ArticlePDF Available

Investigation of the effects of melatonin on lung tissue through the NLRP3/TLR2/NEK7 pathway in an experimental endotoxemia model

Authors:
64
Cell. Mol. Biol. (ISSN: 1165-158X)
1. Introduction
Sepsis is a heterogeneous syndrome characterized by
a highly intricate interplay between various biological
       
networks. Our understanding related to the key mecha-
nisms involved in the pathogenesis of sepsis has tremen-

chemicals is interconnected with pathophysiological me-
      
pleiotropic multifaceted mediators that connect and rewire

  [1, 2]. It


-
fore, in sepsis, crosstalks between complement and coagu-
lation pathways contribute to the disease aggressiveness
[3, 4].
Sepsis is an important cause of acute lung injury and its
more severe form, acute respiratory distress syndrome [5].
Acute lung injury caused by sepsis a major reason of re-
-
bility following damage to alveolar epithelial and endothe-
lial cells due to sepsis can lead to pulmonary edema [6].

against tissue damage caused by sepsis [7].
-
cule, is an endogenous hormone that is secreted at night
Original Article
Investigation of the eects of melatonin on lung tissue through the NLRP3/TLR2/
NEK7 pathway in an experimental endotoxemia model
Arif Osman Tokat1*, Osman Öztürk2, Aslı Okan3, Sümeyye Uçar4, Ece Eroğlu5, Züleyha Doğanyıği3,
Mert Ocak6, Şükrü Ateş7, Seher Yilmaz7
1 Yozgat Bozok University, Faculty of Medicine, Department of Thoracic Surgery, Yozgat, Turkey
2 Yozgat Bozok University, Faculty of Medicine, Department of Child Health and Diseases, Yozgat, Turkey
3Yozgat Bozok University, Faculty of Medicine, Department of Histology and Embryology, Yozgat, Turkey
4 Erciyes University, Faculty of Medicine, Department of Anatomy, Kayseri, Turkey
5 Yozgat Bozok University, Faculty of Medicine,Yozgat,Turkey
6 Ankara University, Faculty of Dentistry, Department of Anatomy, Ankara, Turkey
7 Yozgat Bozok University, Faculty of Medicine, Department of Anatomy, Yozgat, Turkey
Journal Homepage: www.cellmolbiol.org
Cellular and Molecular Biology

E-mail address: d.kahrizi@cellmolbiol.org (D. Kahrizi).

Doi: 0.14715/cmb/2024.70.10.10
Article Info Abstract
Article history:
Received: February 08, 2024
Accepted: June 09, 2024
Published: October 31, 2024
-
   -


             

-

      
    



           
            


   

Keywords: 
Use your device to scan and read
the article online
65
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
from the gland called pineal or pineal and plays contri-
butory role in the modulation of various biological func-
tions such as sleep, reproduction, immunity and biological

blood pressure regulation [8, 9]-
crine rhythm, regulating immune functions, and protection
[10, 11].
Melatonin has pleiotropic roles in the regulation of dif-
ferent cellular process including the sleep-wake cycle and
its receptors are widely distributed. A study conducted in
2014 reported that melatonin regulates mitogen-activa-

mediators in microbial-induced sepsis [12]. Melatonin ap-
pears to be associated with the sepsis state through its an-
[13, 14]  
Melatonin intervention may contribute to better survival
in a septic animal model [15–17]. In this regard, melatonin
   
septic shock due to sepsis.
-
sembled in the cytosol in response to damage-associated
and pathogen-associated stimuli as well as other danger



[18].
      -
tion of several cellular processes that stimulate additional


-
tions such as sepsis [19]. In addition, it is known that the
     
-
lated lung injury [20]


-
[21]
-
ted during Staphylococcus aureus-associated septic infec-
         
[20].

-

pattern recognition receptors covering various antigenic
determinants [22]
      
following sepsis-induced acute lung injury [23]
   -
gnizes a variety of microorganisms, such as viruses, fungi
     
       [24] -

conditions [25]-

from failure of multiple organs [26].
       
samples, including live specimens and various solid or
 
such as imaging and analysis of soft tissues and bones.
  
animals, contributing to its widespread use in the health
       
diagnostic method in animal studies, particularly in the re-
search and development of new drugs and agents [27, 28].
        


-


histopathological and immunohistochemical evaluation,

2. Material and Methods
2.1. Experimental groups
-
      
the formal approval (Ethical committee decision number:
-
       
   -
mental animals had free access to standard food and tap
water. All procedures were strictly in compliance with the
         
-
-
nistering ketamine hydrochloride (50 mg/kg intramuscular

mg/kg i.m./i.p.).
In our research design, Sprague-Dawley adult male rats

= 7), and these groups are listed below. Administration
   -
ding to the previously reported literature [1, 29, 30]. Addi-
    
possible morphological or symptomatic change. In the stu-
dy, all i.p. injection and gavage applications were perfor-
med at similar timings of the day. Since the current study

tissue in sepsis, melatonin was applied to the 3rd and 4th
-
tion of melatonin application in the 4th group, at the end
          
intraperitoneally after 1 hour of application.
Group 1 (Control group, n=7): 1 ml physiological
-
nistered to the animals via i.p. every day for 10 days.
Group 2 (Melatonin group, n=7): Animals were
given 1 ml i.p. melatonin at a dose of 10 mg/kg. It was
applied daily for 10 days [30].
Group 3 (LPS group, n=7):
a dose of 1 ml at a dose of 30 mg/kg was administered
to the animals i.p. as a single dose on the last day of the
[1].
Group 4 (Melatonin + LPS group, n=7): Animals
were given 10 mg/kg melatonin 1 ml i.p. was administered
   

of 1 ml.
2.2. Dissection of lung tissue of experimental groups


anesthesia, and lung tissue was dissected.
66
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
2.5. ELISA method
For biochemical analyses, tissue samples were taken
     

manufacturer was performed to determine rat MDA levels.
        

2.6. Micro CT method


-


 -
red for each sample using a Bruker Skyscan 1275 appa-
ratus located in Kontich, Belgium. For imaging through


ms, rotation step of 0.2, and a 360-degree rotation within

sagittal images for each sample were scrutinized utilizing
Dataviewer software from Skyscan, Kontich, Belgium.
For three-dimensional (3D) volumetric visualization and
     
-
laar, Belgium, was utilized.
2.7. Statistical analysis
   -
dings were compared by two-way analysis of variance
   
    
intensity (%) were compared by one-way analysis of va-
      
     p<0.05 was

used for multiple comparisons between groups.
3. Results
3.1. Histological analysis results
Bronchioles, alveolar, and pulmonary arteries were ob-
served in normal histological structure in the lung tissues
of the control and melatonin groups. Hemorrhage, cellular
-
     

1, Figure 1A).
3.2. Immunohistochemical analysis

 

2.3. Histological analysis

   -
     -
tion, the tissues were left under running water overnight.
   
series (70%, 80%, and 96%) for one day each. After being
left in 100% alcohol for 3 hours, the process was made

   
    -
-


-

according to whether 0 was none, 1 was mild, 2 was mode-
rate, and 3 was severe [31].
2.4. Immunohistochemical analysis
   
    -
cience, E-AB) were detected in the lung tissues taken from
   -
dase method. -70161) immunoreactivities were detected
by immunohistochemical analysis [29, 32]. After deparaf-
   

-
-


-

o
it was incubated with biotinylated goat anti-polyvalent

o    -
   
     
o-
-
     
     -
terstaining of the sections was done with Gill III Hema-
    
of the sections was done by passing through a series of
successively increasing alcohol dilutions and sealing with

an Olympus BX53 light microscope. Immunoreactivity
        
Bethesda, Maryland).
Groups Bleeding Cellular Inltration Alveolar wall thickening
 0.22±0.09 0.22±0.09 0.11±0.09
 0.22±0.19 0.33±0.16 0.5±0.16
 1.22±0.38ab 1.05±0.09ab 1.83±0.28ab
 0.66±0.28c0.72±0.09a0.66±0.28ac
apbpcp<0.05

Table 1. Damage rates observed in lung tissues.
67
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
        
   
       



-
-


     

group (Figures 1A and 1B).
3.3. ELISA method results


However, these levels were found to be reduced in the tis-

3.4. Micro CT method results
       
       
        
compared to the other groups. Object volume and Object

 
(Figure 3B).
4. Discussion
In this study, the immunoreactivity of melatonin to

        
-
      


 
compared to the control group; It was determined that


-
-

-
   
from immune cells, especially monocytes and macro-
phages [33]
Fig. 1. 
    
 -
ties (B). 

  


mean±SD. ap    
control group, bp  
cp

Fig. 2. MDA levels of lung tissues. Data shown in bar graphs are
p-
ference (ns: p>0.05; **p<0.01; ***p<0.001).
Fig. 3. 
-
pressed as mean±SD. p-
rence (ns: p>0.05; *p<0.05; **p<0.01; ***p<0.001).
68
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
to the cell generating the host response [34]. Following sti-
-

macrophages, and lymphocytes and enter the systematic
circulation [35]

      
are observed [36]
as melatonin may contribute to the reduction of organ da-
mage in sepsis [37].
In similar studies in the literature, it has been shown by
       

[38, 39]-
tion triggers intracellular transduction that results in acti-
   
     [40].

active immune response and prevent damaging immu-
      
study in which sepsis treatment was performed with an
-
      -
-
sis model in mice [41] 
sepsis patients can be suggested as a powerful therapeutic
 -
       
-
   
Arg753Gln polymorphisms and sepsis [42]. Accordingly,




   -
tion may be a promising approach in the treatment of acute

[43]. In the literature, it has been shown that animals with

induced organ damage and shock [19, 44]. Suppression

platelet activation [45]
can accelerate caspase-1 maturation, leading to acute lung


[46]. In this regard, therapeutic approaches that limit the
    -

activate this molecule by binding to the leucine-rich repeat
region [47, 48]. In addition, in sepsis-related acute lung
-
tion [20]     

group as compared to the control group. A study in 2023
-


   
[49].

        -
      
   
decrease in the lungs of septic mice given melatonin
agents. Based on these data, therapeutic approaches such
as melatonin may reduce the severity of sepsis-induced



lung injury due to sepsis model [50, 51]. Melatonin can
        -
dings are consistent with the literature, bleeding, cellular

        -
red to the control and melatonin groups. Administration of

-
dant substance, may have protective properties against
     [7]   -
ties of melatonin in sepsis have been attributed to reasons


shown that with the application of a melatonin protective

the lung [13]
activated [55]. Our study reveals that melatonin adminis-

 

  -
ging in small animal disease models is very important in
elucidating the etiology of various diseases and in develo-
  [56]. Bell et
al., measured mouse lung tissue volume in an interstitial
-
ported that the results were compatible with histopatho-
         
invasive method [57]
        
        
        
study, it was reported that the total air volume of the lung

-
luation of the lung ultrastructure and its changes during
   [58]. In another similar
-

caused a decrease in total lung volüme [59]. In our study,
    
-

that were correlated with the results obtained in histopa-
thological and immunohistochemical analyses. In addi-
tion, the results we obtained and the information in the
literature support each other.
5. Conclusion
-
     
       -
   
        
treatment groups approached control group. However,
performing only MDA results and immunohistochemical
analyses using the Eliza method can be considered a limi-
tation of our research. Future research works should be
69
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
focused on a detailed mapping of protein networks related

Conict of interests
          
preparation.
Consent for publications
        
publication.
Ethics approval and consent to participate


(Ethical committee decision number: 22/277).
Informed consent

Availability of data and material


Authors' contributions
      
      



  
   
answering reviewers.
Funding


       

Acknowledgements
        
-
        -

References
    
-
-

phymed.2013.01.010
        

34:2393–2411. https://doi.org/10.1007/s12325-017-0622-8
 

org/10.21037/jtd.2016.08.27
 -


        


Springer Berlin Heidelberg, Berlin, Heidelberg, pp 149–159.
6. Fan E, Brodie D, Slutsky AS (2018) Acute respiratory distress
syndrome: advances in diagnosis and treatment. Jama 319:698–
710. https://doi.org/10.1001/jama.2017.21907
 
        
     
synthesis and  / 
Des 101:915–926. https://doi.org/10.1111/cbdd.14199
 
(1987) Antihypertensive Action of Melatonin in the Spontaneous-
-
tice 9:1121–1131. https://doi.org/10.3109/10641968709160037
        
      

           -
       


 



 
D (2014) Impact of melatonin receptor deletion on intracellular
signaling in spleen cells of mice after polymicrobial sepsis. In-
   
0779-4
      
   -


doi.org/10.1111/ijcp.14832
       -
      
      
 3 mutant mice share similar
        

 -
          
 -
mation 37:738–744. https://doi.org/10.1007/s10753-013-9792-y
             -
          
mediate improvements of survival in a model of polymicro-
      
ccm.0b013e3182a63e2b
           
       

      
Journal 29:3863–3875. https://doi.org/10.1096/fj.15-273656
           
  -
          
     

 
    -


 
70
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
-
  -
ring Staphylococcus aureus infection. Front Immunol 12:747370.

        
-

org/10.1007/s10787-022-01026-7
          
mediated host immune responses in major infectious diseases: a
review. Braz J Infect Dis 20:193–204. https://doi.org/10.1016/j.
bjid.2015.10.011
      

  
etm.2019.7599
 
    
     
       
517. https://doi.org/10.4049/jimmunol.0802909
         
-


    

sepsis in critically ill patients with multi-organ failure within 12

org/10.1186/s40635-016-0116-z
       
    
ejmp.2021.07.005
 
   
infarct characterization and segmentation in mice stroke models.

           
       -
        

org/10.1016/j.biopha.2020.109967
 


Med Sci 21:787. https://doi.org/10.22038/ijbms.2018.26705.6539
      


       -
          
    
s12931-018-0935-4
           
(2023) Immunoreactivity of Kir3. 1, muscarinic receptors 2 and
          -
      
org/10.1016/j.brainresbull.2023.03.009
            

platelet-activating factor in protecting mice against lipopolysac-

org/10.1371/journal.pone.0006503
34.        
420:885–891. https://doi.org/10.1038/nature01326
          

 -

   
4005
 
      

 
       
149:155725. https://doi.org/10.1016/j.cyto.2021.155725
           

         

         
      
org/10.1016/j.molmed.2020.05.006
 
  

 
10:e0132336. https://doi.org/10.1371/journal.pone.0132336
        

-

doi.org/10.3390/ijms231810982
    
K, Xiao X (2022) HSF1 protects sepsis-induced acute lung injury
     

  
      
       
org/10.1016/j.ajem.2015.12.075
        

    -
telet activation and prevents multi-organ injury in cecal-ligation
    -
nal.pone.0234039
 


Int Immunopharmacol 20:24–32. https://doi.org/10.1016/j.in-
timp.2014.02.017
 
-


 -
       
https://doi.org/10.3389/fphys.2020.606996
 

     
314:116478. https://doi.org/10.1016/j.jep.2023.116478
           
-
ments apoptotic adipose-derived mesenchymal stem cell treat-
   
71
E ec t s o f me l at o ni n on L PS - in d uc e d l u ng i nj u ry. Cell. Mol. Biol. 2024, 70(10): 64-71
6(5):439-458.
 
        
Med J 122(12):1388–1393.
 -

         

      
    

 
-
      
FASEB J 17:1–22. https://doi.org/10.1096/fj.02-0692fje
 

  
doi.org/10.1007/s00595-004-2879-1
 
attenuates sepsis-induced acute lung injury through improvement
      


 
 
    

 


doi.org/10.1371/journal.pone.0190678
         


233(1):165–171. https://doi.org/10.1148/radiol.2331031340
 
tomography assessment of lipopolysaccharide-induced acute lung

9/01902148.2016.1159261
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Melatonin is a versatile indolamine synthesized and secreted by the pineal gland in response to the photoperiodic information received by the retinohypothalamic signaling pathway. Melatonin has many benefits, such as organizing circadian rhythms and acting as a powerful hormone. We aimed to show the antitumor effects of melatonin in both in vivo and in vitro models through the mammalian target of rapamycin (mTOR) signaling pathway and the Argyrophilic Nucleolar Regulatory Region (AgNOR), using the Microcomputed Tomography (Micro CT). Ehrlich ascites carcinoma (EAC) cells were administered into the mice by subcutaneous injection. Animals with solid tumors were injected intraperitoneally with 50 and 100 mg/kg melatonin for 14 days. Volumetric measurements for the taken tumors were made with micro-CT imaging, immunohistochemistry (IHC), real-time polymerase chain reaction (PCR) and AgNOR. Statistically, the tumor tissue volume in the Tumor+100 mg/kg melatonin group was significantly lower than that in the other groups in the data obtained from micro-CT images. In the IHC analysis, the groups treated with Tumor+100 mg/kg melatonin were compared when the mTOR signaling pathway and factor 8 (F8) expression were compared with the control group. It was determined that there was a significant decrease (p < 0.05). Significant differences were found in the total AgNOR area/nuclear area (TAA/NA) ratio in the treatment groups (p < 0.05). Furthermore, there were significant differences between the amount of mTOR mRNA for the phosphatidylinositol 3-kinase (PI3K), AKT Serine/Threonine Kinase (PKB/AKT) genes (p < 0.05). Cell apoptosis was evaluated with Annexin V in an in vitro study with different doses of melatonin; It was observed that 100 µg/mL melatonin dose caused an increase in the apoptotic cell death. In this study, we have reported anti-tumor effects of melatonin in cell culture studies as well as in mice models. Comprehensive characterization of the melatonin-mediated cancer inhibitory effects will be valuable in advancing our fundamental molecular understanding and translatability of pre-clinical findings to earlier phases of clinical trials.
Article
Full-text available
In this study, the protective effect of melatonin was investigated in lipopolysaccharide induced sepsis model. 28 rats were randomly divided; Control, Melatonin, LPS and LPS + Melatonin. After LPS application, surgically remove kidney and liver tissues. The level of malondialdehyde (MDA) an oxidative stress marker and the immunoreactivity of Toll‐like receptor‐4 (TLR4), tumor necrosis factor‐α (TNF‐α), transcription factor NF‐κB were evaluated immunohistochemically. Expression levels for TLR4, TNF‐α, NF‐kB, IL‐1β (interleukin 1 beta) and IL‐6 (interleukin 6) evaluated. Additionally, AgNOR staining was performed in tissues. Vacuolization and inflammation were more intense in the kidney and liver sections in the LPS group compared to the other groups. It was observed that vacuolization and inflammation were decreased in LPS+Melatonin applied groups. It was determined that glomerular damage was increased in the LPS and LPS‐melatonin groups, but the damage rate LPS‐Melatonin group was decrease in the LPS group. It was determined that the MDA level in tissues of the LPS group was importantly increased compared to other groups. Additionally, TAA/NA ratio statistically significant differences were discovered between the groups. This study supports the potential protective effects of 10 mg/kg melatonin by modulating critical markers of local immune reaction in a model of LPS‐induced sepsis. In this study, the protective effect of melatonin was investigated in lipopolysaccharide induced sepsis model. 28 rats were randomly divided; Control, Melatonin, LPS and LPS + Melatonin. oxidative stress marker and the immunoreactivity of Toll‐like receptor‐4 (TLR4), tumor necrosis factor‐α (TNF‐α), transcription factor NF‐κB were evaluated immunohistochemically. Expression levels for TLR4, TNF‐α, NF‐kB, IL‐1β (interleukin 1 beta) and IL‐6 (interleukin 6) evaluated.
Article
Full-text available
Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies.
Article
Full-text available
Toll-like receptors (TLR) play an eminent role in the regulation of immune responses to invading pathogens during sepsis. TLR genetic variants might influence individual susceptibility to developing sepsis. The current study aimed to investigate the association of genetic polymorphisms of the TLR2 and TLR4 with the risk of developing sepsis with both a pilot study and in silico tools. Different in silico tools were used to predict the impact of our SNPs on protein structure, stability, and function. Furthermore, in our prospective study, all patients matching the inclusion criteria in the intensive care units (ICU) were included and followed up, and DNA samples were genotyped using real-time polymerase chain reaction (RT-PCR) technology. There was a significant association between TLR2 Arg753Gln polymorphisms and sepsis under the over-dominant model (p = 0.043). In contrast, we did not find a significant difference with the TLR4 Asp299Gly polymorphism with sepsis. However, there was a significant association between TLR4 Asp299Gly polymorphisms and Acinetobacter baumannii infection which is quite a virulent organism in ICU (p = 0.001) and post-surgical cohorts (p = 0.033). Our results conclude that the TLR2 genotype may be a risk factor for sepsis in adult patients.
Article
Full-text available
NIMA-related kinase 7 (NEK7) is a serine/threonine kinase, which is the smallest one in mammalian NEK family. At present, many studies have reported that NEK7 has a physiological role in regulating the cell cycle and promoting the mitotic process of cells. In recent years, an increasing number of studies have proposed that NEK7 is involved in the activation of the NLRP3 inflammasome. Under normal conditions, NEK7 is in a low activity state, while under pathological conditions, NEK7 is abnormally expressed and therefore plays a key role in the progression of multiple tumors and chronic inflammatory diseases. This review will concentrate on the mechanism of NEK7 participates in the process of mitosis and regulates the activation of NLRP3 inflammasome, the aberrant expression of NEK7 in a variety of tumors and chronic inflammatory diseases, and some potential inhibitors, which may provide some new ideas for the treatment of diverse tumors and chronic inflammatory diseases associated with NEK7.
Article
Full-text available
As an important transcription factor, heat shock factor 1 (HSF1) plays an endogenous anti-inflammation role in the body and can alleviate multiple organ dysfunction caused by sepsis, which contributes to an uncontrolled inflammatory response. The NLRP3 inflammasome is a supramolecular complex that plays key roles in immune surveillance. Inflammation is accomplished by NLRP3 inflammasome activation, which leads to the proteolytic maturation of IL-1β and pyroptosis. However, whether HSF1 is involved in the activation of the NLRP3 inflammasome in septic acute lung injury (ALI) has not been reported. Here, we show that HSF1 suppresses NLRP3 inflammasome activation in transcriptional and post-translational modification levels. HSF1 can repress NLRP3 expression via inhibiting NF-κB phosphorylation. HSF1 can inhibit caspase-1 activation and IL-1β maturation via promoting NLRP3 ubiquitination. Our finding not only elucidates a novel mechanism for HSF1-mediated protection of septic ALI but also identifies new therapeutic targets for septic ALI and related diseases.
Article
Full-text available
Aims Sepsis causes life-threatening tissue and organ dysfunctions caused by endogenous mediators in response to infection. Melatonin is a powerful endogenous anti-inflammatory agent and effective in reducing cellular damage. This study aimed to evaluate the changes in serum and liver tissue levels of VEGF, TGF-β and MMP-2 in melatonin treated septic rats. Materials and methods 21 Wistar-albino male rats were included in this study. Rats were randomly divided into 3 groups. Group 1 is sham-operated control (C) group, Group 2 is cecal ligation and puncture (CLP) group and Group 3 is melatonin-treated (10mg/kg) (M-CLP) group. Serum and tissue samples were analyzed. All procedures were carried out according to the ethical rules specified in Helsinki Declaration. Results Sera MMP-2 levels were found higher than tissue MMP-2 levels in C and CLP (respectively, p=0.048, p=0.01). In CLP and M-CLP, serum TGF-β levels were higher than tissue TGF-β levels(respectively, p=0.05,p=0.01). Serum VEGF levels in CLP were found to be significantly higher than both C and M-CLP(p<0.01) Conclusion MMP-2 levels may have increased due to the prevention of oxidative damage in sepsis, and this may increase the anti-inflammatory effect. Melatonin treatment may have therapeutic effect against sepsis since it prevents the increase in serum VEGF level. A powerful endogenous antioxidant, may be a promising therapeutic agent on the mortality and morbidity of the disease, due to its lowering effect on serum VEGF, which is a poor prognostic factor in sepsis
Article
Ethnopharmacological relevance: Salvia miltiorrhiza Bunge is a widely used traditional Chinese medicine with anticholinesterase, antitumor, anti-inflammatory and anti-inflammatory. Total Tanshinones (TTN), the most significant active ingredient of Salvia miltiorrhiza Bunge, exerts anti-inflammatory activity. However, the protective mechanism of total Tanshinones on acute lung injury (ALI) still needs to be explored. Aim of this study: In this study, the underlying mechanisms of TTN to treat with ALI were investigated in vitro and in vivo. Materials and methods: Cell experiments established an in vitro model of LPS-induced J774A.1 and MH-S macrophages to verify the mechanism. The levels of inflammatory cytokines (TNF-α, IL-6 and IL-1β) were estimated by ELISA. The changes of ROS, Ca2+ and NO were detected by flow cytometry. The expression levels of proteins related to the NLRP3 inflammasome were determined by Western blotting. The effect of TTN on NLRP3 inflammasome activation was examined by immunofluorescence analysis of caspase-1 p20. Male BALB/C mice were selected to establish the ALI model. The experiment was randomly divided into six groups: control, LPS, LPS + si-NC, LPA + si-Nek7, LPS + TTN, and DEX. Pathological alterations were explored by H&E staining. The expression levels of proteins related to the NLRP3 inflammasome were analyzed by Western blotting. Results: TTN decreased pro-inflammatory cytokines levels like TNF-α, IL-6, IL-1β, NO, and ROS in alveolar macrophages. TTN bound to NIMA-related kinase 7 (NEK7), a new therapeutic protein to modulate NLRP3 inflammasome and PLCγ2-PIP2 signaling pathway. In ALI mice, LPS enhanced IL-1β levels in the serum, lung tissues, and bronchoalveolar lavage fluid (BALF),which were reversed by TTN. TTN decreased cleaved-caspase-1 and NLRP3 expressions in lung tissues. When Nek7 was knocked down in mice by siRNA, the syndrome of ALI in mice was significantly suppressed, of which the effect was similar to that of TTN. Conclusions: This research demonstrates that TTN alleviated ALI by binding to NEK7 in vitro and in vivo to modulate NLRP3 inflammasome activation and PLCγ2-PIP2 signaling pathways.
Article
Aims: Demyelination affects the propogation of neuronal action potential by slowing down the progression. This process results in a neuro-impairment like Multiple Sclerosis (MS). Evidence show that MS also contributes to involvement of the autonomic system. In the molecular approach to this involvement, we aimed to observe muscarinic ACh receptor 2-3 (mAChR2-3), and inwardly rectifying potassium channel 3.1 (Kir3.1) immunoreactivities on the brainstem, vagus nerve, and heart under cuprizone model. Main methods: Wistar albino rats were randomly divided into 8 groups; duplicating 4 groups as male and female: control groups (n=3+3), Cuprizone groups (n=12+12), sham groups (n=4+4), and carboxy-methyl-cellulose groups (n=3+3). Cuprizone-fed rats underwent demyelination via Luxol fast blue (LFB) staining of the the hippocampus (Gyrus dentatus and Cornu Ammonis) and cortex. Immunohistochemistry analysis followed to the pathologic measurement of the brainstem, vagus nerve, and heart for mAChR2, mAChR3 and Kir3.1 proteins KEY FINDINGS: A significant demyelination was observed in the hippocampus and cortex tissues of rats in the female and male cuprizone groups. Myelin basic protein immunoreactivity demonstrated that cuprizone groups, in both males and females, had down-regulation in the hippocampus and cortex areas. The weights of the cuprizone-fed rats significantly decreased over six weeks. Dilated blood vessels and neuronal degeneration were severe in the hippocampus and cortex of the cuprizone groups. In the female cuprizone group, expression of mAChR2 and mAChR2 was significantly increased in the brainstem, atrium/ventricle of heart, and left/right sections of vagus nerve. Kir3.1 channels were also up-regulated in the left vagus nerve and heart sections of the female cuprizone group SIGNIFICANCE: Especially in our data where female-based significant results were obtained reveal that demyelination may lead to significant mAChR2, mAChR3 and Kir3.1 changes in brainstem, vagus nerve, and heart. A high immunoreactive response to demyelination at cholinergic centers may be a new target.
Article
Background: Over-activation of the NLRP3 inflammasome can lead to sepsis. NLRP3 is an essential protein in the classical pathway of pyroptosis. This study assessed the use of serum NLRP3 level as a potential inflammatory biomarker in septic patients. Methods: Patients were categorized into five groups: healthy controls (n = 30), ICU controls (n = 22), infection (n = 19), septic non-shock (n = 33), and septic shock (n = 83). Serum NLRP3 levels were measured by enzyme-linked immunosorbent assay for all patients upon enrollment. Clinical parameters and laboratory test data (APACHE II, SOFA, and lactate) were also assessed. Moreover, the ability of serum NLRP3 levels to predict sepsis was determined by the area under the curve (AUC) analysis. Results: The NLRP3 levels in the septic shock group was significantly higher (431.89, 386.61-460.21 pg/mL) than that in the healthy control group (23.24, 9.38-49.73 pg/mL), ICU control group (74.82, 62.71-85.93 pg/mL), infection group (114.34, 99.21-122.56 pg/mL), and septic non-shock group (136.99, 128.80-146.98 pg/mL; P<0.001 for all comparisons). Additionally, the AUC indicated that the ability of serum NLRP3 levels to predict sepsis and septic shock incidences was not lower than that of the SOFA score. Patients with higher NLRP3 serum levels (>147.72 pg/mL) had significantly increased 30-day mortality rate. Conclusions: NLRP3 is useful for the early identification of high-risk septic patients, particularly septic shock patients. Moreover, elevated NRLP3 levels could result in poor septic prediction outcomes.