PresentationPDF Available

Teaching Innovation Workshop: Skill Transformation in AI-Enhanced Education

Authors:

Abstract

This ARQUS online workshop, organised by the University of Graz, will explore how intelligent technologies can enrich teaching practices and support the development of new competencies, while also addressing concerns that these innovations may reduce the relevance of certain academic skills. Participants will engage in discussions, review case studies, and receive practical guidance on how to integrate AI in ways that enhance both teaching and learning. The aim is to shed light on the influence of AI and provide approaches for its application in educational settings. By the end of the workshop, participants will be able to: Develop strategies for incorporating AI into educational practice to enrich the teaching and learning experience and assess their role in supporting skills development.
Teaching Innovation Workshop:
Skill Transformation in AI-Enhanced Education
Arqus-Workshop
Mag. Dr.phil. Sandra Hummel
Mana-Teresa Donner, MSc MA
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Two Polarities of Learning
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
If you want to have the full
presentation, please contact
Mana-Teresa.Donner@tu-dresden.de
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 22
”Bildung” (Humboldt, 1966)
Interplay between self and world
Transformation of the relationship
Development of personal skills / talents
Self-determined life
Today: specific, measurable achievements (standards) (Heydorn, 2024)
Societal demands > individual education (e.g. Coetzee, 2023; Ivanova & Ivanova, 2016)
Education critics: current policies prevent individual development
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 6
Ette, 2018
Two Polarities of Learning
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 22
Learning as TASK COMPLETION Learning as ENACTMENT
(Hummel & Donner, 2024)
Competence Acquisition
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 9
(Hummel, 2024; Reinmann, 2023; Deutscher Ethikrat, 2023a; Rafner et al., 2021; Buck & Limburg, 2023)
DESKILLING
UPSKILLING
RESKILLING
Loss of human skills
Risk of forgetting or never developing
Expanding and enhancing existing skills
Coping with new demands
Acquiring new skills and knowledge
Different job role or task
illustrating the nuanced interplay between technological
advancements and the preservation of essential human skills
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Two Polarities of Learning
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 10
Interactive Learning Experience:
j
Case Studies of Deskilling,
Upskilling & Reskilling
You will be divided into groups (break-out rooms).
Each group will brainstorm and describe 1 example of deskilling,
upskilling, and reskilling in the context of education with AI.
Please write your example to the “Shared Note” on the Unimeet platform.
Group Discussion: One person will then present your example and
explain how they fit into the categories. (2 min)
15 Minutes
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
- Two Polarities of Learning
- Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 11
1. Didactic Framework and Objective Definition
2. Initial Exploration and Knowledge Gathering
3. Initial Design and Drafting Phase
8. Evaluation Phase with Final Editing
9. Presentation Phase
4. Comparison and Critical Reflection
5. Processing Phase
AI-
Enhanced
Education
6. Re-Exploration and Concept Adjustment
7. Elaboration or Writing Phase
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
- Two Polarities of Learning
- Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 35
Interactive Learning Experience:
j
Innovative Task Design with AI Integration
In groups, develop a short teaching-learning unit using the 9 phases of
the learning process. Select a topic, formulate a learning objective, and
develop a task, and plan how each of the 9 phases will be applied in
your learning unit.
Consider the following points:
Promotion of Learning as Enactment
Considerations of reskilling, upskilling & deskilling
Please write your results in the UniPad.
One person will then present it. (5 min)
30 Minutes
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
- Two Polarities of Learning
- Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
Additional Measures for AI-Free Phases
(1) Offline work and documentation
(2) Commitment declaration
(3) Interim presentations and peer feedback
(4) Learning logs and reflection reports
(5) Direct observation and support
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 23
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
- Two Polarities of Learning
- Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 3
Agend
a
1Introduction
2
3
4
AI in Education
Interactive Learning Experience 1
AI-enhanced Education
-Skinner’s Teaching Machine
-Humboldt’s “Bildungs”-Concept
- Competence Acquisition
Interactive Learning Experience 2
Take Home Message
Didactic Implications
5
“Case Studies of Deskilling, Upskilling & Reskilling”
- Two Polarities of Learning
- Step-by-step: 9 Phases (project-based learning)
“Innovative Task Design with AI Integration”
6
7
- Meet our Research Group
- Guidelines
- Learning Outcomes
References
Buck, I. & Limburg, A. (2023). Hochschulbildung vor dem Hintergrund von Natural Language Processing (KI-Schreib-tools). Ein Framework für eine zukunftsfähige Lehr- und
Prüfungspraxis. die hochschullehre, 9(1), 70-84.
Chen, L, Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
Coetzee, D. (2023). Education as a Conduit: Connecting Individual Potential to Societal Needs Contexts. Academia Education. http://dx.doi.org/10.13140/RG.2.2.10104.42248
Deutscher Ethikrat (2023a). Mensch und Maschine – Herausforderungen durch Künstliche Intelligenz (Stellung-nahme). Berlin. URL:
https://www.ethikrat.org/fileadmin/Publikationen/Stellungnahmen/deutsch/stellungnahme-mensch-und-maschine.pdf
de Witt, C., Rampelt, F., & Pinkwart, N. (2020). Knstliche Intelligenz in der Hochschulbildung. KI Campus. https://ki-campus.org/sites/default/files/2020-
10/Whitepaper_KI_in_der_Hochschulbildung.pdf
Heydorn, H.-J. (2024). Survival through Bildung – Outline of a prospect (H. Kminek, Trans.). In H. Kminek (Ed.), Survival through Bildung: On the topicality of Heinz-Joachim
Heydorn’s philosophy of education (pp. 1130). Verlag Barbara Budrich. (Original work published 1974)
Hobert, S., & von Wolff, R. M. (2019). Say Hello to Your New Automated Tutor – A Structured Literature Review on Pedagogical Conversational Agents. 14th International
Conference on Wirtschaftsinformatik, February 24-27, 2019, Germany.
Humboldt, W. (1966). Ideen zu einem Versuch, die Grenzen der Wirksamkeit des Staats zu bestimmen. In: A. Leitzmann (Ed.), Gesammelte Schriften (pp. 97254). De Gruyter.
Hummel, S. (2021). Chatbots in Forschungsgeleiteter Lehre. FNMA Magazin, 01, 19-20.
Hummel, S., & Donner, M.-T. (2024, in print). Digital Companions for Learners: Design Principles for AI Assistants in Education. IAFOR Journal of Education.
Hummel, S., & Donner, M.-T. (2024). Student Needs and the Role of AI Mentors in Higher Education. The 12th European Conference on Education (ECE2024, 11.-15.07.).
London.
Hummel, S., & Donner, M.-T. (2023). KI-Anwendungen in der Hochschulbildung aus Studierendenperspektive. FNMA Magazin, 3, 38-41.
https://doi.org/10.13140/RG.2.2.13967.97446
Hummel, S., Köhler, T., Brouwer-Zupanicic, N., Egger, R., & Rieger, M. (2023). Empowering Students with AI-based Chatbot Assistants: A New Era of Higher Education? In T.
Köhler, E. Schopp, N. Kahnwald & R. Sonntag (Eds.). Gemeinschaft in Neuen Medien. Digitalität und Diversität. Mit digitaler Transformation Barrieren berwinden!?
Proceedings of 26thConference in Neuen Medien (pp. 38-43). TUDpress. https://doi.org/10.25368/2024.7
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 27
References
Ivanova, S. V., & Ivanov, O. B. (2016). Society demands for the quality of education as a factor of modern education space forming. SHS Web of Conferences, 29,
01028. http://dx.doi.org/10.1051/shsconf/20162901028
Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in
Higher Education, 20, 56. https://doi.org/10.1186/s41239-023-00426-1
Rafner, J.F., Dellermann, D., Hjorth, H.A., Verasztó, D., Kampf, C.E., Mackay, W.E., & Sherson, J. (2021). Deskilling, up-skilling, and reskilling: a case for hybrid
intelligence. Morals + Machines, 2, 24-39.
Reinmann, G. (2023). Deskilling durch Künstliche Intelligenz? Potenzielle Kompetenzverluste als Herausforderung für die Hochschuldidaktik. Diskussionspapier
Nr. 25. Hochschulforum Digitalisierung.
Sweller, J., van Merriënboer, J. J. G. & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review 31, 261-
292. https://doi.org/10.1007/s10648-019-09465-5
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
Wagner, M., Gössel, A., Pishtara, G., & Ley, T. (2024). Von KI lernen, mit KI lernen: Die Zukunft der Hochschulbildung. Forum neue Medien in der Lehre Austria,
Bericht für Arbeitspaket 4 Sammlung und Analyse von Strategiepapieren zu KI in der Hochschullehre im deutschsprachigen Raum und von EU-Institutionen.
Wannemacher, K., & Bodmann, L. (2021). Künstliche Intelligenz an den Hochschulen. Potentiale und Herausforderungen in Forschung, Studium und Lehre sowie
Curriculumentwicklung. Hochschulforum Digitalisierung.
https://hochschulforumdigitalisierung.de/sites/default/files/dateien/HFD_AP_59_Kuenstliche_Intelligenz_Hochschulen_HIS-HE.pdf
Zawacki-Richter, O., Marín, V.I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education
where are the educators? International Journal of Education Technology in Higher Education,16(39). 1-17. https://doi.org/10.1186/s41239-019-0171-0
14.02.2025 | Arqus Workshop Sandra Hummel & Mana-Teresa Donner 28
ResearchGate has not been able to resolve any citations for this publication.
Preprint
Full-text available
This research report delves into the critical inquiry of tailoring education to align with societal needs and individual development, challenging the prevailing one-size-fits-all educational model. Through a comprehensive literature review, the report explores the evolution of global educational standards and their impact on diverse societal contexts, highlighting the tension between standardization and the need for culturally and contextually relevant education. Theoretical frameworks from educational psychology and philosophy are examined to understand education's role in human development and its alignment with natural human capacities. The report also addresses the significance of integrating survival skills and practical knowledge into curricula, emphasizing the empowerment of individuals and communities. Furthermore, it explores the challenges and opportunities in nurturing exceptional talents across varied backgrounds. Concluding with recommendations for future research, the report advocates for educational models that are both globally informed and locally engaged, promoting a more inclusive and adaptive approach to education.
Article
Full-text available
AI chatbots shook the world not long ago with their potential to revolutionize education systems in a myriad of ways. AI chatbots can provide immediate support by answering questions, offering explanations, and providing additional resources. Chatbots can also act as virtual teaching assistants, supporting educators through various means. In this paper, we try to understand the full benefits of AI chatbots in education, their opportunities, challenges, potential limitations, concerns, and prospects of using AI chatbots in educational settings. We conducted an extensive search across various academic databases, and after applying specific predefined criteria, we selected a final set of 67 relevant studies for review. The research findings emphasize the numerous benefits of integrating AI chatbots in education, as seen from both students' and educators' perspectives. We found that students primarily gain from AI-powered chatbots in three key areas: homework and study assistance, a personalized learning experience, and the development of various skills. For educators, the main advantages are the time-saving assistance and improved pedagogy. However, our research also emphasizes significant challenges and critical factors that educators need to handle diligently. These include concerns related to AI applications such as reliability, accuracy, and ethical considerations.
Research
Full-text available
THEMENSCHWERPUNKT Die zunehmend an Bedeutung gewinnende Rolle Künstlicher Intelligenz (KI) in Ver-mittlungs-und Aneignungsprozessen stellt erhebliche Veränderungen für Bildungs-einrichtungen in Aussicht (Hummel et al., 2023; Internationale Hochschule, 2023). Die vermeintlichen Vorteile von KI reichen von der Aussicht auf maßgeschneidertes Lernen (de Witt, 2020) bis hin zur Implementierung dynamischer Bewertungsme-thoden und der Schaffung interaktiver Lernumgebungen in verschiedenen Forma-ten, sei es online, mobil oder hybrid (Zhang & Aslan, 2021; Deutscher Ethikrat, 2023). Allerdings sind diese Entwicklungen nicht frei von Risiken und Problemen, da die Gefahr besteht, dass der Mensch in diesem Prozess in den Hintergrund tritt und Bildung zunehmend von Algorithmen und Technologie bestimmt wird. Aus diesem Grund erfordert die Integration von KI in Bildungsprozesse eine kritische Analyse, die nicht nur die avisierten Vorteile, sondern auch die zugrunde liegen-den Faktoren und potenziellen Auswirkungen berücksichtigt, die Einfluss auf die Hochschulbildung ausüben können (Garrel et al., 2023). Nur so können wir über-legte Maßnahmen ergreifen, um grundlegende Werte wie Bildungsgerechtigkeit, individuelle Freiheit und Autonomie, Vielfalt und Inklusion sowie demokratische und ethische Werte zu wahren (Bartok et al., 2023), damit die angestrebten Ver-änderungen im besten Interesse der Bildungsgemeinschaft umgesetzt werden. In diesem Artikel steht die Untersuchung motivationsbedingter Faktoren im Vorder-grund, die Studierende dazu bewegen, KI in ihre Hochschulausbildung zu integrie-ren. Ziel ist es, ein vertieftes Verständnis für deren Auswirkungen auf soziale Lern-prozesse und die Wissenschaftssozialisation zu gewinnen. Zu diesem Zweck haben wir im Sommersemester 2023 eine empirische Untersuchung an der Universität Graz durchgeführt, die sich auf motivationsbedingte Faktoren konzentrierte, die die Nutzung von KI-gestützten Bildungstools bei Studierenden der Geistes-und Sozial-wissenschaften beeinflussen. Die Untersuchung umfasste eine Online-Umfrage und Fokusgruppeninterviews. Insgesamt wurden 64 Studierende im Durchschnittsalter von 24,6 Jahren einbezogen. Die Ergebnisse wurden in vier Kategorien zusammen-gefasst (siehe Abbildung 1), um Motive und Motivationen für die Nutzung von KI im Studium darzustellen.
Article
Full-text available
Advances in AI technology affect knowledge work in diverse fields, including healthcare, engineering, and management. Although automation and machine support can increase efficiency and lower costs, it can also, as an unintended consequence, deskill workers, who lose valuable skills that would otherwise be maintained as part of their daily work. Such deskilling has a wide range of negative effects on multiple stakeholders -- employees, organizations, and society at large. This essay discusses deskilling in the age of AI on three levels - individual, organizational and societal. Deskilling is furthermore analyzed through the lens of four different levels of human-AI configurations and we argue that one of them, Hybrid Intelligence, could be particularly suitable to help manage the risk of deskilling human experts. Hybrid Intelligence system design and implementation can explicitly take such risks into account and instead foster upskilling of workers. Hybrid Intelligence may thus, in the long run, lower costs and improve performance and job satisfaction, as well as prevent management from creating unintended organization-wide deskilling.
Book
Full-text available
Das Whitepaper Künstliche Intelligenz (KI) in der Hochschulbildung dient als Beschreibung der Möglichkeiten und Herausforderungen von Künstlicher Intelligenz in Studium und Lehre, fördert die Diskussion über Veränderungen der hochschulischen Lehr- und Lernkultur und von möglichen Lehr-/Lerninhalten durch Künstliche Intelligenz. Zudem stellt es Visionen für das zukünftige Hochschulstudium aus Sicht von Studierenden und Lehrenden vor, um zu verdeutlichen, wie sich das Studium in den nächsten Jahren verändern kann. Das Whitepaper enthält vier zentrale Abschnitte, die jeweils individuelle Perspektiven der am Whitepaper beteiligten Expert*innen aufgreifen und in einen Zusammenhang zueinander stellen: 1) Mit KI lehren und lernen, 2) Über KI lehren und lernen, 3) KI und Ethik im Hochschulkontext und 4) Zukunftsperspektiven für KI in der Hochschulbildung.
Article
Full-text available
Cognitive load theory was introduced in the 1980s as an instructional design theory based on several uncontroversial aspects of human cognitive architecture. Our knowledge of many of the characteristics of working memory, long-term memory and the relations between them had been well-established for many decades prior to the introduction of the theory. Curiously, this knowledge had had a limited impact on the field of instructional design with most instructional design recommendations proceeding as though working memory and long-term memory did not exist. In contrast, cognitive load theory emphasised that all novel information first is processed by a capacity and duration limited working memory and then stored in an unlimited long-term memory for later use. Once information is stored in long-term memory, the capacity and duration limits of working memory disappear transforming our ability to function. By the late 1990s, sufficient data had been collected using the theory to warrant an extended analysis resulting in the publication of Sweller et al. (Educational Psychology Review, 10, 251–296, 1998). Extensive further theoretical and empirical work have been carried out since that time and this paper is an attempt to summarise the last 20 years of cognitive load theory and to sketch directions for future research.
Article
Zusammenfassung Aktuelle Entwicklungen im Bereich des Natural Language Processing bergen ein enormes Potenzial, das Bildungssystem disruptiv zu verändern. Dementsprechend sehen sich Hochschulen mit einem beispiellosen Transformationsdruck konfrontiert, um den Wert akademischer Bildung aufrechtzu-erhalten. Vor diesem Hintergrund diskutieren wir die Implikationen von Schreibtools auf Basis Künstlicher Intelligenz, die zu einer Veränderung akademischer Schriftlichkeitspraktiken führen. Im Zentrum unseres Plädoyers für zukunftsfähige Lösungen im Bereich der Lehr-und Prüfungs-praxis stehen konkrete Handlungsanregungen für die Gewährleistung von Prüfungsgerechtigkeit sowie das Erreichen (über)fachlicher Bildungsziele im Bereich der Grundpfeiler akademischer Bil-dung wie kritischem Denken und Metakognition. Hierfür argumentieren wir zum einen dafür, den Einsatz von KI-Schreibtools nicht zu verbieten, sondern Prüfungsordnungen dahingehend zu über-arbeiten und Einsatzszenarien für schriftliche Prüfungsleistungen auszudifferenzieren. Zum ande-ren fokussieren wir auf die Entwicklung von Schreibkompetenz unter veränderten Vorzeichen: Da Schreiben ein hochwirksames Instrument für das Lernen darstellt, muss die Entwicklung von Schreibkompetenz nach wie vor eine der zentralen Aufgaben eines Hochschulstudiums sein. Abstract Current developments in the field of Natural Language Processing hold enormous potential to dis-ruptively change the education system. Accordingly, higher education institutions are facing unprecedented transformational pressures to maintain the value of academic education. Therefore, we discuss the implications of AI based writing tools for the transformation of academic writing practices. At the center of our plea for sustainable solutions in the area of teaching and examination practice are concrete suggestions for action. They aim at ensuring examination fairness as well as the achievement of (inter)disciplinary educational goals in the area of critical thinking and metacogni-tion. To this end, we argue that the use of AI writing tools should not be banned, but that examination