This paper shows how the application of stochastic geometry to the analysis of wireless networks is greatly facilitated by (i) a clear separation of time scales, (ii) the abstraction of small-scale effects via ergodicity, and (iii) an interference model that reflects the receiver's lack of knowledge of how each individual interference term is faded. These procedures render the analysis both more manageable and more precise, as well as more amenable to the incorporation of subsequent features. In particular, the paper presents analytical characterizations of the ergodic spectral efficiency of cellular networks with single-user multiple-input multiple-output (MIMO) and sectorization. These characterizations, in the form of easy-to-evaluate expressions, encompass the coverage, the distribution of spectral efficiency over the network locations, and the average thereof.