Article

Using the IIIVmrMLM Method to Confirm and Search New Genome-Wide Associations in Chickpea

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Chickpea (Cicer arientinum) is an important crop grown in the Middle East, Central Asia, Turkey, India and southern Russia and used in a wide variety of traditional dishes. The decrease in genetic diversity during domestication, as well as the crop's greater sensitivity to abiotic and biotic stresses, provides the idea of using landraces in breeding programs to improve the crop. The new IIIVmrMLM method for genome-wide association search allowed us to identify new variants in the genetic data of the chickpea collection, which were localized within important genes, and to identify landraces best suited to the climate of the two experimental stations.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of pro-inflammatory PGE2 and can lead to shunting of PGH2 into the PGD2/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as glutathione (GSH) or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-GS and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide (LPS) stimulation. Moreover, 15dPGJ2-Cys was found in LPS-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 (MGST3) is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase (COX), which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of MGST3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.
Article
Full-text available
Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources ¹ . So far, few chickpea ( Cicer arietinum ) germplasm accessions have been characterized at the genome sequence level ² . Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.
Article
Full-text available
Genome-wide association study (GWAS) and genomic prediction/selection (GP/GS) are the two essential enterprises in genomic research. Due to the great magnitude and complexity of genomic and phenotypic data, analytical methods and their associated software packages are frequently advanced. GAPIT is a widely-used genomic association and prediction integrated tool as an R package. The first version was released to the public in 2012 with the implementation of the general linear model (GLM), mixed linear model (MLM), compressed MLM (CMLM), and genomic best linear unbiased prediction (gBLUP). The second version was released in 2016 with several new implementations, including enriched CMLM (ECMLM) and settlement of MLMs under progressively exclusive relationship (SUPER). All the GWAS methods are based on the single-locus test. For the first time, in the current release of GAPIT, version 3 implemented three multi-locus test methods, including multiple loci mixed model (MLMM), fixed and random model circulating probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK). Additionally, two GP/GS methods were implemented based on CMLM (named compressed BLUP; cBLUP) and SUPER (named SUPER BLUP; sBLUP). These new implementations not only boost statistical power for GWAS and prediction accuracy for GP/GS, but also improve computing speed and increase the capacity to analyze big genomic data. Here, we document the current upgrade of GAPIT by describing the selection of the recently developed methods, their implementations, and potential impact. All documents, including source code, user manual, demo data, and tutorials, are freely available at the GAPIT website (http://zzlab.net/GAPIT).
Article
Full-text available
Previous studies reported that some important loci are missed in single-locus genome-wide association studies (GWAS), especially because of the large phenotypic error in field experiments. To solve this issue, multi-locus GWAS methods have been recommended. However, only a few software packages for multi-locus GWAS are available. Therefore, we developed an R software named mrMLM v4.0. This software integrates mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO methods developed by our lab. There are three components in mrMLM v4.0, including dataset input, parameter setting, and result output. The fread function in data.table is used to quickly read datasets, especially big datasets, and the doParallel package is used to conduct parallel computation using multiple CPUs. In addition, the graphical user interface software mrMLM.GUI v4.0, built upon Shiny, is also available. To confirm the correctness of the aforementioned programs, all the methods in mrMLM v4.0 and three widely-used methods were used to analyze real and simulated datasets. The results confirm the superior performance of mrMLM v4.0 to other methods currently available. False positive rates are effectively controlled, albeit with a less stringent significance threshold. mrMLM v4.0 is publicly available at BioCode (https://bigd.big.ac.cn/biocode/tools/BT007077) or R (https://cran.r-project.org/web/packages/mrMLM.GUI/index.html) as an open-source software.
Article
Full-text available
A defining challenge of the 21st century is meeting the nutritional demands of the growing human population, under a scenario of limited land and water resources and under the specter of climate change. The Vavilov seed bank contains numerous landraces collected nearly a hundred years ago, and thus may contain ‘genetic gems’ with the potential to enhance modern breeding efforts. Here, we analyze 407 landraces, sampled from major historic centers of chickpea cultivation and secondary diversification. Genome-Wide Association Studies (GWAS) conducted on both phenotypic traits and bioclimatic variables at landraces sampling sites as extended phenotypes resulted in 84 GWAS hits associated to various regions. The novel haploblock-based test identified haploblocks enriched for single nucleotide polymorphisms (SNPs) associated with phenotypes and bioclimatic variables. Subsequent bi-clustering of traits sharing enriched haploblocks underscored both non-random distribution of SNPs among several haploblocks and their association with multiple traits. We hypothesize that these clusters of pleiotropic SNPs represent co-adapted genetic complexes to a range of environmental conditions that chickpea experienced during domestication and subsequent geographic radiation. Linking genetic variation to phenotypic data and a wealth of historic information preserved in historic seed banks are the keys for genome-based and environment-informed breeding intensification.
Article
Full-text available
With the emergence of high‐throughput methods in plant biology, the importance of long‐term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40‐year effort to isolate and characterize the most common class of mutants encountered in Arabidopsis (Arabidopsis thaliana): those defective in embryo development. I present an updated dataset of 510 EMBRYO‐DEFECTIVE (EMB) genes identified throughout the Arabidopsis community; include important details on 2200 emb mutants and 241 pigment‐defective embryo (pde) mutants analyzed in my laboratory; provide curated datasets with key features and publication links for each EMB gene identified; revisit past estimates of 500–1000 total EMB genes in Arabidopsis; document 83 double mutant combinations reported to disrupt embryo development; emphasize the importance of following established nomenclature guidelines and acknowledging allele history in research publications; and consider how best to extend community‐based curation and screening efforts to approach saturation for this diverse class of mutants in the future. Continued advances in identifying EMB genes and characterizing their loss‐of‐function mutant alleles are needed to understand genotype‐to‐phenotype relationships in Arabidopsis on a broad scale, and to document the contributions of large numbers of essential genes to plant growth and development.
Article
Full-text available
Rising evidence of heat stress (HS) is appearing as one of the major challenges to crop performance including chickpea affecting plant growth and yield significantly. Unprecedented advancements in chickpea genomic resources have resulted in remarkable progress for genetic dissection of various complex traits including biotic and abiotic stresses. However, these genomic resources have been limitedly utilized for developing HS tolerance in chickpea. Thus, the present study was aimed to capture genetic variability and to identify HS relevant quantitative trait loci (QTL) using 206 F2 individuals developed from DCP 92-3 × ICCV 92944 cross. Wide range of genetic variability for seventeen traits related to phenological, physiological and breeding importance was captured from the given population under HS condition by growing them in late sown condition. A total of 78 SSR markers were used for genotyping of the given F2 individuals. Only 39 markers were fitted to Mendelian segregation and these were assigned to all linkage groups (LGs) except LG8, covering 859 cM of genome. QTL analysis revealed one QTL controlling primary branch number (PB) explaining 2% phenotypic variation (PV) on LG3 and another QTL related to chlorophyll content (CHL) on LG6 explaining 17.2% PV. In future, fine mapping of these QTL controlling genomic regions may enable uncovering the underlying candidate gene(s) contributing in HS tolerance. Thus, these genomic regions could be promisingly utilized for marker assisted breeding for developing heat tolerant chickpea genotype.
Article
Full-text available
We report a map of 4.97 million single-nucleotide polymorphisms of the chickpea from whole-genome resequencing of 429 lines sampled from 45 countries. We identified 122 candidate regions with 204 genes under selection during chickpea breeding. Our data suggest the Eastern Mediterranean as the primary center of origin and migration route of chickpea from the Mediterranean/Fertile Crescent to Central Asia, and probably in parallel from Central Asia to East Africa (Ethiopia) and South Asia (India). Genome-wide association studies identified 262 markers and several candidate genes for 13 traits. Our study establishes a foundation for large-scale characterization of germplasm and population genomics, and a resource for trait dissection, accelerating genetic gains in future chickpea breeding.
Article
Full-text available
Initiation of flowering moves plants from vegetative to reproductive development. The time when this transition happens (flowering time), an important indicator of productivity, depends on both endogenous and environmental factors. The core genetic regulatory network canalizing the flowering signals to the decision to flower has been studied extensively in the model plant Arabidopsis thaliana and has been shown to preserve its main regulatory blocks in other species. It integrates activation from the FLOWERING LOCUS T (FT) gene or its homologs to the flowering decision expressed as high expression of the meristem identity genes, including AP1. We elaborated a dynamical model of this flowering gene regulatory network and applied it to the previously published expression data from two cultivars of domesticated chickpea (Cicer arietinum), obtained for two photoperiod durations. Due to a large number of free parameters in the model, we used an ensemble approach analyzing the model solutions at many parameter sets that provide equally good fit to data. Testing several alternative hypotheses about regulatory roles of the five FT homologs present in chickpea revealed no preference in segregating individual FT copies as singled-out activators with their own regulatory parameters, thus favoring the hypothesis that the five genes possess similar regulatory properties and provide cumulative activation in the network. The analysis reveals that different levels of activation from AP1 can explain a small difference observed in the expression of the two homologs of the repressor gene TFL1. Finally, the model predicts highly reduced activation between LFY and AP1, thus suggesting that this regulatory block is not conserved in chickpea and needs other mechanisms. Overall, this study provides the first attempt to quantitatively test the flowering time gene network in chickpea based on data-driven modeling.
Preprint
Full-text available
KEA4, KEA5, and KEA6 are members of the Arabidopsis (Arabidopsis thaliana) K+ efflux antiporter (KEA) family that share high sequence similarity but whose function remains unknown. Here, we show their gene expression pattern, subcellular localization, and physiological function in Arabidopsis. KEA4, KEA5, and KEA6 had similar tissue expression patterns, and the three KEA proteins localized to the Golgi, the trans-Golgi network, and the prevacuolar compartment/multivesicular bodies, suggesting overlapping roles of these proteins in the endomembrane system. Phenotypic analyses of single, double, and triple mutants confirmed functional redundancy. The triple mutant kea4 kea5 kea6 had small rosettes, short seedlings, and was sensitive to low K+ availability and to the sodicity imposed by high salinity. Also, the kea4 kea5 kea6 mutant plants had a reduced luminal pH in the Golgi, trans-Golgi network, prevacuolar compartment, and vacuole, in accordance with the K/H exchange activity of KEA proteins. Genetic analysis indicated that KEA4, KEA5, and KEA6 as well as endosomal Na+/H+exchanger5 (NHX5) and NHX6 acted coordinately to facilitate endosomal pH homeostasis and salt tolerance. Neither cancelling nor overexpressing the vacuolar antiporters NHX1 and NHX2 in the kea4 kea5 kea6 mutant background altered the salt-sensitive phenotype. The NHX1 and NHX2 proteins in the kea4 kea5 kea6 mutant background could not suppress the acidity of the endomembrane system but brought the vacuolar pH close to wild-type values. Together, these data signify that KEA4, KEA5, and KEA6 are endosomal K+ transporters functioning in maintaining pH and ion homeostasis in the endomembrane network. © 2018 American Society of Plant Biologists. All rights reserved.
Article
Full-text available
In plants, exposure to solar ultraviolet (UV) light is unavoidable, resulting in DNA damage. Damaged DNA causes mutations, replication arrest, and cell death, thus efficient repair of the damaged DNA is essential. A light-independent DNA repair pathway called nucleotide excision repair (NER) is conserved throughout evolution. For example, the damaged DNA-binding protein Radiation sensitive 4 (Rad4) in Saccharomyces cerevisiae is homologous to the mammalian NER protein Xeroderma Pigmentosum complementation group C (XPC). In this study, we examined the role of the Arabidopsis thaliana Rad4/XPC homologue (AtRAD4) in plant UV tolerance by generating overexpression lines. AtRAD4 overexpression, both with and without an N-terminal yellow fluorescent protein (YFP) tag, resulted in increased UV tolerance. YFP-RAD4 localized to the nucleus, and UV treatment did not alter this localization. We also used yeast two-hybrid analysis to examine the interaction of AtRAD4 with Arabidopsis RAD23 and found that RAD4 interacted with RAD23B as well as with the structurally similar protein HEMERA (HMR). In addition, we found that hmr and rad23 mutants exhibited increased UV sensitivity. Thus, our analysis suggests a role for RAD4 and RAD23/HMR in plant UV tolerance.
Article
Full-text available
In order to understand the impact of breeding on genetic diversity and gain insights into temporal trends in diversity in chickpea, a set of 100 chickpea varieties released in 14 countries between 1948 and 2012 were re-sequenced. For analysis, the re-sequencing data for 29 varieties available from an earlier study was also included. Copy number variations and presence absence variations identified in the present study have potential to drive phenotypic variations for trait improvement. Re-sequencing of a large number of varieties has provided opportunities to inspect the genetic and genomic changes reflecting the history of breeding, which we consider as breeding signatures and the selected loci may provide targets for crop improvement. Our study also reports enhanced diversity in both desi and kabuli varieties as a result of recent chickpea breeding efforts. The current study will aid the explicit efforts to breed for local adaptation in the context of anticipated climate changes.
Article
Full-text available
Diacylglycerol acyltransferases (DGATs) play a key role in plant triacylglycerol (TAG) biosynthesis. Two type 1 and 2 DGATs from soybean were characterized for their functions in TAG biosynthesis and physiological roles. GmDGAT1A is highly expressed in seeds while GmDGAT2D is mainly expressed in flower tissues. They showed different expression patterns in response to biotic and abiotic stresses. GmDGAT2D was up-regulated by cold and heat stress and ABA signaling, and repressed by insect biting and jasmonate, whereas GmDGAT1A show fewer responses. Both GmDGAT1A and GmDGAT2D were localized to the endoplasmic reticulum and complemented the TAG deficiency of a yeast mutant H1246. GmDGAT2D-transgenic hairy roots synthesized more 18:2- or 18:1-TAG, whereas GmDGAT1A prefers to use 18:3-acyl CoA for TAG synthesis. Overexpression of both GmDGATs in Arabidopsis seeds enhanced the TAG production; GmDGAT2D promoted 18:2-TAG in wild-type but enhanced 18:1-TAG production in rod1 mutant seeds, with a decreased 18:3-TAG. However, GmDGAT1A enhanced 18:3-TAG and reduced 20:1-TAG contents. The different substrate preferences of two DGATs may confer diverse fatty acid profiles in soybean oils. While GmDGAT1A may play a role in usual seed TAG production and GmDGAT2D is also involved in usual TAG biosynthesis in other tissues in responses to environmental and hormonal cues.
Article
Full-text available
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved group of cochaperones that modulate numerous cellular processes. Previously we found that Arabidopsis thaliana BAG6 is required for basal immunity against the fungal phytopathogen Botrytis cinerea. However, the mechanisms by which BAG6 controls immunity are obscure. Here, we address this important question by determining the molecular mechanisms responsible for BAG6-mediated basal resistance. We show that Arabidopsis BAG6 is cleaved in vivo in a caspase-1-like-dependent manner and via a combination of pull- downs, mass spectrometry, yeast two-hybrid assays, and chemical genomics, we demonstrate that BAG6 interacts with a C2 GRAM domain protein (BAGP1) and an aspartyl protease (APCB1), both of which are required for BAG6 processing. Furthermore, fluorescence and transmission electron microscopy established that BAG6 cleavage triggers autophagy in the host that coincides with disease resistance. Targeted inactivation of BAGP1 or APCB1 results in the blocking of BAG6 processing and loss of resistance. Mutation of the cleavage site blocks cleavage and inhibits autophagy in plants; disease resistance is also compromised. Taken together, these results identify a mechanism that couples an aspartyl protease with a molecular cochaperone to trigger autophagy and plant defense, providing a key link between fungal recognition and the induction of cell death and resistance. © 2016 American Society of Plant Biologists. All rights reserved.
Article
Full-text available
Plant immunity requires recognition of pathogen effectors by intracellular NB-LRR immune receptors encoded by Resistance (R) genes. Most R proteins recognize a specific effector, but some function in pairs that recognize multiple effectors. Arabidopsis thaliana TIR-NB-LRR proteins RRS1-R and RPS4 together recognize two bacterial effectors, AvrRps4 from Pseudomonas syringae and PopP2 from Ralstonia solanacearum. However, AvrRps4, but not PopP2, is recognized in rrs1/ rps4 mutants. We reveal an R gene pair that resembles and is linked to RRS1/ RPS4, designated as RRS1B/ RPS4B, which confers recognition of AvrRps4 but not PopP2. Like RRS1/ RPS4, RRS1B/ RPS4B proteins associate and activate defence genes upon AvrRps4 recognition. Inappropriate combinations (RRS1/ RPS4B or RRS1B/ RPS4) are non-functional and this specificity is not TIR domain dependent. Distinct putative orthologues of both pairs are maintained in the genomes of Arabidopsis thaliana relatives and are likely derived from a common ancestor pair. Our results provide novel insights into paired R gene function and evolution.
Article
Full-text available
Author Summary Auxin is a unique plant hormone, which is actively and directionally transported in plant tissues. Transported auxin locally accumulates in the plant body and triggers a multitude of responses, including organ formation and patterning. Therefore, regulation of the directional auxin transport is very important in multiple aspects of plant development. The PIN-FORMED (PIN) family of auxin transporters is known to localize at specific sides of cells and export auxin from the cells, enabling the directional transport of auxin in the tissues. PIN proteins are rapidly shuttling between the plasma membrane and intracellular compartments, potentially allowing dynamic changes of the asymmetric localization according to developmental and environmental cues. Here, we discovered that a mutation in the Sec1/Munc18 family protein VPS45 abolishes its own early endosomal localization and compromises intracellular trafficking of PIN proteins. By genetic and pharmacological inhibition of early endosomal trafficking, we also revealed that another early endosomal protein, ARF GEF BEN1, is involved in early endosomal trafficking at a distinct step. Furthermore, we showed that these components play crucial roles in polar localization and dynamic repolarization of PIN proteins, which underpin various developmental processes. These findings highlight the indispensable roles of early endosomal components in regulating PIN polarity and plant architecture.
Article
Full-text available
The 26S proteasome interacts with a number of different proteins, while the TREX-2 complex is an important component of the mRNA export machinery. In animals and yeast, members of the Ubiquitin C-terminal Hydrolase 37 (UCH37) family are found to associate with the 26S proteasome, but this has not been demonstrated in plants. The Arabidopsis UCH1 and UCH2 are orthologous to UCH37. Here, we show that UCH1 and UCH2 interact with the 26S proteasome lid subunits. In addition, the two UCHs also interact with TREX-2 components. Our data suggest that Arabidopsis UCHs may serve as a link between the 26S proteasome lid complex and the TREX-2 complex.
Article
Full-text available
The plant hormone abscisic acid (ABA) regulates stomatal movement under drought stress, and this regulation requires hydrogen peroxide (H2O2). We isolated GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), which encodes a receptor-like kinase localized on the plasma membrane in Arabidopsis thaliana. ghr1 mutants were defective ABA and H2O2 induction of stomatal closure. Genetic analysis indicates that GHR1 is a critical early component in ABA signaling. The ghr1 mutation impaired ABA- and H2O2-regulated activation of S-type anion currents in guard cells. Furthermore, GHR1 physically interacted with, phosphorylated, and activated the S-type anion channel SLOW ANION CHANNEL-ASSOCIATED1 when coexpressed in Xenopus laevis oocytes, and this activation was inhibited by ABA-INSENSITIVE2 (ABI2) but not ABI1. Our study identifies a critical component in ABA and H2O2 signaling that is involved in stomatal movement and resolves a long-standing mystery about the differential functions of ABI1 and ABI2 in this process.
Article
Full-text available
The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: rd@sanger.ac.uk
Article
Full-text available
Salicylic acid (SA) is a defense hormone required for both local and systemic acquired resistance (SAR) in plants. Pathogen infections induce SA synthesis through up-regulating the expression of Isochorismate Synthase 1 (ICS1), which encodes a key enzyme in SA production. Here we report that both SAR Deficient 1 (SARD1) and CBP60g are key regulators for ICS1 induction and SA synthesis. Whereas knocking out SARD1 compromises basal resistance and SAR, overexpression of SARD1 constitutively activates defense responses. In the sard1-1 cbp60g-1 double mutant, pathogen-induced ICS1 up-regulation and SA synthesis are blocked in both local and systemic leaves, resulting in compromised basal resistance and loss of SAR. Electrophoretic mobility shift assays showed that SARD1 and CBP60g represent a plant-specific family of DNA-binding proteins. Both proteins are recruited to the promoter of ICS1 in response to pathogen infections, suggesting that they control SA synthesis by regulating ICS1 at the transcriptional level.
Article
Full-text available
The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows-Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is approximately 10-20x faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. http://maq.sourceforge.net.
Article
Full-text available
5-Lipoxygenase activating protein (FLAP), leukotriene-C4 (LTC4) synthase, and microsomal glutathione S-transferase II (microsomal GST-II) are all members of a common gene family that may also include microsomal GST-I. The present work describes the identification and characterization of a novel member of this family termed microsomal glutathione S-transferase III (microsomal GST-III). The open reading frame encodes a 16.5-kDa protein with a calculated pI of 10.2. Microsomal GST-III has 36, 27, 22, and 20% amino acid identity to microsomal GST-II, LTC4 synthase, microsomal GST-I, and FLAP, respectively. Microsomal GST-III also has a similar hydrophobicity pattern to FLAP, LTC4 synthase, and microsomal GST-I. Fluorescent in situ hybridization mapped microsomal GST-III to chromosomal localization 1q23. Like microsomal GST-II, microsomal GST-III has a wide tissue distribution (at the mRNA level) and is predominantly expressed in human heart, skeletal muscle, and adrenal cortex, and it is also found in brain, placenta, liver, and kidney tissues. Expression of microsomal GST-III mRNA was also detected in several glandular tissues such as pancreas, thyroid, testis, and ovary. In contrast, microsomal GST-III mRNA expression was very low (if any) in lung, thymus, and peripheral blood leukocytes. Microsomal GST-III protein was expressed in a baculovirus insect cell system, and microsomes from Sf9 cells containing either microsomal GST-II or microsomal GST-III were both found to possess glutathione-dependent peroxidase activity as shown by their ability to reduce 5-HPETE to 5-HETE in the presence of reduced glutathione. The apparent Km of 5-HPETE was determined to be approximately 7 microM for microsomal GST-II and 21 microM for microsomal GST-III. Microsomal GST-III was also found to catalyze the production of LTC4 from LTA4 and reduced glutathione. Based on these catalytic activities it is proposed that this novel membrane protein is a member of the microsomal glutathione S-transferase super family, which also includes microsomal GST-I, LTC4 synthase, FLAP, and microsomal GST-II.
Article
Full-text available
BcpCAL, the homologous gene of CAL, was isolated from Chinese cabbage. Unlike BobCAL of cauliflower, BcpCAL did not hold the terminating mutation in the fifth exon. After crosses of cauliflower with Chinese cabbage, the resultant hybrids failed to form curd, which implicates the genetic complement of BcpCAL to the mutated BobCAL in the function of curd formation. One of CAL gene isolated from the hybrid apparently comes from the female parent (Chinese cabbage) even though there are a few of the bases substituted and deleted. The result offers the molecular and genetic evidences for the study of biological function of CAL in morphological genetics of curd.
Article
Full-text available
Active oxygen species (AOS) generated in response to stimuli and during development can function as signalling molecules in eukaryotes, leading to specific downstream responses. In plants these include such diverse processes as coping with stress (for example pathogen attack, wounding and oxygen deprivation), abscisic-acid-induced guard-cell closure, and cellular development (for example root hair growth). Despite the importance of signalling via AOS in eukaryotes, little is known about the protein components operating downstream of AOS that mediate any of these processes. Here we show that expression of an Arabidopsis thaliana gene (OXI1) encoding a serine/threonine kinase is induced in response to a wide range of H2O2-generating stimuli. OXI1 kinase activity is itself also induced by H2O2 in vivo. OXI1 is required for full activation of the mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 after treatment with AOS or elicitor and is necessary for at least two very different AOS-mediated processes: basal resistance to Peronospora parasitica infection, and root hair growth. Thus, OXI1 is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses.
Article
Full-text available
Association analyses that exploit the natural diversity of a genome to map at very high resolutions are becoming increasingly important. In most studies, however, researchers must contend with the confounding effects of both population and family structure. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure. For result interpretation, the program allows for linkage disequilibrium statistics to be calculated and visualized graphically. Database browsing and data importation is facilitated by integrated middleware. Other features include analyzing insertions/deletions, calculating diversity statistics, integration of phenotypic and genotypic data, imputing missing data and calculating principal components. Availability: The TASSEL executable, user manual, example data sets and tutorial document are freely available at http://www.maizegenetics.net/tassel. The source code for TASSEL can be found at http://sourceforge.net/projects/tassel. Contact: pjb39{at}cornell.edu
Article
Full-text available
The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar 1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants.
Article
Whole‐genome alignment allows researchers to understand the genomic structure and variation among genomes. Approaches based on direct pairwise comparisons of DNA sequences require large computational capacities. As a consequence, pipelines combining tools for orthologous gene identification and synteny have been developed. In this manuscript, we present the latest functionalities implemented in NGSEP 4, to identify orthogroups and perform whole genome alignments. NGSEP implements functionalities for identification of clusters of homologus genes, synteny analysis and whole genome alignment. Our results showed that the NGSEP algorithm for orthogroups identification has competitive accuracy and efficiency in comparison to commonly used tools. The implementation also includes a visualization of the whole genome alignment based on synteny of the orthogroups that were identified, and a reconstruction of the pangenome based on frequencies of the orthogroups among the genomes. NGSEP 4 also includes a new graphical user interface based on the JavaFX technology. We expect that these new developments will be very useful for several studies in evolutionary biology and population genomics.
Article
The epidermis of shoot organs in plants develops from the outermost layer (L1) of the shoot apical meristem. In Arabidopsis, a pair of homeobox genes, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2), plays a role in regulating the expression of L1-specific genes. atml1-1 pdf2-1 double mutants show striking defects in the differentiation of shoot epidermal cells. However, because atml1-1 and pdf2-1 have a T-DNA inserted downstream of respective homeobox sequences, these alleles may not represent null mutations. Here we characterized additional mutant alleles that have a T-DNA insertion at different positions of each gene. Double mutants of a strong atml1-3 allele with each pdf2 allele were found to cause embryonic arrest at the globular stage. Although with low frequency, all double mutant combinations of a weak atml1-1 allele with each pdf2 allele germinated and showed phenotypes defective in shoot epidermal cell differentiation. We further confirmed that transgenic induction of PDF2 fused to the Drosophila Engrailed repressor domain temporarily interferes with epidermal cell differentiation in the wild-type background. These results indicate that ATML1 and PDF2 act redundantly as a positive regulator of shoot epidermal cell differentiation and at least one copy of these genes is essential for embryo development. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Article
Chickpea (Cicer arietinum L.),a grain legume of Near-East origin has a unique natural history. The crop cycle in most of its traditional growing areas is completely different from the autumn germination, spring flowering, and summer maturation of its wild progenitor Cicer reticulatum Ladiz., in eastern Turkey. Millennia of summer cropping in the Near-East and later dissemination into the lower latitude growing areas of eastern Africa and the Indian subcontinent ,as a postrainy season crop, had profound effects on allelic variation in major adaptive loci of chickpea. In this chapter we discuss the consequences of the traditional cropping practices on the flowering time genes of chickpea. The recently identified genes for flowering time are described with special reference to their effect on chickpea adaptation, seed weight, seed yield, and stability under semiarid Near-East and Indian subcontinental growing environments. It is suggested that the genetic research on flowering time of this species and its wild relatives needs much attention, as only two genes affecting this trait are identified so far. Genes allowing a reduced crop cycle will provide pathways for new cropping systems and increased population density. Reduced crop duration may also help chickpea escape damage by the major biotic and abiotic stresses that mostly affect the crop at flowering and podding stages. It is concluded that the relatively simple inheritance of flowering time opens up new possibilities for breeding high yielding and stable chickpea cultivars for the semiarid and arid regions globally.
Article
Phosphatidylinositol transfer proteins (PITPs) bind and facilitate the transport of phosphatidylinositol (PI) and phosphatidylcholine between membrane compartments. They are highly conserved proteins, are found in both unicellular and multicellular organisms, and can be present as a single domain or as part of a larger, multi-domain protein. The hallmark of PITP proteins is their ability to sequester PI in their hydrophobic pocket. Ablation or knockdown of specific isoforms in vivo has wide ranging effects such as defects in signal transduction via phospholipase C and phosphoinositide 3-kinase, membrane trafficking, stem cell viability, Drosophila phototransduction, neurite outgrowth, and cytokinesis. In this review, we identify the common mechanism underlying each of these phenotypes as the cooperation between PITP proteins and lipid kinases through the provision of PI for phosphorylation. We propose that recruitment and concentration of PITP proteins at specific membrane sites are required for PITP proteins to execute their function rather than lipid transfer.
Article
Although cells of flowering plants lack a structurally defined microtubule-organizing center like the centrosome, organization of the spindles and phragmoplasts in mitosis is known to involve the evolutionarily conserved gamma-tubulin complex. We have investigated the function of Arabidopsis thaliana NEDD1, a WD40 repeat protein related to the animal NEDD1/GCP-WD protein, which interacts with the gamma-tubulin complex. The NEDD1 protein decorates spindle microtubules (MTs) preferentially toward spindle poles and phragmoplast MTs toward their minus ends. A T-DNA insertional allele of the single NEDD1 gene was isolated and maintained in heterozygous sporophytes, and NEDD1's function in cell division was analyzed in haploid microspores produced by the heterozygote. In approximately half of the dividing microspores exhibiting aberrant MT organization, spindles were no longer restricted to the cell periphery and became abnormally elongated. After mitosis, MTs aggregated between reforming nuclei but failed to appear in a bipolar configuration. Consequently, defective microspores did not form a continuous cell plate, and two identical nuclei were produced with no differentiation into generative and vegetative cells. Our results support the notion that the plant NEDD1 homolog plays a critical role in MT organization during mitosis, and its function is likely linked to that of the gamma-tubulin complex.
Article
We have isolated cDNAs encoding a novel member of the DEAD box RNA helicase family from Arabidopsis. The protein, named AtDRH1, is composed of 619 amino acids and the central portion has high similarity with the helicase core region of a prototypic RNA helicase, the human nuclear protein p68. The N- and C-terminal regions are considerably diverged from the animal and yeast p68 homologs at the amino acid sequence level, but like the p68 subfamily members, an RGG box-like domain is present near the C-terminus. RNA blot analysis showed that the AtDRH1 transcript accumulates at a high level and almost equally in every part of the Arabidopsis plant. The purified, recombinant AtDRH1 was capable of unwinding double-stranded RNA in the presence of ATP or dATP and of hydrolyzing ATP. The ATPase activity was stimulated by some single-stranded RNAs and DNAs, including poly(A) and poly(dT), but not by poly(dA). The ability of the polynucleotides to stimulate the ATPase activity was largely consistent with their affinity for AtDRH1. These results show that AtDRH1 is a novel type of ATP/dATP-dependent RNA helicase and polynucleotide-dependent ATPase.
Article
Tocopherols, collectively known as vitamin E, are only synthesised in photosynthetic organisms. Tocopherol cyclase (TC) catalyses the formation of the chromanol headgroup of the various tocopherol isoforms. TCs from Arabidopsis and maize (Zea mays) were expressed in Escherichia coli and purified. Analysis of the enzymatic properties revealed similarities but also differences between the two enzymes. Overexpression of chimeric TC gene constructs in developing seeds of transgenic rapeseed plants enhanced and modified the relative abundance of individual tocochromanol species in the seed oil, indicating a regulatory function of the enzyme in prenyllipid metabolism.
Article
Glycosyltransferases of small molecules transfer sugars to a wide range of acceptors, from hormones and secondary metabolites to biotic and abiotic chemicals and toxins in the environment. The enzymes are encoded by large multigene families and can be identified by a signature motif in their primary sequence, which classifies them as a subset of Family 1 glycosyltransferases. The transfer of a sugar onto a lipophilic acceptor changes its chemical properties, alters its bioactivity, and enables access to membrane transporter systems. In vitro studies have shown that a single gene product can glycosylate multiple substrates of diverse origins; multiple enzymes can also glycosylate the same substrate. These features suggest that in a cellular context, substrate availability is a determining factor in enzyme function, and redundancy depends on the extent of coordinate gene regulation. This review discusses the role of these glycosyltransferases in underpinning developmental and metabolic plasticity during adaptive responses.
Article
Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
Article
During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds.