ArticlePDF Available

Contributions to Zoology (2024) 1-21

Authors:

Abstract

Lyroderma lyra is one of the six currently recognised species of the family Megadermatidae. Previous studies have suggested subspecific division within L. lyra, wherein the nominate sub-species is predominantly distributed in South Asia, and the other subspecies, L. lyra sinense is occurring in southern China and Southeast Asia. Based on the congruent results of comparative morphology of skulls and bacula, as well as phylogenetic tree reconstructions-the first ones including both subspecies and incorporating the most extensive geographic sampling of "sinense" to date-using COI and cytb sequences, we have elevated the Southeast Asian subspecies to a distinct species status, Lyroderma sinense.
Published with license by Koninklijke Brill󰎛󰃊󰎛󰂹󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
󰅺󰎛󰂺󰂶󰆽󰆻󰆽󰆿󰎛󰃊󰎛󰂹󰆼󰆾󰇃󰆾󰄀󰆿󰇀󰆼󰇂󰃍print󰃎󰆼󰇃󰇂󰇀󰄀󰇄󰇃󰇁󰇁󰃍online)
This is an open access article distributed under the terms of the 󰆗󰂺󰆓󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
󰂺󰃈
CTOZ
A reassessment of the taxonomic status and
distribution of the subspecies of Lyroderma lyra
(Chiroptera: Megadermatidae)
Lei Feng* | 󰂹󰆻󰆻󰆻󰇄󰄀󰆻󰆻󰆻󰇂󰄀󰆾󰆾󰇁󰇂󰄀󰆾󰆿󰇂󰆻
󰂶
Northeast Normal University󰂶 󰆔󰆖󰆓󰆔󰆔󰆚󰂶 China
Hunan Academy of Forestry󰂶 󰆗󰆔󰆓󰆓󰆓󰆗󰂶 China
Dorottya y* | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆾󰄀󰆾󰆽󰆼󰇄󰄀󰆾󰇀󰇀󰇄
Department of Zoolog󰂶 Hungarian Natural History Museum󰂶󰆔󰆓󰆛󰆛t󰂶 Hungary
Hungarian University of Agriculture and Life Sciences󰂶󰆕󰆔󰆓󰆓ödöll󰂶 Hungary
Roberto Portela Miguez
Department of Life Science󰂶 Natural History Museum󰂶 Londo󰂶 󰇂󰇀󰂶 UK
Phaedra Kokkini
Department of Life Science󰂶 Natural History Museum󰂶 Londo󰂶 󰇂󰇀󰂶 UK
  | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆽󰄀󰆼󰇄󰆼󰆻󰄀󰆿󰆻󰆽󰆿
Department of Zoolog󰂶 Hungarian Natural History Museum󰂶󰆔󰆓󰆛󰆛t󰂶 Hungary
Shahneaz Ali Khan
Chattogram Veterinary and Animal Sciences University󰂶 󰆗󰆕󰆓󰆕󰂶 Bangladesh
Uttam Saikia
North Eastern Regional Centr󰂶 Zoological Survey of India󰂶 Risa Colon󰂶 Shillon󰂶
󰆚󰆜󰆖󰆓󰆓3󰂶 India
Shyamkant S. Talmale
Western Regional Centr󰂶 Zoological Survey of India󰂶 Pun󰂶󰆗󰆔󰆔󰆓󰆗4󰂶 India
Wenhua Yu | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆼󰄀󰇀󰆽󰆽󰇁󰄀󰇂󰇂󰆽󰇀
College of Life Scienc󰂶y󰂶 󰆘󰆔󰆓󰆓󰆓󰆙󰂶 China
* These authors contributed equally to this articl󰂺
󰆽󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
Shaoying Liu | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆾󰄀󰆼󰆾󰇃󰆽󰄀󰇂󰆼󰆿󰇄
Sichuan Academy of Forestry󰂶 󰆙󰆔󰆓󰆓󰆛󰆔󰂶 China
Tinglei Jiang | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆾󰄀󰆾󰇃󰇀󰇃󰄀󰇄󰆿󰇀󰇃
󰂶
Northeast Normal University󰂶 󰆔󰆖󰆓󰆔󰆔󰆚󰂶 China
jiangtl730@nenu.edu.cn
Gábor a* | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆼󰄀󰇀󰇂󰆽󰆻󰄀󰆿󰇁󰆻󰆻
Department of Zoolog󰂶 Hungarian Natural History Museum󰂶󰆔󰆓󰆛󰆛t󰂶 Hungary
󰆼󰆼󰆽󰆻󰆽󰆿; 󰆽󰇁󰆽󰆻󰆽󰆿; 󰆿󰆽󰆻󰆽󰆿;
󰆼󰆻󰆽󰆻󰆽󰆿;
󰂹
Abstract
Lyroderma lyra is one of the six currently recognised species of the family Megadermatida󰂺
 L. lyra󰂶 wherein the nominate sub󰄀
species is predominantly distributed in South Asi󰂶 and the other subspecie󰂶 L. is
occurring in southern China and Southeast Asi󰂺 Based on the congruent results of comparative
morphology of skulls and bacul󰂶   󰄍   
including both subspecies and incorporating the most extensive geographic sampling of “e
󰄍 and cytb sequence󰂶 we have elevated the Southeast Asian subspecies to a dis󰄀
tinct species statu󰂶 e󰂺
Keywords
󰄍Megaderma󰄍󰄍󰄍󰄍
Introduction
The false vampire󰂶 belonging to the fam󰄀
ily Megadermatida󰂶 are restricted to the
tropics and subtropics of the Old World
󰃍ilson & Mittermeie󰂶 󰆕󰆓󰆔󰆜󰃎󰂺 
     󰄀
nally by a rounded anterior noselea󰂶
well󰄀󰂶 simple and erect poste󰄀
rior noselea󰂶 large oval ears joined above
the forehea󰂶 forked tragu󰂶 and well󰄀
developed interfemoral membrane but no
bony tail 󰃍ates & Harriso󰂶󰆔󰆜󰆜󰆚󰂷 Wilson &
Mittermeie󰂶󰆕󰆓󰆔󰆜󰃎󰂺󰂶 the premax󰄀
illae are essentially absen󰂶 and the nasals
are greatly reduced; and dentall󰂶 the lack
󰆾
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
      
 󰄀
istics of the family 󰃍oisook  󰂺󰂶 󰆕󰆓󰆔󰆘󰂷
Wilson & Mittermeie󰂶󰆕󰆓󰆔󰆜󰃎󰂺
Six genera are currently recognise󰂶 each
containing one extant specie󰂶 namely
  󰃍istributed in 󰄀
Africa)󰂶 Cardioderma cor 󰃍ast Africa)󰂶
 󰃍ustralia)󰂶Megaderma
 󰃍outheast Asia)󰂶 
thongareeae 󰃍eninsular Thailand)󰂶 
Lyroderma lyra 󰃍outh and Southeast
Asia) 󰃍merican Society of Mammalogists
󰃍)󰂶󰆕󰆓󰆕4; Simmons & Cirranell󰂶󰆕󰆓󰆕4;
Volleth 󰂺󰂶󰆕󰆓󰆕1; Wilson & Mittermeie󰂶
󰆕󰆓󰆔󰆜󰃎󰂺
Lyroderma Peter󰂶 󰆔󰆛󰆚󰆕  
treated as a subgenus of Megaderma󰄀
fro󰂶 󰆔󰆛󰆔󰆓󰂷 but recent phylogenetic recon󰄀
structions using various markers 󰃍ick 󰂺󰂶
󰆕󰆓󰆓󰆘󰂷 Kanuch  󰂺󰂶 󰆕󰆓󰆔󰆘󰂷 Soisook  󰂺󰂶
󰆕󰆓󰆔󰆘󰃎 consequently separated Lyroderma
and Megaderma as full gener󰂺 Soisook
 󰂺 󰃍󰆕󰆓󰆔󰆘󰃎 provided a comprehensive
overview of the taxonomic󰄀nomenclatural
history of Megadermatidae; for a short
summary of the change󰂶 see 󰆔󰂺
Within Lyroderma two subspecies are
currently recognised; the nominal form is
widespread in South Asi󰂶 from Afghani󰄀
stan to Banglades󰂶 whereas L. 
󰃍riginally described as  but
changed into  for gender agree󰄀
ment) is found in Southeast Asi󰂶 from
South China to Peninsular Malaysia 󰃍ingh
& Sharm󰂶󰆕󰆓󰆕3; Soisook 󰂺󰂶󰆕󰆓󰆔󰆘󰂷 Wil󰄀
son & Mittermeie󰂶 󰆕󰆓󰆔󰆜󰃎󰂶   
distributional limits are not clea󰂺 The
Myanmar 󰃍ormerly Burma) population of
Lyroderma
to the taxon “lyra” by Sinha 󰃍󰆔󰆜󰆛󰆓󰃎󰂶
that his arguments are debatabl󰂺 He con󰄀

between “lyra and “e” [ being
󰆼 Nomenclatural history of the genera Megaderma and Lyroderma

(1810)
Andersen &
Wroughton
(1907)
Ellerman &
Morrison
(1951)
Corbet & Hill
(1992)
Simmons
(2005)
Francis
(2019)
Simmons &
Cirranello
(2024)
Megaderma Eucheira*Megaderma Megaderma
(Lyroderma)
Megaderma
(Lyroderma)
Lyroderma Lyroderma
lyra lyra lyra lyra lyra lyra lyra
lyra lyra lyra lyra lyra lyra
caurina caurina    
 
Megaderma Megaderma
(Megaderma)
Megaderma
(Megaderma)
Megaderma Megaderma
      
 carimatae
natunae
* According to Andersen and Wroughton 󰃍󰆔󰆜󰆓󰆚󰃎 Eucheira Hodgso󰂶󰆔󰆛󰆗󰆚 Lyroderma
Peter󰂶󰆔󰆛󰆚2; howeve󰂶 Eucheira Hodgso󰂶󰆔󰆛󰆗󰆚Eucheira Westwoo󰂶󰆔󰆛󰆖󰆗󰃍 Lepidoptera)
󰃍ee Mille󰂶󰆔󰆜󰆓󰆚󰃎󰂺
󰆿󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
the larger taxon] but noted that “Indian
examples have smaller skulls than those
from Burma” 󰃍inh󰂶󰆔󰆜󰆛󰆓󰃎󰂺
The taxon  was described by
Andersen & Wroughton 󰃍󰆔󰆜󰆓󰆚󰃎 as a new
species in the genus Eucheira based on two
skins and skulls collected from Xiame󰂶
Fujian Province and Shanto󰂶
Provinc󰂶 South China 󰃍ndersen &
Wroughto󰂶 󰆔󰆜󰆓󰆚󰃎󰂺   󰄀
guished the new species from E. lyra on
 
󰃍kull length of  is between 2󰆜󰂺󰆖󰄍
󰆖󰆕󰂺󰆓 󰂶 the prenasal notch narrowe󰂶
rounded posteriorly; v󰂺 skull length
between 2󰆚󰂺󰆛󰄍󰆕󰆜 󰂶 and the prenasal
notch posteriorly wide󰂶  lyra)
󰃍ndersen & Wroughto󰂶 󰆔󰆜󰆓󰆚󰃎󰂺 
󰃍󰆔󰆜󰆖3) published a study of bats from
Chin󰂶 in which he measured 󰆖󰆘 peci󰄀
mens of E.  collected in western
Sichua󰂶 Chin󰂶󰆙
in Fujia󰂺 Investigating if the two popu󰄀
lations under study may represent two
distinct form󰂶 based on the external and
craniodental measurements taken by hi󰂶
󰄀
lations cannot be distinguished neither
       
 󰂺 Despite the limitations
of his study 󰃍anbor󰂶 󰆔󰆜󰆖3)󰂶  󰄀
ther explanation he listed  as a sub󰄀
species of L. lyra󰂶 the view that is widely
accepted by subsequent authors 󰃍ates &
Harriso󰂶󰆔󰆜󰆜󰆚󰂷 Corbet & Hil󰂶󰆔󰆜󰆜1; Csorba
& Topá󰂶󰆔󰆜󰆜4; Ellerman & 󰄀󰂶
󰆔󰆜󰆘1; Lekagul & McNeel󰂶 󰆔󰆜󰆚󰆚󰂷 Sanbor󰂶
󰆔󰆜󰆖3; Simmon󰂶 󰆕󰆓󰆓󰆘󰂷 Simmons &
Cirranell󰂶 󰆕󰆓󰆕4; We󰂶 󰆕󰆓󰆕3; Wilson &
Mittermeie󰂶󰆕󰆓󰆔󰆜󰂷 Wilson & Reede󰂶󰆕󰆓󰆓󰆘󰃎󰂺
The karyology of the two subspecies
has been studie󰂶 and they share the
same karyotype 󰃍u & Harad󰂶 󰆕󰆓󰆓󰆙󰃎󰂺
Nevertheles󰂶 the obvious morphological
    
󰃍ummarised by Csorba & Topá󰂶󰆔 󰆜󰆜4) have
never been tested by molecular biologi󰄀
cal method󰂺 In this stud󰂶 we applied an
integrative taxonomic approac󰂶 󰄀
ing analyses of morphological data and
mtDNA sequences based on the most
comprehensive taxonomic samplings to
investigate the taxonomic status of L. lyra
lyra and L.e󰂺
Methods
Specimens examined
For morphological comparison and partly
for multivariate statistic󰂶 󰄀
specimens of L. lyra and eleven specimens
of   󰄍   󰄀
mo󰂶 widely distributed and frequently
     󰄍
were use󰂺 The specimens are housed in
the following collection󰂹 󰄍
of Life Science󰂶  󰂶
󰂶 Chin󰂶  󰄍 
Natural History Museu󰂶 Budapes󰂶 Hun󰄀
gar󰂶 󰄍󰂶
Changsh󰂶 Huna󰂶 Chin󰂶 󰄍󰄀
east Normal Universit󰂶 Changchu󰂶 Jili󰂶
Chin󰂶 󰄍󰂶
Londo󰂶 United Kingdo󰂶 󰄍
of Songkla University Zoological Collec󰄀
tio󰂶 Hat Ya󰂶 Thailan󰂶  󰄍 
Academy of Forestr󰂶 Chengd󰂶 Sichua󰂶
Chin󰂶  󰄍   
Natural Histor󰂶 Ljubljan󰂶 Sloveni󰂶
 󰄍   󰄀
si󰂶  󰂶 Bang󰂶 Malaysi󰂶
  󰄍   󰂶
Zoological Survey of Indi󰂶 Pune and 
󰇀
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
󰄍󰂶
Zoological Survey of Indi󰂶 Shillon󰂺 The
distribution map of the sampling points is
shown in 󰂺󰆔󰂺
Lyroderma lyra lyra󰂹 󰂹
󰄀󰆕󰆛󰆕󰆖󰆗󰂶 󰍑󰂷󰄀󰆕󰆛󰆕󰆖󰆘󰂶󰍑󰂷󰄀
2󰆛󰆕󰆖󰆚󰂶 󰍑󰂷 󰄀󰆕󰆛󰆕󰆖󰆛󰂶 󰍑󰂷 󰄀󰆕󰆛󰆕󰆖󰆜󰂶
󰍑󰂷 󰄀󰆕󰆛󰆕󰆗󰆔󰂶 󰍓󰂷 󰂶 󰂹 󰄀
󰄀󰆖󰆛󰆗󰂶 sex unknown; 󰄀󰄀
42󰆜󰂶󰍑󰂷󰂶 󰂹 󰄀󰆜󰆖󰂺󰆔󰆔󰂺󰆔󰂺󰂶
󰍑󰂷󰄀󰆜󰆖󰂺󰆔󰆔󰂺󰆕󰂺󰂶󰍓󰂷󰂶 󰄀
󰂹 󰄀󰄀󰄀󰆙󰆔󰆚󰆘󰂶 󰍑󰂷 󰄀󰄀󰄀
󰆙󰆔󰆚󰆙󰂶󰍑󰂷󰄀󰄀󰄀󰆙󰆔󰆚󰆜󰂶󰍑󰂷󰂶 󰄀
󰂹 󰄀󰆜󰆕󰂺󰆚󰆜󰂺󰆔󰂺󰂶  n;
󰄀󰆜󰆕󰂺󰆚󰆜󰂺󰆕󰂺󰂶  n; 󰄀
󰆜󰆕󰂺󰆚󰆛󰂺󰆕󰂺󰂶󰍓󰂷󰄀󰆜󰆕󰂺󰆚󰆛󰂺󰆘󰂺󰂶󰍑󰂷󰂶 󰄀
󰂹 󰄀󰄀󰆗2󰆜󰂶 󰍓󰂷 󰂶 
󰂹 󰄀󰆜󰆖󰂺󰆔󰆖󰂺󰆕󰂺󰂶 󰍑󰂷 󰄀󰆜󰆖󰂺󰆔󰆖󰂺󰆖󰂺󰂶
󰍑󰂷 󰂶  󰂹 󰄀󰆜󰆖󰂺󰆔󰆓󰂺󰆔󰂺󰂶
󰍓󰂷 󰄀󰆜󰆖󰂺󰆔󰆓󰂺󰆕󰂺󰂶 󰍑󰂷 󰄀󰆜󰆖󰂺󰆔󰆓󰂺󰆖󰂺󰂶 󰍑󰂷
󰄀󰆜󰆕󰂺󰆚󰆙󰂺󰆔󰂺󰂶 󰍑󰂷 󰄀󰆜󰆕󰂺󰆚󰆙󰂺󰆕󰂺󰂶 󰍓󰂷
󰄀󰆜󰆕󰂺󰆚󰆙󰂺󰆖󰂺󰂶 󰍓󰂷 󰂹 󰄀󰆜󰆛󰂺󰆘󰂺󰆕󰂺󰂶
󰍓󰂷󰄀󰆜󰆘󰂺󰆗󰆛󰂺󰆔󰂺󰂶󰍓󰂷󰄀󰆜󰆘󰂺󰆗󰆛󰂺󰆕󰂺󰂶󰍓󰂺
  e󰂹 󰂹
󰄀󰆕󰆖󰆚󰆗󰆙󰂶󰍓󰂷󰂶 󰂹 󰄀
󰄀󰆓󰆓󰆓󰂶 󰍓󰂷 󰄀󰄀󰆓󰆓󰆔󰂶 󰍑󰂷 󰄀󰄀
󰆓󰆓󰆕󰂶󰍑󰂷󰄀󰄀󰆓󰆓󰆖󰂶󰍓󰂷󰄀󰄀󰆓󰆓󰆗󰂶󰍓󰂷
󰄀󰄀󰆓󰆓󰆘󰂶󰍑󰂷󰄀󰄀󰆓󰆓󰆙󰂶󰍓󰂷󰄀
󰄀󰆓󰆓󰆚󰂶󰍓󰂷󰄀󰄀󰆓󰆓󰆜󰂶󰍓󰂷󰄀󰄀
󰆓1󰆓󰂶 󰍓󰂷 󰄀󰄀󰆓1󰆔󰂶 󰍑󰂷 󰂶 󰄀
󰂹 󰄀󰆓󰆔󰆓󰆜󰆔󰂶 󰍓󰂷 󰄀󰆜󰆜󰆓󰆘󰆛󰂶 sex
unknown; 󰄀󰆜󰆜󰆓󰆘󰆜󰂶 󰍑󰂷 󰄀󰆜󰆜󰆔󰆘󰆕󰂶
󰍑󰂷 󰂶 󰂹 󰄀󰆔󰆛󰆔󰆓󰆕󰆕󰂶
󰍓󰂷 󰂶 󰂹 󰄀󰆓󰆔󰂶 󰍓󰂷
󰆼 Lyroderma lyra 󰃍riangles)
false vampire bat  󰃍quares) and samples analysed in the present pape󰂺 Full
symbol󰂹 both morphological and genetic data were used; empty symbol󰂹 only molecular data
were available; 󰄀 symbol󰂹 only morphological information was use󰂺 Some symbols
represent multiple specimens from the same localit󰂺
󰇁󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
󰄀󰆓󰆕󰂶 󰍓󰂷 󰄀󰆓󰆖󰂶 󰍑󰂷 󰄀
󰄀󰆔󰆜󰄀󰆓󰆕󰂶 󰍑󰂷 󰄀󰄀󰆔󰆜󰄀󰆓󰆖󰂶 󰍑󰂷 󰄀
󰄀󰆔󰆜󰄀󰆓󰆗󰂶 󰍑󰂷 󰄀󰄀󰆔󰆓󰄀󰆖󰆕󰂶 󰍑󰂷 󰂶
󰂹 󰄀󰄀󰆓󰆛󰄀󰆔2󰆔󰂶 󰍓󰂷 󰂶 not
registere󰂶 sex unknown; 󰂹
󰄀󰆔󰆘󰆓󰆘󰂶 󰍑󰂷 󰂹 󰄀
󰆓󰆘󰂺󰆕1󰆗󰂶 󰍓󰂷 󰂶 󰂹
󰄀󰆕󰆓󰆔󰆗󰂺󰆔󰆘󰆜󰂶󰍑󰂷󰂹 󰄀󰆕󰆓󰆓󰆚󰂺
󰆕󰆚󰂺󰆔󰆓󰂺󰂶 󰍑󰂷 󰄀󰆜󰆘󰂺󰆗󰆜󰂺󰆔󰂺󰂶 󰍓󰂷 󰄀󰆜󰆘󰂺󰆗󰆜󰂺
󰆕󰂺󰂶 󰍓󰂷 󰄀󰆜󰆘󰂺󰆗󰆜󰂺󰆖󰂺󰂶 󰍑󰂷 󰄀󰆜󰆘󰂺󰆗󰆜󰂺󰆗󰂺󰂶
󰍓󰂷 󰄀󰆜󰆘󰂺󰆗󰆜󰂺󰆘󰂺󰂶 󰍓󰂷 󰄀󰆜󰆛󰂺󰆜󰆓󰂺󰆖󰆘󰂺󰂶 󰍑󰂷
󰄀󰆜󰆛󰂺󰆜󰆓󰂺󰆖󰆚󰂶 sex unknow󰂺
Lyroderma lyra ss󰂹 󰂹
󰄀󰆔󰆜󰆘󰆓󰂺󰆗2󰆘󰂶 󰍓󰂷 󰄀󰆔󰆜󰆘󰆓󰂺
42󰆙󰂶 󰍑󰂷 󰄀󰆔󰆜󰆘󰆓󰂺󰆗2󰆚󰂶 󰍓󰂷 󰄀
󰆔󰆜󰆘󰆓󰂺󰆗2󰆛󰂶 󰍓󰂷 󰄀󰆔󰆜󰆘󰆓󰂺󰆗2󰆜󰂶 󰍓󰂷
󰄀󰆔󰆜󰆘󰆓󰂺󰆗3󰆓󰂶󰍑󰂷󰄀󰆔󰆜󰆕󰆔󰂺󰆕󰂺
󰆔󰂺󰆗󰆖󰂶󰍑󰂷󰄀󰆔󰆜󰆕󰆔󰂺󰆕󰂺󰆔󰂺󰆗󰆗󰂶󰍑󰂺
 a󰂹 󰂹
󰄀󰆕󰆓󰆓󰆘󰂺󰆛󰆔󰂺󰆗󰆓󰂶 󰍑󰂷 󰄀󰆕󰆓󰆓󰆙󰂺󰆖󰆗󰂺󰆖󰆘󰂶
sex unknow󰂶 󰄀󰆕󰆓󰆓󰆘󰂺󰆛󰆔󰂺󰆖󰆗󰂶 󰍓󰂷
󰄀󰆕󰆓󰆔󰆔󰂺󰆔󰂺󰆔󰆖󰂶 󰍑󰂷 󰂶 󰄀
󰂹 󰄀󰆜󰆘󰂺󰆗󰆚󰂺󰆔󰂶 󰍑󰂷 󰄀󰆜󰆘󰂺󰆗󰆚󰂺󰆕󰂶
󰍓󰂷 󰂶 󰂹 󰄀󰆕󰆙󰆗󰆙󰆘󰂶
󰍓󰂷 󰂹 󰄀󰆕󰆓󰆔󰆓󰂺󰆗󰆕󰂺󰆙󰂶 󰍓󰂷 󰄀
󰂶 󰂹 󰄀󰆓󰆚󰂺󰆕󰆙󰆚󰂶 󰍓󰂷
󰄀󰆓󰆚󰂺󰆘󰂶󰍑󰂷󰄀󰆓󰆙󰂺󰆔1󰆜󰂶󰍓󰂺
Measurements and morphometric
analysis
We took one external 󰃍orearm length) and
13 craniodental measurement󰂶 following
Bates and Harrison 󰃍󰆔󰆜󰆜󰆚󰃎󰂷 
shown in  󰆕󰂺 The external measure󰄀
 󰂶 the cranial
and dental ones were measured under a
stereomicroscope by digital vernier calli󰄀
per to the nearest 󰆓󰂺󰆓󰆔󰂺 Measurements
were recorded from adult specimens onl󰂺
Previous studies have indicated that
the forearm of female individuals of L. l.
lyra is longer than that of male individuals
󰃍inh󰂶󰆔󰆜󰆛󰆓󰃎󰂺 󰄀
dent samples t󰄀 show that the fore󰄀
arm length of female individuals of L. l.

male individuals 󰃍T󰈺󰈵󰆖󰂺󰆘2󰆘󰂶 󰈺 󰆓󰂺󰆓󰆓2)󰂺
Since the craniodental parameters did
not meet the homogeneity of variance󰂶
we employed the 󰄀U test to
    

between male and female individuals of
L. l.  and L. l. lyra 󰃍acha󰂶 󰆕󰆓󰆓󰆛󰃎󰂺
The skull length 󰃍) and width 󰃍) of
female L. l.
than those of male L. l. e󰂶 hence󰄀
fort󰂶 the analysis of craniodental param󰄀
eters was conducted separately for the
two sexe󰂺 We employed 󰆜 raniodental
measurements of 󰆘󰆛 pecimens 󰃍 subset
of the morphologically studied museum
materials)󰂶  󰆕󰆜 ndividuals each for
females and males 󰃍󰆖 and 4)󰂶󰄀
form principal component analysis 󰃍)
and linear discriminant analysis 󰃍)󰂺
 
distributions or outlier󰂶 we performed
logarithmic transformation on the data
before conducting  and  analyse󰂺
The results showed that the  and 
outcomes before and after logarithmic
transformation were simila󰂺 The analy󰄀
ses were carried out using R 󰆗󰂺󰆖󰂺󰆔 󰃍 Core
Tea󰂶 󰆕󰆓󰆕4)󰂶   
the 󰄀Whitney U Tes󰂺 
of the results was accomplished using the
ggor󰂶 ggplot󰆕󰂶 plot and factoextra pack󰄀
ages in R 󰆗󰂺󰆖󰂺󰆔 󰃍 Core Tea󰂶 󰆕󰆓󰆕4)󰂺 
assess the suitability of the data for use
󰇂
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
󰆽 Description of crania󰂶 mandibula󰂶 and external dimensions and their abbreviations
Measurements Acronyms Descriptions
Forearm length  From the elbow to the distal end of the forearm including
carpals

of skull
 From the apex of the upper internal incisors to the occiput
󰄀
length
 From the anterior surface of the upper canines to a line
connecting the occipital condyles
Interorbital
breadth
 Least breadth between the orbits
Zygomatic width  
arches
Mastoid width  
Braincase width  
Braincase height  Braincase height posteriorly to the auditory bullae
Maxillary canine
outer width
 Distance between outer margins of C1
Width of upper
molars
M3M3W Maximum distance between the bases of the outer edges of
the third posterior molars on each maxillary side
Maxillary
toothrow length
󰆾 Maximum length from the anterior margin of the maxillary
canine to the posterior margin of the base of the last molar on
the same side
Mandible length  The length from the most anterior edge of the mandible
󰃍xcluding incisors) to the most posterior edge of the
mandible
Mandibular
toothrow length
cm3L Maximum length from the anterior edge of the mandibular

Mandibular
molariform
toothrow length
m1m3L Distance from the anterior edge of the m1 alveolus to
the posterior edge of the m3 alveolus of the mandibular
posterior molar
in 󰂶   󰄀󰄀
󰃍) test and the Bartlett’s test of sphe󰄀
ricity focusing on the skull datase󰂺 The
󰄀 Olkin measure of sampling
adequacy 󰃍) was greater than 󰆓󰂺󰆘
and the Bartlett’s test of sphericity was
󰃍󰈽󰆓󰂺󰆓󰆓1)󰂶
data was suitable for  󰃍askey  󰂺󰂶
󰆕󰆓󰆔󰆛󰃎󰂺      󰄀
age value󰂺
Baculum
Preparation and preservation of the penial
bone followed that of Friley 󰃍󰆔󰆜󰆗󰆚󰃎󰂺 
󰇃󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
󰆾 Selected measurements 󰃍󰃎 of male group L.e󰂶 L. lyra and M.a󰂶 and vector correlation loadings with original variables of principal
components 󰃍󰆼 and 󰆽) and discriminant functions 󰃍󰆼 and 󰆽) for selected samples of male group L. l.e󰂶 L. l. lyra and M.a󰂺 See
Table 2 for variable abbreviation󰂺
Meareplsurements L. l. sinense L. l. lyra M. spasma 󰇆 󰇇 󰇆 󰇇 p-value
 󰆠󰆝󰂺󰆣󰆠󰃍󰆟󰆦󰂺󰆦󰆟󰄍󰆠󰆞󰂺󰆦󰆣󰃎󰆞󰆣 󰆟󰆥󰂺󰆥󰆢󰃍󰆟󰆥󰂺󰆞󰄍󰆟󰆦󰂺󰆣󰆥󰃎󰆥 󰆟󰆡󰂺󰆦󰆠󰃍󰆟󰆠󰂺󰆠󰆣󰄍󰆟󰆢󰂺󰆣󰆞󰃎󰆢 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆞󰆟 󰈵󰆝󰂺󰆣󰆥 󰆝󰂺󰆠󰆡 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆟󰆤󰂺󰆡󰆠󰃍󰆟󰆣󰂺󰆢󰆡󰄍󰆟󰆥󰂺󰆢󰆢󰃎󰆞󰆣 󰆟󰆢󰂺󰆢󰆠󰃍󰆟󰆡󰂺󰆤󰆤󰄍󰆟󰆣󰃎󰆥 󰆟󰆞󰂺󰆣󰆢󰃍󰆟󰆝󰂺󰆡󰆤󰄍󰆟󰆟󰂺󰆣󰆟󰃎󰆢 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆞󰆟 󰆞󰂺󰆢󰆢 󰆝󰂺󰆝󰆞 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆢󰂺󰆢󰆟󰃍󰆢󰂺󰆟󰆥󰄍󰆢󰂺󰆣󰆦󰃎󰆞󰆣 󰆡󰂺󰆥󰆠󰃍󰆡󰂺󰆣󰆠󰄍󰆡󰂺󰆦󰆠󰃎󰆥 󰆠󰂺󰆤󰆥󰃍󰆠󰂺󰆣󰄍󰆡󰂺󰆞󰆡󰃎󰆢 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆞󰆠 󰆢󰂺󰆢󰆦 󰆞󰂺󰆠󰆤 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆞󰆤󰂺󰆝󰆟󰃍󰆞󰆣󰂺󰆡󰆟󰄍󰆞󰆤󰂺󰆢󰆞󰃎󰆞󰆣 󰆞󰆣󰂺󰆢󰆤󰃍󰆞󰆣󰂺󰆟󰆦󰄍󰆞󰆤󰂺󰆝󰆡󰃎󰆥 󰆞󰆠󰂺󰆥󰆞󰃍󰆞󰆟󰂺󰆤󰆞󰄍󰆞󰆡󰂺󰆟󰆠󰃎󰆢 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆟󰆟 󰆝󰂺󰆤󰆥 󰈵󰆝󰂺󰆥󰆠 󰆝󰂺󰆝󰆝󰆠
 󰆞󰆠󰂺󰆟󰆥󰃍󰆞󰆟󰂺󰆥󰆟󰄍󰆞󰆠󰂺󰆣󰆠󰃎󰆞󰆣 󰆞󰆟󰂺󰆢󰆦󰃍󰆞󰆟󰂺󰆠󰆥󰄍󰆞󰆟󰂺󰆦󰆠󰃎󰆥 󰆞󰆝󰂺󰆦󰆞󰃍󰆞󰆝󰂺󰆠󰆢󰄍󰆞󰆞󰂺󰆟󰃎󰆢 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆞󰆦 󰆝󰂺󰆢󰆤 󰆞󰂺󰆝󰆝 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆞󰆟󰂺󰆣󰆡󰃍󰆞󰆟󰂺󰆠󰆤󰄍󰆞󰆠󰃎󰆞󰆣 󰆞󰆟󰂺󰆠󰆟󰃍󰆞󰆞󰂺󰆥󰆣󰄍󰆞󰆟󰂺󰆡󰆦󰃎󰆥 󰆞󰆝󰂺󰆢󰆢󰃍󰆦󰂺󰆥󰆠󰄍󰆞󰆝󰂺󰆤󰆦󰃎󰆢 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆟󰆞 󰈵󰆞󰂺󰆝󰆤 󰈵󰆟󰂺󰆝󰆣 󰆝󰂺󰆝󰆝󰆞
 󰆞󰆟󰂺󰆣󰆡󰃍󰆞󰆟󰂺󰆠󰆤󰄍󰆞󰆠󰃎󰆞󰆣 󰆞󰆝󰂺󰆟󰆡󰃍󰆞󰆝󰂺󰆝󰆡󰄍󰆞󰆝󰂺󰆡󰆢󰃎󰆥 󰆥󰂺󰆥󰆢󰃍󰆤󰂺󰆦󰆟󰄍󰆦󰂺󰆡󰆠󰃎 󰄍 󰄍 󰄍 󰄍 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆣󰂺󰆡󰆟󰃍󰆣󰂺󰆝󰆞󰄍󰆥󰂺󰆣󰃎󰆞󰆣 󰆢󰂺󰆣󰆤󰃍󰆢󰂺󰆡󰆣󰄍󰆢󰂺󰆥󰆤󰃎󰆥 󰆢󰂺󰆞󰆥󰃍󰆡󰂺󰆥󰆣󰄍󰆢󰂺󰆡󰆣󰃎󰆢 󰈵󰆝󰂺󰆟󰆥 󰈵󰆝󰂺󰆥󰆞 󰈵󰆝󰂺󰆢󰆟 󰆡󰂺󰆢󰆝 󰈽󰆝󰂺󰆝󰆝󰆞
M3M3W 󰆞󰆝󰂺󰆠󰆞󰃍󰆦󰂺󰆣󰆤󰄍󰆞󰆟󰂺󰆠󰆤󰃎󰆞󰆣 󰆦󰂺󰆦󰆝󰃍󰆦󰂺󰆡󰆞󰄍󰆞󰆝󰂺󰆞󰆞󰃎󰆥 󰆥󰂺󰆟󰆤󰃍󰆤󰂺󰆥󰆞󰄍󰆥󰂺󰆥󰆞󰃎󰆢 󰈵󰆝󰂺󰆠󰆟 󰈵󰆝󰂺󰆡󰆞 󰆝󰂺󰆠󰆦 󰈵󰆡󰂺󰆡󰆠 󰆝󰂺󰆝󰆞󰆣
󰆾 󰆞󰆞󰂺󰆦󰆞󰃍󰆞󰆞󰂺󰆡󰆥󰄍󰆞󰆟󰂺󰆡󰆥󰃎󰆞󰆣 󰆞󰆞󰂺󰆟󰆠󰃍󰆞󰆞󰂺󰆝󰆠󰄍󰆞󰆞󰂺󰆡󰆢󰃎󰆥 󰆦󰂺󰆣󰆠󰃍󰆦󰂺󰆝󰆢󰄍󰆞󰆝󰂺󰆟󰆞󰃎󰆢 󰈵󰆝󰂺󰆠󰆢 󰆝󰂺󰆝󰆣 󰈵󰆝󰂺󰆡󰆝 󰆞󰂺󰆠󰆝 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆟󰆞󰂺󰆡󰆣󰃍󰆟󰆝󰂺󰆢󰄍󰆟󰆟󰂺󰆢󰆡󰃎󰆞󰆣 󰆞󰆦󰂺󰆣󰆦󰃍󰆞󰆥󰂺󰆦󰆢󰄍󰆟󰆝󰂺󰆟󰆥󰃎󰆥 󰆞󰆣󰂺󰆦󰆦󰃍󰆞󰆢󰂺󰆤󰆤󰄍󰆞󰆤󰂺󰆢󰆦󰃎󰆢 󰄍 󰄍 󰄍 󰄍 󰈽󰆝󰂺󰆝󰆝󰆞
cm3L 󰆞󰆟󰂺󰆦󰆣󰃍󰆞󰆟󰂺󰆢󰆟󰄍󰆞󰆠󰂺󰆡󰆞󰃎󰆞󰆣 󰆞󰆟󰂺󰆟󰆟󰃍󰆞󰆞󰂺󰆦󰆣󰄍󰆞󰆟󰂺󰆣󰃎󰆥 󰆞󰆝󰂺󰆤󰆝󰃍󰆦󰂺󰆦󰆤󰄍󰆞󰆞󰂺󰆟󰆣󰃎󰆢 󰄍 󰄍 󰄍 󰄍 󰈽󰆝󰂺󰆝󰆝󰆞
m1m3L 󰆤󰂺󰆥󰆝󰃍󰆤󰂺󰆢󰆤󰄍󰆥󰂺󰆢󰆣󰃎󰆞󰆣 󰆤󰂺󰆠󰆣󰃍󰆤󰂺󰆞󰆢󰄍󰆤󰂺󰆢󰆡󰃎󰆥 󰆣󰂺󰆡󰆟󰃍󰆣󰂺󰆝󰆠󰄍󰆣󰂺󰆤󰃎󰆢 󰄍 󰄍 󰄍 󰄍 󰈽󰆝󰂺󰆝󰆝󰆞
󰇄
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
󰆿 Selected measurements 󰃍󰃎 of female group L.e󰂶 L. lyra and M.a󰂶 and vector correlation loadings with original variables of principal
components 󰃍󰆼 and 󰆽) and discriminant functions 󰃍󰆼 and 󰆽) for selected samples of female group L. l.e, L. l. lyra and M.a󰂺 See
Table 2 for variable abbreviation󰂺
Measurements L. l. sinense L. l. lyra M. spasma 󰇆 󰇇 󰇆 󰇇 p-value
 󰆠󰆝󰂺󰆦󰆣󰃍󰆠󰆝󰂺󰆞󰆥󰄍󰆠󰆞󰂺󰆤󰆠󰃎󰆞󰆤 󰆟󰆥󰂺󰆥󰆝󰃍󰆟󰆥󰄍󰆟󰆦󰂺󰆢󰆢󰃎󰆥 󰆟󰆢󰂺󰆞󰆝󰃍󰆟󰆡󰂺󰆞󰆟󰄍󰆟󰆢󰂺󰆥󰃎󰆡 󰈵󰆝󰂺󰆠󰆡 󰈵󰆝󰂺󰆞󰆟 󰈵󰆝󰂺󰆢󰆢 󰈵󰆝󰂺󰆢󰆞 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆟󰆤󰂺󰆢󰆥󰃍󰆟󰆣󰂺󰆠󰆦󰄍󰆟󰆥󰂺󰆢󰃎󰆞󰆤 󰆟󰆢󰂺󰆢󰆣󰃍󰆟󰆡󰂺󰆦󰆠󰄍󰆟󰆣󰂺󰆟󰆞󰃎󰆥 󰆟󰆟󰂺󰆟󰆢󰃍󰆟󰆞󰂺󰆠󰆢󰄍󰆟󰆟󰂺󰆥󰆦󰃎󰆡 󰈵󰆝󰂺󰆠󰆡 󰈵󰆝󰂺󰆝󰆣 󰈵󰆝󰂺󰆝󰆢 󰈵󰆠󰂺󰆢󰆟 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆢󰂺󰆢󰆢󰃍󰆢󰂺󰆟󰆣󰄍󰆣󰂺󰆝󰆦󰃎󰆞󰆤 󰆡󰂺󰆥󰆦󰃍󰆡󰂺󰆤󰆥󰄍󰆢󰂺󰆝󰆤󰃎󰆥 󰆠󰂺󰆣󰆡󰃍󰆠󰂺󰆠󰆡󰄍󰆠󰂺󰆦󰆣󰃎󰆡 󰈵󰆝󰂺󰆠󰆠 󰈵󰆝󰂺󰆠󰆝 󰈵󰆟󰂺󰆦󰆟 󰈵󰆞󰂺󰆥󰆦 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆞󰆤󰂺󰆡󰆝󰃍󰆞󰆣󰂺󰆥󰆟󰄍󰆞󰆥󰂺󰆝󰆦󰃎󰆞󰆤 󰆞󰆣󰂺󰆣󰆞󰃍󰆞󰆣󰂺󰆠󰆟󰄍󰆞󰆣󰂺󰆦󰃎󰆥 󰆞󰆠󰂺󰆥󰆡󰃍󰆞󰆟󰂺󰆥󰆤󰄍󰆞󰆡󰂺󰆟󰆦󰃎󰆡 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆟󰆢 󰆝󰂺󰆦󰆝 󰆞󰂺󰆢󰆣 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆞󰆠󰂺󰆡󰆦󰃍󰆞󰆟󰂺󰆥󰆣󰄍󰆞󰆠󰂺󰆦󰆟󰃎󰆞󰆤 󰆞󰆟󰂺󰆤󰆠󰃍󰆞󰆟󰂺󰆠󰆥󰄍󰆞󰆠󰂺󰆞󰆤󰃎󰆥 󰆞󰆝󰂺󰆦󰆤󰃍󰆞󰆝󰂺󰆢󰆤󰄍󰆞󰆞󰂺󰆠󰆤󰃎󰆡 󰈵󰆝󰂺󰆠󰆠 󰆝󰂺󰆟󰆝 󰈵󰆟󰂺󰆞󰆣 󰆝󰂺󰆥󰆞 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆞󰆟󰂺󰆥󰆣󰃍󰆞󰆟󰂺󰆠󰆤󰄍󰆞󰆠󰂺󰆟󰆥󰃎󰆞󰆤 󰆞󰆟󰂺󰆡󰆝󰃍󰆞󰆞󰂺󰆦󰆢󰄍󰆞󰆟󰂺󰆣󰆥󰃎󰆥 󰆞󰆝󰂺󰆡󰆢󰃍󰆞󰆝󰂺󰆝󰆢󰄍󰆞󰆝󰂺󰆣󰆢󰃎󰆡 󰈵󰆝󰂺󰆠󰆡 󰆝󰂺󰆠󰆝 󰈵󰆝󰂺󰆢󰆢 󰆠󰂺󰆢󰆥 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆞󰆞󰂺󰆟󰆟󰃍󰆞󰆝󰂺󰆣󰆣󰄍󰆞󰆟󰂺󰆝󰆤󰃎󰆞󰆤 󰆞󰆝󰂺󰆟󰆡󰃍󰆞󰆝󰂺󰆞󰄍󰆞󰆝󰂺󰆠󰆥󰃎󰆥 󰆥󰂺󰆢󰆢󰃍󰆥󰂺󰆠󰆤󰄍󰆥󰂺󰆥󰆞󰃎󰆡 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆣󰂺󰆠󰆢󰃍󰆣󰂺󰆝󰆦󰄍󰆣󰂺󰆤󰆟󰃎󰆞󰆤 󰆢󰂺󰆤󰆞󰃍󰆢󰂺󰆢󰆠󰄍󰆢󰂺󰆥󰆦󰃎󰆥 󰆢󰂺󰆝󰆦󰃍󰆡󰂺󰆦󰆡󰄍󰆢󰂺󰆠󰆦󰃎󰆡 󰈵󰆝󰂺󰆠󰆟 󰈵󰆝󰂺󰆤󰆣 󰆝󰂺󰆢󰆢 󰈵󰆡󰂺󰆥󰆡 󰈽󰆝󰂺󰆝󰆝󰆞
󰆠󰆠 󰆞󰆝󰂺󰆡󰆢󰃍󰆦󰂺󰆦󰆠󰄍󰆞󰆞󰂺󰆝󰆞󰃎󰆞󰆤 󰆞󰆝󰂺󰆝󰆥󰃍󰆦󰂺󰆦󰆟󰄍󰆞󰆝󰂺󰆟󰆡󰃎󰆥 󰆥󰂺󰆞󰆦󰃍󰆥󰂺󰆝󰆠󰄍󰆥󰂺󰆡󰃎󰆡 󰈵󰆝󰂺󰆠󰆠 󰆝󰂺󰆠󰆝 󰈵󰆞󰂺󰆤󰆦 󰆡󰂺󰆝󰆞 󰈽󰆝󰂺󰆝󰆝󰆞
󰇈 󰆞󰆞󰂺󰆥󰆣󰃍󰆞󰆞󰂺󰆡󰆢󰄍󰆞󰆟󰂺󰆡󰆡󰃎󰆞󰆤 󰆞󰆞󰂺󰆠󰆟󰃍󰆞󰆞󰂺󰆝󰆡󰄍󰆞󰆞󰂺󰆢󰆦󰃎󰆥 󰆦󰂺󰆤󰆡󰃍󰆦󰂺󰆡󰆢󰄍󰆞󰆝󰂺󰆝󰆟󰃎󰆡 󰈵󰆝󰂺󰆠󰆠 󰆝󰂺󰆞󰆣 󰈵󰆝󰂺󰆡󰆝 󰆠󰂺󰆡󰆞 󰈽󰆝󰂺󰆝󰆝󰆞
 󰆟󰆞󰂺󰆢󰆤󰃍󰆟󰆝󰂺󰆡󰆤󰄍󰆟󰆟󰂺󰆣󰆠󰃎󰆞󰆤 󰆞󰆦󰂺󰆣󰆣󰃍󰆞󰆦󰂺󰆟󰆦󰄍󰆟󰆝󰂺󰆝󰆤󰃎󰆥 󰆞󰆤󰂺󰆞󰆤󰃍󰆞󰆣󰂺󰆡󰆦󰄍󰆞󰆤󰂺󰆤󰃎󰆡 󰈽󰆝󰂺󰆝󰆝󰆞
󰆠 󰆞󰆠󰂺󰆝󰆠󰃍󰆞󰆟󰂺󰆟󰆡󰄍󰆞󰆠󰂺󰆣󰆠󰃎󰆞󰆤 󰆞󰆟󰂺󰆟󰆞󰃍󰆞󰆞󰂺󰆥󰆥󰄍󰆞󰆟󰂺󰆡󰆠󰃎󰆥 󰆞󰆝󰂺󰆣󰆢󰃍󰆞󰆝󰂺󰆡󰆟󰄍󰆞󰆞󰂺󰆝󰆟󰃎󰆡 󰈽󰆝󰂺󰆝󰆝󰆞
󰆞󰆠 󰆤󰂺󰆥󰆠󰃍󰆤󰂺󰆢󰆠󰄍󰆥󰂺󰆠󰃎󰆞󰆤 󰆤󰂺󰆠󰆦󰃍󰆤󰂺󰆟󰆣󰄍󰆤󰂺󰆢󰆞󰃎󰆥 󰆣󰂺󰆡󰆦󰃍󰆣󰂺󰆟󰆡󰄍󰆣󰂺󰆤󰆡󰃎󰆡 󰈽󰆝󰂺󰆝󰆝󰆞
󰆼󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
baculum was draw󰂶 and its maximum
length was measured using a Mitutoyo dig󰄀
ital calliper to the nearest 󰆓󰂺󰆓󰆔m under a
stereomicroscop󰂺
Phylogenetic inference
Total genomic  was extracted with
DNeasy Blood & Tissue Kit 󰃍iage󰂶
y) according to the instructions of
the manufacturer from 󰄀
󰆔󰆛Lyroderma specimens
forming part of the genetic resources’ col󰄀
lections of 󰂶 󰂶 󰂶 
Pune and  Shillon󰂺
For phylogenetic analysi󰂶 the mitochon󰄀
drial cytochrome oxidase c subunit  󰃍󰂶
󰆚󰆘󰆙󰃎 and the cytochrome b gene 󰃍cytb󰂶
󰆔󰆔󰆗󰆓 󰃎     󰄀
󰆔󰆚󰆓󰆘󰃈tyrLA 󰃍assanin 󰂺󰂶 󰆕󰆓󰆔2)
and 󰄀󰃈󰄀 󰃍báñ 󰂺󰂶󰆕󰆓󰆓󰆙󰂷
Weyeneth  󰂺󰂶 󰆕󰆓󰆓󰆛󰃎󰂶 󰂺 
reactions were performed in 󰆘󰆓 µl using
1 µl 󰃍󰂺󰆕󰆓󰃎 of genomic 󰂶 󰆔󰄀󰆔µl of the
primers 󰃍󰆔󰆓󰃎󰂶󰆗󰆓󰂺󰆕󰆘µl of 󰄀
wate󰂶 󰆔󰂺󰆘 µl of dNT󰂶 󰆘 µl of DreamTaq
  󰃍 󰂶 USA)
and 󰆓󰂺󰆕󰆘µl of DreamTaq  Polymerase
󰃍 󰂶 USA)󰂺 
works were done 󰄀 for respective
specimens housed in a particular museu󰂺
The  and cytb sequences were aligned
 󰆗 󰆗
of Staden Package 󰃍  󰂺󰂶 󰆔󰆜󰆜󰆘󰃎󰂺
The newly generated sequences were com󰄀
pared with 43  󰃍ncluding 󰆙utgroups)
and 14 cytb 󰃍ncluding 󰆙 utgroups) gene
sequences of false vampires downloaded
from the National Center for Biotechnology
Information 󰃍)  󰃍supple󰄀
mentary table S3)󰂺
The phylogenetic analysis was per󰄀
formed using the maximum likelihood
󰃍) metho󰂶 in the software 󰇂
󰃍umar 󰂺󰂶󰆕󰆓󰆔󰆙󰃎󰂺󰄀
por󰂶 we computed a nonparametric boot󰄀
  󰆔󰆓󰆓󰆓 󰂺 Additionall󰂶
the genetic distance 󰃍󰄀󰃎 of 
and cytb genes was calculated by Bootstrap
method using 󰇂󰂺
Results
Morphology and multivariate statistics
We could not establish any statistically
  󰃍aired samples
T󰄀󰂶 F 󰈺 󰆔󰂺󰆔3󰆗󰂶 󰈺 󰆓󰂺󰆕󰆜󰆘󰃎 between L. l.
 󰃍󰆙󰆚󰂺󰆚󰆙 󰈷 󰆔󰂺󰆓󰆙 󰃎 and L. l. lyra
󰃍󰆙󰆚󰂺󰆖 󰈷 󰆔󰂺󰆘󰆘 󰃎 with respect to forearm
length 󰃍)󰂺
The 󰄀 U Test was used to
compare thirteen cranial parameters of
males and females between two subspe󰄀
cie󰂺     
L. l.
lyra and L. l.e󰂺 On averag󰂶 within the
same se󰂶 the skull of L. l. is longer
and wider than that of L. l. lyra 󰃍󰆖
and 󰆗󰂶 󰂺󰆕󰂶 supplementary 󰂺1 and S2)
despite that overlapping values in all mea󰄀
surements were observe󰂺 Howeve󰂶 in
line with the observations of 󰃍ndersen
& Wroughto󰂶 󰆔󰆜󰆓󰆚󰃎󰂶    
interorbital region and the prenasal notch

taxa 󰃍ee details in the Introduction and
in 󰂺󰆕󰃎󰂺
    󰃍󰆼)
    󰆜󰆖󰂺󰆓󰆓% of
the total craniometric variation and
󰆼󰆼
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
       
the skull 󰃍󰂺 󰆖A and 4A)󰂺  
󰆼 axi󰂶 there is no overlap between the
groups of male M.  and L. l. lyra󰂶
or between M.  and L. l. e;
these groups show some overlap along
󰆽 between M.  and L. l. lyra󰂶
or between M.  and L. l. 
󰃍󰆕󰂺󰆗󰆗󰈱󰃎󰂺󰂶 male L. l. lyra and L. l.
 exhibit overlap along both 󰆼 and
󰆽󰂺 Along the 󰆼 axi󰂶 there is no over󰄀
lap among female M.a󰂶 L. l. lyra󰂶 and
L. l.e; howeve󰂶 on the 󰆽 axi󰂶 all
three groups show overlap 󰃍󰆕󰂺󰆓󰆚󰈱󰃎󰂺 
both male and female group󰂶 the fac󰄀
tor loadings show that the loadings for
   are very clos󰂶 while on the
second 󰂶 the factor loadings for 
and M3M3W are higher than those of
the other sample󰂶 indicating that they
are the most useful discriminant factors;
following thes󰂶 the next important dis󰄀
criminant factors include 󰂶 󰂶 and
 󰃍󰆖 and 󰆗󰂶 󰂺󰆖B and 4B)󰂺 
factor loadings of other 󰎤
supplementary tables S1 and S2󰂺 The 
of craniodental measurements shows
that in 󰆼󰂶 there is no overlap among the
󰆽 The dorsal and ventral views of the skulls of L.
󰃍󰆜󰆛󰂺󰆜󰆓󰂺󰆖󰆘󰂺) from Bac Tha󰂶 Vietnam 󰃍󰂶 c)󰂶
L. lyra 󰃍󰆜󰆕󰂺󰆚󰆚󰂺󰆔󰂺) from West Benga󰂶 India 󰃍󰂶 d)󰂺
󰈺e;󰈺t;󰈺
notch;󰈺e;󰈺󰂺󰈺
󰆔󰆓
󰆼󰆽 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
three species for both males 󰃍󰆛󰆜󰂺󰆙󰆚󰈱) and
females 󰃍󰆛󰆓󰂺󰆗󰆔󰈱󰃎󰂶󰆽󰂶 there is
some overlap among the three species in
male󰂶 and only between L. l. and
M. in females 󰃍󰂺󰆖C and 4C)󰂺
male󰂶 some parameters associated with
the length or width of the skull and max󰄀
illa 󰃍󰂶 󰂶 󰂶 ) are most help󰄀
ful in distinguishing these three groups
󰃍󰂺 󰆖󰂶 table 3)󰂺  󰂶 howeve󰂶
some parameters related to the width of
the skull and maxilla 󰃍󰂶 󰂶 M3M3󰂶
)  
these three groups 󰃍󰂺󰆗󰂶 table 4)󰂺
The baculum of both L. l.  and
L. l. lyra consists of two separat󰂶 󰄀
bones only partially connected with liga󰄀
ments; the penis bones of L. l. sinense are
distinctly longer than those of L. l. lyra󰂶
󰃍󰆔󰂺󰆓󰆔 m v󰂺 󰆓󰂺󰆙󰆜󰄍󰆓󰂺󰆚󰆕 m) and straight
󰃍󰂺 distinctly bent dorsoventrally in L. l.
lyra) 󰃍󰂺󰆘󰃎󰂺
Phylogenetic reconstructions
The newly obtained sequences included
 and cytb sequences for eight L. l.e󰂶
󰆔󰆓L. l. lyra󰂶 and one M.a󰂺 All novel
sequences were deposited in the 
󰆾 󰄀  and vector correlation 󰃍󰂶 B) and 󰄀  and vector
correlation 󰃍󰂶 D) of cranial measurements for male  󰃍reen dots)󰂶
Lyroderma lyra 󰃍ed dots) and  󰃍lue dots)󰂺
󰂶󰂺
󰆼󰆾
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
󰆿 󰄀  and vector correlation 󰃍󰂶 B) and 󰄀  and vector
correlation 󰃍󰂶 D) of cranial measurements for female  󰃍reen dots)󰂶
Lyroderma lyra 󰃍ed dots) and  󰃍lue dots)󰂺
󰂶󰂺
󰇀
The dorsal 󰃍eft) and lateral 󰃍ight) views of the baculum of 󰃍a) L.
󰃍󰆜󰆘󰂺󰆗󰆜󰂺󰆗󰂺) from Bac Tha󰂶 Vietnam; and 󰃍󰃎 L. lyra 󰃍󰆜󰆕󰂺󰆚󰆛󰂺󰆔󰂺)
from Maharasthr󰂶 Indi󰂺󰈺1 mm
󰆼󰆿 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
󰇁 Phylogenetic tree resulting from the Maximum Likelihood analysis of
 sequences of species of Megadermatida󰂶 numbers indicate nodal
suppor󰂶 the outgroup genes were derived from species of the genera
 and 󰂺
󰆼󰇀
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
󰇂 Phylogenetic tree resulting from the Maximum Likelihood analysis of cytb sequence of species
of Megadermatida󰂶 numbers indicate nodal suppor󰂶 the outgroup genes were derived from
species of the genera  and 󰂺
 󰄀
󰂶supplementary table S3󰂺
The  phylogenetic tree constructed
based on  and Cytb sequences revealed
similar phylogenetic relationship󰂶 with
L. l.  being closely related to and
forming a sister clade with L. l. lyra󰂶 while
M. grouped with species of other
genera within the Megadermatidae fam󰄀
il󰂶 despite the low nodal support for this
phylogeny and branching events 󰃍󰂺 󰆙
and 󰆚󰂶 supplementary 󰂺󰆖)󰂺
󰆼󰇁 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
󰄀 between L. l.  and L. l.
lyra for  is 1󰆕󰂺󰆙󰆔󰈱󰂶   󰂶 it is
󰆜󰂺󰆛󰆙󰈱󰂶󰄀
age 󰄀 for the two mitochondrial
genes between Lyroderma and Megaderma
󰃍oth are higher than 1󰆚󰈱; 󰆘 and 󰆙󰃎󰂺
Discussion
Although there have been variable
amounts of overlap among all the mea󰄀
sured craniodental character󰂶 we
   

of L. lyra󰂺 The results of the  of the
nine craniodental measurements showed
slight overlap between L. l.  and
L. l. lyra male󰂶 whereas the results of the
 showed no overlap in 󰆼 between
male and female L. l.e󰂶 L. l. lyra󰂶 and
M. a󰂺
The morphological diversity of the
mammalian baculum is subject to direct
selection as a result of their role in copu󰄀
lation 󰃍  󰂶
󰆕󰆓󰆔󰆚󰂷 Stockle󰂶 󰆕󰆓󰆔2)󰂶 
of the baculum of adult individuals is
󰇀 Average 󰄀 within Megadermatidae based on  sequence󰂺 Boldface value indicates
the distance between  and Lyroderma lyra󰂺
Taxa 1 2 3 4 5 6 7
󰆞 󰄍
󰆟Lyroderma lyra 󰆝󰂺󰆞󰆟󰆣󰆞 󰄍
󰆠
thongareeae
󰆝󰂺󰆞󰆤󰆞󰆢 󰆝󰂺󰆟󰆝󰆝󰆣 󰄍
󰆡 󰆝󰂺󰆞󰆥󰆥󰆣 󰆝󰂺󰆞󰆦󰆥󰆥 󰆝󰂺󰆞󰆣󰆦󰆟 󰄍
󰆢 󰆝󰂺󰆞󰆦󰆠󰆤 󰆝󰂺󰆞󰆦󰆣󰆥 󰆝󰂺󰆞󰆦󰆣󰆥 󰆝󰂺󰆞󰆦󰆞󰆡 󰄍
󰆣Cardioderma cor 󰆝󰂺󰆞󰆥󰆟󰆦 󰆝󰂺󰆟󰆝󰆠󰆟 󰆝󰂺󰆞󰆦󰆢󰆤 󰆝󰂺󰆞󰆥󰆢󰆤 󰆝󰂺󰆞󰆦󰆞󰆞 󰄍
󰆤 󰆝󰂺󰆞󰆥󰆞󰆥 󰆝󰂺󰆞󰆥󰆦󰆝 󰆝󰂺󰆞󰆥󰆣󰆡 󰆝󰂺󰆞󰆤󰆝󰆝 󰆝󰂺󰆞󰆥󰆠󰆝 󰆝󰂺󰆞󰆦󰆣󰆝 󰄍
󰇁 Average 󰄀 genetic distance within Megadermatidae based on cytb sequence󰂺
Boldface value indicates the distance between  and Lyroderma lyra󰂺
Taxa 1 2 3 4 5 6
󰆞 󰄍
󰆟Lyroderma lyra 󰆝󰂺󰆝󰆦󰆥󰆣 󰄍
󰆠 󰆝󰂺󰆞󰆥󰆡󰆠 󰆝󰂺󰆞󰆤󰆦󰆣 󰄍
󰆡 󰆝󰂺󰆞󰆣󰆤󰆝 󰆝󰂺󰆞󰆣󰆥󰆠 󰆝󰂺󰆞󰆥󰆠󰆣 󰄍
󰆢Cardioderma cor 󰆝󰂺󰆞󰆤󰆞󰆞 󰆝󰂺󰆞󰆣󰆥󰆝 󰆝󰂺󰆞󰆣󰆝󰆠 󰆝󰂺󰆞󰆤󰆢󰆡 󰄍
󰆣 󰆝󰂺󰆞󰆣󰆤󰆞 󰆝󰂺󰆞󰆤󰆞󰆤 󰆝󰂺󰆞󰆤󰆞󰆥 󰆝󰂺󰆞󰆥󰆞󰆣 󰆝󰂺󰆞󰆣󰆦󰆠 󰄍
󰆼󰇂
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
considered a diagnostic criterion for spe󰄀
  󰃍ouangboubpha
 󰂺󰂶 󰆕󰆓󰆔󰆓󰂷 Latorr󰂶 󰆕󰆓󰆕3; Soisook  󰂺󰂶
󰆕󰆓󰆔󰆘󰂷 Srinivasulu 󰂺󰂶󰆕󰆓󰆕󰆓󰂷 Thoma󰂶󰆔󰆜󰆔󰆘󰂷
Vercillo & Ragn󰂶 󰆕󰆓󰆔1)󰂺   
the baculum of a Lyroderma collected
in Thailand was about 1 mm 󰃍oisook
 󰂺󰂶 󰆕󰆓󰆔󰆘󰃎󰂶    
of an Indian specimen was about 󰆓󰂺󰆘m
󰃍rinivasulu 󰂺󰂶󰆕󰆓󰆕󰆓󰃎󰂶
our result󰂺
    
󰂶 which supports that bacular
features play an important role in the clas󰄀
   󰃍oisook
 󰂺󰂶 󰆕󰆓󰆔󰆘󰃎󰂺    
length between the two tax󰂶 but the simi󰄀
larity in structur󰂶 supports the idea that
L. and L. lyra are two separat󰂶 but
closely related specie󰂺
The phylogenetic reconstructions using
 and cytb gene sequence󰂶 conse󰄀
quently placed all Lyroderma samples into
a single clad󰂶 sister to a clade containing
all other gener󰂺 This result is consistent
with other recent phylogenies and sup󰄀
ports the validity of Lyroderma as a sepa󰄀
rate genus 󰃍ick 󰂺󰂶󰆕󰆓󰆓󰆘󰂷 Kanuch 󰂺󰂶
󰆕󰆓󰆔󰆘󰂷 Soisook 󰂺󰂶󰆕󰆓󰆔󰆘󰃎󰂺
Phylogenetic analyses also evidenced
that L. lyra is divided into two independent
clade󰂶 and the genetic distances between
the  and cytb gene fragments were
more than 12% and nearly 1󰆓󰈱 between L.
lyra lyra and L.e󰂶 respectivel󰂺 In
line with the widely accepted view 󰃍radle
& Bake󰂶 󰆕󰆓󰆓1) this magnitude of genetic
 
   
statu󰂺 The congruent results of the mor󰄀
phologica󰂶 morphometri󰂶 and molecular
analyses in the present study strongly sup󰄀
port the view of Andersen and Wroughton
󰃍󰆔󰆜󰆓󰆚󰃎 that the genus Lyroderma consists
of two specie󰂶 L. lyra and L.e󰂺
The critical evaluation of previous
work󰂶 based on craniodental measure󰄀
ments and the structure of the interorbital
regio󰂶 helped us to clarify the taxonomic
status of the populations in Afghanistan
and Pakistan where neither directly com󰄀
parable museum specimens nor molecu󰄀
lar data were available fro󰂺󰂺
󰃍󰆕󰆓󰆕󰆓󰃎 reported the species from Jhelu󰂶
Punja󰂶 Pakista󰂶 and as it can be judged
from the 󰄀quality photograph󰂶 on
the bases of the shape of the interorbital
regio󰂶 anterior narial emargination and
the interpterygoid region 󰃍󰂺󰆔󰃎󰂶󰄀
lation is more likely to represents L. lyra
󰃍󰂺󰂶 󰆕󰆓󰆕󰆓󰃎󰂺
󰃍󰆕󰆓󰆔󰆘󰃎 provided  measurements 󰃍he
trait which proved to be a reliable distin󰄀
guishing character between “lyra” and
e󰂶  󰂺 󰆔 and table 3) of three
Afghani specimens 󰃍ange 󰆗󰂺󰆙󰆙󰄍󰆗󰂺󰆚󰆜m)󰂺
Both above publications concur with
the view of previous authors 󰃍ates
& Harriso󰂶 󰆔󰆜󰆜󰆚󰂷 Corbet & Hil󰂶 󰆔󰆜󰆜2;
Khajuri󰂶 󰆔󰆜󰆛󰆓󰂷 Srinivasulu & Srinivasul󰂶
󰆕󰆓󰆔2)󰂶    
of Lyroderma belongs to L. lyra󰂺
The Myanmar specimens held in the
collection of  󰃍robably these are
the same individuals as listed by Sinha)
     lyra given by
Sinha 󰃍󰆔󰆜󰆛󰆓󰃎 󰃍ee the upper mensural
extremes of L. lyra given in table 3)󰂶 
the morphology of the interorbital regio󰂶
narial emarginatio󰂶 and the interptery󰄀
goid regio󰂶 indee󰂶   
specimens as L. lyra 󰃍󰂺󰆔󰃎󰂺
󰆼󰇃 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
Conclusion
      
included both former subspecies of L. lyra
in a phylogenetic framework and used the
widest geographic sampling of the taxon
e so fa󰂺
󰄀
ment󰂶        
the taxa “lyra” and “e󰂺  
were corroborated by multivariate statis󰄀
tical analyses 󰃍 and ) and by phy󰄀
logenetic tree reconstructions based on
mitochondrial marker󰂺 This integrative
approach provides solid evidence that the
two former subspecies represent separate
specie󰂶 L. lyra and L.e󰂺 Additionall󰂶
our results also supported that the west󰄀
ernmost and Myanmar populations of
Lyroderma belongs to L. lyra󰂺 To sum u󰂶
L. is distributed in southern Chin󰂶
Thailan󰂶 Lao󰂶 Vietna󰂶 Cambodi󰂶 and
Malaysi󰂶 whereas L. lyra occurs from
Afghanistan to Myanmar 󰃍󰂺 󰆔󰃎󰂺  
presence of L. lyra can be assumed in east
Myanma󰂶 future studies should involve
the collection of more samples from that
country and from the surrounding area󰂶

Myanmar populations and to determine
the precise distribution boundaries of the
two specie󰂺
Acknowledgements
Li Xin and Li Xinyao are acknowledged for
their invaluable suggestions on an earlier
version of the manuscrip󰂺 The prepara󰄀
tion of the geographical distribution map
was greatly enhanced by the contributions
of Li Dianjun and Wang Zhiqian󰂺 Dai
Wentao and Shi Shengchao are thanked
for their assistance in specimen collectio󰂺
Furthermor󰂶 Liu Yingxun is appreciated
for her help with morphometric analysi󰂺
Boris Krystufek 󰃍)󰂶  
󰃍)󰂶    󰃍)
kindly provided access to the specimens
under their car󰂺 We thank three anony󰄀
󰂺
Author contributions
Fen󰂹 󰂶 methodolog󰂶
formal analysi󰂶  󰄍  󰂶
n; röss󰂹 data curatio󰂶
methodolog󰂶 formal analysi󰂶  󰄍
review & editing; Portela Mique󰂹
resource󰂶  󰄍   g;
Kokkin󰂹 resource󰂶  󰄍  
editing;örfö󰂹󰄍 󰄀
in󰂶 supervisio󰂶 funding acquisition; Ali
Kha󰂹 resource󰂶 funding acquisition;
Saiki󰂹 resource󰂶  󰄍  
editing; Talmal󰂹 resources; Y󰂹 resources;
Li󰂹 resources; Jian󰂹󰄍
editin󰂶 supervisio󰂶 funding acquisition;
Csorb󰂹 󰂶 resource󰂶
󰄍  󰂶 supervisio󰂶
funding acquisitio󰂺

      
to declar󰂺
Funding
This research received support from the
National Natural Science Foundation of
China 󰃍rant 󰂺󰆖󰆕󰆖󰆚󰆔󰆘󰆙2) and the Spe󰄀
cial Foundation for National Science and
󰆼󰇄
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
Technology Basic Research Program of
China 󰃍󰆕󰆓󰆕󰆔󰆔󰆓󰆓󰆖󰆓1) to TLJ; from the
    
by the European Community Research
Infrastructure Action under the 󰇂
“Capacities” Program and by the National
Researc󰂶 Developmen󰂶 and Innovation
Fund of Hungary 󰃍 󰆔󰆖󰆚󰆚󰆚󰆛󰃎
󰂺
Supplementary material
Supplementary material is available online
a󰂹
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆙󰆓󰆛󰆗󰃈󰆜󰂺󰂺󰆕󰆚󰆚󰆔
󰆛󰆛󰆖󰆜󰂺
References
Andersen󰂶 󰂺 & Wroughton󰂶 󰂺󰂺 󰃍1󰆜󰆓󰆚)󰂺
bats of the family Megadermatidae󰂺 
 󰆔󰆜󰂹 12󰆜󰄍14󰆘󰂺
American Society of Mammalogists 󰃍)
󰃍2󰆓󰆕4)  Mammal Diversity Database󰂶
Version󰆔󰂺󰆔󰆖󰂺 Available a󰂹 htt󰂹󰃈󰃈w󰂺 am
maldiversit󰂺 r󰃈nde󰂺󰎛󰃍Accessed
󰆕󰆓󰆕󰆓󰆕󰆗)󰂺
Bates󰂶 󰂺󰂺󰂺 & Harrison󰂶 󰂺󰂺 󰃍1󰆜󰆜󰆚)󰂺 
Indian Subcontinent󰂺 Harrison Zoological
Museum Publications󰂶 Sevenoak󰂶 UK󰂺
Benda󰂶 󰂺  r󰂶 󰂺 󰃍2󰆓󰆔󰆘)󰂺  󰃍amma󰄀
li󰂹 Chiroptera) of the Eastern Mediterra󰄀
nean and Middle Eas󰂺 󰆔󰆕󰂺 Bat fauna of
Afghanista󰂹 revision of distribution and
taxonomy󰂺  -
micae 󰆚󰆜󰂹󰆕󰆙󰆚󰄍4󰆘󰆛󰂺
d󰂶 󰂺󰂺󰂶h󰂶 󰂺󰂺 & Staden󰂶 󰂺 󰃍1󰆜󰆜󰆘)󰂺
A new  sequence assembly program󰂺
 23󰃍24)󰂹󰆗󰆜󰆜2󰄍4󰆜󰆜󰆜󰂺
Bradle󰂶 󰂺󰂺 & Baker󰂶 󰂺󰂺 󰃍2󰆓󰆓1)󰂺   
genetic species concep󰂹 󰄀b
Sequences and Mammals󰂺 -
malogy 󰆛󰆕󰃍4)󰂹 󰆜󰆙󰆓󰄍󰆜󰆚3󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔󰆙󰆗󰆗󰃈󰆔󰆘󰆗󰆘󰄀󰆔󰆘󰆗󰆕2󰂺
Corbet󰂶 󰂺󰂺 & Hill󰂶 󰂺󰂺 󰃍1󰆜󰆜1)󰂺 
 󰂶 3rd edition󰂺 Oxford
University Press󰂶 Oxfor󰂶 UK󰂺
Corbet󰂶 󰂺󰂺 & Hill󰂶 󰂺󰂺 󰃍1󰆜󰆜2)󰂺  
   n:  
Review󰂺 Oxford University Press󰂶 Oxfor󰂶
UK󰂺
Csorba󰂶 󰂺 & Topál󰂶 󰂺 󰃍1󰆜󰆜4)󰂺
taxonomic status of Megaderma lyra from
Vietnam 󰃍ammali󰂶 Chiroptera)󰂺
󰃖   -
garici 󰆛󰆙󰂹 12󰆘󰄍132󰂺
Douangboubpha󰂶 󰂺󰂶 i󰂶 󰂺󰂶 k󰂶
󰂺󰂶k󰂶 󰂺󰂶s󰂶 󰂺󰂺 & Bates󰂶 󰂺󰂺󰂺
󰃍2󰆓󰆔󰆓)󰂺-
 species complex and H.
󰃍hiropter󰂹 Hipposideridae) in Thailand󰂺
Acta  12󰃍2)󰂹󰆗󰆔󰆘󰄍43󰆛󰂺 http󰂹󰃈󰃈
do󰂺r󰃈󰆔󰆓󰂺󰆖󰆔󰆙󰆔󰃈󰆔󰆘󰆓󰆛󰆔󰆔󰆓󰆔󰆓󰆘󰆖󰆚󰆜󰆜󰆓󰂺
Eick󰂶 󰂺󰂺󰂶 s󰂶 󰂺󰂺 & Matthee󰂶 󰂺󰂺
󰃍2󰆓󰆓󰆘)󰂺    phylogenetic per󰄀
spective on the evolution of echoloca󰄀
tion and historical biogeography of extant
bats 󰃍hiroptera)󰂺 Molecular Biology and
Evolution 22󰃍󰆜)󰂹 󰆔󰆛󰆙󰆜󰄍1󰆛󰆛󰆙󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈olbe󰃈󰆔󰆛󰆓󰂺
Ellerman󰂶 󰂺󰂺 & 󰄀󰂶 󰂺󰂺󰂺
󰃍1󰆜󰆘1)󰂺     
 󰅪󰅰󰅮󰅱  󰅪󰅲󰅭6󰂺 British Museum󰂶
Londo󰂶 UK󰂺
Friley󰂶 󰂺󰂺 󰃍1󰆜󰆗󰆚)󰂺   󰄀
tion of the baculum of mammals󰂺 
Mammalogy 󰆕󰆛󰃍4)󰂹󰆖󰆜󰆘󰄍3󰆜󰆚󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺2󰆖󰆓󰆚󰃈󰆔󰆖󰆚󰆘󰆖󰆙2󰂺
Hassanin󰂶 󰂺󰂶c󰂶 󰂺󰂶t󰂶 󰂺󰂶r󰂶
󰂺󰂶 n󰂶 󰂺󰂺󰂺󰂶 e󰂶 󰂺󰂺󰂶 󰄀
ía󰂶 󰂺󰂶 s󰂶 󰂺󰂶 g󰂶 󰂺󰂶
Nguyen󰂶 󰂺 & Couloux󰂶 󰂺 󰃍2󰆓󰆔2)󰂺 
     󰄀
dactyla 󰃍ammali󰂶 Laurasiatheria)󰂶 
󰆽󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼
revealed by a comprehensive analysis of
mitochondrial genomes󰂺 󰃣
 󰆖󰆖󰆘󰃍1)󰂹 󰆖2󰄍󰆘󰆓󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔󰆓󰆔󰆙󰃈󰂺rv󰂺󰆕󰆓󰆔󰆔󰂺󰆔󰆔󰂺󰆓󰆓2󰂺
Ibáñe󰂶 󰂺󰂶 í󰄀󰂶 󰂺󰂺󰂶 i󰂶 󰂺󰂶
Stadelmann󰂶 󰂺 & Juste󰂶 󰂺 󰃍2󰆓󰆓󰆙)󰂺 
Iberian contribution to cryptic diversity in
European bats󰂺 Acta  󰆛󰃍2)󰂹
󰆕󰆚󰆚󰄍2󰆜󰆚󰂺󰎛󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆖󰆔󰆙󰆔󰃈󰆔󰆚󰆖󰆖󰄀󰆘32󰆜
󰃍󰆕󰆓󰆓󰆙󰃎󰆛󰃕󰆕󰆚󰆚󰂹ICTC󰃖󰆕󰂺󰆓󰂺󰂷󰆕󰂺
Kanuch󰂶 󰂺󰂶a󰂶 󰂺󰂶u󰂶 󰂺󰂶Šumbera󰂶
󰂺 & Bryja󰂶 󰂺 󰃍2󰆓󰆔󰆘)󰂺   
the ecology and echolocation of the 󰄀
nosed bat Cardioderma cor with a contribu󰄀
tion to the phylogeny of Megadermatidae󰂺
  󰆘󰆓󰃍1)󰂹 1󰄍󰆘󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆔󰆓󰆛󰆓󰃈󰆔󰆘󰆙󰆕󰆚󰆓󰆕󰆓󰂺󰆕󰆓󰆔󰆘󰂺1󰆓󰆕󰆔󰆚󰆔1󰂺
Khajuria󰂶 󰂺 󰃍1󰆜󰆛󰆓)󰂺   󰄀
logical studies on the bats of Jabalpur Dis󰂺
Madhya Prades󰂶 India 󰃍amilies Megader󰄀
matida󰂶 Rhinolophidae and Vespertilioni󰄀
dae)󰂺 Rec.     c.
 󰆔󰆜󰂹 1󰄍󰆙󰆜󰂺 Zoological Survey of India󰂶
New Alipore Kolkat󰂶 India󰂺
Kumar󰂶 󰂺󰂶 r󰂶 󰂺 & Tamura󰂶 󰂺 󰃍2󰆓󰆔󰆙)󰂺
󰇂󰂹 Molecular evolutionary genet󰄀
ics analysis version 󰆚󰂺󰆓 for bigger datas󰄀
ets󰂺 Molecular Biology and Evolution 33󰃍󰆚)󰂹
󰆔󰆛󰆚󰆓󰄍1󰆛󰆚4󰂺󰎛󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺1󰆓󰆜󰆖󰃈olbev
󰃈󰆓󰆘4󰂺
Latorre󰂶 󰂺󰂺󰂺 󰃍2󰆓󰆕3)󰂺󰄀
cies of Borophaginae 󰃍amil󰂹 Canidae)󰂹
Implications for their reproductive biol󰄀
ogy󰂺   1󰆛󰃍1)󰂹 󰆓󰆕󰆛󰆓󰆖󰆕󰆚󰂺 http󰂹󰃈󰃈
do󰂺r󰃈󰆔󰆓󰂺󰆔󰆖󰆚󰆔󰃈ourna󰂺on󰂺󰆓󰆕󰆛󰆓󰆖󰆕󰆚󰂺
Lekagul󰂶 󰂺 & McNeely󰂶 󰂺󰂺 󰃍1󰆜󰆚󰆚)󰂺 
 d󰂺 Sahakarnbbat󰂶 Bangko󰂶
Thailand󰂺
Maskey󰂶 󰂺󰂶 i󰂶 󰂺 & Nguyen󰂶 󰂺󰄀󰂺 󰃍2󰆓󰆔󰆛)󰂺
of exploratory factor analysis in maritime
research󰂺  
 34󰃍2)󰂹 󰆜1󰄍111󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔󰆓󰆔󰆙󰃈󰂺js󰂺󰆕󰆓󰆔󰆛󰂺󰆓󰆙󰂺󰆓󰆓󰆙󰂺
Nachar󰂶 󰂺 󰃍2󰆓󰆓󰆛)󰂺  󰄀 󰂹 A
test for assessing whether two indepen󰄀
dent samples come from the same distribu󰄀
tion󰂺     
 4󰃍1)󰂹󰆔3󰄍󰆕󰆓󰂺
Rakotondramanana󰂶 󰂺󰂺  n󰂶 󰂺󰂺
󰃍2󰆓󰆔󰆚)󰂺      󰄀
ogy of Malagasy bats󰂺 Acta 
󰆔󰆜󰃍1)󰂹󰆘1󰄍󰆚󰆓󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆖󰆔󰆙󰆔󰃈󰆔󰆘󰆓󰆛󰆔󰆔󰆓󰆜
󰆕󰆓󰆔󰆚󰂺󰆔󰆜󰂺󰆔󰂺󰆓󰆓4󰂺
R Core Team 󰃍2󰆓󰆕1)󰂺 󰂹 A language and envi󰄀
ronment for statistical computing󰂺 R Foun󰄀
dation for Statistical Computin󰂶 Vienn󰂶
Austria󰂺 Available a󰂹 http󰂹󰃈󰃈w󰂺󰄀
󰂺r󰃈󰂺
Sanborn󰂶 󰂺󰂺 󰃍1󰆜󰆖3)󰂺 
Kweicho󰂶 China󰂺 -
 󰆗󰆙󰂹󰆘󰆘󰄍󰆘󰆙󰂺
Shahba󰂶 󰂺󰂶 h󰂶 󰂺󰂶 n󰂶 󰂺󰂶 d󰂶 󰂺󰂶
Attaullah󰂶 Rasheed󰂶 󰂺󰂺󰂶 r󰂶 󰂺󰂶 h󰂶
󰂺󰂶 b󰂶 󰂺󰂶 n󰂶 󰂺󰂺󰂶 d󰂶 󰂺󰂺󰂶 n󰂶
󰂺󰂺󰂶 n󰂶 󰂺󰂶 h󰂶 󰂺󰂶 q󰂶 󰂺 &
Hussain󰂶 󰂺 󰃍2󰆓󰆕󰆓)󰂺   
Indian false vampire bat 󰃍Megaderma lyra)
from district Jhelu󰂶 Pakistan󰂺 Brazilian
Biology 󰆛󰆔󰃍4)󰂹󰆜󰆖4󰄍󰆜3󰆜󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆘󰆜󰆓󰃈󰆔󰆘󰆔󰆜󰄀󰆙󰆜󰆛4󰂺
Simmons󰂶 󰂺󰂺 󰃍2󰆓󰆓󰆘)󰂺  a󰂺 I󰂹
󰂺 Wilson and 󰂺󰂺 Reeder 󰃍d󰂺) Mammal
   d. A Taxonomic and
 e󰂶 󰂺 312󰄍󰆘2󰆜󰂺 The
Johns Hopkins University Press󰂶 Baltimor󰂶
MD󰂶 USA󰂺
Simmons󰂶 󰂺󰂺 & Cirranello󰂶 󰂺󰂺 󰃍2󰆓󰆕4)󰂺 Bat
d: A Taxonomic and Geo-
 e󰂺 American Museum of
Natural History󰂶 New Yor󰂶 NY󰂶 USA󰂺 Avail󰄀
able a󰂹 http󰂹󰃈󰃈atname󰂺r󰃈om󰂺tml󰂺
󰆽󰆼
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰆽󰆼󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇂󰆾
Singh󰂶 󰂺 & Sharma󰂶 󰂺󰂺 󰃍2󰆓󰆕3)󰂺󰄀
      
Bat 󰃍Megaderma lyra󰂶  󰆔󰆛󰆔󰆓󰃎 from
󰄀 Himalaya󰂺   -
Science 13󰃍2)󰂹󰆖󰆚󰆚󰄍3󰆛2󰂺 htt󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆔󰆔󰆘󰆜󰆗󰃈tl󰂺󰆔󰆖󰂺󰆓󰆕󰂺󰆔󰆙󰂺
Sinha󰂶 󰂺󰂺 󰃍1󰆜󰆛󰆓)󰂺    󰂹 tax󰄀
  y󰂺   
 󰆚󰆙󰂹 󰆚󰄍󰆙󰆖󰂺 http󰂹󰃈󰃈
do󰂺r󰃈󰆔󰆓󰂺󰆕󰆙󰆘󰆔󰆘󰃈󰃈󰆚󰆙󰃈󰆔󰄀󰆗󰃈󰆔󰆜󰆛󰆓󰃈󰆔󰆙󰆔󰆛󰆙1󰂺
Soisook󰂶 󰂺󰂶r󰂶 󰂺󰂶n󰂶 󰂺󰂶 s󰂶
󰂺󰂺 & Bates󰂶 󰂺󰂺󰂺 󰃍2󰆓󰆔󰆘)󰂺
species of false vampire 󰃍hiropter󰂹 Mega󰄀
dermatidae) from peninsular Thailand󰂺
 󰆖󰆜󰆖󰆔󰃍4)󰂹󰆘󰆕󰆛󰄍󰆘󰆘󰆓󰂺 htt󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔󰆔󰆙󰆗󰆙󰃈ootax󰂺󰆖󰆜󰆖󰆔󰂺󰆗󰂺󰆗󰂺
Srinivasulu󰂶 󰂺󰂶r󰂶 󰂺󰂶h󰂶 󰂺󰂶a󰂶 󰂺󰂶
Asad󰂶 󰂺󰂶n󰂶 󰂺 & Srinivasulu󰂶 󰂺 󰃍2󰆓󰆕󰆓)󰂺
A review of the bacular morphology of
some Indian bats 󰃍ammali󰂹 Chiroptera)󰂺
    12󰃍󰆜)󰂹 󰆔󰆘󰆜󰆛󰆘󰄍
1󰆙󰆓󰆓󰆘󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆔󰆙󰆓󰆜󰃈ot󰂺󰆘󰆙󰆘󰆓󰂺󰆔󰆕
󰂺󰆜󰂺󰆔󰆘󰆜󰆛󰆘󰄀󰆔󰆙󰆓󰆓󰆘󰂺
Srinivasulu󰂶 󰂺 & Srinivasulu󰂶 󰂺 󰃍2󰆓󰆔2)󰂺 South
 󰂏  y, -
tion, and Statu󰂺 Springer󰂶 Berli󰂶y󰂺
Stockley󰂶 󰂺 󰃍2󰆓󰆔2)󰂺 m󰂺 Current Biol-
ogy 22󰃍24)󰂹󰆼󰆻󰆾󰆽󰄍󰆼󰆻󰆾󰆾󰂺
Thomas󰂶 󰂺 󰃍1󰆜󰆔󰆘)󰂺󰄀󰂶 or baculu󰂶
       
squirrels󰂺     
 󰆛󰃍󰆔󰆘)󰂹󰆖󰆛3󰄍3󰆛󰆚󰂺
Vercillo󰂶 󰂺 & Ragni󰂶 󰂺 󰃍2󰆓󰆔1)󰂺 
discrimination between  and
 in Ital󰂹 The use of the bacu󰄀
lum󰂺  22󰃍2)󰂹 󰆖󰆕󰆘󰄍331󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆗󰆗󰆓󰆗󰃈󰄀󰆕󰆕󰂺󰆕󰄀󰆗󰆙󰆙󰆜󰂺
Volleth󰂶 󰂺󰂶 üller󰂶 󰂺󰂶 r󰂶 󰂺󰄀󰂺󰂶 v󰂶
󰂺󰂶 r󰂶 󰂺󰂶 g󰂶 󰂺󰄀󰂺󰂶 r󰂶 󰂺󰂺󰂶 n󰂶
󰂺󰂺󰂺 & 󰄀󰂶 󰂺󰂺 󰃍2󰆓󰆕1)󰂺 󰄀
netic analyses detect cryptic diversity in
  from Malaysia󰂺 Acta
 23󰃍2)󰂹 󰆕󰆚1󰄍2󰆛4󰂺 http󰂹󰃈󰃈oi
󰂺or󰃈󰆔󰆓󰂺󰆖󰆔󰆙󰆔󰃈󰆔󰆘󰆓󰆛󰆔󰆔󰆓󰆜󰆕󰆓󰆕󰆔󰂺󰆕󰆖󰂺󰆕󰂺󰆓󰆓1󰂺
Wei󰂶 󰂺 󰃍2󰆓󰆕3)󰂺    
  a󰂺 Science Press󰂶 Beijin󰂶
China󰂺
Weyeneth󰂶 󰂺󰂶 n󰂶 󰂺󰂺󰂶 y󰂶 󰂺󰂺
& Ruedi󰂶 󰂺 󰃍2󰆓󰆓󰆛)󰂺   
 bats 󰃍hiropter󰂹 Miniopteri󰄀
dae) from the Comoro Archipelago inferred
from mitochondrial 󰂺 Molecular Ecology
󰆔󰆚󰃍24)󰂹 󰆘󰆕󰆓󰆘󰄍󰆘21󰆜󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔11󰆔󰃈
󰂺󰆔󰆖󰆙󰆘󰄀󰆕󰆜󰆗󰂺󰆕󰆓󰆓󰆛󰂺󰆓󰆖󰆜󰆜󰆗󰂺󰂺
Wilson󰂶 󰂺󰂺 & Mittermeier󰂶 󰂺󰂺 󰃍2󰆓󰆔󰆜)󰂺
      
󰂣 󰅲󰂤: Bat󰂺 Lynx Edicions󰂶 Barcelon󰂶
Spain󰂺
Wilson󰂶 󰂺󰂺 & Reeder󰂶 󰂺󰂺 󰃍2󰆓󰆓󰆘)󰂺 Mammal
   d󰂺 The Johns Hopkins
University Press󰂶 Baltimor󰂶 MD󰂶 USA󰂺
Wu󰂶 󰂺 & Harada󰂶 󰂺 󰃍2󰆓󰆓󰆙)󰂺
species of bats 󰃍ammali󰂹 Chiroptera)
 󰂶 China󰂺 Acta Theriologica
Sinica 󰆕󰆙󰃍4)󰂹󰆗󰆓3󰄍4󰆓󰆙󰂺
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
India has been stated to have 10% of the world's total bat's diversity. The present survey was aimed to study the bat species diversity, distribution and activity patterns in northwestern Himalayan region of India. Field surveys were conducted and echo-location calls were recorded using bat detector, Echometer touch 2 in Shiwalik ranges of Himalaya. The Greater False Vampire Bat (Megaderma lyra) has a broad distribution range that stretches from south to south east Asia. In India the distribution of the species was mostly recorded from southern subtropical coastal regions and northeast -ern subtropical moist evergreen forests. In the present study The Greater False Vam-pire Bat (Megaderma lyra) has been recorded for the first time from Garhwal region of northwestern Himalayas. Greater False Vampire Bat (Megaderma lyra) having long forearm (>6.63 ± 0.03cm) and lengthy ear (>3.66 ± 0.08cm), which is a distin-guishable feature of the family Megadermatidae. The peak frequency (FMaxE) of echolocation was recorded as 50.295 ± 9.18 kHz. This frequency was initiated at 108.20 ± 2.51 kHz and terminated at 30.76 ± 1.37 kHz. The call structure recorded was very distinguishable and specific to this family.
Article
Full-text available
The baculum of mammals offers the opportunity to study the reproductive biology of extinct species given that it is a fossilizable part of the male genitalia and that its size and shape correlate with several aspects of the reproductive biology of extant mammals. Fossil bacula, however, are rare. Currently, bacula have been described from only two extinct species of canids, one from the subfamily Caninae and the other from the extinct subfamily Hesperocyoninae. Here, I describe the bacula of five extinct species of Borophaginae, each of which was found with other skeletal elements that have enabled identification to the species level. Two specimens (Aelurodon ferox and Aelurodon stirtoni) are largely complete, while the baculum from Carpocyon compressus is complete but still embedded in matrix that obscures some of its features. The bacula of Paratomarctus euthos and Desmocyon thomsoni are incomplete, but they provide useful information nonetheless. These borophagine bacula are similar to extant canines in being robust, having a urethral groove, and a simple distal end. These features suggest that the Borophaginae had long-lasting copulation and possibly spontaneous ovulation, similar to the extant canines. However, unlike the straight baculum of extant canines, borophagine bacula are ventrally curved (arched), which is also observed in the hesperocyonine baculum. The implication of this curvature for the reproductive biology of these animals remains unknown.
Article
Full-text available
We present the latest version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, MEGA has been optimized for use on 64-bit computing systems for analyzing bigger datasets. Researchers can now explore and analyze tens of thousands of sequences in MEGA. The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit MEGA is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OSX. The command line MEGA is available as native applications for Windows, Linux, and Mac OSX. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
Article
Full-text available
The purpose of this paper is to discuss the approaches that are undertaken while applying exploratory factor analysis (EFA) in maritime journals to attain a factor solution that fulfils the criteria of EFA, achieves the research objectives and makes interpretation easy. To achieve the aim of this paper, published articles across maritime journals will be examined to discuss the use of EFA. This will be followed by an example of EFA using an empirical data set to emphasise the approaches that can be undertaken to make appropriate decisions as to whether to retain or drop an item from the analysis to attain an interpretable factor solution. The results of this study demonstrate that majority of maritime studies employing EFA retain a factor solution based on the researchers’ subjective judgement. However, the researchers do not provide sufficient information to allow readers to evaluate the analysis. The majority of the reviewed papers failed to provide important information related to EFA explaining how the final factor structure has been acquired. Furthermore, some papers have failed to justify their decisions, for example, for deleting an item or retaining factors with single measured variable. The first contribution of this study is the analysis of how studies carried out in the maritime sector have been applying EFA in their studies. The second contribution of this study is to provide future researchers aiming to use EFA in their studies for the first time an example of a complete EFA process, explaining different steps that can be undertaken while carrying out EFA.
Article
As many as 17 subspecies are currently recognized for the lesser false vampire, Megaderma spasma along its wide distributional range, from India to Southeast Asia. Cytogenetic studies have been so far restricted to specimens from only four geographical regions, namely Malaysia, Thailand, China and the Philippines. We examined the karyotypes of M. spasma medium from Peninsular Malaysia and M. s. trifolium from Malaysian Borneo with conventional and molecular cytogenetic techniques, using whole chromosome painting probes from the vespertilionid Myotis myotis and the hipposiderid Aselliscus stoliczkanus. Both Megaderma subspecies showed the same diploid chromosome number, 2n = 38, but differed concerning interstitial heterochromatic segments and number and shape of heterochromatic B chromosomes. Comparison with published data revealed that the Bornean specimens ́ karyotype best resembled the chromosomal set of the Chinese specimen. In contrast, a single male specimen from Malaysian Borneo showed a different karyotype (2n = 40) without B chromosomes and interstitial heterochromatin, indicating that it may represent a cryptic, yet unknown Megaderma species. Key words: karyotype, fluorescence in-situ hybridization, cytotaxonomy, chromosomal evolution
Article
Bacular studies play a significant role in the case of bats and other mammals since it is considered an important taxon-specific character, thus helping in species discrimination. Structure of the baculum (os penis) also aids in examining and understanding cryptic diversity in bats. The baculum has been used in taxonomic studies of bats but such studies for Indian bats are few and far between. It was felt necessary to put together a comprehensive document depicting the bacular morphology of bats in India so as to be helpful for future bat studies. The penises of the bats were excised, treated with KOH, and then dyed with alizarin red to extract the bacula. The extracted bacula were measured using an oculometer, photographed, and preserved in glycerol. Of the total of 47 species of bats (belonging to nine families) collected and studied during the past decade, we present the bacular morphology of 44 species from peninsular India, Andaman Islands, and Jammu and Kashmir. Bacular morphology of eight taxa, namely, Eonycteris spelaea, Rhinolophus pusillus, R. lepidus monticola, R. cognatus, Hipposideros cf. grandis, Myotis peytoni, M. horsfieldii dryas, and M. longipes are presented here for the first time from India.
Article
We present information on the morphological structure and measurements of the os penis for eight families and 28 species of bats occurring on Madagascar, most being endemic to the island. For one of these families, Miniopteridae, no bacular structure was found and for a second family, Emballonuridae, the structure was absent in one species (Taphozous mauritianus). For the majority of taxa, the descriptions and measurements given herein of their respective bacula are presented for the first time in the published literature. In cases when samples are sufficient for certain species, we examine intra-specific variation in bacular morphology. For species the subject of previous published phylogeographical studies and which showed clade structure associated with elevational or latitudinal clines, we investigate if intra-specific differences in bacular structure are correlated with clade associations. We examine possible correlates associated with os penis measurements and, in general, across all species or within certain families, there was not a clear correlation between body size, as measured by forearm length, and different bacular measurements.
Article
Karyotypes and chromosomal data were presented for 7 species of bats that represent 4 families collected during field studies in Guangdong, China. The species investigated here were Cynopterus sphinx (2n = 34, FN = 58), Megaderma lyra (2n = 54, FN = 104), Hipposideros pomona (2n = 32, FN = 60), H. larvatus (2n = 32, FN = 60), Myotis davidii (2n = 46, FN = 52), Scotophilus heathi (2n = 36, FN = 54), Miniopterus australis (2n = 46, FN = 50). Hipposideros pomona and Myotis davidii were karyotyped for the first time. In addition, karyotypes of Cynopterus sphinx, Megaderma lyra, Hipposideros larvatus, Scotophilus heathi, and Miniopterus australis had not been previously reported in China.