ArticlePDF Available

Potensi Sediaan Nanokitosan Ekstrak Daun Mimba (Azadiractha indica A. J Pengisolasian dan Pengidentifikasian Salmonella enteritidis dan S. typhimurium pada Landak Mini Afrika Peliharaan di Banda Aceh dan Aceh Besar

Authors:

Abstract

African Hedgehog (Atelerix albiventris) is an exotic animal that has the potential to carry and transmit zoonotic diseases and one of them is salmonellosis. This research was aimed to identify Salmonellasp. from the digestive tract of African hedgehog. The samples were collected from anal swabs originating from 10African hedgehogs that were reared around Banda Aceh and Aceh Besar area. This research method was modified, based onthe Carter method. The samples of the African hedgehog obtained from the anal swab. Then, the samples were put into the Selenite CystineBroth (SCB) medium; if the medium colour became orange, it was continued by inoculating the bacteria on Salmonella Shigella Agar (SSA) to isolate the bacteria. Macroscopic morphological observations of the grown colonies were carried out based on size, shape, surface, colony edge, elevation and it’s color. Gram staining was followed to observe the bacterial morphology microscopically. Inoculation bacteria carried out identification on IMVIC media (Indol, Methyl Red-Voges Proskuer, Sulfid Indol Motility, Simmon Citrate). Triple Sugar Iron Agar (TSIA), and fermentation test of sugars (glucose, maltose, lactose, mannitol, and sucrose). The research data was analyzed descriptively and the research result were presented in the form of figures and tables. Isolation results obtained in all samples showed(100%) Salmonella sp. consisting of (70%) Salmonella enteritidisand three samples (30%) were S.typhimurium. Therefore, we can conclude that in the African hedgehog's digestive systemwere reared in Aceh, twoSalmonella species can be isolated: S.enteritidisand S.typhimurium.
Pengisolasian dan Pengidentifikasian Salmonella enteritidis
dan S. typhimurium pada Landak Mini Afrika Peliharaan
di Banda Aceh dan Aceh Besar
(ISOLATION AND IDENTIFICATION OF SALMONELLA ENTERITIDIS
AND S. TYPHIMURIUM IN PET AFRICAN MINI HEDGEHOGS
OF BANDA ACEH AND ACEH BESAR REGENCY)
Erina1*, M. Daud AK1, M. Hasan2, Masda Admi1, Roslizawaty2, Juli Melia3, Nindiana
Lenggo Geni4
1Laboratorium Mikrobiologi, 2Laboratorium Klinik,
3Laboratorium Reproduksi, 1Program Studi Pendidikan Dokter Hewan,
Fakultas Kedokteran Hewan, Universitas Syiah Kuala,
Jl. Teuku Nyak Arief, No. 441, Kota Banda Aceh,
Aceh, Indonesia 23111
Email: erina@usk.ac.id
ABSTRACT
African Hedgehog (Atelerix albiventris) is an exotic animal that has the potential to
carry and transmit zoonotic diseases and one of them is salmonellosis. This research was
aimed to identify Salmonella sp. from the digestive tract of African hedgehog. The samples
were collected from anal swabs originating from 10 African hedgehogs that were reared
around Banda Aceh and Aceh Besar area. This research method was modified, based on the
Carter method. The samples of the African hedgehog obtained from the anal swab. Then,
the samples were put into the Selenite Cystine Broth (SCB) medium; if the medium colour
became orange, it was continued by inoculating the bacteria on Salmonella Shigella Agar
(SSA) to isolate the bacteria. Macroscopic morphological observations of the grown colonies
were carried out based on size, shape, surface, colony edge, elevation and it’s color. Gram
staining was followed to observe the bacterial morphology microscopically. Inoculation
bacteria carried out identification on IMVIC media (Indol, Methyl Red-Voges Proskuer,
Sulfid Indol Motility, Simmon Citrate). Triple Sugar Iron Agar (TSIA), and fermentation
test of sugars (glucose, maltose, lactose, mannitol, and sucrose). The research data was
analyzed descriptively and the research result were presented in the form of figures and
tables. Isolation results obtained in all samples showed (100%) Salmonella sp. consisting
of (70%) Salmonella enteritidis and three samples (30%) were S. typhimurium. Therefore,
we can conclude that in the African hedgehog's digestive system were reared in Aceh, two
Salmonella species can be isolated: S. enteritidis and S. typhimurium.
Key words: African hedgehog; exotic animal; food-borne diseases; Salmonella sp.;
zoonoses
pISSN: 1411-8327; eISSN: 2477-5665
Terakreditasi Nasional, Dirjen Penguatan Riset dan Pengembangan,
Kemenristek Dikti RI S.K. No. 36a/E/KPT/2016
DOI: 10.19087/jveteriner.2024.25.2.214
online pada http://ojs.unud.ac.id/index.php/jvet
214
Jurnal Veteriner Juni 2024 Vol. 25 No. 2 : 214-224
Jurnal Veteriner
Erina et al
ABSTRAK
Landak mini afrika (Atelerix albiventris) merupakan hewan eksotis yang berpotensi
membawa dan menularkan penyakit zoonosis, salah satunya yaitu salmonellosis. Penelitian
ini bertujuan untuk mengidentifikasi Salmonella sp. dari saluran pencernaan landak mini
afrika. Sampel berupa ulas/swab anus 10 ekor landak mini afrika yang dipelihara di sekitar
Banda Aceh dan Aceh Besar. Metode penelitian ini yaitu metode Carter yang dimodifikasi.
Hasil swab anus landak mini Afrika dimasukkan ke dalam media Selenite Cystine Broth
(SCB), apabila warna media menjadi orange dilanjutkan dengan penanaman bakteri pada
media Salmonella Shigella Agar (SSA) untuk mengisolasi. Pengamatan morfologi secara
makroskopis terhadap koloni yang tumbuh dilakukan berdasarkan ukuran, bentuk,
permukaan, pinggiran koloni, elevasi dan warna, dilanjutkan dengan pewarnaan Gram untuk
mengamati morfologi bakteri secara mikroskopis. Identifikasi dilanjutkan dengan
penanaman bakteri pada media IMVIC (Indol, Methyl Red-Voges Proskuer, Sulfid Indol
Motility, Simmon Citrate). Triple Sugar Iron Agar (TSIA), dan uji fermentasi gula-gula
(glukosa, maltosa, laktosa, manitol, dan sukrosa). Data hasil penelitian dianalisis secara
deskriptif, ditampilkan dalam bentuk gambar dan tabel. Hasil isolasi didapat bahwa pada
sampel (100%) Salmonella sp. Berdasarkan hasil identifikasi ditemukan tujuh sampel (70%)
Salmonella enteretidis dan tiga sampel (30%) S. thypymurium. Oleh sebab itu dapat
disimpulkan bahwa pada saluran pencernaan landak mini afrika dapat diisolasi dua jenis
Salmonella yaitu: S. enteritidis dan S. thypymurium.
Kata-kata kunci: food-borne diseases; hewan eksotik; landak mini afrika; Salmonella sp.;
zoonosis
PENDAHULUAN
Landak mini asli afrika (Atelerix
albiventris) habitatnya dapat ditemukan di
Gunung Kalimanjaro (Heatley, 2009) di
Negara Tanzania dekat perbatasan dengan
Kenya. Awal mulanya landak mini Afrika
ini dipelihara di Amerika dan mulai masuk
ke Indonesia sejak tahun 1997 dan di-
kembangkan sampai sekarang (Muham-mad
dan Kusumaningtyas, 2013). Hewan eksotis
ini semakin banyak dipelihara di dalam
rumah (Rosen dan Jablon, 2003) dan
menjadi populer di antara pecinta hewan
(Riley dan Chomel, 2005) juga merupakan
jenis yang paling banyak diperdagangkan
(Heatley, 2009).
Meningkatnya jumlah hewan
peliharaan rumah tangga, berbanding lurus
dengan peningkatan risiko terpapar penyakit
zoonosis dari hewan tersebut (Halsby et al.,
2014). Landak mini memiliki potensi mem-
bawa dan menularkan penyakit zoonosis
(Riley dan Chomel, 2005). Sejumlah
penelitian mengenai landak mini di
Indonesia telah dilakukan dan menurut
laporan penelitian Sofiyani et al. (2018),
landak mini berperan sebagai sumber
penyebaran agen leptospirosis.
Sejumlah penyakit yang pernah
dilaporkan pada landak mini di antaranya
penyakit mulut dan kuku (PMK), ringworm,
dan berbagai jenis penyakit yang di-
sebabkan oleh bakteri. Terdapat berbagai
bakteri yang pernah ditemukan pada landak
mini seperti: Salmonella sp., Yersinia pseu-
dotuberculosis, Y. pestis, Myco-bacterium
marinum, dan M. avium intracellulare.
Bakteri Salmonella sp. menjadi salah satu
bakteri penyebab zoonosis berasal dari
landak mini, penyakit yang diakibatkannya
yaitu salmonellosis (Heatly, 2009). Sal-
monella sp. merupakan bakteri Gram
negatif yang keberadannya terbatas pada
saluran pencernaan baik manusia ataupun
hewan, keberadaan salmo-nella pada
lingkungan ataupun makanan dapat terjadi
melalui kontaminasi dari feses (Wray dan
215
Jurnal Veteriner
Juni 2024 Vol. 25 No. 1 : 216-224
216
Wray, 2000) dan kontak langsung dengan
hewan peliharaan (Hoelzer et al., 2011).
Bakteri Salmonella sp. termasuk
kedalam bakteri patogen (Wray dan Wray,
2000), ditularkan melalui makanan atau
lebih dikenal dengan food-born disease
(Newel et al., 2010). Setelah tertelan,
bakteri ini berkembang-biak di usus halus
(Keebel dan Koterwas, 2020). Pada manusia
infeksi bakteri Salmonella sp. dapat me-
nimbulkan gangguan kesehatan seperti
gastroenteritis, bakteremia, demam, kram
perut, mual, muntah, dan pusing (Newel et
al., 2010).
Landak mini merupakan reservoir
dari Salmonella sp. (Steinmuller et al., 2003
dan Heatly, 2009). Landak mini memiliki
tinja/kotoran yang lembut dan hewan ini
cenderung melangkah di atas kotorannya,
hal ini berpotensi meningkatkan resiko pe-
nularan Salmonella sp. kepada pemilik
hewan (Pignon dan Mayer, 2011) terutama
pada anak-anak dan kelompok usia rentan
(Steinmuller et al., 2003). Hal ini juga
diperparah dengan perilaku manusia, karena
pemilik hewan berbagi peralatan dengan
hewan peliharaannya sehingga mendukung
terjadinya penyebaran penyakit (Pignon dan
Mayer, 2011).
Berdasarkan penelitian yang
dilaksanakan di Amerika pada 25 pasien
yang terkena salmonelosis, 80% di
antaranya memiliki sejarah kontak dengan
landak mini peliharaan mereka seminggu
sebelum timbulnya penyakit dan beberapa
pasien memelihara landak mini dari spesies
A. albiventris (Anderson et al., 2016).
Sejumlah penelitian pernah dilakukan ter-
hadap landak mini dan S. typhimurium
diisolasi dari landak mini di berbagai daerah
di Norwegia di antaranya 39% Jeloy, 41%
Askoy, Bergen, dan Os (Handeland et al.,
2002). Di Burkina Faso dari 25 sampel
landak mini liar 96% teridentifikasi adanya
S. enterica subspecies enterica (Kagembega
et al., 2013). Selama periode Agustus
2012- Desember 2015 telah dilakukan uji
terhadap 170 landak mini dan S. enteritidis
teridentifikasi pada 46 landak mini di
kawasan Britania Raya (Lawson et al.,
2017). Lebih lanjut, isolasi dan identifikasi
Salmonella sp. pada kloaka kura-kura
ambon (Cuora amboinensis) sudah pernah
dilakukan (Khair et al., 2021).
Saat ini informasi mengenai ke-
beradaan Salmonella sp. pada landak mini
yang ada di Indonesia masih terbatas. Oleh
karena itu, perlu dilakukan penelitian
dengan tujuan untuk mendeteksi keberadaan
Salmonella sp. pada landak mini dalam
upaya pencegahan sehingga penularan
Salmonella sp. dapat dihindarkan.
METODE PENELITIAN
Sampel yang digunakan dalam
penelitian ini berupa swab anus 10 ekor
landak mini yang dipelihara di sekitar
Banda Aceh dan Aceh Besar. Alat-alat yang
digunakan pada penelitian ini adalah cotton
swab steril, tabung reaksi, tabung durham,
rak tabung reaksi, objek gelas, pipet tetes,
spiritus, korek api, ose sengkelit, ose jarum,
cawan petri, mikroskop, kertas label, pulpen
dan inkubator. Bahan-bahan media spesifik
yang yang digunakan di antaranya Selenite
Cystine Broth (SCB), Salmonella Shigella
Agar (SSA), Indol, Methyl Red-Voges
Proskauer, Simon Citrate, Sulfid Indol
Motility (SIM), media gula-gula (laktosa,
maltosa, glukosa, sukrosa, manitol), Triple
Surga Iron Agar (TSIA), alkohol 96%,
larutan Metyhil Red, reagen Kovac’s,
larutan kristal violet, kalium hydroxide
(KOH), α naptol, lugol, safranin, akuades
dan minyak emersi.
Isolasi dan Identifikasi yang
dilakukan mengacu pada metode Carter
(1987) yang dimodifikasi. Sampel swab
anus landak mini dimasukkan ke dalam
tabung reaksi berisi Selenite Cystine Broth
(SCB), jika terjadi perubahan warna pada
media SCB, ditanam pada media Salmo-
nella Shigella Agar (SSA) diinkubasi
selama 24 jam dengan suhu 37oC,
selanjutnya dilakukan pewarnaan Gram
pada koloni terpisah. Terakhir, dilakukan uji
IMVIC (Indol, Methyl Red Voges
Proskauer, Sulfid Indol Motility, Simmon
Citrate), Triple Sugar Iron Agar (TSIA) dan
Jurnal Veteriner
Erina et al
217
uji fermentasi gula-gula yaitu glukosa,
laktosa, sukrosa, manitol dan maltosa.
Isolasi Salmonella sp.
Sampel swab anus landak mini
ditanam pada media Selenite Cystine Broth
(SCB) kemudian diinkubasi pada suhu 37oC
selama 24 jam, diamati perubahan yang
terjadi, jika positif pada media SCB ini
ditandai dengan kekeruhan dan perubahan
warna media menjadi orange, maka
dilanjutkan penanaman pada media
Salmonella Shigella Agar (SSA).
Pewarnaan Gram
Pada gelas objek diteteskan NaCl 1
tetes, kemudian diambil koloni bakteri pada
media Salmonella Shigella Agar (SSA) dan
diletakkan pada gelas objek selanjutnya
diratakan dan di fiksasi di atas api spiritus.
Preparat yang sudah di fiksasi diteteskan
larutan kristal violet lalu didiamkan selama
3-5 menit, zat warna dibilas menggunakan
air mengalir. Kemudian diteteskan lugol
dan ditunggu 1 menit. Sisa lugol dibuang
dengan air mengalir, selanjutnya diteteskan
alkohol 96% untuk melunturkan sisa zat
warna selama 10 detik dan dicuci kembali
dengan air mengalir. Preparat, selanjutnya
digenangi dengan larutan safranin selama
30-60 detik, setelah itu dibuang safranin dan
dicuci dengan air mengalir, kemudian
dikering-anginkan di udara dan diteteskan
minyak emersi, lalu diamati menggunakan
mikroskop dengan pembesaran 1000 kali.
Identifikasi Salmonella sp.
Pembiakan pada media Salmonella
Shigella Agar (SSA) yang telah diinkubasi
pada suhu 37oC selama 24 jam kemudian
dilanjutkan dengan uji Indol, Methyl Red
Voges Proskauer, Sulfid Indol Motility,
Simmon Citrate (IMVIC), Triple Sugar Iron
Agar (TSIA) dan uji fermentasi gula-gula.
Pada uji indol, koloni pada media
SSA yang diduga positif diambil dan
diinokulasikan pada media Indol kemudian
diinkubasi selama 24 jam pada suhu 37ºC
selanjutnya ditambahkan reagen Kovac’s 3-
4 tetes melalui dinding tabung reaksi dan
diamati perubahan yang terjadi. Untuk uji
Methyl Red Voges Proskauer (MR-VP)
biakan bakteri pada media SSA
diinokulasikan pada media MR dan VP,
media MR diinkubasi selama 48 jam pada
suhu 37ºC, kemudian ditambahkan reagen
Methyl-Red, uji positif akan terbentuk
warna merah pada media. Media VP
diinkubasikan selama 24 jam pada suhu
37ºC, ditambahkan α naptol 5% sebanyak 2-
3 tetes dan KOH 40% sebanyak 3-4 tetes
dan diamati perubahan yang terjadi. Uji
Sulfid Indol Motility (SIM) dilakukan de-
ngan cara koloni pada media SSA diambil
dengan osse jarum kemudian diinokulasikan
pada media SIM dengan menusukkan
sampai ke dasar media agar, selanjutnya
diinkubasi selama 24 jam pada suhu 37ºC
dan diamati perubahan yang terjadi. Uji
Simmon Citrate, koloni bakteri diambil
pada media SSA kemudian diinokulasikan
pada media SCA dengan cara digoreskan
pada media agar miring kemudian di-
inkubasi selama 24 jam pada suhu 37ºC dan
diamati perubahan yang terjadi.
Uji TSIA dilakukan dengan cara
mengambil koloni bakteri pada media SSA
kemudian diinokulasikan pada media TSIA
dengan cara ditusukkan sampai sepertiga
tabung kemudian diangkat dan pada bagian
agar miring digoreskan secara zig-zag,
kemudian diinkubasi selama 24 jam pada
suhu 37ºC dan diamati perubahan yang
terjadi.
Uji fermentasi gula-gula (manitol,
glukosa, sukrosa, laktosa dan maltosa),
bakteri yang diduga positif dari media SSA
diinokulasikan ke dalam media gula-gula,
kemudian semua tabung diinkubasi selama
24 jam pada suhu 37oC dan diamati peru-
bahan yang terjadi, disertai pembentukan
gas pada tabung durham.
Analisis Data
Data hasil penelitian dianalisis
secara deskriptif yang disajikan dalam
bentuk tabel atau gambar.
Jurnal Veteriner
Juni 2024 Vol. 25 No. 1 : 216-224
218
HASIL DAN PEMBAHASAN
Pertumbuhan Bakteri pada Media SCB
Hasil penanaman bakteri pada media SCB
yang diambil dari 10 sampel swab anus
landak mini terdapat adanya perubahan
menjadi orange, perubahan ini me-
nunjukkan adanya pertumbuhan bakteri
yang diduga Salmonella Sp Berdasarkan
pernyataan Kusuma (2009) media SCB
merupakan media selektif khusus Gram
negatif seperti Salmonella sp. Pertumbuhan
bakteri ditandai dengan perubahan warna
media menjadi orange, diakibatkan karena
di dalam media SCB mengandung inhibitor
natrium selenit yang kemudian tereduksi
menjadi selenium. Saat selenium bereaksi
dengan asam, pertumbuhan bakteri lain
terhambat
Gambar 1. Pertumbuhan bakteri pada media Se-lenite
Cysteine Broth (SCB) menun-jukkan
perubahan warna media menjadi
jingga/orange
Gambar 2. Pertumbuhan bakteri pada media Sa-
lmonella Shigella Agar (SSA). Warna hitam
menunjukan pertumbuhan koloni bakteri
Salmonella sp.
Gambar 3. Hasil pewanaan Gram koloni bakteri
Salmonella sp. menggunakan mikros-kop
dengan perbesaran 1000 kali
Gambar 4. Uji Biokimia IMVIC, TSIA dan fermentasi
gula-gula. a) Indol, b) SC, c) TSIA, d) VP,
e) MR, f) SIM, g) glukosa, h) maltosa, i)
laktosa, j) manitol, k) sukrosa.
Jurnal Veteriner
Erina et al
219
Tabel 1. Pertumbuhan bakteri pada media Selenite Cysteine Broth (SCB) setelah
inkubasi selama 24 jam terhadap ulas/swab anus landak mini afrika
No
Warna
1
2
3
4
5
6
7
8
9
10
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Keterangan: S= sampel, Saat terjadi perubahan pada media SCB menjadi jingga/orange, yang
mencirikan adanya Salmonella sp., selanjutnya dilakukan penanaman bakteri
pada media SSA.
Pertumbuhan Bakteri pada SSA
Media SSA merupakan media
selektif yang menghambat pertumbuhan
bakteri koliform dan mendukung per-
tumbuhan bakteri seperti Salmonella dan
Shigella. Berdasarkan pertumbuhan bakteri
yang teramati pada media SSA, morfologi
koloni dari bakteri yang teramati berukuran
± 1-2 mikron, berbentuk bulat, permukaan
halus, pinggiran koloni rata, elevasi
cembung dan warna koloni hitam akibat
produksi gas H2S, diduga koloni bakteri
yang tumbuh adalah Salmonella sp. Juariah
dan Yanti (2016) melaporkan bahwa
beberapa spesies Salmonella dapat mem-
produksi gas hydrogen sulfide (H2S)
sehingga koloni bakteri terlihat hitam.
Bakteri yang tumbuh pada media SSA
selanjutnya dilakukan pewarnaan Gram dan
ditanam pada media nutrien agar miring
untuk disimpan sebagai stok identifikasi
bakteri.
Tabel 2. Pengamatan makroskopis morfologi koloni bakteri Salmonella sp. pada media
salmonella shigella agar (SSA)
No
Sampel
Ukuran
Bentuk
Permukaan
Tepi koloni
Elevasi
Warna
1
2
3
4
5
6
7
8
9
10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
Sedang
Sedang
Sedang
Sedang
Sedang
Sedang
Kecil
Kecil
Sedang
Kecil
Bulat
Bulat
Bulat
Bulat
Bulat
Bulat
Bulat
Bulat
Bulat
Bulat
Halus
Halus
Halus
Halus
Halus
Halus
Halus
Halus
Halus
Halus
Rata
Rata
Rata
Rata
Rata
Rata
Rata
Rata
Rata
Rata
Cembung
Cembung
Cembung
Cembung
Cembung
Cembung
Cembung
Cembung
Cembung
Cembung
Hitam
Hitam
Hitam
Hitam
Hitam
Hitam
Hitam
Hitam
Hitam
Hitam
Jurnal Veteriner
Juni 2024 Vol. 25 No. 1 : 216-224
220
Uji Biokimia Identifikasi Salmonella sp.
Uji biokimia dilakukan untuk meng-
identifikasi dan mendeterminasi bakteri
berdasarkan sifat fisiologisnya, meng-
gunakan bahan kimia yang mendeteksi
interaksi bakteri dengan uji reagen yang
menimbulkan perubahan warna pada media
(Juariah dan Yanti, 2016). Uji ini meliputi
uji IMVIC (Indol, Methyl Red Voges
Proskuer, Sulfid Indol Motility, dan Simmon
Citrate), Triple Sugar Iron Agar (TSIA) dan
uji fermentasi gula-gula.
Pada seluruh sampel, uji indol
menunjukkan hasil negatif, yang mana tidak
terbentuknya cincin merah saat diteteskan
reagen Kovac’s menandakan bakteri tidak
mampu menghasilkan indol (Aktar et al.,
2016; Hemraj et al., 2013; Afriyani et al.,
2017; Percival dan Williams, 2014). Uji
Methyl Red-Voges Proskauer (MR-VP)
menunjukkan hasil positif untuk uji MR
dengan perubahan warna menjadi merah
setelah 48 jam inkubasi (Tille, 2017;
Percival dan Williams, 2014). Uji Voges
Proskauer (VP) menunjukkan hasil negatif,
yang ditandai dengan tidak adanya
perubahan warna pada media (Tille, 2017;
Wray dan Wray, 2000). Pada media Sulfid
Indol Motility (SIM), terlihat adanya
penyebaran pertumbuhan bakteri yang
ditandai dengan warna hitam akibat
produksi H2S, menunjukkan bakteri bersifat
motil (Aktar et al., 2016). Uji Simmon
Citrate me-nunjukkan hasil positif dengan
perubahan warna media dari hijau menjadi
biru, menandakan bakteri memanfaatkan
sitrat sebagai sumber energi (Mirmomeni et
al., 2009).
Hasil pengamatan pada media TSIA
menunjukkan bakteri mengalami fer-
mentasi, menghasilkan gas dan H2S. Pe-
rubahan warna menjadi kuning me-
nunjukkan fermentasi pada beberapa
sampel, dengan bagian butt berubah
menjadi kuning dan slant merah (WHO,
2010; Kartika et al., 2014; Percival dan
Williams, 2014). Uji fermentasi gula-gula
menunjukkan hasil positif pada uji manitol,
glukosa, dan maltosa, ditandai dengan
perubahan warna media menjadi kuning
disertai pembentukan gas (Ginting et al.,
2018; Amiruddin et al., 2017; Antriana,
2014; Wray dan Wray, 2000).
Tabel 3. Hasil identifikasi Salmonella sp. pada uji biokimia IMVIC
S
In
MR
V
P
SIM
(H2S)
SC
TSIA
Mn
Gl
Sk
L
Ml
Spesies
b/s
H2S
g
1
-
+
-
+
+
k/k
+
-
+/g
+/g
+/g
-
+/g
S. enteritidis
3
-
+
-
+
+
k/m
+
+
+/g
+/g
+/g
+/g
+/g
S. thypymurium
3
-
+
-
+
+
k/m
+
-
+/g
+/g
+/g
+/g
+/g
S. thypymurium
4
-
+
-
+
+
k/k
+
+
+/g
+/g
+/g
+/g
+/g
S. enteritidis
5
-
+
-
+
+
k/k
+
+
+/g
+/g
+/g
+/g
+/g
S. enteritidis
6
-
+
-
+
+
k/k
+
+
+/g
+/g
+/g
+/g
+/g
S. enteritidis
7
-
+
-
+
+
k/m
+
+
+/g
+/g
+/g
+/g
+/g
S. thypymurium
8
-
+
-
+
+
k/k
+
+
+/g
+/g
+/g
+/g
+/g
S. enteritidis
9
-
+
-
+
+
k/k
-
+
+/g
+/g
+/g
+/g
-
S. enteritidis
10
-
+
-
+
+
k/k
+
-
+/g
+/g
+/g
+/g
+/g
S. enteritidis
Keterangan: S = sampel, In = indol, Mn = manitol, Gl = glukosa Sk = sukrosa, L= laktosa, Ml =
maltosa, b = butt, s = slant, k = kuning, m = Merah, g = gas, (+) = positif, (-) =
negatif
Jurnal Veteriner
Erina et al
221
Uji Fermentasi Gula-Gula
Bakteri Salmonella yang memfer-
mentasikan laktosa menyimpan gen pada
ekstra kromosom seperti plasmid. Strain
bakteri yang mampu memfermentasi laktosa
telah dilaporkan di berbagai negara seperti
Brazil, Turki, Amerika Serikat, Pakistan,
dan Mesir (Bahjar et al., 2019).
Berdasarkan isolasi dan identifikasi
dari 10 sampel swab anus landak mini,
diperoleh bahwa 100% sampel mengandung
Salmonella sp., dengan 70% Salmonella
enteritidis dan 30% S. thypymurium. Salmo-
nella enteritidis merupakan jenis yang
paling banyak dilaporkan pada landak mini
(Lawson et al., 2017). Infeksi S. Thypy-
murium telah banyak dilaporkan pada
berbagai spesies mamalia, reptil, burung
dan ayam (Akoachere et al., 2009; Jong et
al., 2005; Ariyanti dan Supar, 2008).
Landak mini diketahui sebagai
karier dari Salmonella sp., dan infeksi
bakteri ini sering dilaporkan serta termasuk
endemik pada landak mini (Macdonald et
al., 2019; Lawson et al., 2017; Handeland et
al., 2002; Woodward et al., 1997). Salmo-
nella enteritidis dan S. thypymurium
merupakan penyebab salmonellosis pada
manusia dan hewan, dengan potensi
morbiditas dan mortalitas yang signifikan
(Hendriksen et al., 2011; WHO, 2010).
Tindakan pencegahan seperti mencuci
tangan setelah kontak dengan hewan
peliharaan eksotik sangat penting untuk
mengurangi risiko penularan Salmonella
(Woodward et al., 1997).
Penelitian ini memberikan
kontribusi penting dalam bidang kesehatan
hewan. Terdeteksinya S. enteritidis dan S.
thypymurium pada landak mini berkon-
tribusi pada kesehatan hewan, namun juga
pada kesehatan masyarakat dengan meng-
edukasi pemilik hewan peliharaan tentang
higienis dan tindakan pencegahan untuk
mengurangi risiko penularan zoonosis.
Secara keseluruhan, penelitian ini mem-
berikan kontribusi signifikan pada
pemahaman patogen yang memengaruhi
kesehatan hewan peliharaan eksotik dan
langkah-langkah yang dapat diambil untuk
melindungi kesehatan hewan dan manusia.
SIMPULAN
Berdasarkan hasil penelitian dapat
disimpulkan terdapat dua jenis Salmonella
yang dapat diidentifikasi pada landak mini
yaitu: S. enteritidis dan S. thypymurium.
SARAN
Perlu menambahkan jumlah sampel,
menentukan umur, jenis kelamin dan
mengukur bobot badan landak mini sebelum
pengambilan sampel. Selain itu, perlu
dilakukan identifikasi dan karakterisasi
bakteri menggunakan teknik molekuler.
DAFTAR PUSTAKA
Afriyani, Darmawi, Fakhrurrazi, Manaf ZH,
Abrar M, Winaruddin. 2017. Isolasi
bakteri Salmonella sp. pada feses
anak ayam broiler di Pasar Ulee
Kareng Banda Aceh. Jurnal Medika
Veteriner 1(10): 74-76.
Akoachere JFTK, Tanih NF, Ndip LM,
Ndip RN. 2000. Phenotypic
characterization of Salmonella typhi-
murium isolates from food-animals
and abattoir drains in Buea,
Cameroon. J Health Popul Nutr
27(5): 612-618.
Aktar N, Bilkis R, Ilias M. 2016. Isolation
and identification of Salmonella sp.
from different food. International
Journal of Bioscience 2(8): 16-24.
Amiruddin RR, Daniarti, Ismail. 2017.
Isolasi dan identifikasi Salmonella
sp. pada ayam bakar di rumah
makan kecamaan Syiah Kuala kota
Banda Aceh. Jurnal Ilmiah
Mahasiswa Veteriner 1(3): 265-274.
Anderson TC, Haug MN, Morris JF,
Culpepper W, Bessette N, Adams
JK, Bidol S, Meyer S, Schmitz J,
Erdman MM, Gomez TM,
Behravesh BC. 2016. Multistate
outbreak of human Salmonella
Jurnal Veteriner
Juni 2024 Vol. 25 No. 1 : 216-224
222
typhimurium infections linked to pet
hedgehogs-United States, 2011-
2013. Zoonoses and Public Health
64(4): 290-298
Antriana N. 2014. Isolasi bakteri asal
saluran pencernaan rayap pekerja
(Macrotermes spp). Jurnal Saintifika
16(1): 18-28.
Ariyanti T, Supar. 2005. Peranan
Salmonella enteritidis pada ayam
dan produknya. Wartazoa 2(15): 57-
63.
Bahjar SA, Altaee MF, Alhassani AM,
Alhassani OM. 2019. Molecular and
bacteriological method for iden-
tification of lactose fermenting
salmonella in Mosul province.
Indian Journal of Public Health
Research & Development 12(10):
1428-1434.
Carter, GR. 1987. Essentials of Veterinary
Bakteriology and Micology. 3rd ed.
Philadelphia. Lea and Febriger.
Falcao DP, Trabulsi, LR., Hickman, FW,
Farmer JJ. 1975. Unusual entero-
bacteriaceae: lactose-positive Salmo-
nella typhimurium which is endemic
in Sao Paulo, Brazil. Journal of
Clinical Microbiology 4(2): 349-
353.
Ginting STM, Helmi TZ, Darmawi, Dewi
M, Hennivanda, Erina, Daud R.
2018. Isolasi dan identifikasi bakteri
gram negatif pada ambing kambing
peranankan etawa (PE). Jurnal
Ilmiah Mahasiswa Veteriner 2(3):
351-360.
Halsby KD, Walsh AL, Campbel, C,
Hewitt, K, Morgan, D. 2014.
Healthy animals, healthy people:
zoonosis risk from animal contact in
pet shops, a systematic review of the
literature. Plos one 9(2): 1-13.
Handeland K, Refsum T, Johansen BS,
Holstad G, Knutsen G, Solberg L,
Kapperud G. 2002. Prevalence of
Salmonella typhimurium infection in
norwegian hedgehog population
associated with two human desease
outbreaks. Epidemiol Infect 128:
523-527.
Heatley JJ. 2009. Hedgehogs. Manual of
Exotic Pet Practice Texas. Texas
A&M University. Hlm. 433-455.
Hemraj V, Diksha S, Avneet G. 2013. A
review of commonly used
biochemical test for bacteria.
Innovare Journal of Life Science 1(1)
: 1-7.
Hendriksen RS, Vieira AR, Karlsmose S,
Wong DMALF, Jensesn AB,
Wegener HC, Aarestrup FM. 2011.
Global monitoring of Salmonella
serovar distribution from the world
health organization global foodborne
infections network country data
bank: results of quality assured
laboratories from 2001 to 2007.
Foodborne Pathogens and Disease
8(8): 887-900.
Hoelzer K, Switt AIM, Wiedmann M. 2011.
Animal contact as a source of human
non-typhoidal salmonellosis. Vete-
rinary Research 42(34): 1-27.
ISO 19250. 2019. Triple sugar irn agar ISO
for the biochemical confirmation of
Salmonella.Condalab.www.condala
b.com. [30 Desember 2020].
Jong BD, AnderssonY, Ekdahl K. 2005.
Effect of regulation and educa-
tion on reptile-associated salmo-
nellosis. Emerging Infectious
Disease 11(2): 398-402.
Juariah, S, Yanti FN. 2016). Identifikasi
Salmonella sp. pada telur asin yang
dijual di beberapa pasar kota
Pekanbaru. Jurnal Sains dan
Teknologi Laboratorium Medik 1(1):
2-11.
Kagembega A, Lienemann, Aulu L, Traore
AS, Barro N, Siitonen A, Haukka K.
2013. Prevalence and charac-
terization of salmonella enterica
from the feces of cattle, poultry,
swine and hedgehogs in burkina faso
and their comparison to human
salmonella isolates. BMC
Microbiology 13: 253
Jurnal Veteriner
Erina et al
223
Kartika E, Khotimah S, Yanti AH. 2014.
Deteksi bakteri indicator keamanan
pangan pada sosis daging ayam di
Pasar Flamboyan Pontianak. Jurnal
Protobiont 2(3): 111-119.
Keebel E, Koterwas B. 2020. Salmonellosis
in hedgehogs. Vet Clin Exot Anim
23: 459-470.
Khair FR, Erina E, Sugito S, & Ak MD.
2021. Isolasi dan Identifikasi Salmo-
nella spp. pada Kloaka Kura-Kura
Ambon (Cuora amboinensis). Acta
Veterinaria Indonesiana 9(3): 163-
172.
Kusuma FAS. 2009. Uji biokimia bakteri.
Karya Ilmiah. Bandung. Fakultas
Farmasi Universitas Padjajaran..
Latif M, Gilani M, Usman J, Munir T,
Mushtaq M, Babar N. 2014. Lactose
fermenting Salmonella paratyphi A.
Journal of Microbiology and
Infectious Diseases 4(1): 30-32.
Lawson B, Franklinnos LHV, Fernandez
JRR, Hansen CW, Nair S,
Macgregor, SK, John SK, Pizzi R,
Nuneza A, Ashton PM, Cunningham
AA, Pinna EMD. 2017. Salmonella
enteritidis st183: emerging and
endemic biotypes affecting western
european hedgehogs (Erinaceus
europaeus) and people in great
britain. Scientific Report 8: 2449
Macdonald E, White R, Mexia R, Bruun T,
Kapperud G, Brandal LT, Lange H,
Nygard K, Vold L. 2019. The role of
domestic reservoirs in domestically
acquired Salmonella infections in
Norway: epidemiology of salmo-
nellosis, 2000-2015, and results of a
national prospective case–control
study, 2010-2012. Epidemiology and
Infection 147: e43
Mcdonough PL, Shin SJ, Lein, DH. 2000.
Diagnostic and public health
dilemma of lactose-fermenting
Salmo-nella enterica serotype
thypy-murium in cattle in the
northeastern United States. Journal
of Clinical Microbiology 3(38):
1221-1226.
Mirmomeni MH, Naderi S, Colagar AH,
Sisakhtnezhad. 2009. Isolation of
Salmonella enteritidis using
biochemical tests and diagnostic
potential of sdfl amplied gene.
Research Journal of Biological
Science 4(6): 656-661.
Muhammad KY, Kusumaningtyas P. 2013.
Hewan Kesayangan Mini dan
Eksotis. Jakarta. Penebar Swadaya.
Newell DG, Koopmans M, Verhoef L,
Duizer E, Aidara-Kane A, Sprong H,
Opsteegh M, Langelaar M, Threfall
J, Scheutz F, Giessen JVD, Kruse H.
2010. Food-borne diseases-the chal-
lenges of 20 years ago still persist
while new ones continue to emerge.
International Journal of Food
Microbiology 30: 139 Suppl1: S3-
15.
Percival SL, Williams DW, 2014.
Salmonella. Microbiology of
Waterborne Disease (Second Edi-
tion). Philadelphia. Academic
Press.Pignon C, Mayer J. 2011.
Zoonoses of ferrets, hedgehogs, and
sugar gliders. Vet Clin North Am
Exot Anim Pract 14(3): 533-549.
Pommerville J. 2007. Fundamental of
Microbiology. Burlington. Jornes &
Barlet Learning, US
Reid RL, Porter RC, Ball HJ. 1993. The
isolation of sucrose-fermenting
Salmonella mbandaka. Veterinary
Microbiology 37: 181-185.
Riley PY, Chomel BB. 2005. Hedgehog
zoonose. Emerging Infectious Di-
seases 11(1): 1-5.
Rosen T, Jablon J. 2003. Infectious threats
from exotic pets: dermatological
implications. Dermatol Clin 21:
229-36.
Rule R, Said M, Mbelle N, Sekyere JO.
2019. Genome of sequence of a
clinical Salmonella enteritidis se-
quence type 11 strain from South
Africa. J Glob Antimicrob Resist 19:
164-166.
Skov MN, Andersen JS, Aabo S, Ethelberg
S, Aarestrup FM, Sorenses AH,
Jurnal Veteriner
Juni 2024 Vol. 25 No. 1 : 216-224
224
Sorensen G, Pedersen K, Nordentoft
S, Olsen KEP, Smidt PG, Baggesen
DL. 2007. Antimicrobial drug resis-
tance of Salmonella isolates from
meat and humans Denmark.
Emerging Infectious Desease 4(13):
638-641.
Sofiyani M, Dharmawan R, Murti B. 2018.
Risk factor of leptospirosis in Klaten
Central Java. Journal of Epide-
miology and Public Health 3(1): 11-
24.
Steinmuller N, Demma L, Bender JB,
Eidson M, Angulo FJ. 2006.
Outbreaks of enteric disease asso-
ciated with animal contact: not just a
foodborne problem anymore. Cli-
nical Infectious Diseases 43: 1596-
602.
Tille PM. 2017. Bailey & Scott’s Diagnostic
Microbiology. Fourteenth Edition.
New York US. Elsevier.
WHO. 2010. Laboratory Protocol
“Isolation of Salmonella spp.
From Food and Animal Faeces. 5th
Ed. Geneva. WHO. http://anti-
microbialresistance.dk/CustomerDat
a/Files/Folders/6pdfprotocols/63_18-
05 isolationofsalm2 20610. [12
Desember 2020].
Woodward DL, Khakhria R, Johnson WM.
1997. Human salmonellosis asso-
ciated with exotic pets. Journal of
clinical Microbioogy 11(35): 2786-
2790.
Wray C, Wray A. 2000. Salmonella in
Domestic Animal. New York. CABI
Publishing.
Youn EU, Park SG, Oh YH, Kim TJ. 1994.
Bioserotype and drug resistance of
Salmonella spp isolated from feces
in zoo animals. Korean J Vet Res,
34(2): 267-273.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Salmonellosis merupakan penyakit enterik yang disebabkan oleh berbagai jenis spesies Salmonella spp . Penelitian inibertujuan untuk mengisolasi dan mengidentifikasi spesies Salmonella spp pada kloaka kura-kura ambon (Cuoraamboinensis). Koleksi sampel dilakukan pada lima belas ekor kura-kura ambon yang berada di kota Banda Aceh dansebagian Aceh Besar. Penelitian ini merupakan observasi lapangan dan eksperimental laboratorium berdasarkanmetode Carter. Swab kloaka kura-kura ambon ditanam dalam media Selenite Cystine Broth (SCB) dan diinkubasikanselama 24 jam suhu 37⁰C, jika terjadi perubahan warna menjadi orange dilanjutkan penanaman pada media SalmonellaShigella Agar (SSA). Koloni yang menunjukkan karakteristik Salmonella sp diamati warna, elevasi, ukuran, dan tepisecara makroskopik. Pewarnaan Gram dilakukan untuk pengamatan secara mikroskopis dan pengelompokan bakteri.Proses identifikasi Salmonella spp dilakukan dengan penanaman dalam media Indol, Methyl Red, Voges Proskauer,Sulfide Indole Motility (SIM), Simmons Citrate Agar (SCA), Triple Sugar Iron Agar (TSIA), uji biokimia (glukosa, sukrosa,laktosa, manitol, dan arabinosa). Penelitian ini dianalisis secara deskriptif dan disajikan dalam bentuk tabel dangambar. Hasil penelitian ini menunjukkan bahwa pada lima belas sampel swab kloaka kura-kura ambon (100%) positifSalmonella yang terdiri atas Salmonella bongori, Salmonella arizonae, Salmonella diarizonae, dan Salmonella indica.Oleh karena itu, dapat disimpulkan bahwa Salmonella bongori, Salmonella arizonae, Salmonella diarizonae, danSalmonella indica dapat diisolasi dari kloaka kura-kura ambon
Article
Full-text available
In Norway, incidence of sporadic domestically acquired salmonellosis is low, and most frequently due to Salmonalla Typhimurium. We investigated the risk factors for sporadic Salmonella infections in Norway to improve control and prevention measures. Surveillance data for all Salmonella infections from 2000 to 2015 were analysed for seasonality and proportion associated with domestic reservoirs, hedgehogs and wild birds. A prospective case–control study was conducted from 2010 to 2012 by recruiting cases from the Norwegian Surveillance System for Communicable Diseases and controls from the Norwegian Population Registry (389 cases and 1500 controls). Univariable analyses using logistic regression were conducted and a multivariable model was developed using regularised/penalised logistic regression. In univariable analysis, eating snow, dirt, sand or playing in a sandbox (aOR 4.14; CI 2.15–7.97) was associated with salmonellosis. This was also the only exposure significantly associated with illness in the multivariable model. Since 2004, 34.2% ( n = 354) of S. Typhimuirum cases had an MLVA profile linked to a domestic reservoir. A seasonal trend with a peak in August for all Salmonella types and in February for S. Typhimurium was observed. Indirect exposure to domestic reservoirs remains a source of salmonellosis in Norway, particularly for children. Information to the public about avoiding environmental exposure should be strengthened and initiatives to combat salmonellosis in the food chain should be reinforced.
Article
Full-text available
Background: Leptospirosis a global public health issue, particullary in tropical and sub-tropical countries with high precipitation. WHO has estimated that the annual of Leptospirosis is 0.1 to 1 case/100,000 population in moderate non-endemic area, and 10 to 100 cases/100,000 population in humid and tropical endemic areas. Currently, Indonesia is a tropical country with the highest fatality rate of leptospirosis, ranging from 2.5% to 16.45% with an average of 7.1%. It places Indonesia as the third country with the highest mortality attibutable to Leptospirosis. This study aimed to analyze the risk factors of Leptospirosis in Klaten, Central Java. Subjects and Method: This was an analytic and observational study with case control design. The study was conducted in Klaten, Central Java, from October to November, 2017. A sample of 49 Leptospirosis cases and 101 non-diseased controls were selected for this study by fixed disease sampling. The independent variable were employment status, history of cuts, history of water excursion, use of personal protective equipment (PPE), house condition, environmental condition, presence of mouse or cattle, history of rain or flood. The dependent variable was Leptospirosis. The data were collected by questionnaire and analyzed by path analysis. Results: The risk of Leptospirosis increased with history of cuts (b= 1.64; CI 95%= 0.40 to 2.87; p= 0.009), history of water excursion (b= 1.98; CI 95%= 0.52 to 3.43; p= 0.008), poor house condition (b= -1.92; CI 95%= -3.08 to -0.77; p= 0.001), and poor environmental condition (b= -2.35; CI 95%= -3.48 to -1.23; p
Article
Full-text available
The burden of diseases caused by food-borne pathogens remains largely unknown. Importantly data indicating trends in food-borne infectious intestinal disease is limited to a few industrialised countries, and even fewer pathogens. It has been predicted that the importance of diarrhoeal disease, mainly due to contaminated food and water, as a cause of death will decline worldwide. Evidence for such a downward trend is limited. This prediction presumes that improvements in the production and retail of microbiologically safe food will be sustained in the developed world and, moreover, will be rolled out to those countries of the developing world increasingly producing food for a global market. In this review evidence is presented to indicate that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork. Sustaining food safety standards will depend on constant vigilance maintained by monitoring and surveillance but, with the rising importance of other food-related issues, such as food security, obesity and climate change, competition for resources in the future to enable this may be fierce. In addition the pathogen populations relevant to food safety are not static. Food is an excellent vehicle by which many pathogens (bacteria, viruses/prions and parasites) can reach an appropriate colonisation site in a new host. Although food production practices change, the well-recognised food-borne pathogens, such as Salmonella spp. and Escherichia coli, seem able to evolve to exploit novel opportunities, for example fresh produce, and even generate new public health challenges, for example antimicrobial resistance. In addition, previously unknown food-borne pathogens, many of which are zoonotic, are constantly emerging. Current understanding of the trends in food-borne diseases for bacterial, viral and parasitic pathogens has been reviewed. The bacterial pathogens are exemplified by those well-recognized by policy makers; i.e. Salmonella, Campylobacter, E. coli and Listeria monocytogenes. Antimicrobial resistance in several bacterial food-borne pathogens (Salmonella, Campylobacter, Shigella and Vibrio spp., methicillin resistant Staphylcoccus aureas, E. coli and Enterococci) has been discussed as a separate topic because of its relative importance to policy issues. Awareness and surveillance of viral food-borne pathogens is generally poor but emphasis is placed on Norovirus, Hepatitis A, rotaviruses and newly emerging viruses such as SARS. Many food-borne parasitic pathogens are known (for example Ascaris, Cryptosporidia and Trichinella) but few of these are effectively monitored in foods, livestock and wildlife and their epidemiology through the food-chain is poorly understood. The lessons learned and future challenges in each topic are debated. It is clear that one overall challenge is the generation and maintenance of constructive dialogue and collaboration between public health, veterinary and food safety experts, bringing together multidisciplinary skills and multi-pathogen expertise. Such collaboration is essential to monitor changing trends in the well-recognised diseases and detect emerging pathogens. It will also be necessary understand the multiple interactions these pathogens have with their environments during transmission along the food chain in order to develop effective prevention and control strategies.
Article
Full-text available
The presence of lactose-fermenting Salmonella strains in clinical case materials presented to microbiology laboratories presents problems in detection and identification. Failure to detect these strains also presents a public health problem. The laboratory methods used in detecting lactose-fermenting Salmonella enterica serotype Typhimurium from six outbreaks of salmonellosis in veal calves are described. Each outbreak was caused by a multiply-resistant and lactose-fermenting strain of S. enterica serotype Typhimurium. The use of Levine eosin-methylene blue agar in combination with screening of suspect colonies for C8 esterase enzyme and inoculation of colonies into sulfide-indole-motility medium for hydrogen sulfide production was particularly effective for their detection. A hypothesis for the creation of lactose-fermenting salmonellae in the environment is presented. It is proposed that the environment and husbandry practices of veal-raising barns provide a unique niche in which lactose-fermenting salmonellae may arise.
Article
African pygmy hedgehogs are popular pets worldwide. The knowledge and understanding of pet hedgehog common veterinary conditions are increasing as new information and research are published; however, there is still much to learn about this fascinating animal. Salmonella is one of the most common zoonoses worldwide and is naturally isolated from the intestinal tract of many animal species, including hedgehogs. This article discusses the cause, clinical signs, diagnosis, treatment, and prevention of salmonella infection in hedgehogs, primarily focusing on African pygmy hedgehogs, with some reference to European hedgehogs.
Article
Objectives: The underlying resistance mechanism and phylogenetic relationship of a colistinresistant Salmonella Enteritidis strain EC20120916 that resulted in fatal meningitis in an immunecompromised patient was investigated by analysing the genome sequence. Methods: Whole-genome sequencing was performed on strain EC20120916 with the Illumina MiSeq platform. Annotation of the sequence was performed using the prokaryotic genome annotation pipeline (PGAP). Antibiotic resistance gene, plasmid replicons and pathogenicity islands were identified. A phylogenetic tree was constructed using Parsnp and edited with Figtree. Results: The genome size was 4, 699, 318 bp with a GC content of 55.2% and 4471 proteinencoding genes. The aac(6’)-laa gene, encoding resistance to aminoglycosides, was identified, although this was not expressed phenotypically in the isolate. No colistin resistance-conferring mutations or plasmid-mediated mechanisms were identified to explain the colistin resistance. The strain was phylogenetically related to three international strains, although it was not close enough to suggest importation from outside South Africa. Conclusion: This is the first report of a colistin-resistant Salmonella Enteritidis isolate causing meningitis in an immune-compromised patient in South Africa. The absence of colistin resistance-conferring mutations or plasmid-mediated resistance mechanisms suggest that a novel mechanism is responsible for the colistin resistance in this isolate. The isolate was acquired locally.
Article
During media trials to evaluate the use of Brilliant Green Agar for the primary recognition of Salmonella, strains presenting fermentation reactions were observed. All fermenting strains (84 out of 145) belonged to the serotype Salmonella mbandaka (58%), and the activity was expressed on three batches of Brilliant Green Agar and one of Xylose-Lysine Desoxycholate Agar. It was established using individual lactose and sucrose broth that the reaction in these media was due to sucrose fermentation. The most frequently isolated Salmonella in this laboratory during 1990 was S. mbandaka (61%) i.e. 65 of the 106 isolates during this period. Primary differentiation of Salmonella from other members of the family Enterobacteriaceae on media incorporating sucrose would have resulted in 36% of Salmonella isolates not being recognised. BGA and XLD agar therefore would not be suitable for primary isolation of Salmonella from clinical material with such a high percentage of the major isolate, S. mbandaka, having the ability to ferment sucrose.
Article
During the period from 1994 to 1996, an increase in the number of laboratory-confirmed cases of human salmonellosis associated with exposure to exotic pets including iguanas, pet turtles, sugar gliders, and hedgehogs was observed in Canada. Pet turtle-associated salmonellosis was recognized as a serious public health problem in the 1960s and 1970s, and in February 1975 legislation banning the importation of turtles into Canada was enacted by Agriculture Canada. Reptile-associated salmonellosis is once again being recognized as a resurgent disease. From 1993 to 1995, there were more than 20,000 laboratory-confirmed human cases of salmonellosis in Canada. The major source of Salmonella infection is food; however, an estimated 3 to 5% of all cases of salmonellosis in humans are associated with exposure to exotic pets. Among the isolates from these patients with salmonellosis, a variety of Salmonella serotypes were also associated with exotic pets and included the following: S. java, S. stanley, S. poona, S. jangwani, S. tilene, S. litchfield, S. manhattan, S. pomona, S. miami, S. rubislaw, S. marina subsp. IV, and S. wassenaar subsp. IV.