Preprint

Quantum and classical control of single photon states via a mechanical resonator

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Optomechanical systems typically use light to control the quantum state of a mechanical resonator. In this paper, we propose a scheme for controlling the quantum state of light using the mechanical degree of freedom as a controlled beam splitter. Preparing the mechanical resonator in non-classical states enables an optomechanical Stern-Gerlach interferometer. When the mechanical resonator has a small coherent amplitude it acts as a quantum control, entangling the optical and mechanical degrees of freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-photon interference via a classically controlled beam splitter. The visibility of the two-photon interference is particularly sensitive to coherent excitations in the mechanical resonator and this could form the basis of an optically transduced weak-force sensor.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We show how to use the radiation pressure optomechanical coupling between a mechanical oscillator and an optical cavity field to generate in a heralded way a single quantum of mechanical motion (a Fock state). Starting with the oscillator close to its ground state, a laser pumping the upper motional sideband produces correlated photon-phonon pairs via optomechanical parametric down-conversion. Subsequent detection of a single scattered Stokes photon projects the macroscopic oscillator into a single-phonon Fock state. The nonclassical nature of this mechanical state can be demonstrated by applying a readout laser on the lower sideband to map the phononic state to a photonic mode and performing an autocorrelation measurement. Our approach proves the relevance of cavity optomechanics as an enabling quantum technology.
Article
Full-text available
Single photons provide excellent quantum information carriers, but current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed single photons, while linear-optics gates are inherently probabilistic. Here, we introduce a deterministic scheme for photonic quantum information. Our single, versatile process---coherent photon conversion---provides a full suite of photonic quantum processing tools, from creating high-quality heralded single- and multiphoton states free of higher-order imperfections to implementing deterministic multiqubit entanglement gates and high-efficiency detection. It fulfils all requirements for a scalable photonic quantum computing architecture. Using photonic crystal fibres, we experimentally demonstrate a four-colour nonlinear process usable for coherent photon conversion and show that current technology provides a feasible path towards deterministic operation. Our scheme, based on interacting bosonic fields, is not restricted to optical systems, but could also be implemented in optomechanical, electromechanical and superconducting systems which exhibit extremely strong intrinsic nonlinearities.
Article
Full-text available
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdropper's power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).
Article
A fourth-order interference technique has been used to measure the time intervals between two photons, and by implication the length of the photon wave packet, produced in the process of parametric down-conversion. The width of the time-interval distribution, which is largely determined by an interference filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.
Article
In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can—in principle now, but probably eventually in practice—be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
  • W S Warren
  • H Dahleh
Warren W S, Rabitz H and Dahleh M 1993 Science 259 1581
  • H Rabitz
  • R De Vivie-Riedle
  • M Kompa
Rabitz H, de Vivie-Riedle R, Motzkus M and Kompa K 2000 Science 288 824
  • T A Palomaki
  • J D Teufel
  • R W Simmonds
  • K W Lehnert
Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710
  • S Kolkowitz
  • A C B Jayich
  • Q P Unterreithmeier
  • S D Bennett
  • P Rabl
  • J G E Harris
  • M D Lukin
Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E and Lukin M D 2012 Science 335 1603
  • E Gavartin
  • P Verlot
  • T J Kippenberg
Gavartin E, Verlot P and Kippenberg T J 2012 Nature Nanotech. 7 509
  • R Maiwald
  • D Leibfried
  • J Britton
  • J C Bergquist
  • Leuchs G Wineland
Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G and Wineland D J 2009 Nature Phys. 5 551
  • S Basiri-Esfahani
  • C R Myers
  • A Armin
  • J Combes
  • G Milburn
Basiri-Esfahani S, Myers C R, Armin A, Combes J, Milburn G J 2015 Opt. Express 23 16008
  • H Jeong
  • Y Lim
  • M S Kim
Jeong H, Lim Y and Kim M S 2014 Phys. Rev. Lett. 112 010402
  • E Knill
  • R Laflamme
  • G J Milburn
Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
  • W P Bowen
  • G J Milburn
Bowen W P and Milburn G J 2015 Quantum Optomehanics (CRC Press)
  • E E Wollman
  • C U Lei
  • A J Weinstein
  • J Suh
  • A Kronwald
  • F Marquardt
  • A A Clerk
  • K Schwab
Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952
  • J M Pirkkalainen
  • E Damskagg
  • M Brandt
  • F Massel
  • M A Sillanpaa
Pirkkalainen J M, Damskagg E, Brandt M, Massel F and Sillanpaa M A 2015 Phys. Rev. Lett. 115 243601
  • F Lecocq
  • J B Clark
  • R W Simmonds
  • Aumentado J Teufel
Lecocq F, Clark J B, Simmonds R W, Aumentado J and Teufel J D 2015 Phys. Rev. X 5 041037
  • M R Vanner
  • Aspelmeyer M Kim
Vanner M R, Aspelmeyer M and Kim M S 2013 Phys. Rev. Lett. 110 010504
  • S Basiri-Esfahani
  • Akram U Milburn
Basiri-Esfahani S, Akram U and Milburn G J 2012 New J. Phys. 14 085017
  • K Borkje
Borkje K 2014 Phys. Rev. A 90 023806
  • U Akram
  • W Bowen
  • G J Milburn
Akram U, Bowen W P and Milburn G J 2013 New J. Phys. 15 093007
  • P Sekatski
  • M Sangouard
Sekatski P, Aspelmeye M and Sangouard N 2014 Phys. Rev. Lett. 112 080502
  • G S Agarwal
  • S Huang
Agarwal G S and Huang S 2012 Phys. Rev. A 85 021801
  • K Stannigel
  • P Rabl
  • A S Sorensen
  • M Lukin
  • P Zoller
Stannigel K, Rabl P, Sorensen A S, Lukin M D and Zoller P 2011 Phys. Rev. A 84 042341
  • P Komar
  • S D Bennett
  • K Stannigel
  • S J M Habraken
  • P Rabl
  • P Zoller
  • M D Lukin
Komar P, Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P and Lukin M D 2013 Phys. Rev. A 87 013839
  • G J Milburn
  • S Basiri-Esfahani
Milburn G J and Basiri-Esfahani S 2015 Proc. R. Soc. A. 471 20150280
  • M J Collins
  • C Xiong
  • I H Rey
  • T D Vo
  • J He
  • S Shahnia
  • C Reardon
  • T F Krauss
  • M J Steel
  • A Clark
  • B J Eggleton
Collins M J, Xiong C, Rey I H, Vo T D, He J, Shahnia S, Reardon C, Krauss T F, Steel M J, Clark A S and Eggleton B J 2013 Nature Commun. 4 2582
  • S Buckley
  • K Rivoire
  • J Vuckovic
Buckley S, Rivoire K and Vuckovic J 2012 Rep. Prog. Phys. 75 126503
  • R Riedinger
  • S Hong
  • R A Norte
  • J A Slater
  • J Shang
  • A G Krause
  • V Anant
  • M Aspelmeyer
  • S Gröblacher
Riedinger R, Hong S, Norte RA, Slater JA, Shang J, Krause AG, Anant V, Aspelmeyer M and Gröblacher S 2016 Nature 530 313
  • L C Comandar
  • B Fröhlich
  • J F Dynes
  • A W Sharpe
  • M Lucamarini
  • Z L Yuan
  • R V Penty
  • A Shields
Comandar L C, Fröhlich B, Dynes J F, Sharpe A W, Lucamarini M, Yuan Z L, Penty R V, Shields A J 2015 J. Appl. Phys. 117 083109
  • P Rohde
  • T C Ralph
Rohde P P and Ralph T C 2006 J. Mod. Opt. 53 1589
  • M A Broome
  • A Fedrizzi
  • S Rahimi-Keshari
  • J Dove
  • S Aaronson
  • T C Ralph
  • A G White
Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C and White A G 2013 Science 339, 794
  • J B Spring
  • B J Metcalf
  • P C Humphreys
  • W S Kolthammer
  • X M Jin
  • M Barbieri
  • A Datta
  • N Thomas-Peter
  • N K Langford
  • D Kundys
  • J Gates
Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C 2013 Science 339, 798
  • G Milburn
Milburn G J 2012 Proc. Roy Soc. A 370, 4469
  • M Yuan
  • V Singh
  • Y M Blanter
  • G Steele
Yuan M, Singh V, Blanter Y M, Steele G A 2015 Nature commun. 6 8491
  • M Eichenfield
  • J Chan
  • R M Camacho
  • K Vahala
  • O Painter
Eichenfield M, Chan J, Camacho R M, Vahala K J and Painter O 2009 Nature 462, 78
  • D E Chang
  • A H Safavi-Naeini
  • M Hafezi
  • O Painter
Chang D E, Safavi-Naeini A H, Hafezi M, Painter O 2011 New J. Phys. 13, 023003
  • E Stock
  • W Unrau
  • A Lochmann
  • J A Töfflinger
  • M Öztürk
  • A I Toropov
  • A K Bakarov
  • V A Haisler
  • D Bimberg
Stock E, Unrau W, Lochmann A, Töfflinger J A,Öztürk M, Toropov A I, Bakarov A K, Haisler V A, Bimberg D 2011 Semiconductor Sci. Technol. 26 014003
  • M Ludwig
  • A H Safavi-Naeini
  • O Painter
  • F Marquardt
Ludwig M, Safavi-Naeini A H, Painter O and Marquardt F 2012 Phys. Rev. Lett. 109, 063601
  • J Nunn
  • K Reim
  • K C Lee
  • V O Lorenz
  • B J Sussman
  • I A Walmsley
  • D Jaksch
Nunn J, Reim K, Lee K C, Lorenz V O, Sussman B J, Walmsley I A, Jaksch D 2008 Phys. Rev. Lett. 101 260502
  • H M Wiseman
  • G J Milburn
Wiseman H M and Milburn G J 1994 Phys. Rev. A 49 4110
  • G Milburn
Milburn G J 2008 Eur. Phys. J. Special Topics 159 113
  • J Chan
  • T M Alegre
  • A H Safavi-Naeini
  • J T Hill
  • A Krause
  • S Gröblacher
  • M Aspelmeyer
  • O Painter
Chan J, Alegre T M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478, 89
  • J Chan
  • A H Safavi-Naeini
  • J T Hill
  • Meenehan S Painter
Chan J, Safavi-Naeini A H, Hill J T, Meenehan S and Painter O 2012 Appl. Phys. Lett. 101 081115
  • B Q Baragiola
  • R L Cook
  • A M Brańczyk
  • J Combes
Baragiola B Q, Cook R L, Brańczyk A M, Combes J 2012 Phys. Rev. A 86 013811
  • K M Gheri
  • K Ellinger
  • T Pellizzari
  • P Zoller
Gheri K M, Ellinger K, Pellizzari T and Zoller P 1998 Fortschr. Phys. 46 401