crépé-Renaudin60 , F. Crescioli128 ,
M. Cristinziani142 , M. Cristoforetti78a,78b ,V.Croft
115 , J.E.Crosby
122 , G. Crosetti43a,43b , A. Cueto100 ,
Z. Cui7, W. R. Cunningham59 , F. Curcio164 ,J.R.Curran
52 , P. Czodrowski36 , M. M. Czurylo36 ,
M. J. Da Cunha Sargedas De Sousa57a,57b , J. V. Da Fonseca Pinto83b ,C.DaVia
102 , W. Dabrowski86a ,
T. Dado49 , S. Dahbi149 ,T.Dai
107 , D. Dal Santo19 , C. Dallapiccola104 ,M.Dam
42 ,G.D’amen
29 ,
V. D’Amico110 ,J.Damp
101 , J. R. Dandoy34 , D. Dannheim36 , M. Danninger143 ,V.Dao
36 , G. Darbo57b ,
S. J. Das29,af , F. Dattola48 ,S.D’Auria
71a,71b , A. D’avanzo72a,72b ,C.David
33a , T. Davidek134 ,
I. Dawson95 , H. A. Day-hall133 ,K.De
8, R. De Asmundis72a ,N.DeBiase
48 ,S.DeCastro
23a,23b ,
N. De Groot114 , P. de Jong115 ,H.DelaTorre
116 ,A.DeMaria
14c , A. De Salvo75a , U. De Sanctis76a,76b ,
F. De Santis70a,70b , A. De Santo147 ,J.B.DeVivieDeRegie
60 , D. V. Dedovich38, J. Degens93 , A. M. Deiana44 ,
F. Del Corso23a,23b , J. Del Peso100 ,F.DelRio
63a , L. Delagrange128 , F. Deliot136 , C. M. Delitzsch49 ,
M. Della Pietra72a,72b , D. Della Volpe56 , A. Dell’Acqua36 , L. Dell’Asta71a ,71b , M. Delmastro4, P. A. Delsart60 ,
S. Demers173 , M. Demichev38 , S. P. Denisov37 ,L.D’Eramo
40 , D. Derendarz87 , F. Derue128 ,
P. De r van 93 , K. Desch24 , C. Deutsch24 , F.A.DiBello
57a,57b , A. Di Ciaccio76a ,76b , L. Di Ciaccio4,
A. Di Domenico75a,75b , C. Di Donato72a,72b , A. Di Girolamo36 , G. Di Gregorio36 , A.DiLuca
78a,78b ,
B. Di Micco77a,77b , R. Di Nardo77a,77b , M. Diamantopoulou34 ,F.A.Dias
115 ,T.DiasDoVale
143 ,
M. A. Diaz138a,138b , F. G. Diaz Capriles24 , M. Didenko164 , E. B. Diehl107 , S. Díez Cornell48 ,
C. Diez Pardos142 , C. Dimitriadi24,162 , A. Dimitrievska20 , J. Dingfelder24 ,I-M.Dinu
27b , S. J. Dittmeier63b ,
F. Dittus36 ,M.Divisek
134 ,F.Djama
103 , T. Djobava150b , C. Doglioni99,102 , A. Dohnalova28a , J. Dolejsi134 ,
Z. Dolezal134 , K. Domijan86a ,K.M.Dona
39 , M. Donadelli83c , B. Dong108 , J. Donini40 , A. D’Onofrio72a,72b ,
123
Eur. Phys. J. C (2024) 84:1309 Page 25 of 36 1309
M. D’Onofrio93 , J. Dopke135 ,A.Doria
72a , N. Dos Santos Fernandes131a , P. Dougan102 ,M.T.Dova
91 ,
A. T. Doyle59 , M. A. Draguet127 , E. Dreyer170 , I. Drivas-koulouris10 ,M.Drnevich
118 , M. Drozdova56 ,
D. Du62a ,T.A.duPree
115 , F. Dubinin37 , M. Dubovsky28a , E. Duchovni170 , G. Duckeck110 , O. A. Ducu27b ,
D. Duda52 , A. Dudarev36 , E. R. Duden26 , M. D’uffizi102 , L. Duflot66 , M. Dührssen36 , I. Duminica27g ,
A. E. Dumitriu27b , M. Dunford63a , S. Dungs49 , K. Dunne47a,47b , A. Duperrin103 , H. Duran Yildiz3a ,
M. Düren58 , A. Durglishvili150b , B. L. Dwyer116 , G. I. Dyckes17a , M. Dyndal86a , B. S. Dziedzic36 ,
Z. O. Earnshaw147 , G.H.Eberwein
127 , B. Eckerova28a , S. Eggebrecht55 , E. Egidio Purcino De Souza128 ,
L. F. Ehrke56 , G. Eigen16 , K. Einsweiler17a ,T.Ekelof
162 , P. A. Ekman99 , S. El Farkh35b , Y. El Ghazali35b ,
H. El Jarrari36 , A. El Moussaouy109 , V. Ellajosyula162 , M. Ellert162 , F. Ellinghaus172 , N. Ellis36 ,
J. Elmsheuser29 ,M.Elsawy
117a , M. Elsing36 , D. Emeliyanov135 , Y. Enari154 ,I.Ene
17a , S. Epari13 ,
P. A. Erland87 , M. Errenst172 , M. Escalier66 , C. Escobar164 , E. Etzion152 , G. Evans131a , H. Evans68 ,
L. S. Evans96 , A. Ezhilov37 , S. Ezzarqtouni35a , F. Fabbri23a,23b , L. Fabbri23a,23b , G. Facini97 ,
V. Fadeyev137 , R. M. Fakhrutdinov37 , D. Fakoudis101 , S. Falciano75a , L. F. Falda Ulhoa Coelho36 ,
F. Fallavollita111 , J. Faltova134 ,C.Fan
163 ,Y.Fan
14a , Y. Fang14a,14e , M. Fanti71a,71b , M. Faraj69a ,69b ,
Z. Farazpay98 , A. Farbin8, A. Farilla77a , T. Farooque108 , S. M. Farrington52 , F. Fassi35e , D. Fassouliotis9,
M. Faucci Giannelli76a,76b , W. J. Fawcett32 , L. Fayard66 , P. Federic134 , P. Federicova132 , O. L. Fedin37 ,a,
M. Feickert171 , L. Feligioni103 , D. E. Fellers124 , C. Feng62b , M. Feng14b , Z. Feng115 , M. J. Fenton160 ,
L. Ferencz48 , R. A. M. Ferguson92 , S. I. Fernandez Luengo138f , P. Fernandez Martinez13 , M. J. V. Fernoux103 ,
J. Ferrando92 , A. Ferrari162 , P. Ferrari114,115 , R. Ferrari73a , D. Ferrere56 , C. Ferretti107 , F. Fiedler101 ,
P. Fiedler133 , A. Filipˇciˇc94 , E.K.Filmer
1, F. Filthaut114 , M.C.N.Fiolhais
131a,131c,c,L.Fiorini
164 ,
W. C. Fisher108 , T. Fitschen102 , P. M. Fitzhugh136, I. Fleck142 , P. Fleischmann107 , T. Flick172 ,
M. Flores33d,aa , L. R. Flores Castillo64a , L. Flores Sanz De Acedo36 , F. M. Follega78a,78b ,N.Fomin
16 ,
J. H. Foo156 , A. Formica136 , A.C.Forti
102 , E. Fortin36 , A.W.Fortman
17a ,M.G.Foti
17a , L. Fountas9,i,
D. Fournier66 ,H.Fox
92 , P. Francavilla74a,74b , S. Francescato61 , S. Franchellucci56 , M. Franchini23a,23b ,
S. Franchino63a , D. Francis36, L. Franco114 , V. Franco Lima36 , L. Franconi48 , M. Franklin61 , G. Frattari26 ,
Y. Y. Fr i d 152 , J. Friend59 , N. Fritzsche50 , A. Froch54 , D. Froidevaux36 , J.A.Frost
127 ,Y.Fu
62a ,
S. Fuenzalida Garrido138f , M. Fujimoto103 , K. Y. Fung64a , E. Furtado De Simas Filho83e , M. Furukawa154 ,
J. Fuster164 , A. Gabrielli23a,23b , A. Gabrielli156 , P. Gadow36 , G. Gagliardi57a,57b , L. G. Gagnon17a ,
S. Gaid161 , S. Galantzan152 , E.J.Gallas
127 , B. J. Gallop135 ,K.K.Gan
120 , S. Ganguly154 ,Y.Gao
52 ,
F. M. Garay Walls138a,138b , B. Garcia29, C. García164 , A. Garcia Alonso115 , A. G. Garcia Caffaro173 ,
J. E. García Navarro164 , M. Garcia-Sciveres17a , G. L. Gardner129 , R. W. Gardner39 , N. Garelli159 ,
D. Garg80 ,R.B.Garg
144 ,J.M.Gargan
52, C. A. Garner156, C.M.Garvey
33a , V. K. Gassmann159 , G. Gaudio73a ,
V. Gautam13, P. Gauzzi75a,75b , I.L.Gavrilenko
37 , A. Gavrilyuk37 ,C.Gay
165 , G. Gaycken48 , E. N. Gazis10 ,
A. A. Geanta27b ,C.M.Gee
137 ,A.Gekow
120, C. Gemme57b , M. H. Genest60 , A. D. Gentry113 , S. George96 ,
W. F. George20 , T. Geralis46 , P. Gessinger-Befurt36 ,M.E.Geyik
172 , M. Ghani168 , K. Ghorbanian95 ,
A. Ghosal142 , A. Ghosh160 , A. Ghosh7, B. Giacobbe23b , S. Giagu75a ,75b , T. Giani115 , P. Giannetti74a ,
A. Giannini62a ,S.M.Gibson
96 , M. Gignac137 ,D.T.Gil
86b , A. K. Gilbert86a , B. J. Gilbert41 , D. Gillberg34 ,
G. Gilles115 , L. Ginabat128 , D. M. Gingrich2,ad , M. P. Giordani69a,69c , P.F.Giraud
136 , G. Giugliarelli69a,69c ,
D. Giugni71a , F. Giuli36 , I. Gkialas9,i, L. K. Gladilin37 ,C.Glasman
100 , G. R. Gledhill124 ,G.Glemža
48 ,
M. Glisic124, I. Gnesi43b ,e,Y.Go
29 , M. Goblirsch-Kolb36 , B. Gocke49 , D. Godin109, B. Gokturk21a ,
S. Goldfarb106 , T. Golling56 , M.G.D.Gololo
33g , D. Golubkov37 , J. P. Gombas108 , A. Gomes131a,131b ,
G. Gomes Da Silva142 , A. J. Gomez Delegido164 , R. Gonçalo131a , L. Gonella20 , A. Gongadze150c ,
F. Gonnella20 , J. L. Gonski144 , R. Y. González Andana52 , S. González de la Hoz164 , R. Gonzalez Lopez93 ,
C. Gonzalez Renteria17a , M. V. Gonzalez Rodrigues48 , R. Gonzalez Suarez162 , S. Gonzalez-Sevilla56 ,
L. Goossens36 ,B. Gorini
36 ,E. Gorini
70a,70b , A. Gorišek94 ,T.C.Gosart
129 ,A.T.Goshaw
51 , M. I. Gostkin38 ,
S. Goswami122 , C. A. Gottardo36 ,S.A.Gotz
110 , M. Gouighri35b , V. Goumarre48 , A.G.Goussiou
139 ,
N. Govender33c , I. Grabowska-Bold86a , K. Graham34 ,E.Gramstad
126 , S. Grancagnolo70a,70b , C. M. Grant1,136 ,
P. M. Gravila27f , F.G.Gravili
70a,70b ,H.M.Gray
17a , M. Greco70a,70b ,C.Grefe
24 , A. S. Grefsrud16 ,
I. M. Gregor48 ,K.T.Greif
160 , P. Grenier144 , S.G.Grewe
111, A. A. Grillo137 ,K.Grimm
31 , S. Grinstein13,r,
J.-F. Grivaz66 ,E.Gross
170 , J. Grosse-Knetter55 , J. C. Grundy127 , L. Guan107 , J.G.R.GuerreroRojas
164 ,
G. Guerrieri69a,69c , F. Guescini111 , R. Gugel101 , J. A. M. Guhit107 , A. Guida18 , E. Guilloton168 ,
S. Guindon36 ,F.Guo
14a,14e ,J.Guo
62c ,L.Guo
48 ,Y.Guo
107 , R. Gupta130 ,S.Gurbuz
24 , S. S. Gurdasani54 ,
G. Gustavino36 ,M.Guth
56 , P. Gutierrez121 , L. F. Gutierrez Zagazeta129 , M. Gutsche50 , C. Gutschow97 ,
123
1309 Page 26 of 36 Eur. Phys. J. C (2024) 84:1309
C. Gwenlan127 , C. B. Gwilliam93 , E. S. Haaland126 , A. Haas118 , M. Habedank48 , C. Haber17a ,
H. K. Hadavand8, A. Hadef50 , S. Hadzic111 , A.I.Hagan
92 , J. J. Hahn142 , E. H. Haines97 , M. Haleem167 ,
J. Haley122 , J.J.Hall
140 , G. D. Hallewell103 ,L.Halser
19 , K. Hamano166 , M. Hamer24 , G.N.Hamity
52 ,
E. J. Hampshire96 ,J.Han
62b ,K.Han
62a ,L.Han
14c ,L.Han
62a ,S.Han
17a ,Y.F.Han
156 , K. Hanagaki84 ,
M. Hance137 , D. A. Hangal41 , H. Hanif143 , M.D.Hank
129 , J. B. Hansen42 , P. H. Hansen42 ,K.Hara
158 ,
D. Harada56 , T. Harenberg172 , S. Harkusha37 , M. L. Harris104 ,Y.T.Harris
127 , J. Harrison13 ,
N. M. Harrison120 ,P.F.Harrison
168,N.M.Hartman
111 , N. M. Hartmann110 , R. Z. Hasan96,135 , Y. Hasegawa141 ,
S. Hassan16 , R. Hauser108 ,C.M.Hawkes
20 , R. J. Hawkings36 , Y. Hayashi154 , S. Hayashida112 ,
D. Hayden108 , C. Hayes107 , R. L. Hayes115 , C. P. Hays127 , J.M.Hays
95 , H. S. Hayward93 ,F.He
62a ,
M. He14a,14e ,Y.He
155 ,Y.He
48 ,Y.He
97 , N.B.Heatley
95 , V. Hedberg99 , A. L. Heggelund126 ,
N. D. Hehir95,*, C. Heidegger54 , K. K. Heidegger54 , W. D. Heidorn81 , J. Heilman34 ,S.Heim
48 ,
T. He i m 17a , J. G. Heinlein129 ,J.J.Heinrich
124 , L. Heinrich111 ,ab , J. Hejbal132 ,A.Held
171 , S. Hellesund16 ,
C. M. Helling165 , S. Hellman47a,47b , R. C. W. Henderson92, L. Henkelmann32 , A. M. Henriques Correia36,
H. Herde99 , Y. Hernández Jiménez146 , L. M. Herrmann24 , T. Herrmann50 ,G.Herten
54 , R. Hertenberger110 ,
L. Hervas36 , M. E. Hesping101 , N. P. Hessey157a , M. Hidaoui35b , E. Hill156 , S. J. Hillier20 , J. R. Hinds108 ,
F. Hinterkeuser24 ,M.Hirose
125 ,S.Hirose
158 , D. Hirschbuehl172 , T. G. Hitchings102 , B. Hiti94 , J. Hobbs146 ,
R. Hobincu27e ,N.Hod
170 , M. C. Hodgkinson140 , B. H. Hodkinson127 , A. Hoecker36 , D. D. Hofer107 ,
J. Hofer48 ,T.Holm
24 , M. Holzbock111 , L.B.A.H.Hommels
32 , B. P. Honan102 , J. J. Hong68 , J. Hong62c ,
T. M. Hong130 , B. H. Hooberman163 , W. H. Hopkins6, M. C. Hoppesch163 ,Y.Horii
112 ,S.Hou
149 ,
A. S. Howard94 ,J.Howarth
59 ,J.Hoya
6, M. Hrabovsky123 , A. Hrynevich48 , T. Hryn’ova4,P.J.Hsu
65 ,
S.-C. Hsu139 ,T.Hsu
66 ,M.Hu
17a ,Q.Hu
62a , S. Huang64b , X. Huang14a,14e , Y. Huang140 , Y. Huang101 ,
Y. Huang14a , Z. Huang102 , Z. Hubacek133 , M. Huebner24 , F. Huegging24 , T. B. Huffman127 ,C.A.Hugli
48 ,
M. Huhtinen36 , S. K. Huiberts16 , R. Hulsken105 , N. Huseynov12 ,J.Huston
108 ,J.Huth
61 , R. Hyneman144 ,
G. Iacobucci56 , G. Iakovidis29 , L. Iconomidou-Fayard66 , J. P. Iddon36 , P. Iengo72a,72b , R. Iguchi154 ,
T. Ii z awa127 ,Y.Ikegami
84 , N. Ilic156 ,H.Imam
35a , M. Ince Lezki56 , T. Ingebretsen Carlson47a,47b ,
G. Introzzi73a,73b , M. Iodice77a , V. Ippolito75a,75b ,R.K.Irwin
93 ,M.Ishino
154 , W. Islam171 , C. Issever18,48 ,
S. Istin21a,ah ,H.Ito
169 , R. Iuppa78a ,78b , A. Ivina170 , J. M. Izen45 , V. Izzo72a , P. Jacka132 , P. Jackson1,
C. S. Jagfeld110 ,G.Jain
157a ,P.Jain
48 , K. Jakobs54 , T. Jakoubek170 ,J.Jamieson
59 , M. Javurkova104 ,
L. Jeanty124 , J. Jejelava150a,y, P. Jenni54,f, C. E. Jessiman34 ,C.Jia
62b,J.Jia
146 ,X.Jia
61 ,X.Jia
14a,14e ,
Z. Jia14c , C. Jiang52 , S. Jiggins48 , J. Jimenez Pena13 ,S.Jin
14c , A. Jinaru27b , O. Jinnouchi155 ,
P. Johansson140 , K. A. Johns7, J. W. Johnson137 , D. M. Jones147 , E. Jones48 , P. Jones32 , R. W. L. Jones92 ,
T. J. Jones93 , H. L. Joos55 ,36 , R. Joshi120 , J. Jovicevic15 ,X.Ju
17a , J. J. Junggeburth104 , T. Junkermann63a ,
A. Juste Rozas13,r, M. K. Juzek87 , S. Kabana138e , A. Kaczmarska87 , M. Kado111 , H. Kagan120 ,
M. Kagan144 , A. Kahn129 , C. Kahra101 ,T.Kaji
154 , E. Kajomovitz151 , N. Kakati170 , I. Kalaitzidou54 ,
C. W. Kalderon29 , N.J.Kang
137 ,D.Kar
33g ,K.Karava
127 , M. J. Kareem157b , E. Karentzos54 ,
O. Karkout115 , S. N. Karpov38 , Z.M.Karpova
38 , V. Kartvelishvili92 , A. N. Karyukhin37 ,E.Kasimi
153 ,
J. Katzy48 , S. Kaur34 , K. Kawade141 ,M.P.Kawale
121 , C. Kawamoto88 , T. Kawamoto62a , E.F.Kay
36 ,
F. I. Kaya159 , S. Kazakos108 , V. F. Kazanin37 ,Y.Ke
146 , J. M. Keaveney33a , R. Keeler166 , G. V. Kehris61 ,
J. S. Keller34 , A. S. Kelly97, J. J. Kempster147 , P. D. Kennedy101 , O. Kepka132 , B. P. Kerridge135 ,
S. Kersten172 ,B.P.Kerševan
94 , L. Keszeghova28a , S. Ketabchi Haghighat156 , R. A. Khan130 , A. Khanov122 ,
A. G. Kharlamov37 , T. Kharlamova37 , E. E. Khoda139 , M. Kholodenko37 , T. J. Khoo18 , G. Khoriauli167 ,
J. Khubua150b,*, Y.A.R.Khwaira
128 , B. Kibirige33g, D.W.Kim
47a,47b ,Y.K.Kim
39 ,N.Kimura
97 ,
M. K. Kingston55 , A. Kirchhoff55 ,C.Kirfel
24 , F. Kirfel24 ,J.Kirk
135 , A. E. Kiryunin111 , C. Kitsaki10 ,
O. Kivernyk24 , M. Klassen159 , C. Klein34 , L. Klein167 , M.H.Klein
44 , S. B. Klein56 , U. Klein93 ,
P. Klimek36 , A. Klimentov29 , T. Klioutchnikova36 , P. Kluit115 , S. Kluth111 , E. Kneringer79 , T. M. Knight156 ,
A. Knue49 , R. Kobayashi88 , D. Kobylianskii170 , S. F. Koch127 , M. Kocian144 , P. Kodyš134 , D. M. Koeck124 ,
P. T. Koenig24 ,T.Koffas
34 , O. Kolay50 , I. Koletsou4, T. Komarek123 , K. Köneke54 , A.X.Y.Kong
1,
T. Kono119 , N. Konstantinidis97 , P. Kontaxakis56 , B. Konya99 , R. Kopeliansky41 , S. Koperny86a ,
K. Korcyl87 , K. Kordas153,d,A.Korn
97 ,S.Korn
55 , I. Korolkov13 , N. Korotkova37 , B. Kortman115 ,
O. Kortner111 , S. Kortner111 , W. H. Kostecka116 , V. V. Kostyukhin142 , A. Kotsokechagia136 , A. Koulouris36 ,
A. Kourkoumeli-Charalampidi73a,73b , C. Kourkoumelis9, E. Kourlitis111,ab , O. Kovanda124 , R. Kowalewski166 ,
W. Kozanecki136 , A. S. Kozhin37 , V. A. Kramarenko37 , G. Kramberger94 ,P.Kramer
101 , M.W.Krasny
128 ,
A. Krasznahorkay36 , J.W.Kraus
172 ,J.A.Kremer
48 , T. Kresse50 , J. Kretzschmar93 , K. Kreul18 ,
123
Eur. Phys. J. C (2024) 84:1309 Page 27 of 36 1309
P. Krieger156 , S. Krishnamurthy104 ,M.Krivos
134 , K. Krizka20 , K. Kroeninger49 , H. Kroha111 ,
J. Kroll132 ,J.Kroll
129 , K.S.Krowpman
108 , U. Kruchonak38 , H. Krüger24 , N. Krumnack81 , M. C. Kruse51 ,
O. Kuchinskaia37 , S. Kuday3a , S. Kuehn36 , R. Kuesters54 , T. Kuhl48 , V. Kukhtin38 , Y. Kulchitsky37,a,
S. Kuleshov138b,138d , M. Kumar33g , N. Kumari48 , P. Kumari157b , A. Kupco132 , T. Kupfer49, A. Kupich37 ,
O. Kuprash54 , H. Kurashige85 , L. L. Kurchaninov157a , O. Kurdysh66 , Y. A. Kurochkin37 ,A.Kurova
37 ,
M. Kuze155 ,A.K.Kvam
104 , J. Kvita123 ,T.Kwan
105 , N. G. Kyriacou107 ,L.A.O.Laatu
103 , C. Lacasta164 ,
F. Lacava75a,75b , H. Lacker18 , D. Lacour128 ,N.N.Lad
97 , E. Ladygin38 , A. Lafarge40 , B. Laforge128 ,
T. Lagouri173 , F. Z. Lahbabi35a ,S.Lai
55 , J. E. Lambert166 , S. Lammers68 , W. Lampl7, C. Lampoudis153,d,
G. Lamprinoudis101, A. N. Lancaster116 , E. Lançon29 , U. Landgraf54 , M. P. J. Landon95 , V. S. Lang54 ,
O. K. B. Langrekken126 , A. J. Lankford160 , F. Lanni36 , K. Lantzsch24 , A. Lanza73a , J. F. Laporte136 ,
T. La r i 71a , F. Lasagni Manghi23b , M. Lassnig36 , V. Latonova132 , A. Laudrain101 , A. Laurier151 ,
S. D. Lawlor140 , Z. Lawrence102 , R. Lazaridou168, M. Lazzaroni71a,71b ,B.Le
102, E. M. Le Boulicaut51 ,
L. T. Le Pottier17a , B. Leban23a,23b , A. Lebedev81 , M. LeBlanc102 , F. Ledroit-Guillon60 ,S.C.Lee
149 ,
S. Lee47a,47b ,T.F.Lee
93 , L. L. Leeuw33c , H. P. Lefebvre96 , M. Lefebvre166 , C. Leggett17a ,
G. Lehmann Miotto36 , M. Leigh56 , W. A. Leight104 , W. Leinonen114 ,A.Leisos
153,q, M.A.L.Leite
83c ,
C. E. Leitgeb18 , R. Leitner134 ,K.J.C.Leney
44 , T. Lenz24 , S. Leone74a , C. Leonidopoulos52 , A. Leopold145 ,
C. Leroy109 ,R.Les
108 ,C.G.Lester
32 , M. Levchenko37 , J. Levêque4,L.J.Levinson
170 ,G.Levrini
23a,23b ,
M. P. Lewicki87 ,C.Lewis
139 , D.J.Lewis
4,A.Li
5,B.Li
62b ,C.Li
62a,C-Q.Li
111 ,H.Li
62a ,H.Li
62b ,
H. Li14c ,H.Li
14b ,H.Li
62b ,J.Li
62c ,K.Li
139 ,L.Li
62c ,M.Li
14a,14e ,S.Li
14a,14e ,S.Li
62c,62d ,
T. Li 5,X.Li
105 ,Z.Li
127 ,Z.Li
154 ,Z.Li
14a,14e , S. Liang14a,14e , Z. Liang14a , M. Liberatore136 ,
B. Liberti76a ,K.Lie
64c , J. Lieber Marin83e ,H.Lien
68 ,H.Lin
107 ,K.Lin
108 , R. E. Lindley7, J. H. Lindon2,
E. Lipeles129 , A. Lipniacka16 , A. Lister165 , J. D. Little68 ,B.Liu
14a , B.X.Liu
14d ,D.Liu
62c,62d ,
E. H. L. Liu20 , J.B.Liu
62a , J.K.K.Liu
32 ,K.Liu
62d ,K.Liu
62c,62d ,M.Liu
62a ,M.Y.Liu
62a ,P.Liu
14a ,
Q. Liu62c,62d,139 ,X.Liu
62a ,X.Liu
62b ,Y.Liu
14d,14e ,Y.L.Liu
62b ,Y.W.Liu
62a , J. Llorente Merino143 ,
S. L. Lloyd95 , E. M. Lobodzinska48 , P. Loch7, T. Lohse18 , K. Lohwasser140 , E. Loiacono48 ,
M. Lokajicek132,*, J.D.Lomas
20 , J. D. Long163 , I. Longarini160 , R. Longo163 , I. Lopez Paz67 ,
A. Lopez Solis48 , N. Lorenzo Martinez4, A.M.Lory
110 , M. Losada117a , G. Löschcke Centeno147 ,
O. Loseva37 ,X.Lou
47a,47b ,X.Lou
14a,14e , A. Lounis66 , P. A. Love92 ,G.Lu
14a,14e ,M.Lu
66 ,S.Lu
129 ,
Y. J. L u 65 , H. J. Lubatti139 , C. Luci75a,75b , F. L. Lucio Alves14c , F. Luehring68 ,I. Luise
146 , O. Lukianchuk66 ,
O. Lundberg145 , B. Lund-Jensen145,*, N. A. Luongo6, M.S.Lutz
36 , A.B.Lux
25 , D. Lynn29 ,
R. Lysak132 ,E.Lytken
99 , V. Lyubushkin38 , T. Lyubushkina38 , M. M. Lyukova146 , M.Firdaus M. Soberi52 ,
H. Ma29 ,K.Ma
62a ,L.L.Ma
62b ,W.Ma
62a ,Y.Ma
122 , G. Maccarrone53 , J. C. MacDonald101 ,
P. C. Machado De Abreu Farias83e , R. Madar40 , T. Madula97 , J. Maeda85 , T. Maeno29 , H. Maguire140 ,
V. Maiboroda136 ,A.Maio
131a,131b,131d ,K.Maj
86a , O. Majersky48 ,S.Majewski
124 , N. Makovec66 ,
V. Maksimovic15 , B. Malaescu128 , Pa. Malecki87 , V. P. Maleev37 , F. Malek60,m,M.Mali
94 , D. Malito96 ,
U. Mallik80 , S. Maltezos10, S. Malyukov38, J. Mamuzic13 , G. Mancini53 , M. N. Mancini26 , G. Manco73a,73b ,
J. P. Mandalia95 , I. Mandi´c94 , L. Manhaes de Andrade Filho83a , I. M. Maniatis170 , J. Manjarres Ramos90 ,
D. C. Mankad170 , A. Mann110 , S. Manzoni36 ,L.Mao
62c , X. Mapekula33c , A. Marantis153 ,q,
G. Marchiori5, M. Marcisovsky132 , C. Marcon71a , M. Marinescu20 ,S.Marium
48 , M. Marjanovic121 ,
A. Markhoos54 , M. Markovitch66 , E. J. Marshall92 , Z. Marshall17a , S. Marti-Garcia164 , T.A.Martin
135 ,
V. J. Martin52 , B. Martin dit Latour16 , L. Martinelli75a,75b , M. Martinez13,r, P. Martinez Agullo164 ,
V. I. Martinez Outschoorn104 , P. Martinez Suarez13 , S. Martin-Haugh135 , G. Martinovicova134 , V. S. Martoiu27b ,
A. C. Martyniuk97 , A. Marzin36 , D. Mascione78a,78b , L. Masetti101 , T. Mashimo154 ,J.Masik
102 ,
A. L. Maslennikov37 , P. Massarotti72a,72b , P. Mastrandrea74a,74b , A. Mastroberardino43a,43b , T. Masubuchi154 ,
T. Mathisen162 , J. Matousek134 , N. Matsuzawa154, J. Maurer27b , A. J. Maury66 ,B.Maˇcek94 , D. A. Maximov37 ,
A. E. May102 , R. Mazini149 , I. Maznas116 , M. Mazza108 , S. M. Mazza137 , E. Mazzeo71a,71b ,
C. Mc Ginn29 , J.P.McGowan
166 ,S.P.McKee
107 , C. C. McCracken165 , E. F. McDonald106 ,
A. E. McDougall115 , J. A. Mcfayden147 , R. P. McGovern129 , G. Mchedlidze150b , R. P. Mckenzie33g ,
T. C. Mclachlan48 , D. J. Mclaughlin97 , S. J. McMahon135 , C. M. Mcpartland93 , R. A. McPherson166,v,
S. Mehlhase110 , A. Mehta93 , D. Melini164 , B. R. Mellado Garcia33g ,A.H.Melo
55 , F. Meloni48 ,
A. M. Mendes Jacques Da Costa102 , H. Y. Meng156 , L. Meng92 , S. Menke111 , M. Mentink36 , E. Meoni43a,43b ,
G. Mercado116 , S. Merianos153 , C. Merlassino69a,69c , L. Merola72a,72b , C. Meroni71a ,71b , J. Metcalfe6,
A. S. Mete6, E. Meuser101 , C. Meyer68 , J-P. Meyer136 , R. P. Middleton135 , L. Mijovi´c52 , G. Mikenberg170 ,
123
1309 Page 28 of 36 Eur. Phys. J. C (2024) 84:1309
M. Mikestikova132 , M. Mikuž94 , H. Mildner101 , A. Milic36 , D. W. Miller39 , E. H. Miller144 ,
L. S. Miller34 , A. Milov170 , D.A.Milstead
47a,47b,T.Min
14c, A. A. Minaenko37 , I. A. Minashvili150b ,
L. Mince59 , A. I. Mincer118 , B. Mindur86a , M. Mineev38 ,Y.Mino
88 ,L.M.Mir
13 , M. Miralles Lopez59 ,
M. Mironova17a ,A.Mishima
154,M.C.Missio
114 , A. Mitra168 ,V.A.Mitsou
164 , Y. Mitsumori112 ,O.Miu
156 ,
P. S. Miyagawa95 , T. Mkrtchyan63a , M. Mlinarevic97 , T. Mlinarevic97 , M. Mlynarikova36 , S. Mobius19 ,
P. Mogg110 , M. H. Mohamed Farook113 , A. F. Mohammed14a,14e , S. Mohapatra41 , G. Mokgatitswane33g ,
L. Moleri170 , B. Mondal142 , S. Mondal133 , K. Mönig48 , E. Monnier103 , L. Monsonis Romero164,
J. Montejo Berlingen13 , M. Montella120 , F. Montereali77a,77b , F. Monticelli91 , S. Monzani69a ,69c ,
N. Morange66 , A. L. Moreira De Carvalho48 , M. Moreno Llácer164 , C. Moreno Martinez56 , P. Morettini57b ,
S. Morgenstern36 ,M.Morii
61 , M. Morinaga154 , F. Morodei75a,75b ,L.Morvaj
36 , P. Moschovakos36 ,
B. Moser36 , M. Mosidze150b , T. Moskalets54 , P. Moskvitina114 ,J.Moss
31,j, P. Moszkowicz86a ,
A. Moussa35d , E.J.W.Moyse
104 , O. Mtintsilana33g , S. Muanza103 , J. Mueller130 , D. Muenstermann92 ,
R. Müller19 , G. A. Mullier162 , A. J. Mullin32, J. J. Mullin129 , D. P. Mungo156 , D. Munoz Perez164 ,
F. J. Munoz Sanchez102 ,M.Murin
102 ,W.J.Murray
168,135 , M. Muškinja94 ,C.Mwewa
29 , A. G. Myagkov37,a,
A. J. Myers8, G. Myers107 , M. Myska133 , B. P. Nachman17a , O. Nackenhorst49 , K. Nagai127 , K. Nagano84 ,
J. L. Nagle29,af , E. Nagy103 ,A.M.Nairz
36 , Y. Nakahama84 , K. Nakamura84 , K. Nakkalil5, H. Nanjo125 ,
E. A. Narayanan113 , I. Naryshkin37 , L. Nasella71a ,71b , M. Naseri34 , S. Nasri117b ,C.Nass
24 ,G.Navarro
22a ,
J. Navarro-Gonzalez164 , R. Nayak152 , A. Nayaz18 , P. Y. Nechaeva37 , S. Nechaeva23a,23b , F. Nechansky48 ,
L. Nedic127 , T. J. Neep20 ,A.Negri
73a,73b ,M.Negrini
23b , C. Nellist115 ,C.Nelson
105 ,K.Nelson
107 ,
S. Nemecek132 , M. Nessi36 ,g, M. S. Neubauer163 , F. Neuhaus101 , J. Neundorf48 , P. R. Newman20 ,
C. W. Ng130 , Y.W.Y.Ng
48 ,B.Ngair
117a , H. D. N. Nguyen109 ,R.B.Nickerson
127 , R. Nicolaidou136 ,
J. Nielsen137 , M. Niemeyer55 , J. Niermann55 , N. Nikiforou36 , V. Nikolaenko37,a, I. Nikolic-Audit128 ,
K. Nikolopoulos20 , P. Nilsson29 , I. Ninca48 , G. Ninio152 ,A.Nisati
75a ,N.Nishu
2, R. Nisius111 ,J-
E. Nitschke50 , E. K. Nkadimeng33g , T. Nobe154 , T. Nommensen148 , M.B.Norfolk
140 , R.R.B.Norisam
97 ,
B. J. Norman34 , M. Noury35a ,J.Novak
94 ,T.Novak
94 , L. Novotny133 , R. Novotny113 , L. Nozka123 ,
K. Ntekas160 , N. M. J. Nunes De Moura Junior83b , J. Ocariz128 , A. Ochi85 , I. Ochoa131a , S. Oerdek48,s,
J. T. Offermann39 , A. Ogrodnik134 ,A.Oh
102 , C.C.Ohm
145 ,H.Oide
84 ,R.Oishi
154 , M. L. Ojeda48 ,
Y. Okumura154 , L. F. Oleiro Seabra131a , S.A.OlivaresPino
138d , G. Oliveira Correa13 , D. Oliveira Damazio29 ,
D. Oliveira Goncalves83a ,J.L.Oliver
160 , Ö. O. Öncel54 , A. P. O’Neill19 , A. Onofre131a,131e ,P.U.E.Onyisi
11 ,
M. J. Oreglia39 , G. E. Orellana91 , D. Orestano77a,77b , N. Orlando13 ,R.S.Orr
156 , V. O’Shea59 ,
L. M. Osojnak129 , R. Ospanov62a , G. Otero y Garzon30 , H. Otono89 ,P.S.Ott
63a , G. J. Ottino17a ,
M. Ouchrif35d , F. Ould-Saada126 , T. Ovsiannikova139 , M. Owen59 , R. E. Owen135 , V. E. Ozcan21a ,
F. Ozturk87 , N. Ozturk8, S. Ozturk82 , H. A. Pacey127 , A. Pacheco Pages13 , C. Padilla Aranda13 ,
G. Padovano75a,75b , S. Pagan Griso17a , G. Palacino68 , A. Palazzo70a,70b , J. Pampel24 ,J.Pan
173 ,T.Pan
64a ,
D. K. Panchal11 , C. E. Pandini115 , J. G. Panduro Vazquez135 , H. D. Pandya1, H. Pang14b , P. Pani48 ,
G. Panizzo69a,69c , L. Panwar128 , L. Paolozzi56 , S. Parajuli163 , A. Paramonov6, C. Paraskevopoulos53 ,
D. Paredes Hernandez64b , A. Pareti73a,73b , K.R.Park
41 ,T.H.Park
156 ,M.A.Parker
32 , F. Parodi57a,57b ,
E. W. Parrish116 ,V.A.Parrish
52 , J. A. Parsons41 , U. Parzefall54 , B. Pascual Dias109 , L. Pascual Dominguez100 ,
E. Pasqualucci75a , S. Passaggio57b ,F.Pastore
96 , P. Patel87 , U. M. Patel51 , J.R.Pater
102 , T. Pauly36 ,
C. I. Pazos159 , J. Pearkes144 , M. Pedersen126 , R. Pedro131a , S. V. Peleganchuk37 , O. Penc36 , E. A. Pender52 ,
G. D. Penn173 , K. E. Penski110 , M. Penzin37 , B. S. Peralva83d , A. P. Pereira Peixoto139 , L. Pereira Sanchez144 ,
D. V. Perepelitsa29,af , E. Perez Codina157a , M. Perganti10 , H. Pernegger36 , S. Perrella75a ,75b , O. Perrin40 ,
K. Peters48 , R. F. Y. Peters102 , B. A. Petersen36 , T. C. Petersen42 , E. Petit103 , V. Petousis133 ,
C. Petridou153,d, T. Petru134 , A. Petrukhin142 , M. Pettee17a , N. E. Pettersson36 , A. Petukhov37 ,
K. Petukhova134 , R. Pezoa138f , L. Pezzotti36 , G. Pezzullo173 , T. M. Pham171 , T. Pham106 , P. W. Phillips135 ,
G. Piacquadio146 , E. Pianori17a , F. Piazza124 , R. Piegaia30 , D. Pietreanu27b , A. D. Pilkington102 ,
M. Pinamonti69a,69c , J.L.Pinfold
2, B. C. Pinheiro Pereira131a , A. E. Pinto Pinoargote136,136 , L. Pintucci69a,69c ,
K. M. Piper147 , A. Pirttikoski56 , D. A. Pizzi34 , L. Pizzimento64b , A. Pizzini115 , M.-A. Pleier29 ,
V. Pleskot134 , E. Plotnikova38, G. Poddar95 , R. Poettgen99 , L. Poggioli128 , I. Pokharel55 , S. Polacek134 ,
G. Polesello73a , A. Poley143,157a , A. Polini23b , C. S. Pollard168 , Z. B. Pollock120 , E. Pompa Pacchi75a,75b ,
N. I. Pond97 , D. Ponomarenko114 , L. Pontecorvo36 , S. Popa27a , G. A. Popeneciu27d , A. Poreba36 ,
D. M. Portillo Quintero157a , S. Pospisil133 , M. A. Postill140 , P. Postolache27c , K. Potamianos168 ,
P. A. Potepa86a , I.N.Potrap
38 , C.J.Potter
32 , H. Potti1, J. Poveda164 , M. E. Pozo Astigarraga36 ,
123
Eur. Phys. J. C (2024) 84:1309 Page 29 of 36 1309
A. Prades Ibanez164 ,J.Pretel
54 ,D.Price
102 ,M.Primavera
70a , M. A. Principe Martin100 , R. Privara123 ,
T. Procter59 ,M.L.Proffitt
139 , N. Proklova129 , K. Prokofiev64c ,G.Proto
111 , J. Proudfoot6, M. Przybycien86a ,
W. W. Przygoda86b , A. Psallidas46 , J. E. Puddefoot140 , D. Pudzha37 , D. Pyatiizbyantseva37 ,J.Qian
107 ,
D. Qichen102 ,Y.Qin
13 ,T.Qiu
52 , A. Quadt55 , M. Queitsch-Maitland102 , G. Quetant56 , R. P. Quinn165 ,
G. Rabanal Bolanos61 , D. Rafanoharana54 , F. Raffaeli76a,76b , F. Ragusa71a,71b , J. L. Rainbolt39 ,
J. A. Raine56 , S. Rajagopalan29 , E. Ramakoti37 , I. A. Ramirez-Berend34 ,K.Ran
48,14e , N. P. Rapheeha33g ,
H. Rasheed27b , V. Raskina128 , D. F. Rassloff63a , A. Rastogi17a ,S.Rave
101 ,B.Ravina
55 , I. Ravinovich170 ,
M. Raymond36 , A.L.Read
126 , N. P. Readioff140 , D. M. Rebuzzi73a,73b , G. Redlinger29 , A. S. Reed111 ,
K. Reeves26 , J. A. Reidelsturz172 , D. Reikher152 ,A.Rej
49 , C. Rembser36 , M. Renda27b , M. B. Rendel111,
F. Renner48 , A. G. Rennie160 , A. L. Rescia48 , S. Resconi71a , M. Ressegotti57a,57b ,S.Rettie
36 ,
J. G. Reyes Rivera108 , E. Reynolds17a , O. L. Rezanova37 , P. Reznicek134 , H. Riani35d , N. Ribaric92 ,
E. Ricci78a,78b , R. Richter111 , S. Richter47a,47b , E. Richter-Was86b , M. Ridel128 , S. Ridouani35d ,
P. Rieck118 , P. Riedler36 , E.M.Riefel
47a,47b , J. O. Rieger115 , M. Rijssenbeek146 , M. Rimoldi36 ,
L. Rinaldi23a,23b ,T.T.Rinn
29 , M. P. Rinnagel110 , G. Ripellino162 ,I.Riu
13 , J.C.RiveraVergara
166 ,
F. Rizatdinova122 , E. Rizvi95 , B. R. Roberts17a , S. H. Robertson105,v, D. Robinson32 , C. M. Robles Gajardo138f ,
M. Robles Manzano101 , A. Robson59 , A. Rocchi76a,76b , C. Roda74a,74b , S. Rodriguez Bosca36 ,
Y. Rodriguez Garcia22a , A. Rodriguez Rodriguez54 , A. M. Rodríguez Vera116 ,S.Roe
36, J. T. Roemer160 ,
A. R. Roepe-Gier137 , J. Roggel172 , O. Røhne126 , R.A.Rojas
104 , C. P. A. Roland128 , J. Roloff29 ,
A. Romaniouk37 , E. Romano73a,73b , M. Romano23b , A. C. Romero Hernandez163 , N. Rompotis93 , L. Roos128 ,
S. Rosati75a , B. J. Rosser39 , E. Rossi127 , E. Rossi72a ,72b , L. P. Rossi61 , L. Rossini54 ,R.Rosten
120 ,
M. Rotaru27b , B. Rottler54 , C. Rougier90 , D. Rousseau66 , D. Rousso48 ,A.Roy
163 , S. Roy-Garand156 ,
A. Rozanov103 , Z. M. A. Rozario59 , Y. Rozen151 , A. Rubio Jimenez164 ,A.J.Ruby
93 , V. H. Ruelas Rivera18 ,
T. A. Ruggeri1, A. Ruggiero127 , A. Ruiz-Martinez164 , A. Rummler36 ,Z.Rurikova
54 , N. A. Rusakovich38 ,
H. L. Russell166 ,G.Russo
75a,75b , J. P. Rutherfoord7, S. Rutherford Colmenares32 , M. Rybar134 ,E.B.Rye
126 ,
A. Ryzhov44 , J. A. Sabater Iglesias56 , P. Sabatini164 , H.F-W. Sadrozinski137 , F. Safai Tehrani75a ,
B. Safarzadeh Samani135 , S. Saha1, M. Sahinsoy111 , A. Saibel164 , M. Saimpert136 , M. Saito154 , T. Saito154 ,
A. Sala71a,71b , D. Salamani36 , A. Salnikov144 , J. Salt164 , A. Salvador Salas152 , D. Salvatore43a,43b ,
F. Salvatore147 , A. Salzburger36 , D. Sammel54 , E. Sampson92 , D. Sampsonidis153,d, D. Sampsonidou124 ,
J. Sánchez164 , V. Sanchez Sebastian164 , H. Sandaker126 , C. O. Sander48 , J. A. Sandesara104 , M. Sandhoff172 ,
C. Sandoval22b , L. Sanfilippo63a , D. P. C. Sankey135 , T. Sano88 , A. Sansoni53 , L. Santi75a,75b , C. Santoni40 ,
H. Santos131a,131b , A. Santra170 , E. Sanzani23a,23b , K. A. Saoucha161 , J. G. Saraiva131a,131d , J. Sardain7,
O. Sasaki84 , K. Sato158 , C. Sauer63b , E. Sauvan4,P.Savard
156,ad , R. Sawada154 , C. Sawyer135 ,
L. Sawyer98 , C. Sbarra23b , A. Sbrizzi23a,23b , T. Scanlon97 , J. Schaarschmidt139 , U. Schäfer101 ,
A. C. Schaffer66,44 , D. Schaile110 , R. D. Schamberger146 , C. Scharf18 , M. M. Schefer19 , V. A. Schegelsky37 ,
D. Scheirich134 , M. Schernau160 , C. Scheulen55 , C. Schiavi57a,57b , M. Schioppa43a,43b , B. Schlag144,l,
K. E. Schleicher54 , S. Schlenker36 , J. Schmeing172 , M. A. Schmidt172 , K. Schmieden101 , C. Schmitt101 ,
N. Schmitt101 , S. Schmitt48 , L. Schoeffel136 , A. Schoening63b , P. G. Scholer34 , E. Schopf127 , M. Schott24 ,
J. Schovancova36 , S. Schramm56 , T. Schroer56 , H-C. Schultz-Coulon63a , M. Schumacher54 , B. A. Schumm137 ,
Ph. Schune136 , A. J. Schuy139 , H. R. Schwartz137 , A. Schwartzman144 , T. A. Schwarz107 , Ph. Schwemling136 ,
R. Schwienhorst108 , A. Sciandra29 , G. Sciolla26 , F. Scuri74a , C. D. Sebastiani93 , K. Sedlaczek116 ,
S. C. Seidel113 , A. Seiden137 , B. D. Seidlitz41 , C. Seitz48 , J. M. Seixas83b , G. Sekhniaidze72a , L. Selem60 ,
N. Semprini-Cesari23a,23b , D. Sengupta56 , V. Senthilkumar164 , L. Serin66 , M. Sessa76a,76b ,H.Severini
121 ,
F. Sforza57a,57b , A. Sfyrla56 , Q. Sha14a , E. Shabalina55 , A. H. Shah32 , R. Shaheen145 , J. D. Shahinian129 ,
D. Shaked Renous170 , L. Y. Shan14a , M. Shapiro17a , A. Sharma36 , A. S. Sharma165 , P. Sharma80 ,
P. B. Shatalov37 , K. Shaw147 , S. M. Shaw102 , Q. Shen5,62c , D. J. Sheppard143 , P. Sherwood97 , L. Shi97 ,
X. Shi14a , C. O. Shimmin173 , J. D. Shinner96 , I. P. J. Shipsey127 , S. Shirabe89 , M. Shiyakova38,t,
M. J. Shochet39 , J. Shojaii106 , D. R. Shope126 , B. Shrestha121 , S. Shrestha120,ag , M. J. Shroff166 ,
P. Sicho132 , A. M. Sickles163 , E. Sideras Haddad33g , A. C. Sidley115 , A. Sidoti23b , F. Siegert50 ,
Dj. Sijacki15 , F. Sili91 ,J.M.Silva
52 , M. V. Silva Oliveira29 , S. B. Silverstein47a , S. Simion66, R. Simoniello36 ,
E. L. Simpson102 , H. Simpson147 , L. R. Simpson107 , N. D. Simpson99,S.Simsek
82 , S. Sindhu55 ,
P. Sinervo156 , S. Singh156 , S. Sinha48 , S. Sinha102 , M. Sioli23a,23b ,I.Siral
36 , E. Sitnikova48 ,
J. Sjölin47a,47b , A. Skaf55 ,E.Skorda
20 , P. Skubic121 , M. Slawinska87 , V. Smakhtin170,B.H.Smart
135 ,
S.Yu. Smirnov37 ,Y.Smirnov
37 ,L.N.Smirnova
37,a,O.Smirnova
99 , A. C. Smith41 , D. R. Smith160,
123
1309 Page 30 of 36 Eur. Phys. J. C (2024) 84:1309
E. A. Smith39 , H. A. Smith127 ,J.L.Smith
102 , R. Smith144, M. Smizanska92 ,K.Smolek
133 , A. A. Snesarev37 ,
S. R. Snider156 , H. L. Snoek115 , S. Snyder29 , R. Sobie166,v, A. Soffer152 , C. A. Solans Sanchez36 ,
E.Yu. Soldatov37 , U. Soldevila164 , A. A. Solodkov37 , S. Solomon26 , A. Soloshenko38 , K. Solovieva54 ,
O. V. Solovyanov40 , P. Sommer36 , A. Sonay13 , W. Y. Song157b , A. Sopczak133 , A. L. Sopio97 ,
F. Sopkova28b , J. D. Sorenson113 , I. R. Sotarriva Alvarez155 , V. Sothilingam63a, O. J. Soto Sandoval138b,138c ,
S. Sottocornola68 , R. Soualah161 , Z. Soumaimi35e , D. South48 , N. Soybelman170 , S. Spagnolo70a,70b ,
M. Spalla111 , D. Sperlich54 , G. Spigo36 , S. Spinali92 , D. P. Spiteri59 , M. Spousta134 , E. J. Staats34 ,
R. Stamen63a , A. Stampekis20 , M. Standke24 , E. Stanecka87 , W. Stanek-Maslouska48 , M. V. Stange50 ,
B. Stanislaus17a , M. M. Stanitzki48 , B. Stapf48 , E. A. Starchenko37 ,G.H.Stark
137 ,J.Stark
90 , P. Staroba132 ,
P. Starovoitov63a ,S.Stärz
105 , R. Staszewski87 , G. Stavropoulos46 , J. Steentoft162 , P. Steinberg29 ,
B. Stelzer143,157a , H.J.Stelzer
130 , O. Stelzer-Chilton157a , H. Stenzel58 , T. J. Stevenson147 ,G.A.Stewart
36 ,
J. R. Stewart122 , M. C. Stockton36 , G. Stoicea27b , M. Stolarski131a , S. Stonjek111 , A. Straessner50 ,
J. Strandberg145 , S. Strandberg47a,47b , M. Stratmann172 , M. Strauss121 , T. Strebler103 , P. Strizenec28b ,
R. Ströhmer167 , D.M.Strom
124 , R. Stroynowski44 , A. Strubig47a,47b , S. A. Stucci29 , B. Stugu16 ,
J. Stupak121 , N. A. Styles48 ,D.Su
144 ,S.Su
62a ,W.Su
62d ,X.Su
62a , D. Suchy28a , K. Sugizaki154 ,
V. V. Su l i n 37 , M.J.Sullivan
93 , D.M.S.Sultan
127 , L. Sultanaliyeva37 , S. Sultansoy3b , T. Sumida88 ,
S. Sun107 , S. Sun171 , O. Sunneborn Gudnadottir162 , N. Sur103 ,M.R.Sutton
147 , H. Suzuki158 ,M.Svatos
132 ,
M. Swiatlowski157a , T. Swirski167 , I. Sykora28a , M. Sykora134 , T. Sykora134 ,D.Ta
101 , K. Tackmann48,s,
A. Taffard160 , R. Tafirout157a , J.S.TafoyaVargas
66 , Y. Takubo84 , M. Talby103 , A. A. Talyshev37 ,
K. C. Tam64b ,N.M.Tamir
152, A. Tanaka154 , J. Tanaka154 , R. Tanaka66 , M. Tanasini146 ,Z.Tao
165 ,
S. Tapia Araya138f , S. Tapprogge101 , A. Tarek Abouelfadl Mohamed108 , S. Tarem151 ,K.Tariq
14a , G. Tarna27b ,
G. F. Tartarelli71a ,M.J.Tartarin
90 ,P.Tas
134 ,M.Tasevsky
132 , E. Tassi43a,43b ,A.C.Tate
163 , G. Tateno154 ,
Y. Tayalati35e,u, G. N. Taylor106 , W. Taylor157b ,A.S.Tee
171 , R. Teixeira De Lima144 , P. Teixeira-Dias96 ,
J. J. Teoh156 , K. Terashi154 ,J.Terron
100 , S. Terzo13 ,M.Testa
53 , R. J. Teuscher156,v, A. Thaler79 ,
O. Theiner56 , N. Themistokleous52 , T. Theveneaux-Pelzer103 , O. Thielmann172 , D. W. Thomas96 , J. P. Thomas20 ,
E. A. Thompson17a , P. D. Thompson20 , E. Thomson129 , R. E. Thornberry44 ,C.Tian
62a ,Y.Tian
55 ,
V. Tikhomirov37,a, Yu.A. Tikhonov37 , S. Timoshenko37,D.Timoshyn
134 , E.X.L.Ting
1, P. Tipton173 ,
A. Tishelman-Charny29 ,S.H.Tlou
33g , K. Todome155 , S. Todorova-Nova134 , S. Todt50, L. Toffolin69a,69c ,
M. Togawa84 ,J.Tojo
89 , S. Tokár28a , K. Tokushuku84 , O. Toldaiev68 , R. Tombs32 , M. Tomoto84,112 ,
L. Tompkins144,l, K. W. Topolnicki86b , E. Torrence124 ,H.Torres
90 , E. Torró Pastor164 , M. Toscani30 ,
C. Tosciri39 ,M.Tost
11 , D. R. Tovey140 , A. Traeet16, I. S. Trandafir27b , T. Trefzger167 , A. Tricoli29 ,
I. M. Trigger157a , S. Trincaz-Duvoid128 , D. A. Trischuk26 , B. Trocmé60 , L. Truong33c , M. Trzebinski87 ,
A. Trzupek87 ,F.Tsai
146 ,M.Tsai
107 ,A.Tsiamis
153,d, P. V. Tsiareshka37, S. Tsigaridas157a , A. Tsirigotis153 ,q,
V. Tsiskaridze156 , E. G. Tskhadadze150a , M. Tsopoulou153 , Y. Tsujikawa88 , I. I. Tsukerman37 , V. Tsulaia17a ,
S. Tsuno84 ,K.Tsuri
119 , D. Tsybychev146 ,Y.Tu
64b , A. Tudorache27b , V. Tudorache27b , A.N.Tuna
61 ,
S. Turchikhin57a,57b , I. Turk Cakir3a , R. Turra71a , T. Turtuvshin38,w,P.M.Tuts
41 , S. Tzamarias153 ,d,
E. Tzovara101 ,F.Ukegawa
158 , P. A. Ulloa Poblete138b,138c , E. N. Umaka29 , G. Unal36 , A. Undrus29 ,
G. Unel160 , J. Urban28b , P. Urrejola138a ,G.Usai
8, R. Ushioda155 ,M.Usman
109 , Z. Uysal82 ,
V. Vacek133 , B. Vachon105 , T. Vafeiadis36 , A. Vaitkus97 , C. Valderanis110 , E. Valdes Santurio47a,47b ,
M. Valente157a , S. Valentinetti23a,23b , A. Valero164 , E. Valiente Moreno164 , A. Vallier90 ,J.A.VallsFerrer
164 ,
D. R. Van Arneman115 , T. R. Van Daalen139 , A. Van Der Graaf49 , P. Van Gemmeren6, M. Van Rijnbach36 ,
S. Van Stroud97 , I. Van Vulpen115 , P. Vana134 , M. Vanadia76a,76b , W. Vandelli36 , E. R. Vandewall122 ,
D. Vannicola152 , L. Vannoli53 ,R.Vari
75a , E. W. Varnes7, C. Varni17b , T. Varol149 , D. Varouchas66 ,
L. Varriale164 ,K.E.Varvell
148 ,M.E.Vasile
27b , L. Vaslin84, G. A. Vasquez166 , A. Vasyukov38 , R. Vavricka101,
T. Vazquez Schroeder36 , J. Veatch31 , V. Vecchio102 , M.J.Veen
104 , I. Veliscek29 , L. M. Veloce156 ,
F. Velos o 131a ,131c , S. Veneziano75a , A. Ventura70a,70b , S. Ventura Gonzalez136 , A. Verbytskyi111 ,
M. Verducci74a,74b , C. Vergis95 , M. Verissimo De Araujo83b ,W.Verkerke
115 , J. C. Vermeulen115 ,
C. Vernieri144 , M. Vessella104 , M. C. Vetterli143,ad , A. Vgenopoulos153,d, N. Viaux Maira138f ,T.Vickey
140 ,
O. E. Vickey Boeriu140 , G. H. A. Viehhauser127 , L. Vigani63b , M. Villa23a,23b , M. Villaplana Perez164 ,
E. M. Villhauer52, E. Vilucchi53 , M. G. Vincter34 , A. Visibile115, C. Vittori36 , I. Vivarelli23a,23b , E. Voevodina111 ,
F. Vogel110 , J. C. Voigt50 , P. Vokac133 , Yu. Volkotrub86b , J. Von Ahnen48 , E. Von Toerne24 , B. Vormwald36 ,
V. Vorobel134 , K. Vorobev37 ,M.Vos
164 ,K.Voss
142 , M. Vozak115 , L. Vozdecky121 , N. Vranjes15 ,
M. Vranjes Milosavljevic15 , M. Vreeswijk115 ,N.K.Vu
62c,62d , R. Vuillermet36 , O. Vujinovic101 , I. Vukotic39 ,
123
Eur. Phys. J. C (2024) 84:1309 Page 31 of 36 1309
S. Wada158 , C. Wagner104, J. M. Wagner17a , W. Wagner172 , S. Wahdan172 , H. Wahlberg91 , M. Wakida112 ,
J. Walder135 ,R.Walker
110 , W. Walkowiak142 ,A.Wall
129 , E. J. Wallin99 , T. Wamorkar6, A. Z. Wang137 ,
C. Wang101 , C. Wang11 , H. Wang17a , J. Wang64c , R. Wang61 , R. Wang6, S. M. Wang149 , S. Wang62b ,
S. Wang14a , T. Wang62a , W.T.Wang
80 , W. Wang14a , X. Wang14c , X. Wang163 , X. Wang62c ,
Y. Wang62d , Y. Wang14c , Z. Wang107 , Z. Wang51,62c,62d , Z. Wang107 , A. Warburton105 , R.J.Ward
20 ,
N. Warrack59 , S. Waterhouse96 ,A.T.Watson
20 ,H.Watson
59 ,M.F.Watson
20 , E. Watton59,135 , G. Watts139 ,
B. M. Waugh97 , J.M.Webb
54 , C. Weber29 , H. A. Weber18 , M. S. Weber19 , S. M. Weber63a ,C.Wei
62a ,
Y. We i 54 , A. R. Weidberg127 ,E.J.Weik
118 , J. Weingarten49 ,C.Weiser
54 , C.J.Wells
48 , T. Wenaus29 ,
B. Wendland49 , T. Wengler36 , N. S. Wenke111,N.Wermes
24 , M. Wessels63a ,A.M.Wharton
92 , A. S. White61 ,
A. White8, M. J. White1, D. Whiteson160 , L. Wickremasinghe125 , W. Wiedenmann171 , M. Wielers135 ,
C. Wiglesworth42 , D. J. Wilbern121, H.G.Wilkens
36 , J. J. H. Wilkinson32 , D. M. Williams41 , H. H. Williams129,
S. Williams32 , S. Willocq104 , B.J.Wilson
102 , P. J. Windischhofer39 ,F.I.Winkel
30 , F. Winklmeier124 ,
B. T. Winter54 , J.K.Winter
102 , M. Wittgen144, M. Wobisch98 , T. Wojtkowski60,Z.Wolffs
115 , J. Wollrath160,
M. W. Wolter87 , H. Wolters131a,131c , M.C.Wong
137, E. L. Woodward41 , S.D.Worm
48 ,B.K.Wosiek
87 ,
K. W. Wo´zniak87 , S. Wozniewski55 , K. Wraight59 ,C.Wu
20 ,M.Wu
14d ,M.Wu
114 ,S.L.Wu
171 ,X.Wu
56 ,
Y. Wu62a ,Z.Wu
4, J. Wuerzinger111,ab ,T.R.Wyatt
102 , B. M. Wynne52 , S. Xella42 ,L.Xia
14c ,M.Xia
14b ,
J. Xiang64c ,M.Xie
62a ,S.Xin
14a,14e , A. Xiong124 , J. Xiong17a ,D.Xu
14a ,H.Xu
62a ,L.Xu
62a ,R.Xu
129 ,
T. Xu 107 ,Y.Xu
14b ,Z.Xu
52 ,Z.Xu
14c, B. Yabsley148 , S. Yacoob33a , Y. Yamaguchi155 , E. Yamashita154 ,
H. Yamauchi158 , T. Yamazaki17a , Y. Yamazaki85 ,J.Yan
62c,S.Yan
59 ,Z.Yan
104 , H.J.Yang
62c,62d ,
H. T. Yang62a , S. Yang62a , T. Yang64c , X. Yang36 , X. Yang14a , Y. Yang44 , Y. Yang62a, Z. Yang62a ,W-
M. Yao17a ,H.Ye
14c ,H.Ye
55 ,J.Ye
14a ,S.Ye
29 ,X.Ye
62a ,Y.Yeh
97 , I. Yeletskikh38 ,B.K.Yeo
17b ,
M. R. Yexley97 , T. P. Yildirim127 ,P.Yin
41 , K. Yorita169 , S. Younas27b , C. J. S. Young36 , C. Young144 ,
C. Yu14a,14e ,Y.Yu
62a , M. Yuan107 , R. Yuan62c,62d ,L.Yue
97 , M. Zaazoua62a , B. Zabinski87 ,E.Zaid
52,
Z. K. Zak87 , T. Zakareishvili164 , N. Zakharchuk34 , S. Zambito56 , J. A. Zamora Saa138b,138d , J. Zang154 ,
D. Zanzi54 , O. Zaplatilek133 , C. Zeitnitz172 , H. Zeng14a , J. C. Zeng163 , D. T. Zenger Jr26 , O. Zenin37 ,
T. Ženiš28a , S. Zenz95 , S. Zerradi35a ,D.Zerwas
66 , M. Zhai14a,14e , D. F. Zhang140 , J. Zhang62b , J. Zhang6,
K. Zhang14a,14e , L. Zhang62a , L. Zhang14c , P. Zhang14a,14e , R. Zhang171 , S. Zhang107 , S. Zhang90 ,
T. Zhang154 , X. Zhang62c , X. Zhang62b , Y. Zhang62c , Y. Zhang97 , Y. Zhang14c , Z. Zhang17a , Z. Zhang62b ,
Z. Zhang66 , H. Zhao139 , T. Zhao62b , Y. Zhao137 , Z. Zhao62a , Z. Zhao62a , A. Zhemchugov38 , J. Zheng14c ,
K. Zheng163 , X. Zheng62a , Z. Zheng144 , D. Zhong163 , B. Zhou107 , H. Zhou7, N. Zhou62c , Y. Zhou14b,
Y. Zhou14c , Y. Zhou7,C.G.Zhu
62b ,J.Zhu
107 ,X.Zhu
62d,Y.Zhu
62c ,Y.Zhu
62a , X. Zhuang14a , K. Zhukov37 ,
N. I. Zimine38 , J. Zinsser63b , M. Ziolkowski142 ,L. Živkovi´c15 , A. Zoccoli23a,23b , K. Zoch61 , T. G. Zorbas140 ,
O. Zormpa46 ,W.Zou
41 , L. Zwalinski36
1Department of Physics, University of Adelaide, Adelaide, Australia
2Department of Physics, University of Alberta, Edmonton, AB, Canada
3(a)Department of Physics, Ankara University, Ankara, Türkiye; (b)Division of Physics, TOBB University of Economics
and Technology, Ankara, Türkiye
4LAPP, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
5APC, Université Paris Cité, CNRS/IN2P3, Paris, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7Department of Physics, University of Arizona, Tucson, AZ, USA
8Department of Physics, University of Texas at Arlington, Arlington, TX, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, University of Texas at Austin, Austin, TX, USA
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
14 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Physics Department, Tsinghua
University, Beijing, China; (c)Department of Physics, Nanjing University, Nanjing, China; (d)School of Science,
Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; (e)University of Chinese Academy of Science (UCAS),
Beijing, China
15 Institute of Physics, University of Belgrade, Belgrade, Serbia
123
1309 Page 32 of 36 Eur. Phys. J. C (2024) 84:1309
16 Department for Physics and Technology, University of Bergen, Bergen, Norway
17 (a)Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; (b)University of California, Berkeley,
CA, USA
18 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
19 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern,
Switzerland
20 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
21 (a)Department of Physics, Bogazici University, Istanbul, Türkiye; (b)Department of Physics Engineering, Gaziantep
University, Gaziantep, Türkiye; (c)Department of Physics, Istanbul University, Istanbul, Türkiye
22 (a)Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia; (b)Departamento
de Física, Universidad Nacional de Colombia, Bogotá, Colombia
23 (a)Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna, Italy; (b)INFN Sezione di Bologna,
Bologna, Italy
24 Physikalisches Institut, Universität Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, MA, USA
26 Department of Physics, Brandeis University, Waltham, MA, USA
27 (a)Transilvania University of Brasov, Brasov, Romania; (b)Horia Hulubei National Institute of Physics and Nuclear
Engineering, Bucharest, Romania; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi,
Romania; (d)Physics Department, National Institute for Research and Development of Isotopic and Molecular
Technologies, Cluj-Napoca, Romania; (e)National University of Science and Technology Politechnica, Bucharest,
Romania; (f)West University in Timisoara, Timisoara, Romania; (g)Faculty of Physics, University of Bucharest,
Bucharest, Romania
28 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b)Department of
Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
30 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto
de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
31 California State University, Los Angeles, CA, USA
32 Cavendish Laboratory, University of Cambridge, Cambridge, UK
33 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)iThemba Labs, Cape Town, Western
Cape, South Africa; (c)Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg,
South Africa; (d)National Institute of Physics, University of the Philippines Diliman (Philippines), Quezon City,
Philippines; (e)Department of Physics, University of South Africa, Pretoria, South Africa; (f)University of Zululand,
KwaDlangezwa, South Africa; (g)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
34 Department of Physics, Carleton University, Ottawa, ON, Canada
35 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II,
Casablanca, Morocco; (b)Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco; (c)Faculté des Sciences
Semlalia, Université Cadi Ayyad, LPHEA, Marrakech, Morocco; (d)LPMR, Faculté des Sciences, Université Mohamed
Premier, Oujda, Morocco; (e)Faculté des sciences, Université Mohammed V, Rabat, Morocco; (f)Institute of Applied
Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
36 CERN, Geneva, Switzerland
37 Affiliated with an institute covered by a cooperation agreement with CERN, Geneva, Switzerland
38 Affiliated with an international laboratory covered by a cooperation agreement with CERN, Geneva, Switzerland
39 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
40 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
41 Nevis Laboratory, Columbia University, Irvington, NY, USA
42 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
43 (a)Dipartimento di Fisica, Università della Calabria, Rende, Italy; (b)Laboratori Nazionali di Frascati, INFN Gruppo
Collegato di Cosenza, Cosenza, Italy
44 Physics Department, Southern Methodist University, Dallas, TX, USA
45 Physics Department, University of Texas at Dallas, Richardson, TX, USA
46 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
47 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)Oskar Klein Centre, Stockholm, Sweden
123
Eur. Phys. J. C (2024) 84:1309 Page 33 of 36 1309
48 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
49 Fakultät Physik , Technische Universität Dortmund, Dortmund, Germany
50 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
51 Department of Physics, Duke University, Durham, NC, USA
52 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
53 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
54 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
55 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
56 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
57 (a)Dipartimento di Fisica, Università di Genova, Genova, Italy; (b)INFN Sezione di Genova, Genova, Italy
58 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
59 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
60 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
61 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
62 (a)Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science
and Technology of China, Hefei, China; (b)Institute of Frontier and Interdisciplinary Science and Key Laboratory of
Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China; (c)School of Physics and
Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC,
Shanghai, China; (d)Tsung-Dao Lee Institute, Shanghai, China; (e)School of Physics and Microelectronics, Zhengzhou
University, Zhengzhou, China
63 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
64 (a)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (b)Department of Physics,
University of Hong Kong, Hong Kong, China; (c)Department of Physics and Institute for Advanced Study, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
65 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
66 IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France
67 Centro Nacional de Microelectrónica (IMB-CNM-CSIC), Barcelona, Spain
68 Department of Physics, Indiana University, Bloomington, IN, USA
69 (a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b)ICTP, Trieste, Italy; (c)Dipartimento Politecnico
di Ingegneria e Architettura, Università di Udine, Udine, Italy
70 (a)INFN Sezione di Lecce, Lecce, Italy; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
71 (a)INFN Sezione di Milano, Milan, Italy; (b)Dipartimento di Fisica, Università di Milano, Milan, Italy
72 (a)INFN Sezione di Napoli, Naples, Italy; (b)Dipartimento di Fisica, Università di Napoli, Naples, Italy
73 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
74 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
75 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
76 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome,
Italy
77 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
78 (a)INFN-TIFPA, Povo, Italy; (b)Università degli Studi di Trento, Trento, Italy
79 Universität Innsbruck, Department of Astro and Particle Physics, Innsbruck, Austria
80 University of Iowa, Iowa City, IA, USA
81 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
82 Istinye University, Sariyer, Istanbul, Türkiye
83 (a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora,
Brazil; (b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (c)Instituto de Física,
Universidade de São Paulo, São Paulo, Brazil; (d)Rio de Janeiro State University, Rio de Janeiro, Brazil; (e)Federal
University of Bahia, Bahia, Brazil
84 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
85 Graduate School of Science, Kobe University, Kobe, Japan
86 (a)AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland; (b)Marian
Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
123
1309 Page 34 of 36 Eur. Phys. J. C (2024) 84:1309
87 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
88 Faculty of Science, Kyoto University, Kyoto, Japan
89 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka , Japan
90 L2IT, Université de Toulouse, CNRS/IN2P3, UPS, Toulouse, France
91 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
92 Physics Department, Lancaster University, Lancaster, UK
93 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
94 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana,
Ljubljana, Slovenia
95 School of Physics and Astronomy, Queen Mary University of London, London, UK
96 Department of Physics, Royal Holloway University of London, Egham, UK
97 Department of Physics and Astronomy, University College London, London, UK
98 Louisiana Tech University, Ruston, LA, USA
99 Fysiska institutionen, Lunds universitet, Lund, Sweden
100 Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
101 Institut für Physik, Universität Mainz, Mainz, Germany
102 School of Physics and Astronomy, University of Manchester, Manchester, UK
103 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
104 Department of Physics, University of Massachusetts, Amherst, MA, USA
105 Department of Physics, McGill University, Montreal, QC, Canada
106 School of Physics, University of Melbourne, Victoria, Australia
107 Department of Physics, University of Michigan, Ann Arbor, MI, USA
108 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
109 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
110 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
111 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
112 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
113 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
114 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, Netherlands
115 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
116 Department of Physics, Northern Illinois University, DeKalb, IL, USA
117 (a)New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; (b)United Arab Emirates University, Al Ain,
United Arab Emirates
118 Department of Physics, New York University, New York, NY, USA
119 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
120 Ohio State University, Columbus, OH, USA
121 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
122 Department of Physics, Oklahoma State University, Stillwater, OK, USA
123 Palacký University, Joint Laboratory of Optics, Olomouc, Czech Republic
124 Institute for Fundamental Science, University of Oregon, Eugene, OR, USA
125 Graduate School of Science, Osaka University, Osaka, Japan
126 Department of Physics, University of Oslo, Oslo, Norway
127 Department of Physics, Oxford University, Oxford, UK
128 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
129 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
130 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
131 (a)Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b)Departamento de Física,
Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Departamento de Física, Universidade de Coimbra,
Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Física,
Universidade do Minho, Braga, Portugal; (f)Departamento de Física Teórica y del Cosmos, Universidad de Granada,
Granada, Spain; (g)Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
132 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
133 Czech Technical University in Prague, Prague, Czech Republic
123
Eur. Phys. J. C (2024) 84:1309 Page 35 of 36 1309
134 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
135 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
136 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
138 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b)Millennium Institute for
Subatomic physics at high energy frontier (SAPHIR), Santiago, Chile; (c)Instituto de Investigación Multidisciplinario en
Ciencia y Tecnología y Departamento de Física, Universidad de La Serena, La Serena, Chile; (d)Universidad Andres
Bello, Department of Physics, Santiago, Chile; (e)Instituto de Alta Investigación, Universidad de Tarapacá, Arica,
Chile; (f)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
139 Department of Physics, University of Washington, Seattle, WA, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Department Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
146 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
147 Department of Physics and Astronomy, University of Sussex, Brighton, UK
148 School of Physics, University of Sydney, Sydney, Australia
149 Institute of Physics, Academia Sinica, Taipei, Taiwan
150 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy
Physics Institute, Tbilisi State University, Tbilisi, Georgia; (c)University of Georgia, Tbilisi, Georgia
151 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
155 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
156 Department of Physics, University of Toronto, Toronto, ON, Canada
157 (a)TRIUMF, Vancouver, BC, Canada; (b)Department of Physics and Astronomy, York University, Toronto, ON, Canada
158 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences,
University of Tsukuba, Tsukuba, Japan
159 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
160 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
161 University of Sharjah, Sharjah, United Arab Emirates
162 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
163 Department of Physics, University of Illinois, Urbana, IL, USA
164 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain
165 Department of Physics, University of British Columbia, Vancouver, BC, Canada
166 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
167 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
168 Department of Physics, University of Warwick, Coventry, UK
169 Waseda University, Tokyo, Japan
170 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
171 Department of Physics, University of Wisconsin, Madison, WI, USA
172 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal,
Germany
173 Department of Physics, Yale University, New Haven, CT, USA
aAlso Affiliated with an institute covered by a cooperation agreement with CERN, Geneva, Switzerland
bAlso at An-Najah National University, Nablus, Palestine
cAlso at Borough of Manhattan Community College, City University of New York, New York, NY, USA
dAlso at Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
eAlso at Centro Studi e Ricerche Enrico Fermi, Rome, Italy
123
1309 Page 36 of 36 Eur. Phys. J. C (2024) 84:1309
fAlso at CERN, Geneva, Switzerland
gAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
hAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
iAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
jAlso at Department of Physics, California State University, Sacramento, USA
kAlso at Department of Physics, King’s College London, London, UK
lAlso at Department of Physics, Stanford University, Stanford, CA, USA
mAlso at Department of Physics, Stellenbosch University, South Africa
nAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland
oAlso at Department of Physics, University of Thessaly, Greece
pAlso at Department of Physics, Westmont College, Santa Barbara, USA
qAlso at Hellenic Open University, Patras, Greece
rAlso at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
sAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
tAlso at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia,
Bulgaria
uAlso at Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
vAlso at Institute of Particle Physics (IPP), Toronto, Canada
wAlso at Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
xAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
yAlso at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
zAlso at Lawrence Livermore National Laboratory, Livermore, USA
aa Also at National Institute of Physics, University of the Philippines Diliman (Philippines), Philippines
ab Also at Technical University of Munich, Munich, Germany
ac Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
ad Also at TRIUMF, Vancouver, BC, Canada
ae Also at Università di Napoli Parthenope, Napoli, Italy
af Also at University of Colorado Boulder, Department of Physics, Colorado, USA
ag Also at Washington College, Chestertown, MD, USA
ah Also at Yeditepe University, Physics Department, Istanbul, Türkiye
∗Deceased
123