Available via license: CC BY 4.0
Content may be subject to copyright.
Electronics2024,13,4436.https://doi.org/10.3390/electronics13224436www.mdpi.com/journal/electronics
Article
RobustEstimationofLithiumBaeryStateofChargewith
RandomMissingCurrentMeasurementData
XiLi
1
,ZongshengZheng
1,
*,JinhaoMeng
2
andQinlingWang
3
1
CollegeofElectricalEngineering,SichuanUniversity,Chengdu610065,China;
sugar76@stu.scu.edu.cn
2
SchoolofElectricalEngineering,Xi’anJiaotongUniversity,Xi’an710049,China;jinhao@xjtu.edu.cn
3
SchoolofElectricalEngineering,SoutheastUniversity,Nanjing210096,China;qlingwang@seu.edu.cn
*Correspondence:zongshengzheng@scu.edu.cn;Te l.:+86-15281063498
Abstract:Thepreciseestimationofthestateofcharge(SOC)inlithiumbaeriesiscrucialfor
enhancingtheiroperationallifespan.ToaddresstheissueofreducedaccuracyinSOCestimation
causedbytherandommissingvaluesoflithiumbaerycurrentmeasurements,ajointestimation
methodwhichcombinesrecursiveleastsquareswithmissinginputdata(MIDRLS)andthe
unscentedKalmanfilter(UKF)algorithmisproposed,calledtheMIDRLS-UKFalgorithm.Firstly,
theequivalentcircuitmodelofaTheveninbaeryisformulated.Then,thecurrentimputation
modelisdesignedtointerpolatethemissingdata,basedonwhichtheMIDRLSalgorithmisderived
bysolvingtheunbiasedestimationofthegradientoftheobjectivefunction,thusrealizingtheonline
high-precisionidentificationofthecircuitmodelparameters.Furthermore,theproposedalgorithm
iscombinedwiththeUKFalgorithmtofacilitatetheonlinepreciseestimationofSOC.The
simulationresultsindicateamarkeddecreaseintheSOCestimationerrorwhenemployingthe
proposedjointalgorithm,asopposedtotheconventionalforgeingfactorrecursiveleastsquares
(FFRLS)algorithmcombinedwiththeUKFjointestimationalgorithm,whichverifiestheprecision
andeffectivenessoftheproposedjointalgorithm.
Keywords:lithiumbaery;stateofchargeestimation;randommissingcurrentdata;model
parameteridentification;unscentedKalmanfiltering
1.Introduction
Overthepastfewyears,inordertopromotesustainableenergydevelopmentand
thedevelopmentofagreeneconomy,theelectricvehicleindustry,whichhasapositive
impactonreducingurbancarbonemissions,hasdevelopedrapidly[1].Lithiumbaeries
havebecomeawidelyusedbaerytechnologyintheemergingelectricvehiclesector[2]
duetotheirelevatedenergyandpowerdensities,extendedservicelife,lowself-discharge
andsuperiorenergyconversionefficiency[3].Theseaributesrenderlithiumbaeriesan
idealchoiceforpoweringthenextgenerationofelectricvehicles,aligningwiththeglobal
shifttowardscleanerandmoresustainabletransportationoptions.Itisthereforeessential
tomonitorbaerystatususinganeffectiveandprecisebaerymanagementsystem(BMS)
[4].AmongthevariousfunctionalitiesofaBMS,theestimationofthestateofcharge(SOC)
standsoutasparticularlycrucial.TheaccuratecompletionofSOCestimationcanshow
theremainingcapacityofthebaery,whichisessentialforpreventingoverchargingand
overdischargingscenarios.Bydoingso,itensuresthereliableoperationofelectric
vehicles,optimizesthebaery’sperformance,andsignificantlyextendsitsoperational
lifespan[5].
SOCestimationmethodscanbebroadlycategorizedintofourgroups:methods
basedonthephysicalcharacteristicsofthebaery,methodsbasedonbaerymodels,
data-drivenapproachesandfusionmethods[6].Amongthem,themethodsbasedonthe
physicalcharacteristicsofbaeries,includingtheopen-circuitvoltagemethod,the
Citation:Li,X.;Zheng,Z.;Meng,J.;
Wang,Q.RobustEstimationof
LithiumBaeryStateofChargewith
RandomMissingCurrent
MeasurementData.Electronics2024,
13,4436.hps://doi.org/
10.3390/electronics13224436
AcademicEditor:FabioCorti
Received:2October2024
Revised:6November2024
Accepted:11November2024
Published:12November2024
Copyright:©2024bytheauthors.
Submiedforpossibleopenaccess
publicationunderthetermsand
conditionsoftheCreativeCommons
Aribution(CCBY)license
(hps://creativecommons.org/license
s/by/4.0/).
Electronics2024,13,44362of15
internalresistancemethodandthealternatingcurrentimpedancemethod,facechallenges
inachievingtheaccurateestimationofSOConline.Thesechallengesarisefromthelonger
experimentaltime,higherrequirementsforexperimentalconditionsandlargererrors[7].
Thedata-drivenapproachtoSOCestimationiscenteredontheutilizationofmachine
learningalgorithmstoprocessextensivedatasetsofmeasurementsamplesandtodiscern
underlyingpaernsandfeatureswithinthedata.Itharnessesthecomputational
capabilitiesofmachinelearningtoanalyzeandlearnfromthecomplexrelationships
presentinlargevolumesofbaeryperformancedata,therebyenablingtheestimationof
SOC.Therearethreepredominanttypesofdeepneuralnetworksthatarefrequently
utilizedinresearch,includingfullyconnectedneuralnetworks,recurrentneuralnetworks
andconvolutionalneuralnetworks[8].Inaddition,inthelastfewyears,avarietyofother
neuralnetworkshavebeendevelopedbyresearcherstoenhancetheprecisionand
applicabilityofSOCestimation.Forinstance,arandomsearchoptimization-basedLong
Short-TermMemory(RS-LSTM)neuralnetworkwasproposedforpreciseSOCestimation
[9],whichisbasedontheCALCEdatasetandarandomsearchalgorithmtooptimizeits
performance.Althoughthiskindofmethodhashighflexibilitywithhighestimation
accuracy,itiscontingentuponthequalityofthedataset,entailssubstantialtime
investmentsformodeltraining,andisoftencharacterizedbylimitedrobustness[10].In
termsoffusionmethods,theresearchersin[11]fusedneuralnetworksandequivalent
circuitmodels,thusachievingtheaccurateestimationofSOCoverawiderangeof
temperatureconditions.Inaddition,theresearchersin[12]achievedlightweightSOC
estimationthroughEISdataandtheequivalentcircuitmodel,whichdonotrequiretime-
consumingmodeltraining.
Consideringtheaccuracy,cost,real-timecapabilitiesandotherfactorsofvarious
estimationtechniques,thecurrentbaerymodel-basedmethodhasabeerprospectof
applicationanddevelopmentpotential[13].Themethodthatemploysanequivalent
circuitmodel haslowcomputationaldemands,makingitparticularlyamenableto
embeddedsystemsdesignedforonlineSOCestimation.Baerymodel-basedapproaches
performSOCestimationbyidentifyingtheparametersofthecircuitelementswithinthe
baery’sequivalentcircuitmodel,usuallycombinedwithanadaptivefilteringalgorithm
toemulatethebaery’sdynamicstatecharacteristics[14],suchasanextendedKalman
filter(EKF),anunscentedKalmanfilter(UKF)anditsimprovedalgorithms[15].
Furthermore,theresearchersin[16]proposedahierarchicaladaptiveextendedKalman
filter(HAEKF)algorithm,whichinvolvesthedissectionofthesecond-orderRCcircuit’s
stateequationmodelinaccordancewiththeprinciplesofhierarchicalidentification.
Currently,toenhancethetimelinessandprecisionofonlinemodelparameterestimation
andtoaddresstheissueofoutdateddataaccumulationiniterativeprocesses[17],the
forgeingfactorrecursiveleastsquare(FFRLS)algorithmisoftenusedtoidentifymodel
parameters.However,itisonlyapplicableiftheinputdataarecomplete,i.e.,thereal-time
loadcurrentmeasurementsarefullyobtained.Shouldthecurrentdetectionmoduleinthe
BMSbefaulty,oriftheconnectorislooseorenvironmentalvibrationsoccur,causingthe
currentmeasurementvaluetobemissing,thiswillleadtoalargeerrorintheresultsof
parameteridentification.TheseerrorscanfurtheraffecttheaccuracyofSOCestimation,
potentiallyleadingtoimproperbaeryusageandjeopardizingthebaery’shealth.
Toensurethehighreliabilityofonlinebaerymodelparameteridentificationdespite
thepresenceofmissingcurrentmeasurementdata,inthispaper,weinnovativelydesign
acurrentimputationmodeltointerpolatethemissingvaluesofthecurrent.Basedonthe
imputationmodel,wederivearecursiveleastsquareswithmissinginputdata(MIDRLS)
algorithmtoidentifythemodelparametersbysolvingtheunbiasedestimationofthe
gradientoftheobjectivefunction.CombiningitwiththeUKFalgorithm,weachieve
onlineSOCestimationbyusingupdatedmodelparametersandsystemstatesateach
cycle.
Theremainderofthispaperisorganizedasfollows:Section2describesthederivation
oftheMIDRLSalgorithmandthemodelparameteridentificationprocess.Section3
Electronics2024,13,44363of15
describestheSOCestimationprocessbasedontheUKFalgorithmandpresentsthe
derivationoftheMIDRLSalgorithminconjunctionwiththeUKFtoperformSOC
estimationinrealtime.InSection4,simulationworksareconductedtoevaluatethe
performanceoftheproposedalgorithm.Finally,Section5presentsthediscussionand
conclusionofthepaper.
2.BaeryModelandParameterIdentification
2.1.BaeryModel
Equivalentbaerymodelsrepresenttheinternalstateanddynamiccharacteristicsof
abaerybyforminganequivalentcircuitfromidealcircuitelements.Prevalentmodels
includetheRintmodel,Theveninmodel,DPmodel,PNGVmodel,second-orderRC
model,etc.[18].TheTheveninmodeltakesintoaccounttheelectrochemicalreaction
insidethebaery,whichcanreflectthepolarizationcharacteristicsofthebaery[19].It
canreflecttheactualworkingcharacteristicsofreallithiumbaeries,soitissuitablefor
simulatingtheperformanceoflithiumbaeries.However,itsstructureisrelativelysimple
andthemodelparametersarefixedvalues,sotheaccuracyisnottoohigh.Toprecisely
reflectthedynamiccharacteristicsoflithiumbaeries,theTheveninmodel[20]was
selectedforthestudyinthispaper,asshowninFigure1.
AsillustratedinFigure1,thereisanidealvoltagesourceocv
U,whichdenotesthe
electricalpotentialofthebaeryandhasaone-to-onecorrespondencewiththeSOCof
thebaery[21].Inaddition,itincludesabaeryequivalentinternalresistance0
R
,a
polarizationresistance1
R
andapolarizationcapacitor1
C.d
Urepresentsthebaery
terminalvoltageand0
I
representstheloadcurrent.Therefore,0
R
,1
R
and1
Carethe
parametersthatneedtobeidentified.
ThemodelequationscanbeconstructedfromKirchhoff’slaw:
11 0 1
00
///
cc
docvc
dU dt U R C I C
UU UIR
(1)
ocv
U
d
U
0
R
1
R
1
C
0
I
c
U
Figure1.Theveninbaerymodel.
Thevaluesofthemodelparameters0
R
,1
R
and1
Careinfluencedbyfactorssuch
asenvironmentalchanges,theoperationalconditionsofthebaeryandtheagingprocess
ofthebaery[22].ThispaperemploystheproposedMIDRLSalgorithmformodel
parameteridentification.Itprovidesreal-timeidentificationoftheparametersevenwhen
theloadcurrentmeasurementsarerandomlylost,thusavoidingundesirableeffectson
theSOCestimationresults.
Electronics2024,13,44364of15
2.2.TheProposedMIDRLSAlgorithm
Toenablethecapabilitytoaccuratelyidentifythemodelparametersdespitethe
presenceofmissingmodelinputcurrentdata,anewparameteridentificationalgorithm
isproposedinthispaper.
Itispositedthattheacquiredinputdatawithrandomlosscanbemodeledas
() ()()
ic
x
ngnxn, (2)
where()
g
n isarandomvariableobeyingBernoulli’sindependenthomogeneous
distribution,whichisindependentof()
x
n.Theprobabilityof()
g
ntaking1or0is
p
or1p,respectively.
Weinterpolatedthemissingdata,i.e.,themissingdatawereresettotheconstant
timesofthedataavailableatthepreviousmoment.Theprocesscanbedescribedas
() ()() (1 ())( 1)xn gnxn gn xn
, (3)
where()
x
n
representstheimputeddata.
TheobjectivefunctionoftheFFRLSalgorithmistheweightederrorsumofsquares[23]:
2
0
( ) () () ( )
n
ni T
i
J
ndiiwn
x (4)
where
istheforgeingfactor,()di istheoutputdataatmomentiand()wn isthe
parametervectortobeidentified.
Topreventtheparameterestimationupdatesequencefromfailingtoconvergetothe
objectivefunction’sminimumduetothemissingdata,weusedtheimputeddatasequence
{()}
x
ntoconstructanunbiasedestimationofthegradientoftheobjectivefunction.
Considering
0
( ) 2 ()[ () () ( )]
n
ni T
i
J
nxipdiiwn
x, (5)
weneedtoobtainanexpressionfor()
J
nthrough[()]
J
n.Aftersomemathematical
derivation,oneobtains
,
0
2
0
,1 1,1
2
,1,1
[ ()] 2 [ () (()) () ]
( ) 2 [ (1 ) ( ) ( ( 1))
(1 )( (1 ) ) ( )
(1 ) (
n
ni
ii
i
n
ni
i
ii i i
ii i i
Jn pdi xi wnR
pJn p pdi xi
pY pR wn
pdiagR R
,1
)()].
ii
Ywn
(6)
where,(() ())
T
ii
R
xix iand,1 ,1 1,
ii ii i i
YRR
.
Leing() () (1 ) ( 1)
xi xi pxi
and() () ( 1)x i xi xi
,respectively,andin
combinationwithEquation(6),onecanobtain
2
0
0
2
() - [ ( () () ()) ()]
+(1 ) [ ( ( ) ( )) ( )]}
n
ni T
i
n
ni T
i
J
npdixiwnxi
p
p
diag x i x i w n
(7)
Whensolvingfor()wn ,theupdateprocessoftheMIDRLSalgorithmcanbeobtained
byrecursionandmatrixinversionlemmas,aspresentedinAlgorithm1.
Electronics2024,13,44365of15
Algorithm1ThealgorithmflowoftheproposedMIDRLS
Input:thedatasequencewithrandommissing{()}
ic
x
n
,
theobtainedoutputsequence
{()}dn ,0
,(0,1)
,[0,1]p.
Initialize:(0) 0w,(0)
M
I
,
isapreysmallnumber,theimputeddata
sequence{()}
x
n
.
Update:-1 -1 1
() (1)( (1))
nn
nMnIXMn X
() ( ()) ( 1) ( ()) ( 1)()()
p
wn I n wn I n M n d nx n
-1
() [ ( 1) () ( 1)]Mn Mn nMn
where() () (1 )( 1)xn xn pxn
() () ( 1)x n xn xn
() () (1 ) ( () ())
TT
n
X
xnx n pdiagx nx n
EndFor
Theforgeingfactorallowstheweightofpreviousdatainparameteridentification
tobecontinuouslyreducedoverlongperiodsoftimeinsteadofaccumulatingovertime.
Constructingtheunbiasedestimationreducestheerrorinidentificationresultscausedby
therandomlossofcurrentmeasurements.
2.3.ParameterIdentificationoftheBaeryModel
ToidentifytheparametersofthebaerymodelthroughtheMIDRLSalgorithm,after
rewritingEquation(1)indiscreteformandleing,,
kdkocvk
EU U ,onecanobtainthe
differentialequationsforthemodel
11 20, 30,1kk k k
E
EII
(8)
,,0,0,dk ocvk k ck
UU IRU
,(9)
where
1
20
310
(1)
R
R
R
. (10)
0
Tisthesamplingtime,011
exp( / )TRC
.
Therefore,thebaerymodelparameterscanbeobtainedas
12
01231
1101123
()/(1)
(1 ) / l n( ) ( )
R
R
CT
. (11)
()k
dk E istheoutputdataatmomentk,0,
()
ic k
x
kI
istheinputdatawith
randomlossand10, 0,1
() [ ]
T
kkk
xk E I I
istheimputedinputvectoratmomentk.Thus,
thecoefficientvector12 3
() [ ]wn
canbeidentifiedrecursivelythroughthe
MIDRLSalgorithmandthebaerymodelparametersatmomentkcanbecalculated
fromEquation(11).
Electronics2024,13,44366of15
3.SOCEstimationBasedontheJointMIDRLS‐UKFAlgorithm
3.1.EquationsofStateandMeasurementfortheBaeryModel
TheSOCofthelithiumbaery istypicallycalculatedastheproportionofthe
remainingcapacityrelativetothebaery’sactualmaximumcapacity[24],andtheSOC
canbeestimatedusingtheampere-timeintegrationmethod
0
0
0
1
() (0) ()
t
SOC t SOC I t dt
Q
(12)
where(0)SOC isthestartingpointvalueofSOC,0
Qisthebaery’smaximumcapacity
and
istheCoulombicefficiencywhichdescribestheratioofdischargecapacity
(mAh/g)tochargecapacity(mAh/g).
AfterdiscretizingEquation(12)andcombiningEquations(8)and(9),thestateand
measurementequationsofthebaerymodelcanbewrienas
1
10,1
00
(1 )
0
/01
kk kk
R
x
xIw
TQ
(13)
,0,0,
()
dk k k ck k
UfSOCIRUv
, (14)
where,
(, )
T
kck k
xUSOC isthestatevariable,()
k
f
SOC expressesthecorrespondence
betweenocv
U andk
SOC andk
w andk
v aretheprocessnoiseandmeasurement
noiseofthesystem,respectively.
Thiscanbefurthersimplifiedandexpressedasafunctionalrelationship:
11
(,)
(, )
kkkk
kkkk
x
gx u w
yhxu v
. (15)
3.2.SOCEstimationBasedontheUKFAlgorithm
TheKalmanfilteralgorithmisanalgorithmfortheoptimalstateestimationofalinear
system,whereas()
k
f
SOC isanonlinearfunctionalrelationshipinthemeasurement
equationofthebaerymodel.
TheEKFalgorithmlinearizesthesystemusingaTaylor expansion.TheUKF
algorithmlinearizesthenonlinearsystemthroughatracelesstransformation[25],which
approximatestheprobabilitydistributionofthesystem’sstatevariablesbyobtainingaset
ofsigmasamplingpointsaroundtheinitialestimate,thusobtainingthemeanand
varianceoftheestimatedquantity.Inthisprocess,wedonotneedtoderiveanditeratively
computetheJacobimatrix,whichimprovestheestimationaccuracyandreducesthe
computationalcomplexity[26].
ThedetailedimplementationstepsoftheUKFalgorithmareoutlinedbelow:
(1) Initialize:
0
0
00 0
0
0
ˆ
ˆˆ
()
[( )( ) ]
T
x
Px x
x
xx
(16)
where0
ˆ
x
istheestimatedvalueoftheinitialstateand0
P istheinitialerror
covariancematrix.
(2) Obtain21LSigmapointsattime1k:
Electronics2024,13,44367of15
,1 1
,1 1 1
,1 1 1
ˆ,0
ˆ( ( ) ) , 1,2,...,
ˆ( ( ) ) , 1,...,2
ik k
ik k k i
ik k k i L
xxi
xx LPi L
x
xLPiLL
(17)
whereListhedimensionofthestatevariable,2()LL
,and
servesto
regulatetheproximityofthesamplingpointtothemeanvalue,generally
2
10 1
.
needstomeet0
.
Theweightingfactorsare
2
,0
1,0
1, 1, 2,3, ..., 2
2( )
m
i
c
i
mc
ii
i
L
i
L
iL
L
(18)
where2
forGaussiandistributedvariables,m
i
istheweightedvalueofthemean
ofthesamplingpointsandc
i
istheweightedvalueoftheerrorcovariancematricesat
thesamplingpoints.
(3) Calculatetheforecastedvaluesofthemeanandcovariancematrix:
,/ 1 , 1 1
( , ), 0,1,..., 2
ik k ik k
x
gx u i L
(19)
2
,/ 1
0
ˆ,0,1,...,2
L
m
kiikk
i
x
xi L
(20)
2
/1 /1 /1
0
L
cT
kk i kk kk
i
PAA
(21)
where,/ 1ik k
x and/1kk
P arethepredictedvalueofthestatevectorandtheerror
covariancematrixatthenextmomentbasedonthemoment1k,respectively,and
ˆk
x
istheestimatedvalueofthestatevectoratmomentk.Inaddition,
/1 ,/1
ˆ
kk k ikk
Axx
.
(4) Updatethesigmasamplepoints:
,/ 1
,/ 1 / 1
,/ 1 / 1
ˆ,0
ˆ( ( ) ) , 1,2,...,
ˆ( ( ) ) , 1,..., 2
ik k k
ik k k k k i
ik k k kk i L
xxi
xxLPi L
x
xLP iL L
(22)
(5) CalculatetheestimatedvaluesoftheoutputandtheKalmangain:
,/ 1 ,/ 1
2
,/ 1
0
()
ˆ, 0,1,..., 2
ik k ik k
L
m
kiikk
i
yhx
yyi L
(23)
1
,,
k xyk yk
L
PP
(24)
Electronics2024,13,44368of15
2
,,/1,/1
0
2
,,/1,/1
0
ˆˆ
()( )
ˆˆ
()()
L
cT
xy k i i k k k i k k k
i
L
cT
yk i ikk k ik k k
i
P
xxyy
Pyyyy
(25)
wherek
L
isthegainmatrix.
(6) Updatethestatevariablesanderrorcovariancematrix:
ˆˆˆ
()
kkkkk
x
xLyy (26)
/1 ,
T
kkk kykk
PP LPL
(27)
where,
kdk
yU
istheactualmeasuredvalueofthebaeryterminalvoltageatthe
momentk.
Theabovestepsareiterativelyupdatedtoenablethereal-timeestimationofSOC.
3.3.ImplementationFlowoftheMIDRLS‐UKFAlgorithm
Thevaluesofthemodelparameters0
R
,1
R
and1
Careaffectedbyanumberof
factors,includingtheexternalenvironmentandtheinternalstateofthebaery.The
MIDRLSalgorithmmodulecanaccuratelyidentifytheparameters0
R
,1
R
and1
Ceven
whencharging/dischargingcurrentsareincompletelymeasured.Theidentifiedvaluesare
passedtotheUKFalgorithmmodule,whichparticipatesintheformationofthefunctional
relationshipsofthebaerystateandmeasurementequations.
Thus,theUKFalgorithmmoduleobtainsanestimationoftheSOCandreturnsthe
corresponding,ocv k
U totheMIDRLSalgorithmmodulefromthefunction ()
k
f
SOC ,
whichthencalculatesitandproceedstothenextmomentofparameteridentification.As
aresult,theMIDRLSalgorithmandtheUKFalgorithmjointlyrealizethebaerySOC
estimation,withtherealizationflowstructurediagramdisplayedinFigure2.
Measured current I
Initialization
MIDRLS for online
parameter
identification
UKF for state
estimation
Model parameters
011
RRC、、
d
SOC U、
Initialization
Obtain
ocv
UE、
Figure2.SOCestimationprocessbasedonMIDRLS-UKF.
Electronics2024,13,44369of15
4.SimulationResultsandAnalysis
Inthispaper,MATLABR2022bwasusedtocarryoutsimulationworkstoverifythe
accuracyoftheabovealgorithmicprocess.Thevoltageandcurrentdatasequenceswere
previouslymeasured.ThesubjectofourtestsistheINR18650-20Rbaery,witha2000
mAhcapacity,whichwaschargedusingaCC-CVprotocolata1Crateatatest
temperatureof25°C.Intheconstantcurrentphase,thebaerywaschargeduntilit
reachedaterminalvoltageof4.2V,afterwhichthecurrentgraduallydecreasedto0.01C
intheconstantvoltagephase.Subsequently,thebaerywasdischargedatarateofC/20
untilthevoltagewascloseto2.5V,andthenrechargedatthesamerateuntilthevoltage
wasnearly4.2Vtoobtainthedatausedinthesimulationworks.Thevalueofcurrents
appearstobezeroatrandommomentpoints,asshowninFigure3.Thecurve()
k
f
SOC
ofthefunction
ocv
USOC
usedinthesimulationsisderivedfromtheUniversityof
MarylandexperimentaldataonOCVincrementaltestingofINR18650-20Rbaeries[27].
Tomitigatetherandomnessoftheexperimentaloutcomes,MonteCarlosimulations
wereusedinthesimulations,withatotalof200runs.Thesamplingtime01sT.Thetotal
simulationdurationwasestablishedat9434sandtheinitialvaluesofthebaery
equivalentmodelparametersweresetas-2
0=1 10R
,-3
1=1 10R
and3
1=1 10 FC.
TheadditionalparametersofthealgorithmaresetinTabl e1.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time/s
-3
-2
-1
0
1
2
3
4
5
6
7
8
Current/s
2000 2100 2200 2300 2400
-0.1
0
0.1
0.2
Figure3.Currentmeasurementswithrandommissingdata.
Tab le1.Parametersforsimulations.
ParametersoftheMIDRLSAlgorithmParametersoftheUKFAlgorithm
0.999
0[0 0.8]T
x
0.8p=0
1
-2
110
(0) 0.001*
M
I2
-4 -4
0[1 1 0 0; 0 2 10 ]P
Figure4showstheoutcomesoftheMIDRLSalgorithmforthereal-timeidentification
forthebaerymodelparameters0
R
,1
R
and1
C.Overall,thebaery’sinternal
resistance0
R
graduallyincreasesastheSOCdecreases,whilethepolarizationresistance
1
R
exhibitsaninitialrisefollowedbyadeclinewithdecreasingSOC.Inaddition,the
polarizationcapacitance1
Cshowsadrasticchangeintheinitialestimationprocessand
thentendstoincreaseprogressivelyalongsideareductioninSOC.Theresultsshowthat
theMIDRLSalgorithmenablesthereal-timecorrectionoftheparameterestimates,
leadingtomoreaccurateSOCstateestimationresults.
Electronics2024,13,443610of15
Subsequently,weconductedacomparativeanalysisoftheestimationoutcomes
betweentheMIDRLS-UKFandFFRLS-UKFalgorithmsunderidenticalsimulation
conditions.Accordingtotheestimationprocess,itcanbeseenthatbasedontheidentified
modelparameters,theterminalvoltagecanbeprojectedusingtheUKFalgorithm.Ascan
beseeninFigure5,fortheMIDRLSalgorithm,initialdeviationsinterminalvoltage
predictionsoccurduetotheerraticfluctuationsintheparameterestimates.However,the
accuracyimprovesovertime.Moreover,ingeneral,comparedtotheFFRLS-UKF
algorithm,theterminalvoltageestimationresultsbasedontheMIDRLS-UKFalgorithm
aremuchclosertotheactualmeasuredvalues.
AcomparisonofthefinalSOCestimationresultsisshowninFigure6.Inthepresence
ofrandommissingcurrentmeasurements,despitetheincreasedcomputationaldemands
oftheMIDRLS-UKFalgorithmovertheFFRLS-UKFalgorithm,theSOCestimationresult
curveofMIDRLS-UKFalignscloselywiththeactualSOCcurveverywell.Itcanbe
inferredthatthisisbecausethemodelparametersestimatedbytheMIDRLSalgorithm
turnedouttobeaccurate.However,theFFRLS-UKFalgorithmexhibitsinitial
discrepanciesinSOCestimation,whichareexacerbatedovertime.Thisdivergencecanbe
aributedtotheFFRLSalgorithm’sfailuretoconvergetotheminimumsteadystateerror
whenthegradientdescentisappliedinthepresenceofmissingcurrentdata.
(a)
Time/s
0.06
0
/R
02000 4000 6000 8000
0
1
/R
(b)
02000 4000 6000 8000
0
0.01
0.02
0.03
0.04
0.05
1
/CF
0
400
800
1200
02000 4000 6000 8000
(c)
Time/s
Time/s
0.04
0.02
Figure4.Modelparameteridentificationresults:(a)baeryinternalresistance0
R
;(b)polarization
resistance1
R
;(c)polarizationcapacitance1
C.
Electronics2024,13,443611of15
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time/s
3.1
3.3
3.5
3.7
3.9
4.1
Voltage/V
Actual voltage
MIDRLS-UKF
RLS-UKF
Figure5.d
Uestimationresults.
Tomaketheresultsmoreintuitive,Figure7illustratestheSOCestimationerrorrates.
ItisevidentthattheFFRLS-UKFalgorithmexperiencesarapidincreaseinSOCestimation
error,whereastheerrorfortheproposedMIDRLS-UKFalgorithmremainsbelow0.05%,
indicatingasubstantialenhancementinaccuracy.Tofurthercomparetheestimation
accuracyofthealgorithms,wealsocalculatedtherootmeansquareerror(RMSE)andthe
maximumabsoluteerror(MAE)inTab l e2.Theyaredefined,respectively,as
2
1
1
=( )
T
ii
i
RMSE SOC SOC
T
(28)
max
ii
MAE SOC SOC
(29)
wherei
SOC istheactualvalueoftheSOCatmomentiandi
SOCistheestimatedvalue
oftheSOCatmomenti.AspresentedinTab le2,theMAEsandRMSEsfortheMIDRLS-
UKFaresignificantlylowercomparedtothoseoftheFFRLS-UKF,whichverifiesthe
superiorestimationaccuracyoftheproposedalgorithm.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time/s
0
10
20
30
40
50
60
70
80
90
SOC /%
Reference
MIDRLS-UKF
RLS-UK F
Figure6.SOCestimationresults.
Electronics2024,13,443612of15
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time / s
0
0.5
1
1.5
2
2.5
SOC estimation error / %
RLS-UKF
MIDRLS-UKF
8500 8600 8700
-0.02
0
0.02
Figure7.SOCestimationerror.
Tab le2.MSEsandMAEsofSOCestimationmethods.
AlgorithmRMSE(%)MAE(%)
MIDRLS-UKF0.43%0.81%
FFRLS-UKF8.12%14.64%
Sincetheinitialvalueofthealgorithmisoftenunknown,wetestedtheperformance
oftheproposedalgorithmagainstincorrectinitialvalues.SOCestimationwascarriedout
afterseingtheinitialvalueofSOCto0.7and0.9,respectively,andtheoutcomesare
depictedinFigure8.TheresultsdemonstratethattheMIDRLS-UKFalgorithmswiftly
rectifiesinitialvaluediscrepancies,achievinghighlyaccurateSOCestimationwith
remarkablestability.Thisfurtherverifiestheexceptionalapplicability,robustnessand
reliableestimationperformanceoftheproposedalgorithm.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time / s
0
10
20
30
40
50
60
70
80
90
SOC /%
Reference
Initial value is 0.7
Initial value is 0.9
Figure8.SOCestimationresultsunderinaccurateinitialvaluesofMIDRLS-UKF.
5.Conclusions
Focusingontheproblemthatreal-timecurrentmeasurementsmayberandomly
missingduringtheSOCestimationoflithiumbaeries,thusimpairingestimation
precision,thisstudyemploystheMIDRLSalgorithmtoidentifythemodelparameters
basedontheTheveninbaerymodel.Concurrently,theUKFalgorithmisutilizedto
estimatethebaerystatevariables,thusenablingthejointestimationoftheSOC.The
estimationaccuracyisthencontrastedwiththoseoftheconventionaljointFFRLS-UKF
jointalgorithm.ThesimulationresultsverifytheaccuracyofthejointMIDRLS-UKF
algorithmproposedinthispaperforSOCpurposes.ThemaximumSOCestimationerror
oftheMIDRLS-UKFalgorithmdoesnotexceed0.05%,withtheRMSEandMAEofthe
estimationresultsbeing0.43%and0.81%,respectively,indicativeofexcellentestimation
Electronics2024,13,443613of15
accuracy.Comparedwiththeexistingestimationmethods,theestimationperformance,
stabilityandapplicabilityoftheproposedalgorithminthispaperaresignificantly
enhanced,whichfurtherimprovesthereliabilityoftheBMS.
Aut ho rContributions:Conceptualization,X.L.andZ.Z.;methodology,X.L.;software,X.L.;validation,
Z.Z.andJ.M.;formalanalysis,X.L.andQ.W.;investigation,Z.Z.andJ.M.;resources,Q.W.andZ.Z.;
datacuration,X.L.andQ.W.;writing—originaldraftpreparation,X.L.;writing—reviewandediting,
Z.Z.;visualization,X.L.;supervision,Z.ZandJ.M.;projectadministration,Z.Z.;fundingacquisition,
Z.Z.andJ.M.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchwaspartiallysupportedbytheNationalNaturalScienceFoundationof
China(62101362)andtheKeyResearchandDevelopmentProgramofShaanxiProvince(2024GX-
YBXM-442).
DataAvailabilityStatement:Therawdatasupportingtheconclusionsofthisarticlewillbemade
availablebytheauthorsonrequest.
Acknowledgments:Theauthorswouldliketothanktheeditorandreviewersfortheirsincere
suggestionsforimprovingthequalityofthispaper.
ConflictsofInterest:Theauthorsdeclarethatthisresearchwasconductedintheabsenceofany
commercialorfinancialrelationshipsthatcouldbeconstruedaspotentialconflictsofinterest.
Abbreviations
SOCstateofcharge
UKFunscentedKalmanfilter
EKFextendedKalmanfilter
FFRLSforgeingfactorrecursiveleastsquare
MIDRLSrecursiveleastsquarewithmissinginputdata
BMS
b
aerymanagementsystem
RMSErootmeansquareerror
MAEmaximumabsoluteerror
Symbols
ocv
Uvoltageoftheidealvoltagesource
0
R
b
aeryequivalentinternalresistance
1
R
polarizationresistance
1
Cpolarizationcapacitor
d
U
b
aeryterminalvoltage
0
I
loadcurrent
()
g
nBernoullirandomvariable
()
x
ninputdata
()
ic
x
ninputdatawithrandommissingvalues
p
probabilitythatinputdataarenotmissing
constanttimesofimputation
()di outputdata
()wn parametervectortobeidentified
forgeingfactor
()
J
nobjectivefunctionoftheFFRLSalgorithm
ktimestepindex
0
Tsamplingtime
0
Qmaximumcapacityofthebaery
Coulombicefficiency
k
x
statevector
k
wprocessnoise
Electronics2024,13,443614of15
k
vmeasurementnoise
k
Eterminalvoltageminusidealvoltagesourcevoltage
()
k
f
SOC functionofocv
USOC
k
ymeasurevector
0
ˆ
x
estimatedvalueoftheinitialstate
0
Pinitialerrorcovariancematrix
Ldimensionofstatevariable
m
i
weightedvalueofthemeanofthesamplingpoints
c
i
weightedvalueoftheerrorcovariancematrices
,/ 1ik k
xpredictedvalueofthestatevariableattimeinstant/1kk
/1kk
Ppredictedvalueoftheerrorcovariancematrixattimeinstant/1kk
ˆk
x
estimatedvalueofthestatevariableatmomentk
k
L
gainmatrix
References
1. Liu,C.;Liu,W.;Wang ,L.;Hu,G.;Ma,L.;Ren,B.Anewmethodofmodelingandstateofchargeestimationofthebaery.J.
PowerSources2016,320,1–12.
2. Tong,Y.;Zheng,Z.;Fan,W.;Liu,Z.ImprovedunscentedKalmanfilterforstateofchargeestimationoflithium-ionbaerywith
one-steprandomlymeasurementlossandinaccuratenoisecovariancematrices.Digit.SignalProcess.2022,131,103780.
3. Zubi,G.;Dufo-López,R.;Carvalho,M.;Pasaoglu,G.Thelithium-ionbaery:Stateoftheartandfutureperspectives.Renew.
Sustain.EnergyRev.2018,89,292–308.
4. Singh,S.;More,V.;Batheri,R.DrivingElectricVehi clesIntotheFutureWithBaeryManagementSystems.IEEEEng.Manag.
Rev.2022,50,157–161.
5. Charkhgard,M.;Farrokhi,M.State-of-ChargeEstimationforLithium-IonBaeriesUsingNeuralNetworksandEKF.IEEE
Trans.Ind.Electron.2010,57,4178–4187.
6. Qin,P.;Zhao,L.ANovelTransferLearning-BasedCellSOCOnlineEstimationMethodforaBaeryPackinComplex
ApplicationConditions.IEEETrans.Ind.Electron.2023,71,1606–1615.
7. Dubarry,M.;Svoboda,V.;Hwu,R.;Liaw,B.Y.Capacitylossinrechargeablelithiumcellsduringcyclelifetesting:The
importanceofdeterminingstate-of-charge.J.PowerSources2007,174,1121–1125.
8. Tian,J.;Chen,C.;Shen,W.;Sun,F.;Xiong,R.Deeplearningframeworkforlithium-ionbaerystateofchargeestimation:Recent
advancesandfutureperspectives.EnergyStorageMater.2023,61,102883.
9. Chai,X.;Li,S.;Liang,F.AnovelbaerySOCestimationmethodbasedonrandomsearchoptimizedLSTMneuralnetwork.
Energy2024,306,132583.
10. Zhou,X.;Wan g, Y.;Shi,Y.;Jiang,Q.;Zhou,C.;Zheng,Z.DeepReinforcementLearning-BasedOptimalPMUPlacement
ConsideringtheDegreeofPowerSystemObservability.IEEETrans.Ind.Inform.2024,20,8949–8960.
11. Tan g,A.;Huang,Y.;Liu,S.;Yu,Q.;Shen,W.;Xiong,R.Anovellithium-ionbaerystateofchargeestimationmethodbasedon
thefusionofneuralnetworkandequivalentcircuitmodels.Appl.Energy2023,348,121578.
12. Buchicchio,E.;DeAngelis,A.;Santoni,F.;Carbone,P.;Bianconi,F.;Smeraldi,F.BaerySOCestimationfromEISdatabased
onmachinelearningandequivalentcircuitmodel.Energy2023,283,128461.
13. Yang , H.;Sun,X.;An,Y.;Zhang,X.;We i, T.;Ma,Y.Onlineparametersidentificationandstateofchargeestimationforlithium-
ioncapacitorbasedonimprovedCubatureKalmanfilter.J.EnergyStorage2019,24,100810.
14. Li,X.;Wan g, Z.;Zhang,L.Co-estimationofcapacityandstate-of-chargeforlithium-ionbaeriesinelectricvehicles.Energy
2019,174,33–44.
15. Shrivastava,P.;KokSoon,T.;BinIdris,M.Y.I.;Mekhilef,S.;Adnan,S.B.R.S.CombinedStateofChargeandStateofEnergy
EstimationofLithium-IonBaeryUsingDualForgeingFactor-BasedAdaptiveExtendedKalmanFilterforElectricVehi cle
Applications.IEEETrans.Veh .Te chnol .2021,70,1200–1215.
16. Wang,D.;Ya n g,Y. ;Gu,T.AhierarchicaladaptiveextendedKalmanfilteralgorithmforlithium-ionbaerystateofcharge
estimation.J.EnergyStorage2023,62,106831.
17. Zhang,S.;Guo,X.;Zhang,X.Animprovedadaptiveunscentedkalmanfilteringforstateofchargeonlineestimationoflithium-
ionbaery.J.EnergyStorage2020,32,101980.
18. Shrivastava,P.;Soon,T.K.;Idris,M.Y.I.B.;Mekhilef,S.Overviewofmodel-basedonlinestate-of-chargeestimationusingKalman
filterfamilyforlithium-ionbaeries.Renew.Sustain.EnergyRev.2019,113,109233.
19. Putra,W.S.;Dewangga,B.R.;Cahyadi,A.;Wahyunggoro,O.CurrentestimationusingTheveninbaerymodel.InProceedings
oftheJointInternationalConferenceonElectricVehic ul arTech no log yandIndustrial,Mechanical,ElectricalandChemical
Engineering(ICEVT&IMECE),Surakarta,Indonesia,4–5November2015;pp.5–9.
Electronics2024,13,443615of15
20. Kwak,M.;Lkhagvasuren,B.;Park,J.;You,J.-H.ParameterIdentificationandSOCEstimationofaBaeryUndertheHysteresis
Effect.IEEETrans.Ind.Electron.2019,67,9758–9767.
21. Pop,V.; Bergveld,H.J.;hetVel d, J.O.;Regtien,P.P.L.;Danilov,D.;Noen,P.H.L.Modelingbaerybehaviorforaccuratestate-
of-chargeindication.J.Electrochem.Soc.2006,153,A2013.
22. Lai,X.;Zheng,Y.;Sun,T.Acomparativestudyofdifferentequivalentcircuitmodelsforestimatingstate-of-chargeoflithium-
ionbaeries.Electrochim.Acta2018,259,566–577.
23. Leung,S.-H.;So,C.F.Gradient-basedvariableforgeingfactorRLSalgorithmintime-varyingenvironments.IEEETrans.Signal
Process.2005,53,3141–3150.
24. Piller,S.;Perrin,M.;Jossen,A.Methodsforstate-of-chargedeterminationandtheirapplications.J.PowerSources2001,96,113–
120.
25. Hossain,M.;Haque,M.E.;Arif,M.T.Kalmanfilteringtechniquesfortheonlinemodelparametersandstateofchargeestimation
oftheLi-ionbaeries:Acomparativeanalysis.J.EnergyStorage2022,51,104174.
26. Wang,K.;Feng,X.;Pang,J.;Duan,C.;Li,L.Stateofcharge(SOC)estimationoflithium-ionbaerybasedonadaptivesquare
rootunscentedkalmanfilter.Int.J.Electrochem.Sci.2020,15,9499–9516.
27. Zheng,F.;Xing,Y.; Jiang,J.;Sun,B.;Kim,J.;Pecht,M.Influenceofdifferentopencircuitvoltagetestsonstateofchargeonline
estimationforlithium-ionbaeries.Appl.Energy2016,183,513–525.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual
author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjury
topeopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.