BookPDF Available

The State of Soils in Europe

Authors:

Abstract

This report investigates the intricate interplay between the drivers of changes in soil health, along with the pressures and impacts on soil in the 32 European Environment Agency (EEA) member countries, as well as six cooperating countries from the West Balkans, Ukraine, and the UK. It sheds light on the multifaceted challenges facing soil conservation efforts. Our analysis reveals the complex interactions between various factors, both anthropogenic and natural, that shape soil degradation processes and their subsequent consequences. We highlight key findings, including the significant impacts of soil degradation on agriculture, ecosystem resilience, water quality, biodiversity, and human health, underscoring the urgent need for comprehensive soil management strategies. Moreover, our examination of citizen science initiatives underscores the importance of engaging the public in soil monitoring and conservation efforts. This work emphasizes the policy relevance of promoting sustainable soil governance frameworks, supported by research, innovation, and robust soil monitoring schemes, to safeguard soil health and ensure the long-term resilience of ecosystems.
ISSN 1831-9424
EUR 40054
Arias-Navarro C., Baritz R., Jones A. (Eds)
2024
Fully evidenced, spatially organised assessment
of the pressures driving soil degradation.
This document is a publication by the Joint Research Centre (JRC), the European Commission’s science and


position or opinion of the European Commission. Neither the European Commission nor any person acting on
behalf of the Commission is responsible for the use that might be made of this publication. For information on
the methodology and quality underlying the data used in this publication for which the source is neither Eu-
rostat nor other Commission services, users should contact the referenced source. The designations employed
and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the
part of the European Union concerning the legal status of any country, territory, city or area or of its authorities,
or concerning the delimitation of its frontiers or boundaries.
Contact information
Name: Arwyn Jones
Address: European Commission Joint Research Centre, Sustainable Resources Directorate – Land Resources and
Supply Chain Assessments Unit (D3) Unit, Via Fermi 2749, 21027 Ispra (VA), Italy
Email: Arwyn.JONES@ec.europa.eu
Tel.: +390332 78 9162
EU Science Hub
https://joint-research-centre.ec.europa.eu
European Environment Agency
https://eea.europa.eu
JRC137600
EUR 40054
Print ISBN 978-92-68-20817-5 ISSN 1018-5593 doi:10.2760/5897030 KJ-01-24-055-EN-C
PDF ISBN 978-92-68-20816-8 ISSN 1831-9424 doi:10.2760/7007291 KJ-01-24-055-EN-N
Luxembourg:
© European Union, 2024
© European Environment Agency, 2024
The reuse policy of the European Commission documents is implemented by the Commission Decision
2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Unless
otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 Inter-
national (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed
provided appropriate credit is given and any changes are indicated.
For any use or reproduction of photos or other material that is not owned by the European Union and the Euro-
pean Environment Agency (EEA), permission must be sought directly from the copyright holders.
- Cover page illustration, © Christopher Havenga
How to cite this report: Arias-Navarro, C., Baritz, R. and Jones, A. editor(s), 2024. The state of soils in Europe.

The State of Soils in Europe - 2024 01
Contents
Abstract ........................................................................................................................................................... 05
Foreword ........................................................................................................................................................ 06
Acknowledgements ...................................................................................................................................... 07
Executive summary ....................................................................................................................................... 10
Introduction .................................................................................................................................................... 12
01 Regional overview ........................................................................................................... 15
02 The role of soils as providers of vital ecosystem services ......................................... 18
03 Drivers of changes in soil health ................................................................................... 21
3.1 Climate change ................................................................................................................... 21
3.2 Land use and land cover change ...................................................................................... 21
3.3 Socioeconomic drivers ....................................................................................................... 22
3.4 Soil water ............................................................................................................................. 22
 ..................................................... 24
04 Regional status and trend of soil degradation .......................................................... 26
 ......................................................................... 26
4.1.1 Status and trends .................................................................................................................. 26
4.1.2 Drivers ...................................................................................................................................... 29
4.1.3 Impacts ..................................................................................................................................... 30
he State of Soils
in Europe
The State of Soils in Europe - 202402
 .................................................................................................................. 31
4.2.1 Status and trends ............................................................................................................ 31
4.2.2 Drivers ...................................................................................................................................... 32
4.2.3 Impacts ..................................................................................................................................... 33
4.3 Soil carbon change (in mineral soils, organic soils and inorganic carbon) ................. 34
4.3.1 Mineral soils ............................................................................................................................ 34
4.3.2 Organic soils ........................................................................................................................... 37
4.3.3 Inorganic carbon .................................................................................................................... 41
4.4 Soil erosion .......................................................................................................................... 43
4.4.1 Status and trends .................................................................................................................. 44
4.4.2 Drivers ...................................................................................................................................... 49
4.4.3 Impacts ..................................................................................................................................... 51
4.5 Soil compaction .................................................................................................................. 53
4.5.1 Status and trends .................................................................................................................. 53
4.5.2 Drivers ...................................................................................................................................... 55
4.5.3 Impacts .................................................................................................................................... 55
4.6 Soil pollution ........................................................................................................................ 56
4.6.1 Status and trends .................................................................................................................. 57
4.6.2 Drivers ...................................................................................................................................... 60
 ...................................................................................... 63
4.7.1 Status and trends .................................................................................................................. 64
4.7.2 Drivers ...................................................................................................................................... 66
4.7.3 Impacts ..................................................................................................................................... 67
The State of Soils in Europe - 2024 03
4.8 Soil biodiversity change ..................................................................................................... 68
4.8.1 Status and trends .................................................................................................................. 69
4.8.2 Drivers ...................................................................................................................................... 70
4.8.3 Impacts ..................................................................................................................................... 70
4.9 Soil sealing and land take ................................................................................................. 71
4.9.1 Soil sealing ............................................................................................................................... 72
4.9.2 Land take ................................................................................................................................. 73
4.9.3 Landscape fragmentation ................................................................................................... 75
4.9.4 Land recycling rate ................................................................................................................ 76
4.9.5 Conclusions ............................................................................................................................. 76
05 Convergence of evidence for soil degradation in Europe ........................................ 78
5.1 Monitoring ........................................................................................................................... 78
5.1.1 National Soil Monitoring programs ................................................................................... 79
5.1.2 International co-operative programme on assessment and monitoring of air
 ................................................................................................. 81
5.2 EU Soil Observatory Soil Degradation Dashboard ......................................................... 85
06 Understanding the interplay between drivers and impacts of soil degradation ... 88
6.1 Interconnections between soil degradation factors: Understanding complexities in
European soil health .......................................................................................................... 88
6.2 Assessing the impacts of soil degradation on Ecosystems, Agriculture, and Society
in Europe .............................................................................................................................. 89
07 The role of citizen science in assessing soil conditions ............................................ 92
7.1 Current citizen science activities ...................................................................................... 93
7.2 Outlook ................................................................................................................................ 94
The State of Soils in Europe - 202404
08 Towards sustainable soil governance: Policy pathways for preserving
soil health in Europe ...................................................................................................... 96
8.1 From the soil thematic strategy to the Soil Monitoring and Resilience Law:
Advancing soil protection policies in the EU ....................................................................96
 ......................................................................97
09 Ensuring soil health and ecosystem resilience amid diverse land use demands
in Europe ........................................................................................................................... 99
Conclusions ................................................................................................................................................... 101
References ....................................................................................................................................................102
 ......................................................................................................141
Glossary .........................................................................................................................................................142
List of boxes .................................................................................................................................................. 146
 ................................................................................................................................................146
List of tables .................................................................................................................................................. 147
 ...................................................................................................148
Getting in touch with the EU .....................................................................................................................154
Finding information about the EU ...........................................................................................................154
The State of Soils in Europe - 2024 05
Abstract
This report investigates the intricate interplay
between drivers of changes in soil health
and pressures and impacts on soil in the

countries, along with six cooperating countries
from the West Balkans, Ukraine and UK, shedding
light on the multifaceted challenges facing soil

complex interactions among various factors,
both anthropogenic and natural, shaping soil
degradation processes and their subsequent


agriculture, ecosystem resilience, water quality,
biodiversity, and human health, underscoring the
urgent need for comprehensive soil management
strategies. Moreover, our examination of citizen
science initiatives underlines the importance
of engaging the public in soil monitoring and

policy relevance of promoting sustainable soil
governance frameworks, supported by research,
innovation, and robust soil monitoring schemes,
to safeguard soil health and ensure the long-term
resilience of ecosystems.
he State of Soils
in Europe
The State of Soils in Europe - 202406
The sustainable management of soils is a
formidable challenge, but crucial if we are
to truly meet the aspirations and objectives
of a European green transition. Healthy soils, and
the diverse lifeforms that live within them, provide
us with food, biomass and raw materials, while
regulating climate, water and nutrient cycles. Soil
is a unique habitat in its own right, hosting almost
60% of all biodiversity on terrestrial land; it also
underpins aboveground ecosystems.
Unfortunately, Europe’s soils are deteriorating.
Taking centuries or millennia to form, they can
be destroyed or damaged in minutes. According
to the analysis of the Joint Research Centre’s EU

least 63% of soils in the European Union.
Together with the European Environment Agency,
the Joint Research Centre has assembled a rich

and communicate the need to protect soils to the
wider society. This is in line with the vision and
objectives of the European Union’s Soil Strategy
2030 and Horizon Europe’s Mission “A Soil Deal
for Europe” to enhance soil literacy.
Building on a previous JRC and EEA assessment
on the state of soils from 2012, this updated
report provides new insights and highlights a

in the report, it is worth mentioning that many
soils are experiencing carbon loss – this could
pose a threat to the EU's climate targets if left
unaddressed. About 1 billion tonnes of soil are
washed away by erosion every year with
concerns of increasing losses of erosion as a
result of more extreme weather events. Between
2012 and 2018, more than 400km² of land was
lost per year to soil sealing in the European

land in the EU+UK faces excessive nitrogen
inputs, while extensive areas exhibit phosphorus
surpluses. Moreover, pesticide residues and
other pollutants are prevalent in agricultural soils,
further exacerbating environmental concerns.
However, many countries still lack comprehensive

The proposed Soil Monitoring Law, supported by
research and innovation initiatives such as the
Horizon Europe mission, ‘A soil deal for Europe’,
aims to address this gap while supporting
the transition towards a more sustainable
future. Future versions of this report will be

data from the Law in order to provide a more
comprehensive picture of the state of soils.
This publication marks an important milestone
towards a better understanding of the role of soil
in Europe and beyond. We encourage readers to
share and promote this rich knowledge base.
Foreword
Leena Ylä-Mononen
Executive Director
European Environment Agency
Bernard Magenhann
Director General
Joint Research Centre
European Commission
The State of Soils in Europe - 2024 07
This report was made possible by the com-
mitment and voluntary work of Europe’s
leading soil scientists and the institutions

from the European Environment Information and
-

We would like to express our gratitude to all the
lead authors and contributing authors.
The Joint Research Centre and European Environ-

with assisting in the production of the report,
along with reviewers Carolina Puerta Pinero and
Hakki Erdogan. The report’s production was
facilitated by PUBSY, the corporate management
system for the centre’s outputs.
Acknowledgements
he State of Soils
in Europe
Soil assessments in the EU are made possible


gratitude to all involved in its implementation.
The coordination of LUCAS is facilitated by Unit

addition, soil sample collection and laboratory
analyses are supported by the Directorate-Gen-
eral for Environment, the Directorate-General
for Agriculture and Rural Development and the
Directorate-General for Climate Action.
While the related work is currently in the very
early stages, we hope that future revisions of this
report will be underpinned by the EU soil moni-
toring and resilience directive and the advances
in understanding and monitoring techniques
brought about by the Horizon Europe mission
‘A soil deal for Europe’.
The State of Soils in Europe - 202408
Chapter Lead author(s) Co-author(s)
Abstract Cristina Arias-Navarro;

Executive summary Cristina Arias-Navarro;

Introduction Cristina Arias-Navarro;

Chapter 1 Regional overview Cristina Arias-Navarro;
Elise Van Eynde; Diana Vieira
Chapter 2
The role of soils as
providers of vital
ecosystem services
Cristina Arias-Navarro;
Elise Van Eynde; Diana Vieira
Stefano Salata; Ottone Scammacca;
Michele Munafo; Silvia Ronchi; Andrea
Arcidiacono
Chapter 3
Drivers of changes
in soil health
Rainer Baritz; Diana Vieira;
Cristina Arias-Navarro; Elise Van Eynde; Arwyn Jones
Chapter 4
Regional status
of and trends in
soil degradation
4.1 Soil nutrients
excess and

Elise Van Eynde
Philippe Hinsinger; Dalila Serpa;
Frederik Bøe; Gerard Ros; Eduardo
Moreno Jimenez; Felipe Yunta
 Felipe Yunta; Elise Van Eynde
Philippe Hinsinger; Dalila Serpa;
Frederik Bøe; Gerard Ros; Eduardo
Moreno Jimenez
4.3 Soil carbon

soils, organic soils,
and inorganic

Cristina Arias-Navarro;
Daniele De Rosa; Iñigo Virto
Christopher Poeplau; Gabriele
Buttafuoco; Panos Panagos; Arwyn
Jones; Cristiano Ballabio; Emanuele
Lugato; Stefan Frank; Tiphaine
Chevallier; Rosa M Poch
4.4 Soil erosion Panos Panagos
Pasquale Borrelli; Francis Matthews;
Diana Vieira; Matthias Vanmaercke;
Jean Poesen; Gunay Erpul; Velibor
Spalevic; Snezana Dragovic; Yuriy
Dmytruk; Anita Bernatek-Jakiel; Philipp
Saggau; Leonidas Liakos; Christine
Alewell
4.5 Soil compaction Panos Panagos; Felipe Yunta Cristina Arias-Navarro; Mathieu
Lamandé; Cristiano Ballabio
4.6 Soil pollution Diana Vieira
Felipe Yunta; Diego Baragaño; Olivier

Vera Silva; Ana De La Torre;
Chaosheng Zhang; Panos Panagos;
Arwyn Jones; Piort Wojda
4.7 Soil salinisation
 Calogero Schillaci; Felipe Yunta
Chiara Piccini; Claudia Cagnarini; Zoka
Melpomeni; Fuat Kaya;
Kitti Balog; Noelia García Franco;
Simone Scarpa
4.8 Soil biodiversity
change Alberto Orgiazzi
Timo Breure; Maria J.I. Briones;
Julia Köninger; Marcel Van Der Heijden;
Nikolaos Monokrousos;
Maëva Labouyrie;
Davorka K. Hackenberger
4.9 Soil sealing and
land take Stefano Salata
Ottone Scammacca;
Michele Munafò; Silvia Ronchi;
Andrea Arcidiacono
The State of Soils in Europe - 2024 09
Chapter 5
Convergence of
evidence on soil
degradation in
Europe
Cristina Arias-Navarro Elise Van Eynde; Diana Vieira;
Nils Broothaerst
Chapter 6
Understanding the
interplay between
drivers and impacts
of soil degradation
Cristina Arias-Navarro Elise Van Eynde; Diana Vieira
Chapter 7
The Role of Citizen
Science in Soil
Health Assessment
Taru Sandén
Eloise Mason; Timo Breure;
Chantal Gascuel; Apolline Auclerc;
Erlisiana Anzalone;
Victoria J Burton; Froukje Rienks; Sara
Di Lonardo; Alba Peiro; Francisco Sanz;
Ulrike Aldrian;
Tanja Mimmo
Chapter 8
Towards
sustainable soil
governance: Policy
pathways for
preserving Soil
Health in Europe
Cristina Arias-Navarro;
Diana Vieira; Elise Van Eynde Arwyn Jones; Rainer Baritz
Chapter 9
Ensuring Soil
Health and
ecosystem
resilience amidst
diverse land use
demands in Europe
Cristina Arias-Navarro;
Diana Vieira; Elise Van Eynde Arwyn Jones; Rainer Baritz
Conclusions Cristina Arias-Navarro;

Transversal
contribution Western Balkans 
Snezana Dragovic; Vesna Zupanc
Ukraine Yuriy Dmytruk; Vasyl Cherlinka;
Svitlana Romanova
Türkiye
Sevinc Madenoglu; Bulent Sonmez;
Philipp Maurischat; Fuat Kaya;
Sait Gezgin; Ibrahin Ortas;
Erhan Akca; Taskin Oztas;
Hasan Sabri Ozturk;
Koksal Aydinsakir; Hesna Ozcan; Atilla
Polat
Geographic
Information
System,
mapping, graphic
formulation, data
curation
Leonidas Liakos; Daniela De Medici;
Simone Scarpa;
Juan Martin Jimenez;
Christopher Havenga;
Daniele Beltrandi;
Marc Van-Liedekerke
The State of Soils in Europe - 202410
Policy context
Healthy soils need to be at the heart of the
European Green Deal. In this respect, this
report is aligned with several key EU policy
initiatives, such as the EU’s soil strategy for 2030,
part of the EU biodiversity strategy for 2030; the
zero pollution action plan; and the European


insights on the topic of soil degradation in Europe.

degradation processes, the stakes are high, with
impacts on food security, ecosystem services
and human health. This report synthesises
current research and highlights the issues that
need to be addressed through sustainable soil

and recommendations, the report aims to increase
understanding of this crucial area. Its relevance is
critical amid ongoing debates on environmental
sustainability and agricultural policies. Moreover,


climate change mitigation and land use planning,
and stressing the need for multistakeholder
cooperation to ensure environmental, social and
economic sustainability in Europe.
Key conclusions

degradation in Europe and highlights the
challenges arising from the impact of warfare on

as Ukraine. New policy measures may need to be
considered to address these emerging issues and
ensure the resilience of European soils.


the social impacts of soil degradation and the

gaps will require further research and greater
public engagement to raise awareness and foster
collective action.

several key policy-relevant consequences of
soil degradation and recommendations for
addressing this issue in Europe. Firstly, it is
evident that existing policy frameworks need

mitigate soil degradation processes. This will
involve, for example, implementing legislative
mechanisms such as the proposed soil monitoring
and resilience directive, which would provide
a framework for comprehensive soil health
assessments that could in turn support
targeted interventions.
In addition, there is a clear need for cross-
sectoral coordination and collaboration to
tackle soil degradation comprehensively. Policy
measures already in place could be strengthened
to incentivise farmers to adopt soil-friendly


land management practices through support
schemes and capacity-building initiatives.

urgency of addressing soil degradation in Europe
through targeted policy interventions, collaborative
approaches and continued investment in research
and innovation.
Main ndings

examination of soil degradation in the 32
European Environment Agency member countries
and in 6 collaborating nations in the western
Balkans, Ukraine and the United Kingdom. With
contributions from over 90 authors, the report
draws on the latest research, case studies and soil
monitoring data, providing a thorough analysis of
soil threats and their implications.
Executive summary
The State of Soils in Europe - 2024 11
Europe’s soils serve as the foundation for a
multitude of ecosystem services that are crucial
for human well-being and environmental
sustainability. However, nutrient imbalances,

degradation, erosion, compaction, pollution
and salinisation jeopardise their essential
functions. Addressing these challenges requires


management strategies.
Soil monitoring programmes, such as the Land

to the EU Soil Observatory’s Soil Degradation
Dashboard play pivotal roles in making it possible
to assess soil condition, guiding policy formulation
and promoting sustainable land management
practices. In addition, they provide valuable
insights into trends in soil condition and help in
identifying areas in which intervention is needed.
There is a lack of comprehensive soil data in the


need for international collaboration and data-
sharing initiatives.

policy frameworks need to be strengthened,
neighbouring countries need to be supported
in transitioning to sustainable practices and
incentives for soil-friendly agriculture need to be
provided. Furthermore, improving soil restoration
techniques and making soil more resilient to
climate change will require investment in research
and innovation and in cross-sectoral cooperation.
By implementing these recommendations and
prioritising soil health, policymakers can safeguard
the long-term productivity and sustainability of
Europe’s soils, ensuring their ability to continue
providing essential ecosystem services for
generations to come.
Related and future JRC work

support to the European Commission in the
development and implementation of policies
aimed at protecting soil resources. Future

the implementation of the soil monitoring and

and recommendations for soil health assessments.
The Joint Research Centre remains dedicated
to incorporating soil-related considerations into
wider environmental policies and partnerships,
in line with the objectives of the ‘Science for
the Global Gateway and International Green
Deal’ initiative.
Quick guide

of soil degradation across Europe, focusing on key
challenges and policy recommendations.
Chapter 1 provides a regional overview,
highlighting the diversity of Europe's soils and

Chapter 2 discusses the vital role soils play in
providing ecosystem services, such as climate

support. Chapter 3
of soil degradation, including climate change,
land use practices, and pollution. The core of the
report, Chapter 4, presents the status and trends
of soil degradation across Europe, with detailed
insights at regional and national levels. Chapter 5
synthesises evidence from national soil monitoring
programs and the EU Soil Observatory to provide
a comprehensive view of soil degradation
across Europe. Chapter 6 explores the interplay

health, emphasising the complex nature of soil
degradation processes. Chapter 7 highlights
the role of citizen science in soil monitoring,
showcasing how public participation can
Chapter 8 reviews
current soil policies and suggests pathways for
strengthening soil governance and protection.
Chapter 9 addresses the challenge of balancing
land use demands with the need to protect soil
health and ensure ecosystem resilience.
The State of Soils in Europe - 202412
Soil health is the continued capacity of soil
to function as a vital living ecosystem that
sustains plants, animals and humans. While
traditional assessments of soil have primarily
focused on crop productivity, contemporary
perspectives on soil health encompass its impact
on water quality, contributions to climate change
dynamics and implications for human health
et al.
The health of soil ecosystems, covering their
physical, chemical and biological condition,
determines their capacity to function as vital living
systems and provide essential ecosystem services.
In recent years, concerns about the status of soil
health in Europe have escalated due to various

of agriculture, urbanisation, industrial activities
and climate change. Recognising the urgency of
addressing these challenges, policymakers have
increasingly turned their attention to understanding
the current state of soils and implementing
measures to ensure their long-term viability.
The primary purpose of this report is to assess the
state of soil in Europe, by examining key indicators,
trends and drivers of change. The geographical
scope of the assessment covers the 32 European


1
Ukraine and the United Kingdom. Drawing on
existing and recent evidence from research, case
studies and soil monitoring, the report discusses
various soil threats in its core chapters.
By synthesising existing research and data, the
report aims to provide policymakers, stakeholders
and the public with a comprehensive overview
of the current state of soil degradation in the
region. In addition, it seeks to identify gaps in
knowledge and propose recommendations for
1
Switzerland and Türkiye. The six cooperating countries are Albania, Bosnia and Herzegovina, Kosovo*, Montenegro,
North Macedonia and Serbia.
enhancing soil management practices and on
policy interventions.
The central policy problem addressed in this
report is soil degradation in Europe, which
has implications for agricultural productivity,
environmental sustainability and human
well- being. As soil degradation continues to
accelerate due to human activities, policymakers
are confronted with the challenge of developing

ecosystems. The overarching issue is determining
how to reconcile competing demands for land use
while safeguarding soil health and ensuring the
long-term resilience of European agriculture and
ecosystems.
The importance of prioritising soil health cannot
be overstated. Healthy soils are fundamental to
sustaining agricultural productivity, supporting
biodiversity, regulating water resources, mitigating
and adapting to climate change, and preserving
cultural heritage. Furthermore, soil degradation

reduced crop yields, increased input costs and
the loss of ecosystem services. By prioritising soil
health, policymakers can promote sustainable
land management practices, enhance resilience to
environmental stresses and safeguard the well-
being of current and future generations.
The main objectives of this report are multifaceted.
Firstly, it aims to assess the current state of soils
in Europe, including using key indicators such
as carbon level, pollution, nutrient availability,
compaction, erosion, salinisation and biodiversity.
Secondly, the report seeks to identify the drivers
of soil degradation and pressures on soil health,
ranging from land use changes and agricultural

and climate
variability. Thirdly, the research aims to evaluate
Introduction
The State of Soils in Europe - 2024 13
existing policies and initiatives focused on soil
conservation and sustainable land management
practices. Finally, the report aims to propose
evidence-based recommendations on enhancing
soil monitoring and on policy development and
implementation at the European and national
levels. Ultimately, the report is designed to
inform decision-making processes and support
the development of holistic and integrated
approaches to soil management and conservation.
In summary, this report provides a
comprehensive overview of the state of soils

agriculture, the environment and society. By
addressing key policy questions and objectives,
the report aims to inform evidence-based
policymaking and promote sustainable soil
management practices across the region.
he State of Soils
in Europe
The State of Soils in Europe - 202414
#01
Regional
overview
he State of Soils
in Europe
The State of Soils in Europe - 2024 15
01 Regional overview
A
regional overview of soils in Europe
et
al.
characterised by more than 20 soil types,
according to the World Reference Base for Soil

continent, soils exhibit a wide range of features,
including in terms of texture, structure and

by factors such as parent material, climate,

In northern Europe, soils are predominantly
Histosols, which are soils formed from organic
material, and Podzols, which are soils typical of
boreal and temperate zones, with cool summers
and cold winters. Podzols are characterised
Source:
European Commission, 2005.
by an acidic pH, a low level of moisture and a
low nutrient content. These soils are therefore
often found in forested areas and have limited
agricultural potential.
Moving towards western Europe, soils vary widely
depending on the local parent material and
climate. The dominant soil types are Cambisols,
Luvisols and Albeluvisols. Luvisols are soils

generally productive soils suitable for a wide range
of agricultural uses. Cambisols are relatively young
soils, often being highly suitable for agricultural
land use.
In southern Europe, typical soils are Calcisols,
Cambisols and Leptosols. The Mediterranean
Figure 1.
The State of Soils in Europe - 202416
climate, with hot and dry summers and mild
winters with short periods of rain, favours the
development of Calcisols, with a high pH and low
organic matter content, and the poorly developed
Cambisols. The steep topography in mountainous
areas gives rise to very shallow Leptosols. Regosols
are typical of the mountain areas in Albania,
Greece, Italy, Spain and Türkiye. These soils are
poorly developed mineral soils, and often occur in
eroded land, for example in mismanaged orchards
and vineyards.
Eastern Europe exhibits a mix of soil types,

climates. Chernozems, Phaeozems, and
Kastanozems are typical soil types in the steppic
region. These soils are characterised by moderate
to high soil organic carbon content and are highly
suitable for arable cropping. The climate varies
from temperate continental in the north to more
continental and semi-arid in the south-east, which
explains the sequence of Phaeozem - Chernozem
– Kastanozem, characterised by the high

mineral horizon, with dark colors, and high base
saturation.

European region, are Fluvisols, Stagnosols and

rivers and lakes, having developed in alluvial
deposits. While Gleysols develop mainly in a low

water at depth, Stagnosols form in areas prone to
surface waterlogging.
Despite the diversity of European soils, they face
common threats, such as erosion, compaction,

et al.
, 2012; FAO and ITPS, 2015; EEA, 2019a; IPCC,

the ongoing changes in soil health and ecosystem
dynamics, it is important to incorporate new


soil conservation and management tailored to
diverse European contexts.
The State of Soils in Europe - 2024 17
#02
The role of soils
as providers
of vital ecosystem
services
he State of Soils
in Europe
The State of Soils in Europe - 202418
02 The role of soils as providers
Europe’s diverse landscapes are home to a
rich tapestry of soils, each playing a vital role
in supporting ecosystems and providing a
myriad of essential services. Ecosystem Services


that human societies receive from Natural Capital

2

its ability to support plant growth, maintain
ecosystem biodiversity, regulate nutrient cycles,
and provide other essential ecosystem services.
Healthy soils exhibit attributes such as adequate
nutrient availability, balanced soil structure, diverse
microbial and faunal activity, good water retention
capacity, and resilience to environmental stresses

et al.
,. Nevertheless, it is crucial
to acknowledge that certain soils, such as Podzols
that are characterised by low nutrient availability,
may naturally lack some of these attributes. This
absence, however, does not necessarily imply an
unhealthy soil condition.

biodiversity by providing a habitat for a vast array
of organisms 
et al.
, 2022; Labouyrie
et
al.
,. From microorganisms to fauna, soils
2 ‘Soil health’ means the physical, chemical and biological
condition of the soil determining its capacity to function as a
 
support a complex web of life. The diverse soil

fosters a wide range of plant species 
et al.
,. This biodiversity, in turn, supports
ecosystem resilience, making it more adaptable to
environmental changes and disturbances.
Soils play a crucial role in regulating the climate

et al.

European soils store vast amounts of carbon,
helping to mitigate climate change by reducing

unsustainable land use practices, such as
deforestation and intensive agriculture, lead to
soil degradation and the release of stored carbon,

et al.
, 2019;


it passes through them. This process helps to
maintain water quality by removing impurities
and pollutants, reducing the contamination
of groundwater and surface water bodies. In
addition, soils play a vital role in water regulation,

ecosystems. Well-managed soils contribute to


et al.
, 2021; Keesstra
et al.

Soils are key to sustaining life, as they provide the
foundations for food and biomass production,
essential for agriculture and forestry. Europe’s
agricultural success is closely tied to its diverse
Europe’s diverse soils form the bedrock of ecosystems, providing a myriad of essential
services vital for human well-being and environmental sustainability. From supporting
biodiversity and regulating climate to purifying water and sustaining agriculture, soils
play a multifaceted role in maintaining the balance of our planet. Recognising the
intrinsic value of soils, including their cultural heritage, is imperative for safeguarding
these vital resources and fostering a resilient and inclusive society, in alignment with
the UN sustainable development goals.
of vital ecosystem services
The State of Soils in Europe - 2024 19

to variations in soil properties, texture and fertility

et al.
, 2020; Fendrich
et al.

As the global population continues to grow, the
role of soils in ensuring food security becomes

sustaining crops and forests, soils serve as a vital
source of raw materials necessary for various
et al.
In light of historical and ongoing urbanisation
dynamics, natural ecosystems, including soils,




urban landscapes cannot be overstated. Urban
soils present many challenges and opportunities

Protecting soil cultural heritage is crucial for
enhancing soil security, as it strengthens the



by soils, going beyond traditional agricultural,
forestry and environmental perspectives to
include social and cultural dimensions, notably
soil cultural heritage. This recognition aligns
with the perspectives of various researchers

et
al.

comprehensive evaluation of soil health. They
emphasise the importance of assessing not
only the material value of soil but also its non-
commercial value, which encompasses cultural

heritage and recreation. These non-commercial
values of soils contribute to human well-being,
supporting the achievement of targets included
in the UN’s sustainable development goals by
promoting health, education, environmental

et
al.


health, education, diversity and cultural identity,


Friedrichsen
et al.

As Europe faces ongoing environmental challenges

biodiversity loss, climate change impacts and
habitat destruction, the wise stewardship of its
soils will be key to maintaining the health and
resilience of its ecosystems.
Source:
Created through the Joint Research Centre art and science programme by artists in residence Sonja Stummerer and
Martin Hablesreiter to highlight the importance of a fair, healthy and environmentally friendly food system fullling the UN
sustainable development goals as part of the European Green Deal.
Photo 1. Food and Futures.
The State of Soils in Europe - 202420
#03
Drivers of
changes in soil health
he State of Soils
in Europe
The State of Soils in Europe - 2024 21
03 Drivers of changes
in soil health
Drivers of changes in soil health are the

the condition, quality and functionality of

drivers can originate from natural processes, such
as climate variability and geological dynamics, and
from human activities, including land use practices,


leading to alterations in their properties, biological
composition and functions. This can have

environmental sustainability and ecosystem

et al.

key drivers of soil change is essential for identifying
threats to ecosystems and assessing their
impacts, and implementing strategies to mitigate
soil degradation and promote sustainable soil
management practices.
3.1 Climate change
Climate change is one of the primary drivers of


various mechanisms. Prolonged periods of

pressure on soil resources such as water and

by altering heterotrophic activity, organic matter
decomposition rates and nutrient cycling
processes. Warmer temperatures can accelerate
soil organic matter decomposition, leading to

et
al.


increasing the risk of soil erosion, compaction and

et al.
, 2016; Kelishadi
et al.
, 2018; Panagos
et al.
, 2021; Kaushal
et al.
,

the frequency, intensity and distribution of rainfall
events, can have a profound impact on soil

et al.

soil erosion, nutrient leaching and waterlogging,
while drought can lead to soil moisture
depletion, increasing susceptibility to erosion and

et al.

The EU’s ambitious climate targets hinge on
preserving vegetation and soils to prevent further
carbon losses, especially in organic soils, and to
foster carbon sequestration. However, gains from


related hazards such as temperature extremes,

et
al.



attributed to low precipitation, high evaporation


induced permafrost thaw can release stored
carbon and methane, leading to soil subsidence,
land instability and altered hydrological regimes,
hence exacerbating climate change feedback

et al.

3.2 Land use and land cover change
Between 2011 and 2021, the proportion of
protected land in the 32 EEA member countries



in global demand for agricultural products by

is poised to impact natural resources such as
land and water, and biodiversity, underscoring
the importance of sustainable land management
practices. The management of cropland, pasture
and agroforestry is particularly critical in this
context. Concurrently, forest and tree plantation
management, grazing land management and
The State of Soils in Europe - 202422

use dynamics. In the last few years, we have
started to observe that the mountains of Europe
are being re-explored by the mining industry, with
the expansion of open pit and underground mines

Urbanisation and infrastructure development have
also left a tangible mark on land use patterns.
Between 2012 and 2018, land take in the EU-27
2.
,




zones, which, unlike city centres, provide valuable
wildlife habitats, support carbon sequestration,


recycling, including constructing in or rehabilitating
previously built-up areas, only accounted for


signals the need for more sustainable land use
practices to mitigate adverse impacts on soils
and ecosystems.
3.3 Socioeconomic drivers
Socioeconomic factors play a crucial role in driving

between human activities and environmental
et al.
growth and urbanisation exert pressure on

practices and expansion into marginal areas
et al.
by the demand for food and commodities, often
involves the excessive use of chemical inputs,
extensive tillage and monoculture cropping, which
et
al.
incentives and policies, such as deforestation for
agriculture or infrastructure development, further
exacerbate soil degradation by disrupting natural
et
al.
and lack of access to resources and knowledge
can limit sustainable land management practices,
leading to land degradation and loss of livelihoods
et al.
In 2020, according to The Third Clean Air Outlook,



in Italy, the Dutch–German–Danish border areas
and north-eastern Spain were characterised by

et al.

2020. The zero pollution action plan aims for a

ecosystem properties in Europe, such as soil pH

to respond with varying delays to the current trend
et al., 2019;
Schmitz et al.
3.4 Soil water
Owing to the recognition of the interconnectivity
between water, energy, food security and
ecosystems, whereby any limitation in one of the
inputs will disturb the availability of the others,
it is important to understand water as a key

Moreno
et al.

biological activities in soil are dependent on its


balance determines soil health, irrigation needs
and crop productivity, and is intimately connected
with degradation processes such as drought,
Source:
A. Jones.
Photo 2. Soil sealing through urban expansion.
The State of Soils in Europe - 2024 23


as it inhibits the biological functioning of soil

et al.

services. While water excess due to poor drainage


et al.

can also increase soil erosion due to saturation-

et al.


et al.

that changes in the water content of soil also
have profound implications for the greenhouse

as peatlands and rice crops, and in many natural
or semi-natural humid ecosystems. These
environments play critical roles in global carbon
cycles and biodiversity conservation, making them


et al.

Despite the importance of climate in controlling
the water content of soil, the implementation of

et al.


et
al.

conditions, such as water-holding capacity and



War-induced soil degradation.
-
-
pacts on soil. Scientists at Ukraine’s Institute for Soil Science and Agrochemistry Research

across Ukraine so far. Military actions have led to a wide array of soil degradation issues,
including pollution, compaction, loss of organic matter and nutrients, reduced biodiversi-
ty, soil sealing and other, less well understood, issues (Dmytruk
et al.
, 2023). The ongoing


toxic chemicals. Consequently, the environmental impact of the military activities is set
-

-
ing a thorough survey of soils impacted by military activities remains unfeasible at present,
it is evident that addressing the repercussions of the war will pose a substantial challenge
in tackling global issues.
box
1
Photos box 1:
Soil desgradation caused by the war in Ukraine. Source: Y. Dmytruk.
The State of Soils in Europe - 202424
3.5 Disturbances (wildres, droughts and
windstorms)


have been marked by the emergence of summers

et al., 2015; Abatzoglou et al.,
2018; Carnicer et al.



et al.


globally, especially in Europe.
Southern Europe, already a hotspot for climate-


et al., 2017; Dupuy et al.
breaking summer of 2022, the second-warmest
year on record, resulted in the largest drought-
2,

between 2000 and 2022. This trend is alarming,
given projections of increased heatwave
frequency and intensity by 2030, along with
decreased summer precipitation in continental
and Mediterranean regions.

activity. Degraded soils are often less able to
retain moisture, leading to drier conditions that

et al.
Source:
D. Vieira.
exacerbate soil degradation by reducing organic
matter, altering soil structure and increasing
et al.
they create a feedback loop originating from
multiple disturbances,
leading to further soil
degradation, limited ecosystem recovery and

these impacts, adjusting land management
practices is crucial. Therefore, the implementation

Member States is vital.
The Sixth Assessment Report of the
Intergovernmental Panel on Climate Change

et al.
,

are likely to experience an increased frequency
and intensity of storms, including strong winds
and extra-tropical storms. In southern Europe,
the intensity of storms is predicted to rise, while
their frequency may decrease. Agricultural soils,
especially bare surfaces, face severe threats from

et
al.


droughts and windstorms are key factors to
consider in assessing soil degradation in Europe.


strategies to manage these impacts and protect
soils from them. Addressing these challenges
is therefore essential for maintaining good soil
condition and ensuring the long-term sustainability
of European ecosystems.
Photo 3.
The State of Soils in Europe - 2024 25
#04
Regional status
and trend of
soil degradation
he State of Soils
in Europe
The State of Soils in Europe - 202426
Assessing soil condition involves evaluating
a range of physical, chemical and biological

change in soil health resulting in the diminished
capacity of the ecosystem to provide goods and

from existing and recent evidence, including

data, our assessment focuses on various soil
degradation indicators. These include:

soil carbon change
soil erosion
soil compaction
soil pollution

soil biodiversity change
soil sealing and land take.
4.1 Excess and deciencies in soil
nutrients
Soil nutrients are essential for plant biomass
production and quality, and other ecosystem

et al.
, 2016; Ros
et al.

other services includes the major biogeochemical
cycles and related soil functions, notably carbon

et al.

Nutrient management is therefore essential to
maintain soils in good chemical, biological and
physical conditions. Nutrients are managed to





et al.
, 2000; Hou
et al.

4.1.1 Status and trends
-1

et al.

high mobility of nitrate, N losses from the soil are

-
pluses across the EU and the United Kingdom
-1-1 to more than
–1-1.
A high N surplus mostly occurs in areas with high
N inputs, especially in intensive livestock areas,



et al.

04 Regional status
and trend of soil degradation
Soil nutrient status in Europe,
particularly regarding nitrogen (N) and
phosphorus (P), exhibits signicant
spatial variations, inuenced by
factors such as agricultural practices,
climate, and soil properties. Despite
eorts to manage nutrient inputs,
high N and P surpluses persist in
many regions, posing risks to soil and
water quality. Addressing the drivers
of nutrient excesses and deciencies,
including fertilizer application,
land use practices, soil erosion,
and climate patterns, is crucial for
mitigating environmental pollution,
soil acidication, and economic costs,
while safeguarding human health and
agricultural productivity. Eective soil
management strategies are essential
to balance nutrient inputs and
outputs, ensuring sustainable land use
and ecosystem resilience in the face of
ongoing environmental challenges.
The State of Soils in Europe - 2024 27

in the EU and the United Kingdom has excessively
high N inputs when considering the regional vari-


loss through leaching to groundwater, respectively

et al.

Between 1930 and 1990, N surplus increased

et al.,

its highest value around 1990 because of a peak
in N inputs. The surplus declined in subsequent
years. Since 1990, total N inputs in cropland have
been relatively stable, with a slight increase from
–1–1–1-1-
arsson
et al.,


vary considerably across the EU and the United
Kingdom, with most areas having concentrations
-1
levels occur in northern Germany, northern France
and northern Italy, and in Belgium, Denmark,
Ireland, the Netherlands, Poland and the United
Kingdom. Despite these high soil P levels, balance
calculations have shown an average surplus of

–1–1
et al.
, 2022b; Muntwyler
et al.
,

et al.,
2014; Einarsson
et
al.,

among countries, and extensive areas in the EU
and the United Kingdom are currently experi-
–1–1,
despite the generally high soil P concentrations in
these regions.
The current P management practices were evalu-
ated by comparing the P balance with the available

et
al.

mineral fertilizer inputs minus outputs due to re-

et
al.

than 30 mg kg-1, negative P balances increase the
-

et al.
, 2012; Steinfurth
et al.
,
-
al land. When P-Olsen concentrations are greater
than 30 mg kg-1
et al.
, 2012; Stein-
furth
et al.

, positive P balances increase the
Figure 2.
Source:
De Vries et al. (2021)
The State of Soils in Europe - 202428
risk of P environmental losses which is the case in

Many Member States have experienced much
more imbalanced P management in recent
decades: P inputs peaked above 30 kg ha–1 in
et al.
are nowadays, on average, 16 kg ha–1 in the EU
et al.
Due to the low mobility and high retention of P
in soils, the positive P balance of the past have
et al.
When 30 mg kg-1 of P-Olsen is used as thresh-
et al., 2012;
Steinfurth et al.

P-rich soils, with possible adverse impacts on wa-
ter quality. The threshold of 30 mg kg-1 is the low-
est value of the range proposed by the European
Commission in the proposed Soil Monitoring Law


mg kg-1, 10 % of agricultural soils in the EU and
UK has excess of P.
In non-EU countries such as Norway, P surpluses
reduced from 1985 to 1990, and have remained
-
es in Norway are similar to those in the United
Kingdom, contributing to the eutrophication of

et al.
-
pluses reduced in Switzerland between 1990 and
–1
–1
The N and P budgets in Iceland are generally


N and P budgets since 1990 of all non-EU coun-

–1-1 in 2020. This drastic reduction
in fertiliser input after the 1990s can be attribut-
ed to the political transformations in post-Soviet


et
al.
-
cultural land could have relatively large N surplus-
es, as this area consists of greenhouses and open
Source:
EUSO, based on Ballabio et al., (2019) and Muntwyler et al., (2024).
Figure 3.-1.
The State of Soils in Europe - 2024 29

N fertiliser doses. However, generally fertiliser
application in these countries happens to be far
below the average EU level; they therefore have a
higher chance of having negative N and P budgets

to nutrient mining and a decrease in soil fertility

et al.

In Türkiye, both the N balance and the P balance

-
–1-1–1–1 from
-
–1–1–1–1;

–1 to
–1
Available K concentrations, determined using
ammonium acetate, vary across the EU and the
United Kingdom depending on parent materi-
al, soil clay content and manuring history, with

et al.
-
tries or regions with intensive animal husband-
ry. For example, in France, the exchangeable K

-1-1
-1


soils have exchangeable K concentrations of below
-1-1, respectively. They can
therefore be considered soils with low K levels for
biomass production.
-

-

in sustaining terrestrial ecosystems, which is partly
related to their contribution to sustaining biomass
development. In addition, these elements are
divalent cations, which control aggregate stabili-
ty, soil water retention and supply, resistance to
wind erosion, topsoil sealing, subsoil compaction,

et al.
,

information on the levels of these nutrients in soil

there is information on the total amounts of some

et al.
, 2018; Van
Eynde
et al.
-
-
trients are typically applied in the form of salts
and chelates, but there is no spatial information
regarding the quantity of micronutrient fertilisers


characterised by a high pH and low organic matter

et al.

intense cropping can exacerbate micronutrient de-

et al.


as a source of Cu and Zn for agricultural soils in

et al.


et al.

et al.

4.1.2 Drivers
The main drivers of soil nutrient excesses and de-


drivers include the following.
Fertiliser and manure application. Since the
1950s, the increased use of fertilisers has
boosted crop and forest production, but their


et al.

Gaseous emissions from industry and agricul-
ture, as well as natural processes, also lead to
the deposition of nutrients in terrestrial ecosys-
tems.
Land use and management practices. Agricultur-
al systems have become specialised, resulting in
the decoupling of crop and livestock production.
On the one hand, there are systems relying on
both internally and externally produced feed,

waste such as manure. Applying this nutrient
source inappropriately often leads to substantial
-
pend on external fertiliser inputs to manage their
nutrient needs. In addition, agricultural practices
such as tillage, irrigation and pesticide use can
et al.
Soil erosion and leaching. Erosion results in the
loss of nutrients such as P to lower areas and to

et al.
-
The State of Soils in Europe - 202430
ing can result in the loss of nutrients such as N

et al.

loss of nutrients leads to a decline in soil fertility,
while sedimentation and leaching can result in
an excess of nutrients elsewhere.
Soil properties. Soil types and related charac-
-

of carbon and nutrients such as K and P in soils

et al.


solution, ionic form, and adsorption and mobility

et al.
, 2022;



et al.

Climate and weather patterns. Weather events
such as heavy rainfall can accelerate nutrient

the atmosphere, while drought conditions can
concentrate salts in the soil, potentially lead-
ing to nutrient imbalances. In addition, climatic
conditions control crop yield and nutrient use

et al.,

4.1.3 Impacts

-
mental, ecosystem and human health. Some of the
key consequences are as follows.
Environmental pollution. Excess nutrients, par-
ticularly N and P, can leach into groundwater or

erosion. This results in eutrophication, with the
loss of biodiversity, the depletion of subaquatic
vegetation, a decline in coral reef health, the
occurrence of algal blooms and the creation of

et al.
, 1998; Smith, 2003; Smith and Schindler,

can also result in increased N losses into the at-
mosphere. The subsequent deposition of N is a
major driver of plant biodiversity loss through N


et al.

Climate change. Excess N in soil can lead to the
increased emission of , a potent greenhouse
 is released from soils through


et al.
, 2013; Arias-Navarro
et al.
,
2017; McDonald
et al.
, 2022; Pan
et al.

 Excessive
nitrate in soils due to N fertilisation causes


availability of other nutrients, and contaminants

et al.

in dry and sub-dry regions can lead to soil salini-

et al.

Soil pollution. The excessive use of P fertilisers
-
ganic fertilisers and amendments, may introduce

et al.
of synthetic chelates to correct micronutrient de-

the introduction of recalcitrant products, with neg-
et al.
Economic costs.
et al.


et al.
reduce farmers’ incomes, and increase the costs
of inputs. Excess nutrients can also lead to serious
losses to the environment, requiring environmen-
tal mitigation measures, with associated costs.
Human health risks. Gaseous N emission
contributes to the formation of aerosol and


et al.


as they can compromise the safety of drinking
-

nutritional quality, compromising livestock pro-
duction, as well as food security and food quality

et al.


is very common and is a growing concern, as


The State of Soils in Europe - 2024 31
4.2 Soil acidication


Breeuwsma, 1987; Guo et al.
all around the world. In calcareous soils with a

as the pH remains stable and slightly alkaline
until all carbonates are depleted. This depletion
depends on their dissolution rate. However, in

especially sandy soils with low organic matter

fast decline in soil pH and base saturation. Soil
pH is an important indicator of soil health, as it



et al., 2003; Pagani and


and Swift, 1986; Dijkstra et al.
functioning of soil as a habitat for organisms and
et al.
4.2.1 Status and trends
-


et al.

material, vegetation and past management practic-
es, such as liming.


-
Soil acidication, a global concern,
impacts soil quality, ecosystem integ-
rity and human well-being. It predom-
inantly aects non-calcareous soils,
with low buer capacity, leading to a
decline in pH. This decline can impair
nutrient availability and increase
the mobility and availability of toxic
elements. While some countries have
seen improvements, acidication
remains a signicant issue in Ukraine
and Türkiye, aecting agricultural pro-
ductivity and environmental quality.
Drivers of soil acidication include
natural processes, industrial emissions
and agricultural practices. The exces-
sive use of ammonium-based fertiliz-
ers may lead to soil acidication.
Source:
EUSO, based on Ballabio et al. (2019).
Figure 4. Soil pH, measured in HO, in EU and UK soils.
The State of Soils in Europe - 202432

et al.


2009 and 2018 shows that pH both increased and

increase in soil pH from 2009 to 2018, while neg-
ative values show a decrease in soil pH. In some
land cover classes, the trend is an increase rather
than a decrease. Further analysis should assess
which factors explain the change in pH. Given the

pH on primary productivity, as mentioned above,
a typical management strategy is liming. However,
there are currently no regulations on the applica-
tion of lime to agricultural or forest soils at the EU
level, nor are there any data about the application
of lime to agricultural soils.

land uses, including forest, agricultural land and

et al.

recent decades, a slight improvement in upper soil
horizons has been observed, with pH values rising

et al.


depth. While some research indicates increasing


et al.
, 2007; Schmitz
et al.
, 2019; Wellbrock



et al.

Kingdom, reduced sulphate deposition has facil-


et al.

have reported an increase in soil pH across all UK
habitats, with national-level data showing a mean

et al.
,

-

et al.


Acidic soils are predominantly found in the Polis-

-
ticularly in the natural areas of the Polissya zone,


Soil acidity is important for sustaining soil health,
particularly in the East Black Sea Region of Türkiye.
As a result of natural processes, the high annual
rainfall results in leaching, which increases the
presence of hydrogen and aluminium cations,
ultimately leading to soil acidity.
4.2.2 Drivers

can vary depending on regional and local factors.
Some of the main drivers include the following.
Source:
EUSO, based on LUCAS 2009 and 2018 topsoil databases.
Figure 5.
The State of Soils in Europe - 2024 33
Natural processes.
process. It is mainly caused by the dissociation
of carbonic and organic acids, which leads to the
leaching of bicarbonate and non-acidic cations

et al.
-
ular mineral rocks containing sulphide minerals
-
tions in soils.
Acid deposition and waste. Mining activities and
industrial processes can release acidic substanc-
es into the environment, either directly through
emissions or indirectly through the disposal of


and air pollution have been major drivers of for-

increasing the deposition of mainly N and S com-

-
er, regulatory controls have reduced emissions
and consequently the deposition of compounds

et al.
-
pecially S compounds. This has resulted in the
re-alkalinisation of several European forest soils

et al.
, 2016; Prietzel
et al.



et al.

Critical loads of acidity are currently rarely ex-

et al.

Agricultural practices. In agricultural soils, acidi-

-

in legumes, plant root exudates and the miner-

et al.
Agronomic measures such as the addition of ma-
-
tion, thereby preventing a decline in soil pH.
4.2.3 Impacts

ecosystem functioning and human health.
Some of the main impacts are as follows.
Reduced nutrient availability.
the solubility, concentration in soil solution, ionic
form and adsorption of most nutrients, as well





Contamination and human health.-
cation can increase the solubility and mobility of
toxic elements such as aluminium, cadmium and

et al.

primary productivity. Due to the increased mo-

of surrounding surface water and groundwater

et
al.




et al.

Altered soil biota activity.
-

et al.
, 2006;
Siciliano
et al.


and rotifer abundance and earthworm biomass,
and a change in microbial composition, thereby


et al.

Ecosystem disturbance.
disrupt ecosystem dynamics and alter the
composition of plant communities. Acid-sensi-
tive plant species may become less abundant,
while acid- tolerant species may become more
predominant, leading to shifts and reductions in

et al.

-
es to agriculture, forestry, ecosystem management
and human health, reinforcing the importance of
implementing strategies to mitigate its impacts
and restore soil condition. Various practices can

the application of agricultural lime to neutralise
acidity. On the other hand, soil alkalinisation,

liming activities, can enhance the volatilisation of
ammonia, so the application of ammonium-based
fertilisers at the same time as lime is not recom-

The State of Soils in Europe - 202434
4.3 Soil carbon change (in mineral soils,
organic soils and inorganic carbon)
Soil hosts the largest carbon pool in the terres-
trial ecosystem, playing an essential role in the
global carbon cycle and the regulation of climate
change. Soil carbon is solid carbon stored in soils,
existing in organic and inorganic forms. An import-
ant distinction between these two forms is that
inorganic carbon has a much higher potential for
permanence in soils than organic carbon. Soils are
characterised as mineral or organic based on their
organic matter content.
Mineral soils form most of the world’s cultivated

organic matter. Organic soils are naturally rich in
organic matter, principally due to vegetation and
climate, and are distinguished from mineral soils by
-
et al.,


organic horizon, a high organic carbon content, and
the possibility of water saturation episodes.
4.3.1 Mineral soils
The SOC content of mineral soils
varies across Europe, with the high-
est levels in woodlands. Croplands
exhibit the lowest SOC content,
posing challenges to achieving EU
climate targets due to ongoing car-
bon loss. Land use changes, includ-
ingthe conversion of grasslands to
croplands, have a signicant impact
on SOC stocks, highlighting the need
for sustainable land management
practices. Climate change and land
use change are major drivers of SOC
change, inuencing soil fertility, water
dynamics, GHG emissions, biodiver-
sity and resilience to climate change.
Mitigating SOC loss is essential for
maintaining soil health, agricultural
productivity, and ecosystem stability,
highlighting the importance of imple-
menting strategies to enhance soil
carbon sequestration and minimise
soil degradation.
4.3.1.1 Status and trends
Europe exhibits considerable spatial variability
in soil types, climates and land uses, leading to
diverse patterns in SOC content across regions.
Based on the soil measurements from LUCAS,
SOC content increases from south-eastern to
-
de et al.
-1

-1


-1,
-1 in shrubland. Organic

-1
-1
Overall, soils are losing carbon as CO

EU climate targets. SOC changes in agricultur-
al soils across the EU and the United Kingdom
from 2009 to 2018 have been comprehensively
assessed, showing varied impacts depending on

et al.





-
an change in SOC content indicates an average
-1 for the EU and the United
Kingdom combined, with some countries, such as
Austria and Slovenia, experiencing increases of
-1
-1, occur in the higher latitudes of north-
ern Europe, where a lower soil clay content cor-
relates with decreased carbon retention capacity.
In contrast, central European regions mostly main-
tained stable SOC levels over the period studied.
The Mediterranean area, characterised by warmer
temperatures and less rainfall, showed a broader
-1-1,
with the initial SOC levels also being the lowest in
the EU. Notably, grasslands in this region played

continuous grassland or conversion from cropland
contributing to an increase in SOC. Conversely,
The State of Soils in Europe - 2024 35
continuous cropland had a net negative impact on
SOC levels, attributed to practices such as mono-
culture and tillage. In addition, soils with a high
initial SOC content tended to lose more carbon
than soils with lower initial SOC contents.
Overall, SOC trends observed using soil data from
-
tions from several national soil monitoring net-

et al.

cropland soils constitute an exception: their SOC
content has increased in most parts of the country
due to a steadily increasing proportion of ley in

et al.
, 2005; Poeplau and Don,
2015; Knotters
et al.

In the United Kingdom, some studies suggest that


et al.
,


et al.
-

et al.


croplands show stability overall but some diver-

et al.

Ministry of Agriculture and Food is funding the
national programme for monitoring SOC in forests
and intensive grasslands. Soil sampling started in
July 2023, and these samples will provide informa-
tion about the levels of, and eventually changes
in, soil carbon stores in Norwegian forests and
grasslands.
In the western Balkans, it is estimated that the
-
agement in the western Balkans, the loss of SOC

et
al.

-
-
zegovina shows that the SOC content is mostly at


type, soil depth, land use, slope, soil cover, etc.
There are no data for Montenegro on SOC change.
An analysis conducted on many soil samples to
monitor the fertility of agricultural land in Serbia
shows that most samples had an organic carbon

the degradation of agricultural land in the Serbia
is a loss of organic matter due to intensive agricul-
tural production, intensive tillage, a lack of organic
Source:
EUSO, based on De Rosa et al. (2023).
Figure 6.
The State of Soils in Europe - 202436
fertilisation, irrigation, the removal of crop resi-
dues or their burning and other SOC stocks is less


et al.

report discussing the state of the art of soil unsuit-
able cultivation practices.
-
termined as part of the monitoring and surveying
of Ukrainian agricultural land, but the humus con-


-
ing to survey results, the lowest humus content




The most recent SOC data for Türkiye, published

–1. Most carbon reservoirs
are located in forests, followed by pastures, which

areas, cultivated land has the lowest SOC content.
According to FAO’s land degradation neutrality de-
cision support system, the SOC content in Türkiye
is projected to decline by 2040.
However, the system has reported that SOC levels
in agricultural soils are rising due to the increas-
ing use of organic fertilisers and the expansion
of drip-irrigated agriculture, compared with the
period when re-irrigation practices were intensive-
ly used.
4.3.1.2 Drivers
Numerous experiments have investigated the

are being consolidated in an increasing number

et al.
, 2020; Beillouin
et al.
,

Climate change. Soils will release more carbon
into the atmosphere under future warmer cli-
-
back loops of soil carbon loss causing climate

et al.





a notable increase in the occurrence of forest

statistic that 2022 was the second worst year on
record in the EU in terms of area burned by wild-

et al.

imperative not to underestimate the indirect


snow cover have received limited attention in

et al.

is a noticeable absence of synthesised results

et al.

investigations are needed to enhance our under-
standing of the individual and collective impacts
of climate change on SOC, particularly across
diverse land use types and varying climatic con-

et al.

Land use change.
use change and land management on SOC


et al.

the conversion of grassland to cropland could

retaining soil carbon stocks that may otherwise

et al.

grasslands to croplands typically results in a loss


et al.

this conversion is crucial for averting soil carbon
losses. However, it is essential to acknowledge
that the conversion of grassland to cropland
often occurs in response to food security chal-
lenges. This poses a dilemma, as food security
could be compromised, given that more land is
required to produce human food from livestock

2001; de Ruiter
et al.
, 2017; Clark and Tilman,
2017; Poore and Nemecek, 2018; De Rosa
et al.
,

have broader implications for land degradation,


et al.
,

change could lead to carbon losses from mineral


et al.

Soil erosion.
site sediment transfer and deposition, soil ero-
sion has multiple environmental impacts, with
The State of Soils in Europe - 2024 37

et
al.
, 2018a; Borrelli
et al.
-
tions for biogeochemical processes such as SOC
cycling, by increasing CO emissions through
enhancing mineralisation and decreasing carbon

et al.
, 2016;
Borrelli
et al.
, 2017; Panagos
et al.

4.3.1.3 Impacts

impacts on the environment, agricultural pro-
ductivity and overall ecosystem health in Europe.
Some of the main impacts include the following.
Reduced soil fertility. SOC is a key component
of organic matter, which provides essential nu-

availability for plant growth. Declining soil fertility
can lead to decreased crop yields, reduced

forest health, in particular when organic matter

that crop yields and yield stability enhance with
increasing organic matter content, though some

Impaired water retention and drainage. SOC
plays a crucial role in regulating soil water
dynamics. The loss of carbon can reduce the

making them more prone to waterlogging or,
conversely, decreasing water availability during
-
ter use by crops, increase the risk of soil erosion


et al.
, 2008; Schindlbacher
et al.
,

Increased GHG emissions. Soil carbon losses
contribute to the increased emission of GHGs,
particularly CO. When organic matter decom-
poses, carbon is released into the atmosphere.
This process not only reduces soil carbon stocks
but also contributes to climate change, exacer-

et al.
, 2017; Lugato
et al.
, 2021; Le Noë
et al.

Loss of biodiversity. Soil organic matter is a hab-
itat and food source for various microorganisms,
fungi and fauna. A decrease in soil carbon can
lead to a loss of biodiversity inthe soil ecosystem,


including above-ground plant communities

et al.

Soil erosion. Soil carbon loss is often associated
with soil erosion, as it weakens the soils’ struc-

thereby soils’ ability to resist erosion. Erosion
leads to the removal of topsoil, which is rich in
organic matter. This, in turn, exacerbates the
loss of soil fertility and hinders sustainable agri-

et al.
,

Increased vulnerability to climate change. Agri-
cultural soils with lower organic carbon content
are generally more vulnerable to the impacts of
climate change, such as extreme weather events,

those with higher carbon contents. Increasing
SOC levels can enhance soil’s resilience to these

et al.

4.3.2 Organic soils
European peatlands are facing
signicant degradation due to
agriculture, drainage and peat
extraction, leading to signicant
carbon loss, biodiversity decline and
environmental damage. New land use
change policies under the common
agricultural policy (CAP) reform aim to
reduce drainage and implement the
rewetting of drained peat soils. The
EU Regulation on Nature Restoration,
aims to restore degraded peatlands
to achieve climate and biodiversity
objectives and enhance food security.
Restoring drained peatlands is
identied as one of the most
cost-eective ways to reduce
greenhouse gas emissions in
the agricultural sector.
The State of Soils in Europe - 202438
4.3.2.1 Status and trends
Peatlands are unique ecosystems that store sig-



et al.
-
rope’s total SOC. The corresponding organic soils,
also known as Histosols, are important SOC stores.
Organic soils store much more carbon per unit
area than mineral soils. The amount could be
more than 10 times the carbon stored in mineral
soils, depending on peat thickness. As acidic and
waterlogged conditions restrict decomposition

hold more carbon per hectare on average than all
other ecosystems, making them the largest carbon

et al.


et al.
,
-
bution of organic soils across Europe, generally re-

portion of the land area in the Nordic countries.
Almost one third of European peatland is in Fin-
land, and more than a quarter is in Sweden. The
remainder is in Iceland, Poland, the United King-
dom, Norway, Germany, Ireland, Estonia, Latvia,
the Netherlands and France. Small areas of peat
and peat-topped soils occur in Lithuania, Hungary,
Denmark, Czechia, Belgium, Italy, Austria and Spain

et al.
, 2017; Tanneberger
et al.

Data from peatlands, particularly heavily degrad-

et al.

Measuring the depth of the organic horizon helps
quantify the amount of carbon stored in the soil,
which is essential for understanding the role of
peatlands in climate regulation and carbon se-

et al.


part of the soil data collected in the 2018 LUCAS

et al.

-
ever, most of the sites selected for depth assess-

Histosols. The assessment failed to analyse the
very shallow organic soils, such as those found on
bedrock. The implication could be either that many
of these locations are mineral soils with well-de-
veloped organic horizons, or that peatlands have
been eroded back to the underlying mineral base

et al.

Monitoring changes in the depth of the organic
horizon over time can help assess the extent of
peatland degradation due to factors such as drain-
age, land use change and climate change. Germany
has initiated a peatland monitoring programme

utilising a standardised approach aimed at the long-
-
-

concerning peatlands, containing peat and other
organic soils, within the land use, land use change
and forestry sectors and the agricultural sector. It
seeks to achieve this by providing measurements
and enhancing methods for regionalising the prima-
ry factors determining emissions.
-



carbon loss, biodiversity decline and environ-
mental damage. Within the EU, the proportion is
2
et al.

The EUSO Soil Degradation Dashboard shows EU
peatlands that are likely to be degraded due to

Source:
A. Jones.
Photo 4.
The State of Soils in Europe - 2024 39
-
ment Programme’s Global Peatlands Assessment ,
whose data are retrieved from the Global Peatland
Database compiled by the Greifswald Mire Centre.
In Europe, the degree of peatland degradation
clearly increases from Arctic to temperate regions.

have been utilised for agriculture, forestry or peat

-
CO
mainly from agriculture on drained peat soils. This

-

from enteric fermentation and  from fertili-
-

-

et al.
,


-

Ukrainian peat soils are situated in the southern-
most region of eastern Europe’s peat soil expanse.
Shaped by warmer climates, they boast an age
surpassing their northern counterparts. These
soils previously achieved an equilibrium, including
-

disrupted this equilibrium, resulting in a negative

et
al.
, 1973; Tanovitskii, 1980; Succow and Jeschke,
1986; Bambalov and Rakovich, 2005; Truskavetskii,

and fauna, a reduction in biodiversity, and a trend

extensive peatlands.
4.3.2.2 Drivers
The main factors driving peat loss are intricately


on the type of peatlands involved. Certain threats

example, arable agriculture poses a particular risk
to lowland peat.
Land use change. The impact of humans on
northern peatlands dates back centuries, to

et
al.

of changes stemming from agricultural cultiva-
tion, the expansion of grazing pastures, forestry
activities and the extraction of peat for fuel. The
population growth from the 1700s to the 1900s
increased the need for more arable land. In the
early 1800s, the pressure for land resulted in its
reclamation for agriculture or other uses, which
continued with many large drainage projects

et al.

Finland, a lack of coherence in forest, agricultural
and environmental policies has led to increased
drainage activity on peat soils since the be-
ginning of the 20th century, which is linked to
targets of increasing farm size and productivity
and to developments in the CAP. The area of

cleared since 2004 have not been eligible for

et al.

Drainage. Drainage is the key driver of the deg-

et al.


the original peatland area has been drained for

et al.
, 2017; Szaj-
dak
et al.

Germany, the Netherlands, Poland and Ireland,


et al.

Agricultural uses vary from extensive pastures
to intensive cultivation, for example vegetable
production in Switzerland and the United King-
dom; the growth of maize for fodder and biogas
generation in Germany; and dairy farming on
grassland in the Netherlands.
Peat extraction. Peat extraction for horticultur-
al and energy purposes directly removes car-
bon-rich peat from organic soils, leading to the
irreversible loss of soil carbon. Peatlands have
always been important for farmers as a source of
-
ity production and heating continues in a small
number of northern European countries, while


et al.
The State of Soils in Europe - 202440
Climate change. Climate-driven drying of Euro-
pean peatlands is likely to have been exacerbat-
ed by direct human impacts in recent centuries

et al.
-




took place. Distinguishing between the impacts

becomes challenging, as these factors overlap
and interact with each other.
Fire.-
mon phenomenon during summer throughout
Europe, because dry peat is a fossil fuel. When
peatlands are drained, prolonged
droughts turn
peat into highly combustible matter that can
easily be ignited through carelessness. Increased

increase carbon loss from peatlands, contribut-
ing to a shift from carbon sink to carbon source
et al.
vegetation can increase the amount of wildland

et al.,

et al.
4.3.2.3 Impacts
Loss of soil carbon from organic soils, particularly
in peatlands, in Europe can have profound impacts
on the environment, ecosystems and society. Peat-
lands provide a wide range of ecosystem services,
including carbon sequestration, water regula-
tion, biodiversity conservation and recreational
opportunities. Loss of soil carbon in peatlands
diminishes their capacity to provide these services,
compromising their ecological and socioeconomic

et al.

Climate change. Loss of carbon through drain-

change in a positive feedback loop. Changes in
temperature and precipitation patterns associ-
ated with climate change can alter soil carbon
dynamics. Warmer temperatures can enhance
heterotrophic activity and accelerate decompo-

et al.
-


and carbon storage. Drainage of wetlands and
peatlands for agriculture, forestry or develop-
ment purposes accelerates decomposition of
organic matter by increasing oxygen availability.
This process enhances biological activity, leading
to increased decomposition rates and loss of soil

et al.

drained peatlands will continue to lose SOC and
climate change will induce further peat loss from

et al.

Biodiversity loss. Peatlands are unique eco-
systems that support a rich diversity of plant
and animal species, many of which are specially
adapted to these environments. The loss of
carbon from soil in peatlands can disrupt these
ecosystems, leading to the loss of habitat and
decreased biodiversity. Rare and specialised
species, such as bog mosses, are particularly
vulnerable to habitat degradation. Indeed, many
European peatlands have already undergone
shifts in vegetation composition over the last
300 years, including changes in Sphagnum

et al.


et al.


et al.

Typical peatland biodiversity, in particular that of
groundwater-fed fens in temperate Europe, has

et al.
, 2017;

Reduced water quality. Peatlands play a crucial


et al.
,
2004; Millennium Ecosystem Assessment, 2005;

from soil in peatlands can degrade water quality

and contamination from agricultural chemicals
-
lands with agricultural uses in the EU are also a
 
et al.

reduce water quality for human consumption
and increase treatment costs for water utilities.
Further negative consequences of drainage are a
reduction in water quality through the discharge
-
berger
et al.

in the case of sulphide-bearing peat drainage

et al.

The State of Soils in Europe - 2024 41
 Peatlands act
as natural sponges, absorbing and storing water
during periods of heavy rainfall and releasing
it slowly over time. Loss of carbon from soil in
peatlands reduces their ability to retain water, in-

can lead to damage to infrastructure, the loss of
arable land and the degradation of aquatic hab-
et al.,
2005; Rooney et al., 2012; Nieminen et al.
Cultural and archaeological losses. Peatlands
contain valuable cultural and archaeological
sites, including ancient human settlements,
artefacts and well-preserved organic materials.
The loss of carbon from soil due to drainage,
degradation and extraction activities can dam-
age or destroy these sites, resulting in the loss of
important cultural heritage and historical infor-

et al.
, 2011; Flint and Jennings,

Economic costs. The impacts of peatland degra-
dation and loss of carbon from soil impose sig-

include the loss of ecosystem services, increased

and expenditure on restoration and conserva-




et al.
, 2012;
Bonn
et al.

New land use change policies under the CAP
reform aim to reduce drainage and the imple-


-
ment, habitats and biodiversity, the protection
of buried paleo-archaeological features and


-
graded ecosystems, helping to achieve the EU’s
climate and biodiversity objectives and enhance
food security. As restoring drained peatlands is

emissions in the agricultural sector, EU countries



-
ting will remain voluntary for farmers and private
landowners. Successful peatland restoration
in Europe requires knowledge transfer among


4.3.3 Inorganic carbon
The distribution of Soil Inorganic Car-
bon (SIC) in Europe varies geograph-
ically, concentrating in areas with
Mediterranean climates and calcar-
eous parent materials. Human activ-
ities such as fertilization, irrigation,
management of soil organic matter,
and reclamation practices impact SIC
levels. Loss of SIC can have wide-rang-
ing impacts, including reduced carbon
sequestration capacity, soil fertility
decline, land degradation, deserti-
cation, changes in water resources,
and biodiversity loss. Research on
SIC dynamics is essential to develop
management strategies for carbon
sequestration and soil condition im-
provement, in particular in the areas
with Mediterranean climates.
4.3.3.1 Status and trends
SIC distribution in Europe varies geographical-
ly, concentrating in regions with Mediterranean
climates and calcareous parent materials. Conse-
quently, large areas of southern Europe, particu-
larly those with Mediterranean climates, are char-
acterised by carbonate-rich soils with pH values
exceeding 7.5. Other areas located on calcareous
lithology also show relevant concentrations in the

areas, such as the French regions of Champagne

et al.

compiled the data from LUCAS 2015 regarding SIC
concentrations in European topsoils, presenting
them in digital maps. There is high variability in
-1 to more
-1. No information is available on the
trends in SIC concentration or storage in European
soils, although data from the more recent rounds
of LUCAS could be used to estimate such changes.
The State of Soils in Europe - 202442
4.3.3.2 Drivers
The most relevant natural factors contributing
to SIC concentration are soil parent material and
climate. However, some other factors, such as
position in the landscape and even vegetation can

of soil carbonates. As a result, SIC can be present
in soils in varying amounts, vertical distribution


also be present as cementing agents, forming pet-
rocalcic horizons. In addition, SIC is known to be

The most relevant ones are as follows.
Fertilisation. Mostly as a source of acidity,
mineral fertilisation with N salts can induce the
dissolution and progressive loss of soil carbon-
ates, while releasing CO
et al.

Fertilisation can also result in changes in the pro-
portion of pedogenic compared with lithogenic

et al.

Irrigation. By changing the soil water regime,


or bicarbonate, irrigation interferes with many
aspects of SIC cycling. In addition, the partial
pressure of CO


et al.

observed to increase the emission of CO from

et al.

amount of carbonates in the silt and clay frac-
tions, while increasing the proportion of pedo-

et al.

Management of soil organic matter. Some
forms of organic matter added to agricultural
soils can be sources of acidity, and therefore

et
al.

been observed to induce carbonate neoforma-

et al.

Reclamation of sodic calcareous soils. The use
of gypsum for reclamation of this type of soil can
result in the formation of calcium carbonate,
while the use of S to dissolve carbonates in sodic
soils can result in the loss of carbonates by acidi-

et al.

4.3.3.3 Impacts
Carbon sequestration. The retention of SIC
helps maintain the soil’s capacity to seques-
ter carbon, potentially mitigating increases in
atmospheric CO
of global warming. In addition, because of the
role of SIC in organic matter stabilisation, chang-
es in SIC concentration, typology and physical
distribution in soils can have consequences for
SOC storage and protection in agricultural soils

et al.

and leaching loss in agricultural ecosystems may


could be lost entirely as CO
et al.
,

Climate change. SIC levels can change with the
climate, and the consequences are crucial for
crop production, soil quality and land manage-

2006; Banger
et al.
, 2009; Bughio
et al.
, 2016;
Gao
et al.
-
ment of changes in SIC in response to changes
in temperature and CO concentrations, and the


Soil fertility decline. Inorganic carbon contrib-
utes to soil pH regulation and nutrient availabil-


soil fertility by reducing the availability of essen-
tial nutrients such as calcium and magnesium.
This can impair plant growth and productivity,



some other nutrients, for example iron and P,
although various crop and fertilisation strategies

et al.
, 2022; Ahmadi
et al.

 SIC can
act as a substantial carbon reservoir in dryland
soils, especially those derived from sedimentary

et al.

Continued loss of SIC can contribute to land

particularly in arid and semi-arid regions. Given
the overall increase in aridity in a warming world,
The State of Soils in Europe - 2024 43
drought may exacerbate loss of SIC from dryland

et al.

The dissolution of SIC is more important than
previously thought in regulating atmospheric
CO


of SIC-derived CO to total CO emissions may

et al.

Impacts on water resources. SIC loss can


et al.

geographical perspective, changes in SIC asso-
ciated with increased fertilisation can also result
in changes in riverine alkalinity at the watershed

et al.

Biodiversity loss. As plants and soil organism
-
ber
et al.
, 2009; Rousk
et al.

soil properties due to the loss of SIC can impact
microbial communities, fauna and plant species
composition in soil. This could disrupt ecosystem
functioning and reduce habitats’ suitability for
various organisms, leading to biodiversity loss
and ecological imbalances. Research on the dy-
namics of carbonates in soils is still much below
the level that will allow practitioners to imple-
ment strategies to manage CO sequestration as
SIC. Some of the possible research paths are us-
ing non-acidifying fertilisers on calcareous soils,
developing practices other than liming to combat


et al.

calcium from sources other than carbonates,

et al.

4.4 Soil erosion
Soil erosion poses a signicant threat
to soil health and agricultural sus-
tainability in Europe. Water erosion is
particularly prevalent, aecting 24%
of EU land at unsustainable rates,
surpassing soil formation rates and
impacting soil quality and land pro-
ductivity. Projections of future trends
in soil erosion in Europe are emerging,
as the increase in rainfall erosivity
may lead to an increase of up to 25%
in soil loss. Soil erosion in Europe,
driven by factors such as poor land
management, deforestation, climate
change and wildres, poses significant
threats. It leads to loss of soil fertility
and agricultural productivity, while
also causing sedimentation, ooding
and landslides, aecting water quality
and causing economic losses. Loss of
soil fertility, sedimentation and agri-
cultural production losses are among
the most obvious impacts of soil ero-
sion, but other o-site impacts such
as risks to cultural heritage sites, land
abandonment, desertication and bio-
diversity loss should not be neglected.
Addressing soil erosion necessitates
holistic approaches integrating policy
interventions and sustainable land
management practices tailored to
regional conditions.

threats to European soils and the ecosystem
services they provide. It threatens all major
functions of soils, leading to a decline in land

Patault
et al.
, 2021; Panagos
et al.


alters its structure, changes its biological activity
and reduces its water holding capacity. In addition,
it causes nutrient loss to water, and can reduce
-
ly distributed and ephemeral nature of erosion
makes its prediction and monitoring challenging,
hindering proper risk assessment and policy
mitigation. Worldwide, very few national survey
programmes for soil erosion exist. Notable excep-
The State of Soils in Europe - 202444
tions are the United States National Resources
Inventory and the Chinese national general survey
programme on soil and water conservation. No

EU. While recent modelling has been transforma-
tive in informing policy, it has been restricted to
single processes, whereas often several natural
and anthropogenic erosion processes operate in
the same area simultaneously or subsequently

et al.

The processes of soil erosion include water ero-
sion through sheet, rill, gully and piping erosion;
wind erosion; tillage erosion; and soil loss due to



et al.

in Europe, the occurrence of all aforementioned
erosion processes has been documented in vari-

-
eral, as they depend on the nexus of susceptible
soil, mechanical disturbance, antecedent moisture
-
cially the occurrence of meteorological extremes,
such as intense rainfall events, snow and frost or

4.4.1 Status and trends
Soil erosion by water is one of the most prominent
soil degradation processes in the EU, with an esti-
-
–1–1
et al.

is important to note that this rate only considers
the loss of topsoil through sheet and rill erosion
and does not include other water- related process-
es such as gully or piping erosion or landslides,
which cause soil loss at lower depths. Neverthe-
less, this value exceeds estimated average soil

et al.

-
–1–1–1
et al.
-
tions of soil erosion by water in Europe in 2000,



et al.

by water erosion in the EU was estimated to be
–1–1. This value is well above the
aforementioned soil formation rates, and there

uses. An area twice the size of Belgium is estimat-

soil throughout the EU and the United Kingdom. A

with past models implemented is that it incorpo-


et al.
, 2015a,

to the model are linked to the Good Agricultural
and Environmental Conditions requirements of
the CAP and the EU’s guidelines for soil protection,
which can be grouped into the areas of land man-

farming, and the use of plant residues and cover
-


maintenance of stone walls and the use of

Wind erosion primarily occurs in dry conditions
when the soil is exposed to strong winds. The

potentially transported over long distances before

et al.

better understanding of the wind erosion situa-
tion in Europe, the European Commission’s Joint
-
ment of land susceptibility to wind erosion in the

et al.


et al.

The results of the application of the equation
suggest that wind erosion in croplands may have
–1–1, with the second
–1–1 and
–1–1
et al.


the net downhill movement of soil due to tillage

et al.

a soil degradation process in its own right, it also
makes the soil more sensitive to other forms of

et al.

such as hillslope convexities and land parcel bor-
ders, tillage erosion can result in greatly decreased
soil depths, with direct negative impacts such as
reduced crop yields. Soil erosion due to tillage has
been modelled at the pan-EU scale as a function
of the erosivity of tillage operations and the erod-

et al.
,
The State of Soils in Europe - 2024 45

version of the tillage erosion model constructed by

derived show that the gross total erosion rate is
–1–1 for the EU and the United Kingdom,
corresponding to a total soil mobilisation rate of
–1
et al.


arable land during the harvesting of root and
tuber crops, such as potatoes, sugar beets, carrots

et al.
, 2001; Kuhwald
et
al.


fragments that are attached to crop components
are uplifted from the soil. While a small amount of

most of the adhering soil is completely removed

et al.
,




et al.


due to their high annual cultivation volumes. This


high and harvest is frequently conducted under
-

–1
et al.
, 2007;
Kuhwald
et al.
-
sociated with sugar beet and potato harvesting in
–1–1,

et al.

Gully erosion occurs when concentrated water

incise a larger channel into the soil. A typically
-


et al.

several metres wide and deep and lead to enor-
mous soil losses. Gully erosion, leading to ephem-
eral or permanent erosion channels, typically only
-

and heavy rainfall, causing water to accumulate to

–1–1
et
al.
-
–1–1 in

et al.

process that depends on a complex combination

land use and management, soil properties, mete-

scales. This makes predictions at the European

et al.
-
less, the most susceptible areas to gully erosion
in the EU are in the Mediterranean region, and in

et al.
, 2022,

parts of France and eastern Romania, can also be

et al.

Climate change, and in particular longer periods


during extreme events, aggravate the problem

et al.

Piping erosion is the removal of soil particles by
-
-
Source:
EUSO, based on Panagos et al. (2019, 2020) and Borrelli et
al. (2017, 2023).
Water
Tillage
Wind
SLCH
Figure 7.-


the EU and United Kingdom.
The State of Soils in Europe - 202446

this process becomes visible at the surface when
the roof of a pipe collapses and thus transforms
the pipe into a gully. As such, piping erosion may
accelerate gully erosion by stimulating the forma-
tion of new gullies and intensifying gully headcut
retreating rates. Piping erosion leads to soil losses

Europe, they have been estimated to range from
–1–1–1–1-
tert
et al.

–1–1 in Spanish

that the area threatened by piping erosion in the
2
Geography and co-occurrence of soil erosion
in Europe:
Recently, Borrelli
et al.

multi-model approach to estimate gross soil dis-
placement by water, wind, tillage and crop harvest-



these four erosion processes are expected to
move 

displacement of -1 y-1-
ceeds the average soil displacement resulting from
sheet and interrill processes, which are usually the

the region are predicted to have soil displacement
–1
1–1–1-
rence assessments of several processes revealed




more drivers. The results of this modelling exer-
cise show that unsustainable soil erosion rates
-1-1


due to water erosion predominates both spatially


erosion is the second-biggest cause of soil dis-


is geographically and statistically predominant, till-
age, wind or crop harvesting in arable landscapes

displacement in the EU and United Kingdom. That
said, it should be noted that these numbers do not
include the contribution of landslides, piping and
gully erosion, which currently cannot be modelled
quantitatively at the European scale.
Türkiye’s soils are very sensitive to erosion due to
a combination of environmental factors, such as
climate, topographical structure, soil properties
and land use. The amount of soil lost by erosion


Map of Türkiye was produced using the dynamic
erosion model and monitoring system developed
by the General Directorate of Combating Desert-

Agriculture and Forestry. The system indicates that

-
lion tons of soil are lost every year as a result of
water erosion. The amount of soil displaced by


et al.

Even though Switzerland boasts extensive legal

et al.
,

-


or agricultural practice used, erosion rates may in-
–1–1 on slopes

et al.


grassland for which soil erosion had been largely
underestimated in the past, as most large-scale
modelling studies assume nearly zero soil loss on
grasslands. The soil erosion rate estimated using
the RUSLE, which accounted for these grasslands
having largely low or damaged vegetation cover

et al.
–1–1 at the

et al.

with measured erosion rates. Hotspots of soil
loss in degraded Alpine grasslands were indicated
–1–1–1–1

et al.

In contrast to other European geographical re-

monitoring systems for most western Balkan
The State of Soils in Europe - 2024 47
countries. Estimates suggest that approximately

water-erosion-induced failure, with soil erosion

et al.

a new soil erosion map, using the erosion poten-
tial method for the entire country and the RUSLE
model for agricultural zones. Results revealed that
-

et al.

-1-1 from agri-
cultural land. In Albania, the countrywide average
-1-1
of the area experiences a soil loss rate exceeding
Use of remote sensing and 137Cs for gully erosion research in Malčanska River Basin,
Eastern Serbia.


activities play a crucial role in altering vegetation cover and, consequently, erosion intensity.
The study aimed to assess gully morphology and soil erosion using 137Cs, small-scale ero-
sion variability within gullies and variability between gullies to evaluate control measures’

soil sampling, high purity germanium gamma-ray spectrometry, and the creation of a pro-
137Cs inventories.
The results found that dense canopies hindered unmanned aerial vehicle remote sensing
and photogrammetry, but 360° camera terrestrial photogrammetry successfully captured
gully morphology, producing detailed terrain models. The use of 137Cs revealed erosion pre-
dominantly in the gullies, with low soil deposition in some areas. Estimated average annual
-1-1-1yr-1. The use of 360° camera photogrammet-

over time, emphasising its importance in erosion research and management.
Figure box 2:
Digital elevation models of gullies with sampling points.
Source
:
Đokić et al.,
(
2023)
box
2
The State of Soils in Europe - 202448
-1-1
-
tural land, with water erosion prevalent in central


-
2

-
gro, with the coastal area being the most vulnera-
ble. Of the coastal river basins, estimates suggest
-
cessive, high and moderate erosion, respectively.
In general, a high proportion of this region experi-
ences high and excessive erosion, meaning actual
–1-1
–1-1
In Ukraine, expert assessments indicate that



-
-
tour farming, alongside poor land management
practices such as deforestation, overgrazing and
cultivation on steep slopes, contribute to erosion






et al.

Projection of future trends in soil erosion in
Europe
Soil erosion is unlikely to remain stable in Europe
due to several evolving factors, which will determine
its future trends. By 2050, soil erosion rates

agricultural lands of the EU and the United Kingdom

et al.

are driven by changes in climatic conditions and
land use patterns, socioeconomic development,
farmers’ choices and, importantly, changes to
agro-environmental policies. The consideration of
all these factors is required to meaningfully predict

et al.
,
2021; Borrelli
et al.

baselines, future model projections identify the
Atlantic and the continental climate zones as the
locations most vulnerable to water erosion, with
Source:
EUSO, based on Panagos
et al.,
(2021) and Borrelli
et al.,
(2023).
A B
Figure 8. Future trends in water and wind erosion across agricultural landscapes in the EU and United Kingdom.
The State of Soils in Europe - 2024 49
a higher risk of experiencing extreme weather
during the wettest quarter. During the driest
quarter, vulnerability to water erosion is predicted
to increase in an expansive region covering most
of central eastern Europe. In contrast, noteworthy
decreases in water erosion are predicted in
Bulgaria, Greece, Spain, western France, southern
Italy and Portugal.
Given that soil erosion involves a mix of
concurrent processes, predictions need to account
for the uniquely changing spatial and temporal
characteristics of each process. For example,
concerning wind erosion, Mediterranean regions
include the most vulnerable areas due to longer
periods of drought during the driest quarter

et al.


processes can help in the delineation of strata to


predictions suggest that monitoring programmes
need to be adopted not only to address water
erosion but also to determine strategies to
mitigate tillage and wind erosion. For example,




contribution to total soil loss in the EU, which
can cause a twelve-fold increase in erosion rates

et al.
,


increase compared with current rates, driven by
projected increases in the total burned area due

et al.
,


et al.





some researchers have shown that approximately


et al.

others conclude that in the Mediterranean regions,


et al.
,


4.4.2 Drivers
The drivers of soil erosion are numerous and vary
-
graphical location and land use practices employed.

main characteristics of each erosion process.
The processes of water erosion include splash ero-
-

erosion. Soil erosion by water is driven by hydro-
mechanical forces and is one of the major threats

et al.

Water erosion is caused in Europe by natural fac-
tors such as steep topography, landscape position



inappropriate land management in areas suscepti-

Wind erosion occurs in dry conditions when the

et al.



has increased the frequency and magnitude of this
geomorphic process, with consequences especial-
ly for sensitive lands that are important for food

et al.


management practices such as intensive crop
cultivation, increased mechanisation, enlargement
-

allowing consecutive bare fallow years in cultivated
lands exacerbate both the environmental and eco-
-

on soil disturbance during harvesting in croplands

et al.

Several key factors control the magnitude of SLCH,

-






et al.
, 2004, 2005;
Kuhwald
et al.

The State of Soils in Europe - 202450

to tillage operations that result in the downhill
displacement of soil. The variation in soil displace-
ment rates due to tillage erosion may be rather
large, depending primarily on topographic charac-
teristics, tillage depth and tillage direction, and to
a lesser extent on the tillage velocity and imple-

et al.

Tillage erosion displaces soil over small areas, but


et al.

Involved in each of the aforementioned erosion

deriving from interactions between anthropogenic
and natural phenomena. The most prominent fac-
tor is scarce or no vegetation cover, which can be
caused by one factor or a combination of multiple
factors. These factors include the following.
Poor land management practices. Unsustain-
able land management practices such as over-
grazing, inappropriate tillage methods, monocul-
ture farming and improper irrigation practices

et al.

These practices can disturb soil structure, de-
crease vegetation cover and increase soil’s vul-
nerability to erosion. In land management cycles,
the removal of vegetation cover during periods
when the risk of erosion is high greatly increases
the overall vulnerability of soil to water and wind

Matthews
et al.

susceptibility to other erosion processes, tillage


et al.

Deforestation and mining. Deforestation, driven
by agricultural expansion, urban development
and logging activities, removes the protective
vegetation cover crucial for stabilising soil. With
this protective layer gone, soil becomes suscepti-

et al.
-
tivities disrupt soil integrity through excavation,
Estimating sediment removal costs from the reservoirs of the EU.

-
ment, limiting their water storage and energy
production capacities. The cost of removing
-
mulated sediment due to water erosion only

per year in the EU and United Kingdom, with


types of soil loss processes, a simple extrapo-
lation puts the sediment input at an order of

but lumped extrapolations do not consider
that the removal cost (per cubic metre) may
be less due to the application of less costly

countries.

for all erosion processes, the removal of sedi-
ment from EU dams is predicted to cost

box
3
Photo box 3:
Sediment build up in Val Formaza, Italy.
Source:
A. Jones
The State of Soils in Europe - 2024 51
vegetation removal and waste disposal, acceler-

et
al.

Land levelling. When the local topography does
not allow particular agricultural operations

reshaped by levelling. Such land levelling leads
locally to very large soil losses, resulting in highly


also becomes more prone to other soil erosion
processes such as piping and gully erosion, and

et al.

Climate change. Climate change further exac-
erbates soil erosion by altering precipitation
patterns, increasing the frequency and inten-
sity of extreme weather events and disrupt-

et al.

Depending on the spatial and temporal patterns

et al.
, 2021; Borrelli
et
al.



projected the impact of climate change on soil

et
al.
, 2012; Routschek
et al.
, 2014; Grillakis
et al.
,
2020; Luetzenburg
et al.
, 2020; Eekhout and de

Fire. Anthropogenic or naturally induced wild-



Outcomes are highly variable between geo-
graphical regions, for example depending on

et al.

also trigger the occurrence of extreme erosion
-
ing downstream the integrity of water bodies

et
al.
-
ducted at the EU scale, additional soil losses of


-



et al.

4.4.3 Impacts

on both the environment and human activities.
These impacts can be divided into on-site



consequential monetary losses. Some of the main
impacts include the following.
Loss of soil fertility and soil biodiversity. Soil
erosion removes the top fertile layer of soil,
which contains the nutrients necessary for plant
growth. In addition to a reduction in soil fertility,
important soil functions are impacted, such as
the soil’s ability to store carbon, nutrients and





-
maercke
et al.


damage in addition to reducing the land’s natu-

Poesen, 1999; Bielders
et al.

Food security.
-
al productivity and undermining soil’s capacity
to produce enough food to meet the needs of

et al.
, 2004, 2007;
García-Ruiz
et al.

erosion, in particular, can be considered a seri-
ous threat to future food and feed production,

from agricultural systems can be attributed to

et al.

In a recent study, integrating economical and
biophysical models, Sartori
et al.
-

economy as a result of soil erosion. The accom-
panying impact on food security is a reduction

tonnes, with accompanying rises in agri- food

food product category. Under pressure to use
more marginal land due to the loss of fertile
land through erosion, abstracted water volumes
-
The State of Soils in Europe - 202452
tres. Finally, there is tentative evidence that soil
erosion is accelerating the competitive shifts in
comparative advantage on world agri-food mar-

et al.

Sedimentation. Eroded soil particles are often



1999; Patault
et al.

can degrade water quality, disrupt aquatic
ecosystems and harm aquatic organisms by
smothering habitats and reducing light penetra-

et al.
, 2003; Owens
et al.

In addition to the damage caused by the mineral
components of soils, considerable ecological
damage can occur because particle-bound
nutrients, heavy metals and pesticides are
transported into neighbouring aquatic habitats
where damage to biotic communities is caused

Decline in terrestrial biodiversity. Soil erosion
can lead to habitat loss and fragmentation,
which can reduce biodiversity. Many plant and
animal species depend on stable soil ecosystems
for survival. Erosion can disrupt the equilibrium
in these ecosystems, leading to declines in bio-

et al.
,
1995; Guerra
et al.
, 2020; Rendon
et al.

Moreover, soil erosion and soil biodiversity inter-
act bi-directionally: below-ground organisms af-
fect soil loss through their mixing activities, while
intensive erosive events shape the soil-occupy-
ing organisms and the functions and services

 Soil ero-

landslides, especially in areas with steep slopes,
heavy rainfall and low vegetation cover. Soil deg-



et al.

soil can clog waterways, increasing the risk of


-
versity discussed above. The destabilisation of
slopes by water and wind erosion can also result
in landslides, which directly endanger human

et al.

Economic costs. Soil erosion imposes economic
costs on agriculture, forestry and infrastructure.
The current estimate of agricultural productiv-
ity loss in the EU due to the on-site impacts of


et al.

of severe soil erosion by water on crop produc-



et
al.

monetary cost is the removal of sediments from
-

et al.
,

Climate change. Soil erosion reduces soil’s
stability, alters its structure, impedes its biologi-
cal activities, reduces its water-holding capacity,
causes soil nutrient loss and can reduce SOC

et al.

major functions of soil, and not only its pro-
ductivity. Soil erosion may exacerbate climate
change by releasing carbon stored in soil organic
matter into the atmosphere from displaced sed-

et al.

complex interactions between soil erosion and

of soil erosion on the carbon cycle remain, which


eroded soils also have reduced water-holding ca-
pacity, which can exacerbate drought conditions
-

Impact on cultural heritage. Soil erosion can
impact cultural heritage sites, such as archaeo-
logical sites and historic buildings. Erosion can
degrade or destroy these sites, leading to the
loss of valuable cultural and historical resources

et al.
, 2020; Polykretis
et al.

Social impacts, such as land abandonment
(and possibly migration). The main reason
for land abandonment is degradation and the
loss of soil fertility, either as a consequence of
erosion processes or as a result of soil nutrient

et al.


-

et al.
, 2005; Díaz and Sinoga,
The State of Soils in Europe - 2024 53

causing nutrient depletion and enhancing

farmers and thus contributes to famine, migra-


sustainable development and ecosystem resilience

soil conservation and land management practices.
4.5 Soil compaction
Soil compaction is a prevalent issue
in Europe. It aects soil properties,
reduces crop yields, impairs water
inltration, diminishes soil fertility
and increases GHG emissions. It poses
signicant challenges to sustainable
land management and agriculture,
highlighting the need for preventive
measures and conservation practices
such cover cropping and reduced till-
age. While the compaction of topsoil
can be mitigated with conservation
practices, subsoil compaction persists
and aects various soil functions.

due to the application of mechanical stresses that
exceed soils’ internal strength. These stresses can

weight from upper layers of soil or thick layers of



compaction is not a recent phenomenon, and its


low organic matter content are more prone to
compaction due to their tendency to form hard,
dense layers when subjected to high surface
pressures. In fact, sandy and clay-rich soils with a
–3–3,
respectively, could constrain root development



Under such conditions, the risk of compaction
increases as soil clay content increases and soil
organic matter content decreases. When soil

is greater potential for soil compaction, particularly
in topsoil.
4.5.1 Status and trends
Despite the extensive documentation of adverse
impacts of soil compaction on soil properties and
functions, determining the extent and severity
of compaction in Europe remains challenging



et al.


Schjønning
et al.


exhibit critically high relative normalised densities.
According to the European database of soil

et al.

et al.


of soil compaction.

to clearly describe with thresholds because
conditions are highly unstable and dynamic;

mechanical seedbed preparation, recovery after
the growing season and the use of cover crops.
The degree of topsoil deformation can therefore
be rather temporary; however, it can also be a
warning sign that any continuation of current


Dashboard provides insight into the natural
susceptibility of agricultural soils to compaction

that a third of European subsoils are very

moderately so.


be easily measured or that are common in many
soil surveys include BD, air capacity, soil texture
and visual features of compaction, such as platy
-3
-3 and
-3-3
is considered extremely bad, as it restricts root
growth. However, it should be noted that the
The State of Soils in Europe - 202454
optimal and critical limits of soil BD are dependent
on soil texture, particle size, management
practices and organic matter content.

from the LUCAS 2018 campaign. A high resolution
map of BD for the whole of Europe was recently
et al.

-3, with high variability between

-3, followed by permanent




drivers of BD variation are land cover type, and, in

land use and management practices have such
an important impact on BD as the BD of arable
lands is almost 1.5 times higher than woodlands.
Countries with a large proportion of woodlands

have quite high biases in their BD estimates
.
It should be noted that areas with naturally high
soil BD may not necessarily be compacted. BD
is a parameter with high spatial and temporal
variability. While BD is compaction sensitive, it is

it describes only changes in volume and does not
quantify the potentially negative impacts on pore
functions. If BD is used because of its widespread

information about, for example, texture or soil
structure is needed to make a better qualitative
assessment of compaction.

of BD as an indicator for natural and human-

et al.
, 2003; Tobias
and Tietje, 2007; Shamal
et al.
, 2016; Panagos
et al.
, 2024b. The use of PD as a proxy for soil
compaction facilitates practical monitoring

et al.

estimated for the EU and United Kingdom the
packing PD using the BD and the clay content

et al.

–3
susceptible to further compaction. Medium-
compacted soils have a PD in the range of
–3 to 1.75 g cm–3 while the less
–3

et al.

et al.
. Based
on the currently avaialble European data sets,
71.8% of all soils would appear less compacted,
Source:
EUSO, based on Panagos et al. (2024a).
Figure 9. Use of PD as a proxy for soil compaction to identify hotspots where soils are highly compacted.
The State of Soils in Europe - 2024 55
2.2% compacted and 26% with medium packing
density. In the arable lands, medium packing


The pan-European assessment does not
challenge any local or regional assessments made
with a higher number of analysed samples. In
Switzerland, BD has increased since the 1980s
in the majority of agricultural soils. Moreover,
the compaction of forest soils is also increasing,




compaction is also of growing concern in northern
Europe, mainly due to increasing production
costs and economic pressure, which lead to the
use of heavier machinery and to more contract

et al.
, 2019; Seehusen
et al.

not measured in soil monitoring programmes
in Ukraine ,but soil compaction is widespread


et al.

soil compaction due to the manoeuvres of heavy

et al.

In the western Balkans, soil compaction is not
of great importance in most agricultural lands in
the region due to the lower use of agricultural
machinery than in developed agricultural
countries. However, further investigations should
be conducted to determine the real impact.
According to experts’ assessments, in Türkiye,
the human-induced compaction of agricultural
land has become a serious and growing problem
for soil, due to the increasing weight and use
of soil cultivation and harvesting machines. Soil
compaction is a new phenomenon among the
country’s farmers and is yet to be fully assessed.
The main obstacle to preventing or reversing soil
compaction is failing to recognise it. Natural soil
compaction occurs spontaneously when alkaline

old lake bottom in Central Anatolia.
4.5.2 Drivers
In Europe, several factors contribute to soil com-
paction. The driving force is the economic condi-
tions for crop, animal and timber production: in

machinery is used, or animal density is increased.
This increases the mechanical stresses applied to

et al.

Agricultural and forestry activities. Large and
heavy machinery, such as tractors and harvest-
ers, and equipment used in forestry operations


wet conditions. Intensive or improper tillage
practices can contribute to soil compaction by
breaking down soil aggregates and reducing soil
porosity.
Trampling by livestock. Continuous grazing
and trampling by livestock can compact the soil,
particularly in pastures and grazing areas. This is
more likely to occur in areas with high stocking
densities or in wet conditions.
Infrastructure development. Urbanisation and
construction activities can result in soil com-
paction due to the use of heavy construction
equipment, increased soil disturbance and the
creation of impervious surfaces.
Continuous mono-cropping. Cropping the same

compaction due to the conduct of the same
mechanisation activities over time. Identical root
development and systems can also accelerate

complementary root growth strategies improve
crops’ adaptation to and the remediation of hos-

et al.

4.5.3 Impacts
Soil compaction in Europe can have several

and ecosystems. Several studies have shown that

structure, increases BD and reduces soil porosity,


growth by increasing mechanical impediments
to root growth, hampering root architecture and

et al.
,
2015; Keller
et al.

include the following.
The State of Soils in Europe - 202456
Crop yield reduction. Compacted soil has
reduced pore space, limiting the movement of


et al.

can hinder root growth and penetration, leading
-
dey
et al.


and development, and yield. Soil compaction



the magnitude and severity of soil compaction

et al.



et al.

 Compacted soils
have a reduced ability to absorb water, leading

can contribute to water pollution through the
transport of sediment, nutrients and agrochemi-
cals into water bodies, impacting aquatic ecosys-
tems and water quality. Soil compaction can also


et al.
, 2017; Alaoui
et al.

Reduced fertility. Soil compaction restricts the
movement of air into the soil, which can lead to
decreased microbial activity and nutrient cycling.
This can result in soil degradation and reduced
soil fertility over time. Besides the changes in soil
structure, compaction reduces soil pore space
and increases soil strength while decreasing root
growth and root elongation rate, which results
in reduced water and nutrient uptake by plants

et al.
, 2013; Sadras
et al.
, 2016; Colombi
-
paction on soil conditions also reduce plant


Increased GHG emissions. Compaction may

atmosphere through mechanisms associated

crop development. A range of studies have clear-
 emis-


emissions because the cultivation of compacted



Constraints on land use. Soil compaction can
limit the suitability of land for various agricultural
and land management practices. It can restrict
the use of heavy machinery, limit crop growth
and increase the cost of soil restoration and

et al.
-
mated the compaction costs to be higher than

of which productivity losses account for more

et al.

soil compaction has a substantial impact on crop
growth, development and yield, and farm income

et al.

Increase tillage costs. As soil compaction
increases, the cost of tillage increases. Periodic
deep ripping becomes necessary, especially in
regions where crops such as sugar beet are

et al.
, 2019; Shaheb
et al.
,

-
es to sustainable land management, agriculture
and ecosystem health in Europe, highlighting the
importance of implementing measures to prevent
and mitigate its impacts. The compaction of topsoil

-
ricultural practices such as the use of cover crops,
non-tillage and organic amendments improve soil
structure and therefore drastically reduce soil
compaction. However, compaction of the subsoil is

of soil functions.
4.6 Soil pollution

by the presence of substances in soil with levels
considered unacceptable from an environmental

layers, including the root zone and connected
compartments. Point-source pollution occurs
when substances are released from a single well-


substances over large geographical areas from a
single source or a range of sources.
The State of Soils in Europe - 2024 57
4.6.1 Status and trends
Despite the fact that there is a common
understanding of the impacts of soil pollution in
the EU, comprehensive, large-scale assessments
are scarce. Most of the data at the EU scale
originate from the various LUCAS rounds, while
data from individual Member States are often

comparisons. Nonetheless, it is possible to
recognise a set of indicators: for metals, from


mine sites, from the Water and Planetary Health

The spatial distribution of cadmium in topsoil
across the EU and United Kingdom was assessed



-1. This threshold

Environment and corresponds to the lower limit
for cadmium in soils in the sewage sludge directive




et
al.


important variable explaining cadmium levels. The
application of the EU fertilising products directive
should further limit cadmium inputs to soils. High

croplands and linked to anthropogenic activities.
This is the case in vineyards and orchards in
regions of northern Italy and parts of France,
probably related to fungicide treatment and the

et al.

Copper compounds, including copper sulphate,
are authorised for use in the EU as bactericides
and fungicides, despite being considered
substances of particular concern to public health

fungicides are also authorised for use in organic

et al.

high concentrations have been found close to




mining activities, while the rest could be related
to either coal combustion industries or local


-1
et al.

-1
The distance from natural Zn deposits or Zn
mines was one of the most important variables
in explaining Zn concentrations in Europe.
Moreover, the high likelihood of grasslands having
-1 indicates
that collecting data on fertiliser and manure
inputs would improve the estimation of topsoil Zn

et al.

An analysis of heavy metal concentrations in EU

the sewage sludge directive found that 19 % of
samples exceeded the limit values as laid down
in the national legislations for at least one single

et al.


methods should be used to determine the
actual heavy metal fractions that may be taken
Soil pollution in Europe arises from a
variety of sources, including industrial
activities, urbanisation, agriculture
and military operations. These
activities release contaminants such as
heavy metals, pesticides and industrial
chemicals into the soil, posing
signicant risks to environmental
and human health. Despite eorts to
address soil pollution, comprehensive
assessments remain limited, making
it challenging to fully understand its
extent and impact. Indicators such
as the presence of heavy metals
and pesticides suggest concerning
trends. Soil pollution has far-reaching
consequences, aecting not only
human health but also ecosystem
services and agricultural productivity.
To address these challenges,
concerted eorts are needed to fill
knowledge gaps, establish harmonised
monitoring practices and implement
eective pollution prevention and
remediation measures.
The State of Soils in Europe - 202458

distribution of heavy metals in agricultural soils

et al.


areas. Future pollution monitoring at the EU level
will build on the LUCAS soil module, through which
heavy metals and other contaminants are now
regularly monitored.
Pesticide residues are commonly found in


residues across crops and farming systems

et al.

soils, mostly long-banned substances are
found, while conventionally managed soils host
mostly a mix of compounds currently in use
and recently or long banned. Glyphosate and
its main metabolite aminomethylphosphonic
acid, and dichlorodiphenyltrichloroethane, are
the compounds most frequently found in soils

et al.
, 2021; Riedo
et al.
, 2021; Knuth
et
al.


et al.

pesticides residues, and a higher toxicity risk, in

et al.
, 2023b; Franco
et
al.


Edwards
et al.


territory, as well as the major commodities under




although only one quarter are included in national
registries.
In the western Balkans, soil contamination is a

Sources: EUSO, based on (a) Ballabio et al. (2018, 2021, 2024) and Van Eynde et al. (2023), (b) Yunta et al. (2024),
(c) Vieira et al. (2023) and (d) Hudson-Edwards et al. (2023); modied from Vieira et al. (2024).
LEGEND:
Presence of Cd. Cu, Hg and Zn
Above threshold
EU Countries
non-EU Countries
A
LEGEND:
Pesticide residues
incidence classes [3403]
No substances [868]
1 substance [586]
2-5 substances [934]
6-10 substances [646]
> 10 substances [369]
EU Countries
non-EU Countries
C
LEGEND:
Heavy Metals
Not exceeding
Exceeding
EU Countries
non-EU Countries
B
LEGEND:
Active mines
Inactive mines
EU Countries
non-EU Countries
D
Figure 10.-


The State of Soils in Europe - 2024 59
of industrialisation. The extent of contamination

although some countries, such as Serbia, have

et al.
,




faces challenges brought by trace elements in
fertilisers and pesticide residues. In addition,
emerging contaminants, such as microplastics,

substances, are under-researched but require


et al.


to determine due to a lack of data. A national
project in Türkiye titled ‘Determination of plant
nutrient and potential toxic element contents of
Türkiye’s agricultural soils: Creation of a database
and mapping’ is being conducted by the General
Assessment of the impact of military activities on soil quality in Ukraine
An analysis conducted by the Institute of Soil Protection of Ukraine assessed the impact of
military activities on soil quality in regions including Kyiv, Zhytomyr, Sumy and Kharkiv. Soil
samples were analysed for heavy metals, oil products and agrochemical parameters. The
results showed that the maximum allowable concentrations were exceeded for Pb, Zn, Cu
and Mn in the Sumy region due to military activities. In Kharkiv, nickel (Ni) concentrations


revealed Pb, Cd, Zn and Ni contamination in the Kherson and Zaporizhzhia regions. Experts

in war zones. They noted soil changes including increased heavy metal content, increased
carbon content due to burning and alterations in particle size distribution and density in

-
es and soils due to pollution and contamination.
The assessment of the impact of military activities on soil quality in Ukraine underscores


metals and pollutants, posing risks to both agricultural productivity and public health.

environmental organisations and the international community to restore soil health and

box
4
Photos box 4:
The impact of war on soil.
Source: Y. Dmytruk.
The State of Soils in Europe - 202460
Directorate of Agricultural Research and Policies.
The project aims to establish a comprehensive
database by collecting soil samples nationwide,
creating soil property distribution maps, supported
by the geographic information system, at a scale

changes in soil properties over time. This initiative

and identify potentially toxic elements present in

In Ukraine, soil pollution stems primarily from
three sources: residual radionuclides from the
Chernobyl nuclear disaster; industrial activities
such as metallurgy, the use of chemicals and
mining, which release trace elements and
radionuclides; and agricultural practices involving
pesticides, fertilisers and liquid waste.


sanitary inspectorate monitors pollutant levels in

with heavy metals such as Cd, Mn, Pb, Cu and
Zn in cities such as Pavlohrad, Mariupol and
Pervomaisk. The exceedance of maximum allowable
concentrations for Pb and Cd was observed
in various regions. Moreover, approximately


hectares of agricultural land exhibiting high levels
of 137

4.6.2 Drivers
Soil pollution in Europe is driven by various factors,
each contributing to the degradation of soil quality
and posing risks to environmental and human
health.
Industrial activity. Due to the long industrial
history of EU, industrial activities represent two
thirds of point sources of soil pollution, in combi-
nation with commercial and waste disposal and


contaminants are mineral oils, trace elements

and organic contaminants such as halogenated
and non-halogenated solvents, polychlorinated
biphenyls and polycyclic aromatic hydrocarbons.
Industrial waste products from food produc-
tion, leather tanneries and the pharmaceutical
industry are some of many drivers of heavy

et al.

Primary sources of polychlorinated biphe-


et al.
,

et al.


et al.

Besides mining activities, coal burning and


et
al.

which can be found in slurry on agricultural

facilities, are now threatening soil and ground-

et al.

Urban areas and the transport sector. Severely
polluted urbanised areas can have an impact
to soils for several kilometres surrounding the

et al.

et al.
,


et al.


Urbic Technosols. These anthropogenic soils
are, in many cases, ‘multi-contaminated’, as
-
alloids but also organic pollutants.
Lead, zinc, copper and cadmium contami-
nation were found in samples taken on the
surface and in the immediate vicinity of a high-
way in France. The observed concentrations
decreased rapidly with an increase in distance

et al.

identify these sources of pollution as a global

et al.
, 2017; De Silva et


inappropriate site selection, may result in the
leakage of contaminated leachates into the

et al.
,

Agriculture. Agricultural soils can be contaminat-
ed due to traditional farming activities, such as
the application of pesticides, fertilisers, manure
The State of Soils in Europe - 2024 61
and sewage sludges and the use of plastic
mulches, and motivated by increasing demand

Ostermann
et al.

between concentrations of the antibiotic sul-
famethazine and Cu or Zn, suggesting that in
regions with a high rate of manure application
the assessment of metals currently in soils
may help to identify potential hotspots for
antibiotic pollution.
The release of antibiotics and other phar-
maceuticals to soils tends to result from the

et al.


plants, the spreading of sewage sludge or

The release of these pharmaceuticals results,
among other things, in the development of
-
do-Baquerizo
et al.

metals and biocides have been described as
factors promoting the development of antimi-

et al.

Plastic mulches, used in agricultural lands
to improve water use and reduce the preva-
lence of weeds, are a source of microplastics,

et al.

and soil’s physico-chemical and hydrological

et al.


transport and slowing down their degradation

et al.

Hazards and military activities. Soil pollution
can also be caused by punctual events with
unprecedented impacts, triggered by natural
hazards but also by exceptional anthropogenic
circumstances such as military activities or wars.
Examples of those at the EU level are as follows.
Radionuclides emitted by atmospheric nuclear
weapons tests, which peaked in the 1960s,
and the Chernobyl accident in 1986 are found
ubiquitously in soils across Europe. Neverthe-
less, the spatial patterns and the contributions
of these two sources remain poorly con-

et al.

Warfare and military activities can lead to the
physical disturbance of soils and their en-



et
al.

Fires. Fires are known to drive soil pollution
due to the release of toxic compounds during
-
omatic hydrocarbons, metals; Ré
et al.



et al.



et al.

4.6.3 Impacts
The impacts of soil pollution in Europe are mul-

et al.


sustainability, public health and socioeconomic
well-being.
Animal and human health. Living in areas with a
higher concentration of heavy metals and metal-
loids in soil was associated with all-cause cardio-
vascular disease mortality, the aetiology of some
types of cancer and an increased probability of

et al.
, 2017;
Ayuso-Álvarez
et al.
-

refer to the total amount of a given pollutant in
soil, and do not consider the bioavailable frac-
tion that has the capacity to be incorporated and

et al.
, 1991;
Zhao
et al.

Ecosystem service degradation. More than


soil health status, especially for food supply and
a healthy environment. The potential impacts of
pollutants in soils ecosystem’s services provision

Metal and pesticide pollution.
invertebrates and soil microbial communities,

et al.
, 2015; Faggioli
et al.
, 2019; Soudzilovskaia
et
al.
, 2019; Gunstone
et al.

The State of Soils in Europe - 202462
Microplastics and nanoplastics. Have negative
-
ties. The degradation of these substances often

organisms and plant growth, and accumulating

of microplastics on soil are still poorly under-

et al.

It should be highlighted that soils with naturally

should not be considered degraded soils or to
degrade ecosystem service provision, unless their
natural equilibrium is disrupted.
-
cant challenges due to substantial gaps in knowl-

in monitoring practices and a limited understand-
ing of the complex interactions between pollut-
ants and soil ecosystems. Despite the recognised
presence of various pollutants and their adverse
impacts on soils, comprehensive assessment
frameworks remain incomplete. The main knowl-
edge gaps can be divided into four groups.
Processes. Due to a general lack of knowledge
on individual substances, it is often not possible
to identify their pathways to soil or interactions

residence, transport and fate, nor identify their
ecotoxicological properties, bioaccumulation and
bioavailability, or their exposure and risk to the
environment and humans.
Monitoring. Our limited capacity to quantify and
determine the level and spatial extent of vari-

point-source pollution, limits the development
of knowledge and regulations. A harmonised
inventory and an impact assessment of contam-
inated sites across Member States are examples
of unavailable knowledge products.
Synergies. Several studies show that soils are
-
stances simultaneously, and very little is known




the natural background pollution, the variability
of soils in the EU and other pressures currently
in place.
Emerging pollutants. There is no priority watch
list for pollutants in soil that could help in specif-
ically addressing the former points in relation to
emerging pollutants.
Addressing these gaps, in a holistic and harmon-
ised way, with policy support, is essential for devel-

and ensure the sustainability of soil resources for
future generations. The consequences of soil pol-
lution extend beyond environmental degradation
to include risks to human health, food security and
ecosystem integrity. Addressing these challenges


pollution prevention and remediation measures,
promote sustainable land management practices
and foster greater awareness of the importance
of preserving soil health for current and future
generations. By taking decisive action to mitigate
soil pollution, Europe can work towards ensuring a
more sustainable and resilient future.
The State of Soils in Europe - 2024 63
4.7 Soil salinisation and sodication
Soil salinisation is a major soil degra-
dation process in Europe, diminishing
soil fertility. It can stem from natural
factors such as geological and climatic
conditions or human-induced practices
such as improper irrigation methods
and poor drainage, with Mediterra-
nean countries being most aected.
Rising trends in soil salinisation are
evident in Spain, Italy, Cyprus and
Portugal due to various factors, in-
cluding climate change and intensive
agriculture. Addressing soil salinisation
necessitates integrated management
approaches focusing on drainage im-
provement, sustainable irrigation, crop
selection and ecosystem restoration.
Soil salinisation is a major soil degradation process
in Europe, diminishing soil fertility. It can stem from
natural factors such as geological and climatic
conditions or human-induced practices such as
improper irrigation methods and poor drainage,
with Mediterranean countries being most impacted.
Rising trends in soil salinisation are evident in Spain,
Italy, Cyprus and Portugal due to various factors,
including climate change and intensive agriculture.
Addressing soil salinisation necessitates integrated
management approaches focusing on drainage
improvement, sustainable irrigation, crop selection
and ecosystem restoration.
Soil salinisation is the increase in soluble salt
concentration in soil. It is considered one of the
major causes of soil degradation, decreases
soil fertility in Europe. It can happen naturally


Source:
EUSO, based on Tóth et al. (2008).
Figure 11. Saline and sodic soils map for the EU-27 showing

The State of Soils in Europe - 202464
such as unsustainable irrigation practices and
inappropriate management of water reservoirs
and canals, can cause secondary salinisation

et al.

rich irrigation water or poor drainage conditions



et al.

This results in the soil having unfavourable physical

utilise the soil and reduces its ecosystem
service potential.
4.7.1 Status and trends
-
an basin, Ukraine, the Carpathian Basin and the



et al.


European soils because of secondary salinisation

et al.
-

et
al.

Coastal vulnerability and groundwater salinisation in Türkiye:
Implications and solutions.

residing in vulnerable regions along the Mediterranean, Aegean, Marmara, and Black Sea
coasts. Coastal cities, though occupying a small percentage of the country's land area,

2007).
The Ministry of Agriculture and Forestry (MoAF) in Türkiye conducted a research project in

sea water intrusion on water and soil - The Bafra Plain Irrigation Project. The project exem-
-


Urgent action is needed to address coastal vulnerability and groundwater salinization,

strategies to safeguard Türkiye's coastal regions and agricultural lands.
box
5
Figure box 5: Location of the study area.
Source:
Arslan et al., (2007) and MoAF (2022).
The State of Soils in Europe - 2024 65

et al.
,


et al.

extent remains uncertain, it is estimated that in
Europe Mediterranean regions are most suscep-

et al.
, 2016;
Stolte
et al.


et al.
,



-

-
sented in the map should only be used for
guiding purposes.

form of soil degradation in certain areas, with







et al.


of irrigated land has reduced agricultural yield due


hectares of irrigated land experiences soil salini-

et al.
-

et al.

addition, some soils in Albania, southern France
and northern Portugal, and other regions, also
hinder agriculture due to their high levels of salin-

et al.
-
ever, these areas do not always align with those

-

should therefore primarily be used for guiding

et al.

While no systematic data on soil salinisation trends
are available, research indicates that salinisation
is increasing in Spain and Italy due to the large ex-
tent of irrigated areas with a high evapotranspira-

is a high risk of saline intrusion in coastal areas in
Portugal owing to groundwater abstraction and


et
al.

Dashboard measures irrigation in climatic areas
with more evaporation than precipitation to esti-
mate the soil salinisation risk.
Solonetz soils, characterised by a high clay content

-

et al.


regions such as Bulgaria, Spain, Hungary
and Romania.
These soils are predominantly found in steppe


et al.

sodium content, these soils crack during droughts,
when they dry out, and swell during extreme rain-
fall events, leading to the build-up of inland water,
making them vulnerable to climatic extremes. Over
time, the extent of saline, sodic and saline-sodic
croplands has increased, resulting in accelerated
-
creased agricultural productivity, and consequent-
ly jeopardising environmental and food security

et al.

The western Balkans is home to a special soil type:


et al.
,

dry or wet, this soil is extensively cultivated in Alba-
nia, North Macedonia and Serbia, covering nearly

et al.


largely owing to natural conditions, except for
when salinity build-up due to poor-quality irriga-

et al.

Soil salinisation and alkalisation processes are

et al.

-
gated. Salinisation processes are almost widespread
-

-

The State of Soils in Europe - 202466

-


hectares facing saline-alkaline conditions, and


-

in coastal regions due to rising sea levels, with
millions of people residing in vulnerable regions
along the Mediterranean, Aegean, Marmara and
Black Sea coasts. Institutional research projects
are being conducted to study groundwater charac-
teristics and the impact of sea water intrusion on

et al.

Urgent action is needed to address coastal vul-
nerability and groundwater salinisation, and
integrated coastal management strategies must
be implemented to safeguard coastal regions and
agricultural lands.
4.7.2 Drivers
The main drivers of soil salinisation in Europe can
vary depending on the region, but some common
factors include the following.
Irrigation practices. Improper irrigation practic-
es, such as excessive or poorly managed irriga-
tion with salty water, can lead to the build-up of
salts in the soil. In arid regions, where irrigation
is necessary for agriculture, such as southern
Europe, the accumulation of salt deposits can

content of irrigation water. Drivers encountered
in agricultural irrigation arise at successive
stages, starting from the development of water

Additional problems arise from factors such as

farmers, misguidance and the inadequate use of

et al.
, 2014; Shahid
et al.

Poor drainage. The most important factor in the
occurrence of drainage problems is uncontrolled

damage to and poor maintenance of irrigation
canals and water intake structures cause unnec-

The depth of groundwater in irrigated areas may
-

root zone causes a decrease in yield in irrigated
agricultural areas due to salinity and alkalinity
problems, and may even render these areas un-
suitable for agriculture. Poorly drained soils are
particularly susceptible to salinisation, especially
in areas with high water tables or clay-rich soils

et al.
, 2006; Mukhopadhyay
et al.

Intensive agriculture. Intensive farming often
relies on fertiliser supply to maximise crop yields.
Some fertilisers contain soluble salts, such as
potassium chloride and ammonium nitrate,
which can contribute to soil salinity when applied

2019; Corwin, 2021; Liu
et al.
, 2023; Tarolli
et al.
,

fertilisers in some Mediterranean countries, such
as Greece, France, and Italy, contribute to soil sa-

et al.

Climate change. Climate change can exacerbate
soil salinisation by altering precipitation patterns
and increasing temperatures, leading to changes
-

climate change accelerate the development of
soil salinity, potentially spreading the problem to

et al.

The rising temperatures and droughts increase
evapotranspiration. As a result, water evaporates
and the salt remains in the soil, increasing soil

agriculture could act as a carbon sink if these

-
cia-Franco
et al.

Coastal waterlogging. In coastal areas, saltwater
intrusion into freshwater sources can result in
saline soils. This can occur due to factors such as
rising sea levels, the over-extraction of ground-
water or changes in coastal hydrology. Drivers
of rising sea levels are the thermal expansion
of ocean water, the melting of glaciers and the
mass loss of polar and circumpolar ice sheets.
The rise in seawater intrusion, driven by climate
change and human activities, is a major concern
in coastal areas of Greece, Spain, Italy, Cyprus

et al.

The State of Soils in Europe - 2024 67
4.7.3 Impacts
Soil salinisation disrupts the natural cycles of
various earth processes, including biochemical

et al.
, 2010; Setia
et al.


et al.


salinisation can lead to the depletion of valuable
soil resources, and essential goods and services,

agricultural production and the overall health


agricultural productivity and ecosystem health.
Some of the key impacts include the following.
Reduced crop yields and food security. High
soil salinity levels can inhibit plant growth and
reduce crop. Irrigated areas in arid and semi-arid

The reports prepared by FAO and the United
-
nization based on the data from the Soil Map of



et al.

of the formation of Solonetz soils within the EU
include the loss of arable land due to swelling
clay, increased sodium content and waterlog-
-
fard
et al.

Economic impacts. Soil salinisation can have
economic repercussions for agricultural indus-
tries, including reduced crop yields, increased
irrigation costs and decreased land values.
Farmers may incur additional expenses for soil
remediation measures such as leaching, soil
amendments and land reclamation, impacting

-

with soil salinisation, primarily attributable to
agricultural yield losses, fall within the range
-

Bosello
et al.

rivers and deltas, estimated that the current eco-
nomic impact of salinity within the EU, primarily
in the agricultural sector, amounts to approxi-

Environmental degradation. Soil salinisation
can lead to the degradation of natural habitats,
including wetlands, grasslands and forests, as
salt-tolerant species may outcompete native
vegetation. The loss of habitat diversity and
ecosystem services can further exacerbate the
impacts of soil salinisation on overall ecosys-

et al.
,

communities and inhibit the growth of native
plant species, leading to reduced biodiversity
and ecosystem resilience. Changes in soil salinity
can also impact soil-dwelling organisms, such as

crucial roles in nutrient cycling and soil health

et al.

 Soil salinisation is a major driver

primarily due to human activities, including
extensive irrigation and the unreasonable use of
saline water, causing over-pumping and seawa-

Domínguez-Beisiegel
et al.

Despite being recognised as a major soil threat



et al.
,



et al.

integrated management approaches that focus
on improving soil drainage and implementing
sustainable irrigation practices. Adaptation
strategies in the long run should include selecting
salt-tolerant crop varieties and developing new

et al.

By mitigating the impacts of soil salinisation,
Europe can safeguard agricultural productivity,
protect natural resources and promote
environmental sustainability.
The State of Soils in Europe - 202468
4.8 Soil biodiversity change
Soil biodiversity– including microor-
ganisms, such asfungi and bacteria,
and fauna, such as springtails and
earthworms– is vital for the provision
of ecosystem service s such as food
production, medicine discovery and
water regulation. Factors such as pH,
land use and climate inuence soil
biodiversity. Urbanisation, agricultur-
al intensication and pollution pose
signicant threats. Climate change
exacerbates these risks, aecting the
distribution and abundance of soil
organisms. Addressing biodiversity
changes is imperative for maintaining
soil health, ecosystem resilience and
food security.
Soil organisms span a wide range of body sizes,



component for the delivery of soil ecosystem
services, such as food production, pest control,
and water and climate regulations 
Delgado-Baquerizo
et al.
,.
Source:
EUSO based on Orgiazzi et al. (2016).
A
C
B
Figure 12.
and soil biological functions in the EU + United Kingdom.
The State of Soils in Europe - 2024 69
4.8.1 Status and trends
An assessment of soil biodiversity was included

2018, gathering data from over 880 soil samples
collected across all the current Member States
and the United Kingdom. The sampling method
was repeated in the 2022 survey, and expanded


wide assessment of soil biodiversity by means

et al.
, 2023;
Labouyrie
et al.

the elucidation of consistent trends between
prokaryotic and eukaryotic communities: usually,
higher biodiversity was hosted in croplands
than grasslands and woodlands. Additional
analyses have been carried out on the fresh
soil samples collected in 2018 to determine the
spatial distribution of microbial biomass and

et al.
,

biological indicator of soil health in the European
Commission’s proposal for a soil monitoring and

Previously, to assess the status of life in EU soils,
an inventory was made of the risk of 13 potential
threats to soil biodiversity in the EU, including
habitat fragmentation, land use change, soil

et
al.

populate the EUSO Soil Degradation Dashboard,
which shows areas where the risk is estimated to
be moderately high or high. Despite the intrinsic
limits of this knowledge-based assessment, a
remarkable potential risk to soil biodiversity
was observed.
Beside the LUCAS soil biodiversity dataset, some
Member States have national soil monitoring


the EU, in Switzerland, 30 long-term monitoring
sites in the Swiss Soil Monitoring Network were

stability of bacterial and fungal communities

et al.

Kingdom, for 2013–2016, an ecological survey
was undertaken at the national scale in Wales
to determine environmental status and trends,
Sources:
Köninger et al. (2023) and Labouyrie et al. (2023).
Soil organism Driving factors
1 2 3
Bacterial chemoheterotrophs Isothermality pH Annual temp. range
 Carbonate C:N ratio Temp. range
Bacterial pathogens pH Clay Isothermality
Ectomycorrhizal fungi Monthly aridity P pH
Arbuscular mycorrhizal fungi Clay Extractable K Temp. seasonality
Fungal saprotrophs P Carbonate Monthly aridity
Fungal plant pathogens pH Temp. seasonality Annual temp. range
Protists P C:N ratio Bulk density
Rotifers pH Microbial biomass C C:N ratio
Tardigrades Basal respiration P Soil water content
Nematodes C:N ratio P Bulk density
Arthropods C:N ratio Intensity gradient
2009-2018
Ecosystem type 2015
Annelids pH P Respiration quotient
Table 1.
are shown; see source publications for additional details. C, carbon; temp., temperature.
The State of Soils in Europe - 202470
among which trends in soil biodiversity were

et al.

agricultural soil monitoring programme will include
a soil biodiversity module in 2024. Soil biodiversity
data collection is lacking in all the countries of the
western Balkans, and data on biodiversity is not
included in the soil monitoring programmes in
Iceland, Liechtenstein, Türkiye and Ukraine.
4.8.2 Drivers
Soil biodiversity may be driven by both edaphic
factors, such as pH and organic carbon, and an-
-
tion, climate change and above-ground vegetation

et al.
, 2015; Orgiazzi
et al.



et al.
,
2023; Labouyrie
et al.
-
tion of the main factors driving both the taxonom-
ical and the functional diversity of soil organisms.
-

-



list of drivers is presented for the taxonomical and
functional groups of soil organisms examined.
Land use change. Land use changes, including

deforestation, have profound impacts on soil
biodiversity and ecosystems. Urban expansion
converts natural habitats into impervious surfac-
es, reducing soil organism habitats. Population
growth, and subsequent urbanisation of green
spaces, has increased soil sealing, and decreased
soil biodiversity by impeding organic matter
et al.

depending on whether taxonomical diversity or
functional diversity is considered. Intensive prac-

et al.,
-
al land or for other uses also eliminates habitats
et
al., 2015; Wachira et al.
Pollution. Chemical pollution, stemming from
agrochemicals, industrial pollutants and other
sources, may contribute to the loss of soil biodi-

Pesticides, for example, can deplete or disrupt
non-target invertebrates, such as earthworms,
and soil microbial communities, impacting not
just taxonomy but also critical functions, such

et
al.
, 2012; Chagnon
et al.
, 2015; Mahmood
et al.
,
2016; Pagano
et al.


whole soil-occupying community are still missing.
Microplastics. Soils are likely to serve as a signif-


et al.
,

soil biota are largely unknown, making them an
emerging threat to soil biodiversity that warrants
increased attention in research and continued

Möhrke
et al.
, 2022; Sajjad
et al.
-
ular concern is the potential for earthworms to

potentially exposing other subsoil organisms to

et al.

Climate change.-

soil organisms, with some species proving more
sensitive than others to changes.
4.8.3 Impacts
The loss of soil biodiversity may have far-reaching
impacts on soil health and ecosystem functioning.
Reduced soil fertility. The loss of key function-
al groups of soil organisms can decrease de-
composition rates, reduce nutrient cycling and
impede soil structure maintenance, resulting in
reduced agricultural productivity and increased

et al.
,
2013; Paes
et al.

Disruption of ecosystem services. Soil biodiver-
sity changes may contribute to the disruption
of crucial ecosystem services such as carbon
-
tion, compromising the resilience of ecosystems

et al.
, 2020; Le Provost
et al.

The State of Soils in Europe - 2024 71
Reduced food security. The maintenance of
high levels of functional diversity in the soil is
closely related to the functional diversity above
ground. For instance, it has been shown recently

-

et al.

Human health. Changes in soil biodiversity can
alter the occurrence and distribution of dis-
ease-carrying organisms. This can increase the
prevalence of vector-borne diseases, posing risks

et al.

decreased soil microbial diversity may reduce
the soil’s ability to break down pollutants, leading
to increased levels of contaminants in food and

et al.

Addressing soil biodiversity change is critical for
maintaining soil health, ecosystem services and
food security in Europe. Historically, soil organisms
and their diversity have been underrepresented
in the assessment of soil condition compared with

et
al.
-
-
-
ological constraints and the inability to monitor
a wide range of organisms. In recent years, the
evaluation of soil biodiversity has become in-
creasingly feasible thanks to advancements in

-
an Commission’s LUCAS soil biodiversity dataset
will support the production of maps that provide
information on the richness and abundance of


characterising soil biological condition and start
developing a monitoring scheme for life in EU soils.
4.9 Soil sealing and land take
In Europe, soil sealing varies by
country, with signicant proportions
observed in Malta, the Netherlands,
Türkiye and the United Kingdom.
Urbanisation and industrialisation
are major drivers, leading to the
conversion of agricultural and natural
land into built-up areas. Albania,
North Macedonia, Serbia, Türkiye and
Ukraine have experienced signicant
soil sealing due to urban expansion
and infrastructure development. The
impacts of soil sealing are profound,
aecting soil and ecosystem services.
Soil sealing disrupts natural processes
such as water inltration and gas
exchange, leading to increased ood
risk, carbon loss and higher tempera-
tures in urban areas. Biodiversity loss
is also a concern. Sustainable spatial
planning is crucial for mitigating these
impacts and ensuring a healthy envi-
ronment in the face of climate change.
Eorts to unseal soils and restore their
functions through multistakeholder
approaches are under way in some
regions, but challenges persist amid
ongoing trends towards urbanisation.
4.9.1 Soil sealing
Soil sealing is the permanent covering of an area of


as one of the main soil degradation processes in


report of the EEA on the status of the European


Soil sealing is the most serious, irreversible and
unsustainable form of soil degradation.
4.9.1.1 Status and trend
Soil sealing is usually expressed as a percent-

-
ing soil sealing at the national or regional level

The State of Soils in Europe - 202472





and census data or information from ground-




measuring soil sealing is by classifying high-resolu-


spectral mixture analysis, including linear spectral
-



measures adequately, very-high-resolution data


et al.
, 2010; Disperati and Virdis, 2015;
Codemo
et al.

resolution is necessary, with measurements every

et al.

threshold values for soil sealing, for example for


Romano
et al.

sealing and imperviousness are not always well
addressed. Confusingly, soil sealing indicators are

soil sealing data. Imperviousness only considers
soils covered by non-permeable materials, while
soil sealing also considers soils covered by part-

Although the utilisation of imperviousness as an
indicator may not be entirely accurate, it serves as
a metric at a regional scale. The EEA’s data viewer
and the EUSO dashboard provides accounts of
imperviousness for 2018. According to the EEA,
-





-
tion of surface sealed is lower than in other parts

Albania reported a potential loss of about

for 1990–2020. It is estimated that the annual rate

housing needs, followed by industrial activities and
infrastructure development. The greatest impacts
of soil sealing are observable around the largest
urban areas in North Macedonia. The continuous
increase in the population of the Skopje region
results in the radical sealing of agricultural land.
The mean annual rate of soil sealing for the whole

certain land use categories and classes of the soils
that have been sealed by urban development in
Serbia from 1990 to 2018 shows that mostly pas-
tures and heterogeneous agricultural areas were
sealed.
In Ukraine, developed land falls into several cate-
gories, including residential and public buildings,
industrial buildings, and buildings with transport,
communications, energy, defence and other pur-


countries in terms of urbanisation according to UN
rankings, and there has been a marked increase in
SOIL SEALING MAPS OF FLANDERS

types of data. The maps combine ‘known’ sealing, from the administrative Large-scale Refer-
ence Database, with modelled sealing determined by a machine learning model based on aeri-

accurate vectorial representation of Flanders’ buildings and infrastructure. The aerial images


box
6
The State of Soils in Europe - 2024 73
the area of sealing and urbanisation in the country
in recent years.

has shifted towards recognising soil sealing as a

This has led to actions to protect and maintain
existing green areas despite urban and subur-

et al.

studies underline that the unsealing of soils and
restoration of soil functions can be achieved by
applying multistakeholder approaches involving

et al.
, 2006;

green spaces are more actively managed and
planned in Turkish agglomerations: roadside veg-

et al.


et al.

more attention than other areas. Lighthouse
projects such as the Atatürk Forest Farm in Ankara
stand out as models of how to convert alternative



et
al.

of urbanisation decreasing in Türkiye. While intact
urban soils and their functions become more and

et al.
-
ant to recognise the need to safeguard valuable
-

et al.

4.9.1.2 Drivers
Rapid urbanisation, driven by population
growth, necessitates the expansion of urban
areas for housing, infrastructure and industry.
This expansion, coupled with the development
of infrastructure such as roads, highways and

with impermeable materials. Furthermore,
the conversion of agricultural or natural land
into urban or suburban areas, alongside the
establishment of industrial zones and factories,
contributes to soil sealing. In addition, the
construction of commercial buildings such as

exacerbates this phenomenon.
4.9.1.3 Impacts

reducing the supply of many of its services. It is
normal practice to remove the upper layer of
topsoil, which delivers most soil-related ecosystem
services, and to develop strong foundations in

buildings or infrastructure, before proceeding
with the rest of construction. This process
usually results in irreversible land cover and
land use change, permanently altering the soil’s
natural state and its ability to provide essential


of rainwater and the exchange of gases between
the soil and the air. Soil sealing increases the

reduces soil’s ability to absorb and store carbon,
increases temperatures in urban areas and

et al.

sustainable spatial management is crucial to
ensure a healthy living environment and address
climate change.
4.9.2 Land take
Land take is a process, often driven by econom-
ic development needs, that transforms natural


land, using soil as a platform for construction and
infrastructure, as a direct source of raw material or
as an archive for historic patrimony at the expense
of the capacity to provide other ecosystem services


-

converted from urban areas into agriculture, forest
or other semi-natural areas’, while ‘net land take

et al.

distinguished by the ‘settlement area’, which is ‘The
area of land used for housing, industrial and com-
mercial purposes, health care, education, nursing
infrastructure, roads and rail networks, recreation
-
ning, it usually corresponds to all land uses beyond
agriculture, semi-natural areas, forestry, and water

The State of Soils in Europe - 202474
Annual land take maps of Italy.
The annual land take maps of Italy are for example produced by Earth Observation techniques,
using both Copernicus Sentinel 1 and 2 data and other VHR satellite images. In addition to
land take maps, soil sealing and settlement areas maps are also produced every year. These
data are used for the development of several indicators and for the assessment of the impact

available for the period 2006-2022.
Figure box 7:
Land take changes (2006-2022) for Italy. Source: Munafò (2023).
box
7
The concept of land take is often generic but
should always exclude land that has been taken to
build new urban green areas. So the concepts of
urbanisation, which considers all settlement areas,
and soil sealing should be considered alongside it.
4.9.2.1 Status and trends

2 of

took place in commuting zones. Net land take,
calculated by subtracting the area of recultivated
land from the area of land taken, in the EU and the
2, mostly at
the expense of croplands and pastures.
The State of Soils in Europe - 2024 75
4.9.2.2 Drivers and impacts
Major drivers of land take include population
growth, the need for transport infrastructure,

et al.

the, often irreversible, loss of the capacity of soils

biomass provision, water and nutrient cycling, bio-


jeopardising food security. Sealed soil also expos-


4.9.3 Landscape fragmentation
Landscape fragmentation is ‘the result of
transforming large habitat patches into smaller,

et al.

environmental and social implications, and
implications for climate change adaptation and
mitigation, and biodiversity. It is most evident
in urbanised or heavily developed areas, where
fragmentation is the product of the linkage of
built-up areas through linear infrastructure such
as roads and railways.
4.9.3.1 Status and trend
Based on an EEA analysis, large parts of Europe
have become fragmented because of the
expansion of urban and transport infrastructure

in the EU-27 and United Kingdom is considered
highly fragmented where habitats are less than
2 on average’. Moreover, it says, ‘As
distance from city centres increases, the extent of
landscape fragmentation drops rapidly.’ The extent
of landscape fragmentation varies considerably
by country in the EU and United Kingdom, being
highest in Malta, followed by the Netherlands,
Belgium, Germany and Luxembourg. Luxembourg
and Belgium have the largest areas of highly
fragmented habitats. In contrast, In Finland, the
Baltic states and Sweden, habitats are much less
fragmented than in other parts of Europe.
4.9.3.2 Drivers
Landscape fragmentation is the outcome of complex
interactions between policies, the geophysical
characteristics of the landscape and socioeconomic
drivers of development. Land take, urban sprawl and
economic activities lead to habitat fragmentation,
decreasing the resilience of ecosystems.
4.9.3.3 Impacts
Landscape fragmentation is a threat to ecosystem
service supply, landscape quality and the
sustainability of human land use. Landscape
fragmentation changes the visual aspects of
landscapes: roads, railways and built-up areas
are the most prominent contributors to the
transformation of natural landscapes into
fragmented anthropic landscapes. Landscape
fragmentation is a major cause of the rapid
decline in many wildlife populations. As landscape
fragmentation contributes to the destruction
of established ecological connections between


et al.


roads are not taken seriously enough in the
planning process, which contributes to the ‘spiral

Another issue is that the lack of accountability

the construction of new transport infrastructure,

observed until long after the infrastructure is built.
4.9.4 Land recycling rate

including the redevelopment of previously

purposes; the ecological upgrading of land for




et
al.



building of green urban areas such as golf courses

et al.

The State of Soils in Europe - 202476
Land recycling can be estimated based on
multiple surface-related indicators. However,
such indicators are often considered limited
by the availability of initial data with a high
spatial resolution, and, in some cases, they can
overestimate built areas.

de-sealing of previously sealed areas and the
development of anthropogenic soils such as

et al.




et
al.

et al.



2006–2012. Although the general trend is an
increase in recycled lands during this period, for
some countries the trend is inverted. For example,


Land recycling rates can be considered an
indicator of previously sealed soils becoming

sealing–de-sealing process, while easy to use and
accessible for decision-making, focuses only on
land use, excluding the analysis of soil features
and characteristics to identify and quantify their

Further investigations should focus on tools
and methods that allow the assessment
and monitoring of land recycling in terms of
functionality over time.
Indicators should not be limited to land use data
but must integrate soil properties and processes
that provide a wide range of ecosystem services.
4.9.5 Conclusions

land take reverberate across ecological, social
and economic spheres, underscoring the need
for proactive measures. From compromised
soil functionality to heightened urban heat

the impacts highlight the need for sustainable
land management practices. Addressing
these challenges requires holistic approaches,
incorporating green infrastructure, compact urban
design and stringent land use regulations. By
prioritising the preservation of natural landscapes,
promoting permeable paving techniques and
fostering resilient communities, we can mitigate

ensuring a more sustainable and harmonious
co-existence between human activities and the
environment.
The State of Soils in Europe - 2024 77
#05
Convergence of
evidence of soil
degradation in Europe
he State of Soils
in Europe
The State of Soils in Europe - 202478
The interplay of diverse drivers and
soil degradation processes creates a
complex web impacting soil condition
in Europe. Soil acidity, inuenced by
factors such as mineral fertilisation,
can deplete soil carbonates, aect-
ing fertility and nutrient availability.
Soil erosion, caused by unsustainable
agricultural practices, leads to nutri-
ent loss and diminishes soil functions.
Declines in soil carbon also disrupt soil
biodiversity and ecosystem services.
Chemical pollution further compounds
these pressures. The EUSO (EU Soil
Observatory) convergence of evidence
map illustrates overlapping soil deg-
radation processes, emphasising the
need for integrated approaches to ad-
dress multiple threats simultaneously.
Holistic soil management practices are
essential for preserving soil health and
ensuring ecosystem sustainability.
Without detailed information on soil prop-
erties, characteristics, indicators and their
thresholds for the delivery of multiple
ecosystem services at a regional scale, policymak-

in accurately assessing soil degradation, identifying
areas of concern, and implementing targeted inter-
ventions. This gap in data and knowledge hinders
our ability to understand the extent and severity of
soil threats, such as compaction or contamination,
which can have profound implications for agricul-
tural productivity, ecosystem resilience, and envi-
ronmental sustainability. Addressing this knowledge
gap requires investments in soil monitoring and
-
search collaborations to generate comprehensive,
up-to-date information on soil health parameters
across Europe. By enhancing our understanding
of soil condition at a regional scale, we can better
protect and manage this vital natural resource for
current and future generations.
5.1 Monitoring
Soil monitoring is essential for assessing soil
health and guiding sustainable land management

collect data on physical, chemical and biological


National soil monitoring programmes vary widely in
scope and methodology across Europe. The lack of
comprehensive and standardised soil data across
the region has led to inconsistencies and challenges
in comparing soil conditions among countries.
Addressing this knowledge gap requires invest-
ments in soil monitoring and mapping initiatives,

to generate comprehensive, up-to-date information
on soil health parameters across Europe. Moni-
toring programmes play a crucial role in assessing
soil condition and guiding sustainable land man-
agement practices. These programmes typically
involve systematic collection of data on various
soil parameters, including physical, chemical and
biological indicators. Physical indicators may include

-
cal indicators such as pH, nutrient levels, and heavy
metal concentrations provide insights into soil fer-
tility and contamination risks. Biological indicators,
including microbial biomass, enzyme activity and

on soil biodiversity and ecosystem functioning. By
tracking changes in soil properties and associated
soil functions over time, these programmes help

05 Convergence of evidence
for soil degradation in Europe
The State of Soils in Europe - 2024 79
management practices, and inform decision-mak-
ing processes aimed at preserving soil health and
promoting sustainable land use practices. In addi-
tion, monitoring data serve as a valuable resource

public awareness initiatives aimed at addressing
soil deg-radation and advancing soil conservation

5.1.1 National Soil Monitoring programs
Several countries have already invested in the
implementation of national soil monitoring sys-
tems, whereas some of those have been contin-

However, during their development the primary
objectives of such programmes stemmed from
their national priorities, resulting thus in a highly
variable set of monitoring schemes.
Previous research has already reviewed existing
national soil monitoring programmes in Europe
for assessing soil quality through the assessment
of a minimum set of attributes, e.g. in the environ-
mental assessment of soil for monitoring project

et al.

Soil Condition Database, which include physi-
cochemical and hydraulic properties for forest

et al.

Leeuwen
et al.


The environmental assessment of soil for moni-

comprehensive review of European soil monitoring

et al.
, 2008; Arrouays
et
al.

by the European joint programme on agricultural

further insights to the landscape. However, results
from EJP SOIL should be interpreted with caution,
as not all countries have disclosed information
regarding their forest soil monitoring systems,
suggesting that the landscape of soil monitoring
across Europe may be more varied and complex
than initially apparent.

monitoring programmes to understand the moni-
toring landscape.
5.1.1.1 Central and western Europe
In 2008, the German Federal Ministry of Food and
Agriculture commissioned the Thünen Institute

agricultural soil inventory at the national scale

networks for soil protection and contaminated

measurement points across the country, covering
cropland, grassland, forests and other areas. In
addition, Germany has a long history of long-term

data to soil research. The peatland monitoring

to improve the reporting of GHG emissions of
forested peatlands in a comparable and repre-
sentative way. This nationwide basis can then
also be used to derive measures for peatland soil
protection. The peatland monitoring thus pro-
vides the long-term and area-wide emission data
of organic soils under forest needed for the IPCC
reporting. France operates a comprehensive soil


measurements and observations every 15 years

systematic approach ensures periodic assessment
and monitoring of soil conditions. In the Nether-
lands, national soil monitoring was done for more
than 18 chemical, physical and biological indicators
in 1998 and 2018, whereas each province moni-
tors soil quality each year. Soil data are stored and
available via a digital soil information system. In
addition, private research institutes deliver de-
tailed soil property maps derived from agricultural
routine laboratories for regional policy support.
5.1.1.2 Northern Europe
Denmark has a long history of soil mapping, with
extensive soil databases used at the national and
European levels. The nationwide Danish soil data-
bases have been widely used for the planning of
rural land at the county and national levels.
Although Finland has an uneven distribution of
-
er in the south than in the northern part of the

Sweden, systematic soil monitoring is conducted
at both the national and regional levels by various
departments of the Swedish University of Agricul-
The State of Soils in Europe - 202480
tural Sciences and the National Board of Forestry.

Environmental Protection Agency and coordinated
with common protocols by county boards on a
regional scale. The data collected by the university
are publicly available, contributing to transparency
and informed decision-making. The Geological Sur-
vey of Sweden initially conducted historical surveys
and mapping relevant to soil conditions in the mid
20th century. It continues to collect data on soil
depths and geochemistry, particularly focusing on
the natural occurrence of metals and other sub-
stances in forest-covered moraines. Meanwhile,
Ireland embarked on the Irish soil information
system project between 2008 and 2014, resulting
in a new national soil map and associated digital
soil information system. Furthermore, Ireland has
established the National Soil Database, which
includes comprehensive soil geochemistry and mi-
crobiolog ical analysis, providing valuable resourc-
es for soil research and management initiatives.
Estonia has denser monitoring networks than
countries such as Lithuania. In Lithuania, several
national survey networks do exist. For example,
the Lithuanian Geological Survey under the Minis-
try of Environment is responsible for soil monitor-
ing in the 71 agricultural land sites in the context
of state environmental monitoring. Monitored soil
properties within this programme are related to

-
ture and industry.
5.1.1.3 Southern Europe
Soil monitoring networks are much denser in
northern and eastern Europe than in southern

-
itoring networks, and their soil survey resources
have historically declined. However, the Spanish
Ministry of Agriculture, Fisheries and Food will
conduct a comprehensive analysis of the carbon
content in agricultural soils across the country.
This initiative involves the analysis of soils from

-
cise is to evaluate the outcomes of the recently
implemented new CAP, which began this year. In
Italy, soil surveying, soil mapping and information
system implementation have traditionally been
conducted primarily at the regional level, with
approximately 20 administrative regions serving as
centres for these activities. However, since 1999,
there has been a notable increase in soil survey

soil databases across the country. Portugal lacks a
national soil monitoring system.
5.1.1.4 Eastern Europe
Countries such as Czechia, Hungary, Poland,
Romania and Slovakia have established soil mon-
itoring systems, with varying levels of data accessi-
bility and coordination. In Poland, the permanent
monitoring of agricultural soils was initiated in
1995 as part of the State Monitoring of the Envi-
ronment. The obligation to conduct soil monitoring
and observe changes in soil quality is established
in the Environmental Protection Law. The soil
information and monitoring system in Hungary is
designed to continuously monitor changes in soil
quality mand environmental status, and its oper-

1992, annual soil sampling has been carried out at
-
ing network comprises three types of monitoring
points: the national core network, which covers
areas under agricultural cultivation; the forestry
monitoring points for monitoring soils under forest
ecosystems; and the special monitoring points for
characterising areas at risk or already polluted.
The collected data are public and in the public in-
terest, so anyone can request them to supplement


currently no soil monitoring network exists and
the only data are collected by LUCAS. Croatia lacks
a national soil monitoring network but has made
some attempts to develop one.
5.1.1.5 Non-EU countries
Across non EU-countries, the state of soil mon-

as Norway have made substantial advances by
implementing comprehensive soil monitoring
programmes, others such as Türkiye lack a struc-
tured monitoring system altogether. In the United
Kingdom, the National Soil Inventory plays a crucial
role in assessing soil quality and land use trends.
Similarly, Switzerland’s National Soil Monitoring
The State of Soils in Europe - 2024 81
Network has been in operation since 1984, provid-
ing valuable insights into soil quality changes over
time. Ukraine faces a challenge with the absence
of proper national soil monitoring despite partial
coverage through soil surveys in agricultural land


agricultural land. At the same time, there are 750
monitoring sites across Ukraine, where some soil
health indicators are regularly monitored.
Meanwhile, in the western Balkans, the only new
regional source is the LUCAS survey of 2015.
There is a pressing need for updated soil data
and the establishment of comprehensive moni-
toring systems to address outdated information
and facilitate regional comparisons. These diverse
approaches highlight the importance of robust soil
monitoring systems for informed decision-making
and sustainable land management practices.
-
itoring exist in most EU countries, but uniformity
in methodology and coverage is far from standard
even within national systems. Soil organic carbon
and pH are among the most commonly mea-

assessing soil health and their direct relationship
with crop productivity. However, several other soil
health indicators exhibit limited coverage, even
in areas deemed at risk. Parameters related to
soil biodiversity and erosion are particularly un-

while some trace elements such as lead are mea-
sured extensively across countries, others such as
mercury show substantial disparities in monitoring
frequency. Indicators related to soil compaction,
such as bulk density and packing density, are also
lacking in approximately half of the countries.
Moreover, there is a lack of uniformity in method-
ology and coverage, even within national systems.
The need for harmonisation of procedures across

concern. This includes analytical protocols, res-
ampling intervals, and metadata collection and
storage. Achieving harmonisation in these areas
would facilitate data sharing and the comparison

systems, as envisaged by the proposed EU soil
monitoring and resilence directive.
5.1.2 International co-operative programme
on assessment and monitoring of air pollu-

The international cooperative programme on the
assessment and monitoring of air pollution in



enhance understanding of air pollution and its im-
pact on forest ecosystems through intensive and

of an extensive systematic network, with sam-
pling conducted within forested areas based on a

occurred only once, under the forest focus regu-


regular, detailed monitoring of forest ecosystems,
including crown condition assessments, soil and
foliar surveys, increment studies, deposition mea-
surements and meteorological observations over a

Across the European Union, Belarus, Moldova,
Montenegro, Russia, Serbia and Switzerland,

networks. The selection of parameters measured
-
formation regarding the collected data is provided
by Arrouays
et al.

The State of Soils in Europe - 202482
5.1.1.3LandUse/CoverAreaFrameSurvey
soil module
The LUCAS Soil programme collects
soil samples across Member States
and neighbouring countries, provid-
ing harmonised datasets for soil prop-
erties at a continental scale. Unlike
other EU-wide soil sampling initia-
tives, LUCAS is a repeated sampling
scheme, enabling trend analysis of
soil health indicators across dierent
land covers. LUCAS Soil contributes
valuable data for scientic research,
policy development and informed de-
cision-making in soil conservation and
land management. Moreover, LUCAS
Soil oers opportunities for collabora
tion with national monitoring sys-
tems, serving as a valuable resource
for countries lacking their own soil
monitoring infrastructure.
-
nent of the LUCAS initiative, is a comprehensive


-
torate-General for Agriculture and Rural Develop-
ment and the JRC, LUCAS conducts regular surveys
to gather information on land cover and land use.
In 2009, the European Commission extended
LUCAS to sample and anal yse topsoil properties

selected for soil sampling, with standardised
procedures for collection and analysis carried out
in a single laboratory. The same procedure,
sampling method and analysis standards were
extended in 2012 to Bulgaria and Romania,
where samples were collected from about

In 2015, the survey was carried out for all the
current 27 Member States and the United King-
dom. In addition, the soil module was extended by
the JRC enlargement and integration programme
Figure 13. LUCAS soil survey procedure.
Source:
EUSO.
Surveys
EU wide monitoring
42,000 sites
500 surveyors
Samples
sent to
the JRC
Laboratory analysis
100,000 samples
analysed over
four campaigns
Datasets
Indicators
EUSO Soil Degradation Dashboard
Policymaking
Archive
50 tons of
soil archived
Samples
archived
Dataset
creation
The State of Soils in Europe - 2024 83
Table 2. LUCAS’s integration in Member States and research bodies, including in soil monitoring systems, research pro-

the EU. 
Aspect of
integration
Description National/research Involvement
Data use
for derived
products
LUCAS soil data are used to determine the
physical and chemical characteristics of soil,

Data contribute to national and European

pollution levels.
Geostatistical
modelling and
datasets
Spatial datasets are developed for soil
attributes such as clay, silt, sand, pH, C
ratio and key nutrients.
National systems use these datasets to enhance
models, with research from the JRC and others
improving predictions for stakeholders.
Biogeochemical
modelling
LUCAS data are integrated into
biogeochemical models to assess carbon

The data from the modelling are used by
national systems and for EU-wide studies on soil
health and carbon sequestration.
Pesticides
& antibiotic
residues
Samples are analysed from the 2018 survey
to detect pesticide and antibiotic residues.
Residues are analysed to enable the national and
EU-level validation and calibration of pesticide
fate models.
Soil health
indicators
Biodiversity indicators are developed
through the genetic analysis of soil to
assess impacts on land management.
Research collaboration across Member
States under the LUCAS soil module and the
Directorate-General for Environment’s European
Monitoring of Biodiversity in Agricultural
Landscapes initiative
.
AI & machine
learning
for crop

The JRC and national systems use LUCAS
data to train AI models to classify Sentinel-1
data and generate information on crop
types between surveys.
The JRC collaborates with national research
agencies and Colorado State University.
European soil
data centre

LUCAS soil data are accessible through
the ESDAC for various national and
international research projects.
Data are available to national agencies
and stakeholders across Europe for policy
development and environmental monitoring.
Soil organic
carbon mapping
LUCAS data was used by FAO to produce
the Global Soil Organic Carbon Map.
Member States and FAO use LUCAS data for

LANDMARK
H2020
methodology
The method is applied to predict synergies

climate regulation and nutrient cycling.
LUCAS is integrated in national research systems
as part of the Horizon 2020 initiative.
Collaboration
with Member
States
A goal of LUCAS is to form systematic
links with Member States to facilitate site
access, data collection and supplementary
analysis.

task force for soil monitoring and the Commission
Expert Group on the implementation of the EU soil

National soil
monitoring
systems
Member States have national soil mapping
surveys with varying degrees of repeated
sampling and monitoring.
The task force for soil monitoring was
established to harmonise national programmes
with LUCAS’s soil module to facilitate
comprehensive monitoring.
EJP SOIL
integration
EJP SOIL aims to harmonise information on
soil across Europe, focusing on agricultural
soil management and ecosystem services.

outputs, especially in integrating soil sampling
protocols and data from Member States.
Remote sensing
and machine
learning
Remote sensing is integrated in LUCAS
to enhance soil carbon monitoring and
predictions.
The JRC collaborates with international and
national institutions to apply AI and machine
learning tools for soil data integration.
Source: Based on Jones et al. (2022).
The State of Soils in Europe - 202484
to Albania, Bosnia and Herzegovina, Montenegro,
North Macedonia and Serbia. Switzerland also
participated following standard LUCAS protocols.

soil sampling of LUCAS 2015. Topsoil samples are
analysed for various properties, including coarse
fragments, particle size distribution, pH, SOC, car-
bonates, total N, extractable nutrients, cation ex-
change capacity, trace elements and multispectral
properties. The 2018 edition also includes assess-
ments of soil erosion, organic horizon thickness,
bulk density and soil biodiversity. In 2022, about

Source:
EUSO.
of chemical, physical and biological properties. The
data collected by the LUCAS Soil programme pro-
-
sets of topsoil properties at the EU level, allowing
correlations with land cover and land use types.


-
ed sampling scheme that can provide trends in soil
condition indicators for all land covers. LUCAS Soil

monitoring systems, and provides valuable data
for countries lacking a soil monitoring system, as
Soil degradation processes
Soil
pollution
Cu exceedance
Cu concentration
> 100 mg kg -1
Hg exceedance
Hg concentration
> 0.5 mg kg -1
Zn exceedance
Zn concentration
> 100 mg kg -1
Cd exceedance
Cd concentration
> 1 mg kg -1
Soil
erosion
Water erosion
2 t ha-1 year -1Wind erosion
2 t ha-1 year -1Tillage erosion
2 tha-1 year -1Harvest erosion
2 t ha-1 year -1Post fire recovery
recovery rate
< 1 tha-1 year -1
Loss of
biodiversity
Potential threat to biological functions
> Moderately-High level of risk
Soil
compaction
>
High
susceptibility
to compaction
Loss of
organic soils
Peatland degradation
Peatlands under
hotspots of cropland
Loss of
soil organic
carbon
Distance to
maximum SOC level
Distance to maximum SOC > 60 %
Soil
nutrients
Phosphorus excess
P excess > 50 mg kg -1
Phosphorus deficiency
P excess < 20 mg kg -1
Nitrogen surplus
Agricultural areas where
N surplus > 50 kg ha -1
Secondary salinisation
Areas in Mediterranean biogeographical region
where >30 % is equipped for irrigation
Soil
sealing
Built-up areas
No threshold applied
(all built-up areas)
Soil
salinisation
Figure 14. Soil degradation processes included in the EUSO Soil Degradation Dashboard. NB: Currently, 18 processes

 The threshold values indicated are used in the dash-
board to estimate whether soils can be considered degraded or not.
The State of Soils in Europe - 2024 85
envisaged by the proposed EU soil monitoring and

et al.






were downloaded in EU Member States, with the
most requests from Italy, Germany and Spain.

followed by private companies and research or-
ganisations. Soil erosion datasets were particularly
popular, especially following the release of the

et al.

5.2 EU Soil Observatory Soil
Degradation Dashboard
The EUSO Soil Degradation Dashboard provides
a spatial assessment of soil health across the EU,

processes. By harmonising soil datasets, the dash-

of soil degradation. The dashboard will be enriched
with new indicators and thresholds, aligning with
multiple ecosystem service considerations and
expanding to include data from countries beyond

commitment of the European Commission to ad-
dressing soil degradation and fostering sustainable
land management practices on a broader scale.
The Soil Degradation Dashboard developed by the
-
ment of where degraded soils may be located
in the EU and which degradation processes are

-

et al.
,

together with a novel methodology provides for

EU. The novelty lies in the use of the ‘convergence
of evidence’ approach, which spatially combines
multiple independent datasets to highlight areas
Figure 15. Convergence of evidence map of the EUSO Soil Degradation Dashboard. The map shows where current


Source:
EUSO.
The State of Soils in Europe - 202486

likely soil degradation processes.

-

soils were determined to be in a degraded state
using the prescribed assessment method, based
on the evidence currently available and current



most prev alent types of soil degradation.
-
actual extent of soil degradation, given the rec-
ognised lack of data on many other soil degrada-
tion issues, such as soil contamination and subsoil
compaction. In addition, the map shows that most
of the degraded soils are subject to more than
one type of soil degradation process, an important

The dashboard supports evidence-based deci-

insights into the drivers of soil degradation. In
addition, it serves as a valuable resource for stake-
holders, policymakers and researchers to access
and analyse soil-related information, fostering
a better understanding of soil degradation and

management practices. The EUSO soil degradation
dashboard will be enriched with new available in-



on countries beyond the EU.
The State of Soils in Europe - 2024 87
#06
Understanding the
interplay between
drivers and impacts
of soil degradation
he State of Soils
in Europe
The State of Soils in Europe - 202488
06 Understanding the interplay
between drivers and impacts of soil
degradation
Soil degradation exacerbates
climate change by releasing stored
carbon, impacting food and biomass
productivity, and leading to economic
strain through remediation costs and
decreased agricultural yields . Human
health risks arise from nutrient-
decient crops and increased
exposure to contaminants in polluted
soil. Cultural and recreational values
suer as landscapes change, affecting
community well-being. Water quality
is compromised due to sediment
transport, while soil biodiversity
change aects ecosystem balance.
Building on the foundational knowledge estab-
lished in preceding chapters, this section
unravels the intricate mechanisms driving
soil degradation, exploring the diverse array of
pressures exerted by anthropogenic and natural
forces alike.
6.1 Interconnections between soil
degradation factors: Understanding
complexities in European soil health
Previous chapters have elucidated the intricate
connections among various soil degradation
processes in Europe, portraying them as inter-
linked and mutually reinforcing processes that
collectively contribute to the degradation of soils.

as mineral fertilisation, can lead to the dissolving
and progressive loss of soil carbonates. This pro-
cess not only releases CO but also reduces the
availability of essential nutrients such as calcium
and magnesium, ultimately impacting soil fertility.
Moreover, soil erosion, driven by various factors
including unsustainable agricultural practices,
removes the top fertile layer of soil. This not only
results in a loss of nutrients such as P to surface
waters but also diminishes the soil’s ability to store

important soil functions such as providing habitats
for soil organisms and purifying water. Additionally,
soil biodiversity is impacted by declines in soil car-
bon, and the loss of biodiversity in the soil disrupts
soil functions and ecosystem services. Chemical
pollution from agrochemicals and microplastics
further exacerbates these threats, posing risks to
soil biodiversity and ecosystem functioning. Adding
complexity, these processes overlap, as shown
by the EUSO convergence of evidence map. The


pairs of soil degradation processes shown on the
convergence of evidence map. The size of the
area linking two soil degradations in the diagram
is proportional to the extent of their overlap in the
map. This diagram provides insights into the type
and magnitude of soil degradation combinations
estimated to be occurring in the EU.
These interlinks highlight the complex nature
of soil degradation and the need for integrat-
ed approaches to address multiple soil threats
simultaneously. These interconnected threats
highlight the need for holistic and sustainable soil
management practices. Addressing one aspect of
soil health often requires considering its impact
on other aspects. By understanding and mitigat-
ing these interconnections, we can work towards
preserving soil health and ensuring the long-term
sustainability of our ecosystems.
The State of Soils in Europe - 2024 89
6.2 Assessing the impacts of soil
degradation on Ecosystems, Agriculture,
and Society in Europe


resilience, water quality, biodiversity and human


important to note that the table is not exhaustive
but rather represents a selection based on report

scale utilised adheres to IPCC guidelines concern-
ing the correlation between evidence, consensus
-
trandrea
et al.
  
Some of the key impacts include:
Climate change impact. Soils act as a carbon
sink, playing a crucial role in mitigating climate
change by sequestering CO. Soil degradation,
especially through activities such as deforesta-
tion and improper land use, releases stored
carbon back into the atmosphere, contributing
to climate change.
Loss of food and biomass productivity. Soil
degradation leads to a decline in its ability to
support healthy plant growth. This results in low-

and economic sustainability.
Soil erosion. Caused by factors such as water
and wind, this is a major form of soil degra-
dation. It leads to the loss of the topsoil layer,
which is rich in nutrients. This negatively im-
pacts agriculture and may result in increased
sedimentation in rivers and water bodies. In
some regions, soil degradation can progress to

arid and unproductive. This process is linked to
unsustainable land use practices, climate change
and deforestation.
Economic impact. The impacts of soil degrada-
tion on agriculture, water resources and other
ecosystem services have economic consequenc-
es. Decreased agricultural productivity, increased

can strain economies.
Human health concerns. Soil degradation


in food. This has implications for human health,
as the nutritional content of food may be com-
promised. Exposure to contaminants in polluted
soil can pose risks to human health through
direct contact with contaminated soil, ingestion
of contaminated dust or water, or consumption
of crops grown in polluted areas.
Source:
EUSO.
Soil erosion
Soil pollution
Loss of soil organic carbon
Soil nutrients
Secondary salinization risk
Loss of soil biodiversity
Soil compaction
Figure 16. Combination of soil degradation factors by area.
The State of Soils in Europe - 202490
Loss of cultural and recreational values. Soil
degradation also impacts cultural landscapes and
recreational areas. Changes in soil quality and

recreational value of certain areas, impacting
the
well-being of local communities. The expansion
of urban areas may result in the loss of green

quality of life for residents. Access to nature and
open spaces is important for physical and men-
tal well-being.
 Degraded soils contribute

soils may contain sediments, nutrients and

This has implications for aquatic ecosystems
and human health. Degraded soils have reduced
water retention capacity, leading to increased


water supply and overall ecosystem resilience.
Biodiversity loss. Healthy soils support living
ecosystems, including a wide variety of micro-
organisms, plants and animals. Soil degradation
leads to a loss of below- and above-ground bio-

soil conditions for survival.

crucial areas: human health; and the loss of cul-
tural and recreational value, which encompasses
social impacts. These gaps represent areas where
further research and understanding are needed to
fully comprehend the implications of soil health on
human well-being and societal dynamics.
NEGATIVE IMPACTS
Climate
change Food and
biomass
production
Economic
impact Human
health Cultural and
recreational

impact
Water Biodiversity
SOIL DEGRADATION
Sealing
Nutrients
imbalances
Compaction

Pollution
Loss of
carbon

Loss of
carbon

Salinisation
Erosion
Change in
biodiversity
CONFIDENCE SCALE (BASED ON EVIDENCE AND AGREEMENT)
High agreement, robust evidence
High agreement, limited evidence
Low agreement, robust evidence
Limited evidence
Table 3. Soil degradation processes and their impacts.
Source: Own elaboration.
The State of Soils in Europe - 2024 91
#07
The role of citizen
science in assessing
soil conditions
he State of Soils
in Europe
The State of Soils in Europe - 202492
07 The role of citizen science in
assessing soil conditions
Research in soil science plays a
critical role in addressing societal
challenges, but engaging the public
is essential for bridging knowledge
gaps and fostering sustainable
practices. Citizen science oers
a participatory approach to soil
research, empowering communities
to contribute data and insights.
Collaboration between citizens and
researchers fosters co-creation of
projects, leading to sustainable
behaviour change and societal
impact. However, challenges such
as data dissemination, quality
assurance and scalability require
attention. Integrating citizen science
data into existing platforms such as
the European Soil Data Centre can
enhance its utility. Addressing these
challenges will be crucial for realising
the full potential of citizen science in
soil monitoring and management.
Research in soil science is crucial for compre-
hending and enhancing the role of soils in


knowledge and societal needs, a collaborative


-
ly half of the world's population lives in urban

et al.


may also lack engagement or connection with the
topic of soils.
Citizen science is a participatory research method

to generate new data and knowledge or under-
standing through their active involvement. Although

there is debate about what kind of activities and
et al.
science projects most commonly consist of engag-
ing with communities and seeking their participa-

et al., 2021;
Pino et al.
have gained increasing interest, driven by among
others the prominence of soil within policy agendas
et al., 2022c; Gascuel et al.
The importance of increasing citizen engagement
and awareness about soils is recognized in the
following policy frameworks: the ‘EU Soil Strategy





-
tion and learning opportunities contributing to soil
-
opments on soils and let them participate in the

the importance of soil health.
Citizen science can also potentially improve our


In 2015, the European Citizen Science Association

citizen science, summarised as the ten principles

provide a benchmark to review existing citizen
science projects and support the development of

et
al.


et al.


et al.
, 2022; Arias-Na-
varro
et al.

The State of Soils in Europe - 2024 93
7.1 Current citizen science activities
Soil is still poorly monitored by citizen scientists
compared with water and air, mainly due to the
complexity of soils, the absence of government
regulation aimed at soil protection and a lack of

et al.


et al.

et al.

current and past European citizen science proj-
ects on agricultural soils and grouped them into


-

-
-

projects generated data on soil nutrients and pH,


heterogeneity and soil pollutants. More than half



A recently started Horizon Europe project called
Engaging citizens in soil science: the road to

science as its primary focus. The project aims to
engage citizens by enhancing their knowledge and
interest in soil health, motivating them to protect
and restore soils. It empowers citizens to actively
participate in data collection and soil science, gen-

Through this involvement, citizens gain the capa-
bility to directly contribute to decision-making on
soil issues, utilising their acquired knowledge. With
Source:
C. Kabala (distributed through imaggeo.egu.eu).
Photo 5. Citizen engagement.
The State of Soils in Europe - 202494
the implementation of 28 citizen science initiatives,

across Europe, consolidating this information into
Echorepo, a long-term open-access data reposito-
ry. This valuable data resource is intended to ben-

and end users, including farmers, landowners,
businesses, educators and institutions responsible
for soil management. By doing so, ECHO seeks

evaluate project outcomes against existing data
from other pertinent soil monitoring initiatives.
Generating high-quality soil data is key to develop-
ing sustainable land management strategies and
driving policy actions that protect our essential soil
resources. In addition, several European research
projects on soils and agriculture, including Bench-
marks, Prepsoil, Nati00ns, LOESS, EUdaphobase,
SOLO and Increase, are including citizen science
aspects in their research agendas.
7.2 Outlook
Mason et al.
from participants, increased awareness of
soil among participating citizen scientists and
collaboration were key outcomes of successful
citizen science projects. The citizen science
community is beginning to explore and adopt

et al.
data collection to the co-design of projects. When
citizens and researchers join in interdisciplinary
settings, developing and implementing long-term
research projects, outcomes are more likely
to contribute to sustainable behaviour change
et al.
has shown that collaboration with citizens is a

et al.
example through adequate response in times
et al.
Hence, there is a need to further promote co-
creation to bring citizens - as individuals and
NGO's, for example - together with politicians
and scientists throughout the research process

policy outcomes and the institutionalisation of
et al.


topics, such as agri-food, legal aspects of citizen
science or citizen science in schools. In November
2023, a session with over 100 participants
was held on the role of citizen science in soil
monitoring, at the stakeholder forum hosted by
EUSO. The main aim was to highlight relevant
methodological aspects and identify associated
challenges for citizen science for soil monitoring.
One of the key messages was that existing data
generated by citizen science can be integrated
into ESDAC data. Time limitations often constrain
the dissemination of citizen science project
outputs, and the maintenance of outputs can be
resource intensive.
Other potential pitfalls are complications with
the sharing of data under the general data
protection regulation framework. Future research
should assess the quality control and quality
assurance of data generated by citizen science
and whether they can be compared directly, due
to the type and nature of the data generated in
citizen science. Lastly, an open question was how
citizen science projects and participation can be



structure and skill requirement from conventional
research projects, attention should be paid to
how citizen science projects are funded and to
involving team members with appropriate skills
such as science communication.
The State of Soils in Europe - 2024 95
#08
Towards sustainable
soil governance:
Policy pathways
for preserving
soil health in Europe
HE STATE OF
SOILS IN EUROPE
The State of Soils in Europe - 202496
08 Towards sustainable
soil governance: Policy pathways
for preserving soil health in Europe
Research in soil science plays a critical
role in addressing societal challenges,
but engaging the public is essential
for bridging knowledge gaps and fos-
tering sustainable practices. Citizen
science oers a participatory ap-
proach to soil research, empowering
communities to contribute data and
insights. Collaboration between citi-
zens and researchers fosters co-cre-
ation of projects, leading to sustain-
able behaviour change and societal
impact. However, challenges such as
data dissemination, quality assurance
and scalability require attention. Inte-
grating citizen science data into exist-
ing platforms, such as the ESDAC, can
enhance its utility. Addressing these
challenges will be crucial for realising
the full potential of citizen science in
soil monitoring and management.
8.1 From the soil thematic strategy to the
Soil Monitoring and Resilience Law:
Advancing soil protection policies in the EU
Over the years, soil policy has evolved from
the soil thematic strategy of 2006 to the
forthcoming legislation on soil monitoring
et al., 2023; Pana-
gos et al.
groundwork for addressing soil degradation and
promoting sustainable soil management practices
at the EU level. Building on this foundation, the EU’s
soil strategy for 2030 and the proposal for a soil


to soil protection and resilience-building measures
-
tance of monitoring soil health indicators, assessing
soil’s resilience to environmental stressors and
implementing measures to enhance soil health and
ecosystem service provision. By advancing soil policy
from strategy to action, the EU aims to safeguard
soil health, promote sustainable land management
practices and ensure the long-term resilience of
its ecosystems.
The forthcoming Soil Monitoring and Resilience Law
is intricately linked with other key policies aimed at
safeguarding soil health and promoting sustainable
land management practices within the EU. This leg-
islation intersects with existing environmental, agri-
cultural and biodiversity policies, forming a cohesive
framework for soil protection and resilience-building

which integrates measures to address soil degra-
dation and promote sustainable farming practic-
es. In addition, the Soil Monitoring and Resilience
Law complements the water framework directive

pressures on water quality and hydrological sys-
tems. Moreover, it reinforces the objectives of the
biodiversity strategy for 2030 and the regulation on
nature restoration, because healthy soils are essen-
tial for supporting diverse ecosystems and conserv-
ing biodiversity. By linking with these policies, the
upcoming legislation on soil monitoring and resil-
ience underscores the EU’s commitment to holistic
environmental governance, ensuring the long-term
sustainability of its soils and ecosystems.
The EU’s soil strategy for 2030 sets out a monitor-

and restore soils and to ensure that they are used
sustainably. The new Soil Monitoring and Resilience
Law will put the EU on a path towards healthy soils
-

The State of Soils in Europe - 2024 97
of soil health, putting in place a comprehensive and
coherent monitoring framework and fostering sus-

remediation of contaminated sites
8.2 Soil conservation policies beyond the EU
The soil in the western Balkan region is highly
vulnerable, requiring careful design and application

for more evidence to bolster a robust soil protec-

implementation. Prioritizing the establishment of a
soil protection framework is essential for ensuring
healthy soils and aligning with the Green Agenda for
the western Balkans.
A soil strategy for England was published in Sep-
tember 2009, setting out the policy on soils at the
time and a number of core objectives for policy
and research. Current policies focus on protect-
ing soils and the important ecosystem services
they provide. Research is focused on addressing

in order to strengthen the protection of soils
and their resilience to climate change. The Swiss
national soil strategy, adopted in 2020, aims to en-
-
vices. It addresses unsustainable practices, such
as soil consumption and degradation, and aims
to achieve zero net soil use by 2050. The strategy
focuses on managing soil use, protecting soil from
harm, restoring degraded soils, raising awareness
of soil’s value and promoting international cooper-
ation for sustainable soil management.
Ukrainian legislation focuses on the concept of ‘land’
rather than ‘soil’. There is no clear legislation on soil
monitoring, protection and management. The main
focus is on soils on agricultural land, which is regu-
-
cation of trends in and types of soil degradation and

-
-
cation of soil science priorities as part of the state’s
development strategy are not systematic processes.
In Türkiye, the Law on Soil Conservation and Land

law is to protect and improve the soil, to classify ag-
ricultural lands, and to determine the minimum area

income while mitigating the risk of fragmentation.
The law sets out the procedures and standards for
ensuring that agricultural land is used in a planned
manner, in line with the notion of sustainable de-
velopment and environmental priorities. In addition
to this law, the Regulation of Conservation, Use and


of Soil Pollution and Point Source Polluted Areas

important laws and regulations in force covering soil
conservation in the country.
Source:
EUSO, based on Panagos et al. (2024c).
Figure 17. Roadmap towards assessing soil health in the EU until 2030 to achieve the Green Deal objectives
 This endeav-
-
itoring and Resilience Law assessments up to 2030.
The State of Soils in Europe - 202498
#09
Ensuring soil health
and ecosystem
resilience amid
diverse land use
demands in Europe
HE STATE OF
SOILS IN EUROPE
The State of Soils in Europe - 2024 99
Ensuring soil health
and ecosystem
resilience amid
diverse land use
demands in Europe
09 Ensuring soil health and
Knowledge gaps persist in the
understanding of social impacts
of soil degradation, including its
effects on human health and cultural
values. In addition, the impacts
of warfare on soils remain poorly
understood, and further research in
this area is required. The soil in the
western Balkans is highly vulnerable,
necessitating the careful design
and implementation of effective
management practices.
Reconciling competing demands for land use
while safeguarding soil health and ensuring
the long-term resilience of European agricul-
ture and ecosystems requires a comprehensive
and balanced approach that considers multiple
stakeholders and objectives. Several strategies can
be employed:
Integrated land use planning. Develop integrat-
ed holistic land use planning strategies consid-
ering multiple objectives, including agriculture,
biodiversity conservation, urban development,
and mitigation of and adaptation to climate
change. This approach involves identifying prior-
-

resource allocation.
Promotion of sustainable agricultural prac-
tices. Encourage the adoption of sustainable
agricultural practices that prioritise soil health
and resilience, such as conservation tillage, crop
rotation, the use of cover crops, agroforestry,
and the balancing of nutrient inputs. Providing
incentives, technical assistance and training pro-
grammes can help farmers transition towards
more sustainable land management practices.
Ecosystem-based approaches. Emphasise eco-
system-based approaches to land management
that enhance the resilience of agricultural land-
scapes and ecosystems. This includes restoring
and preserving natural habitats, promoting bio-
diversity-friendly farming practices and incorpo-
rating green infrastructure measures to support
ecosystem services.
Soil conservation measures. Implement soil
conservation measures, such as erosion control
-
estation projects, to prevent soil degradation
and loss. Investing in soil restoration techniques,
such as soil remediation and the rehabilitation of
degraded land, can also help restore soil health
and fertility.
Multistakeholder collaboration. Foster collab-
oration among stakeholders, including farm-
ers, landowners, environmental organisations,
policymakers and local communities, to develop
and implement land use plans and policies that
balance competing demands and prioritise soil
health and resilience.
Science-based decision-making. Land use
decisions should be based on reliable scientif-
ic knowledge and monitoring data in order to

uses on soil health, biodiversity, water quality
and other ecosystem services. Conducting com-
prehensive impact assessments and modelling
exercises can help predict the long-term conse-
quences of land use decisions and inform
policy development.
ecosystem resilience amid diverse
land use demands in Europe
The State of Soils in Europe - 2024100

Filling gaps in knowledge regarding soil’s social
values is crucial for developing more holistic
and sustainable land use policies. The values

mental health, education, diversity and cultural
identity. By understanding these social values,
policymakers can better incorporate them into
land use management decisions, ensuring that
the full range of ecosystem services provided by
soils is considered.
Soil literacy. Improve the understanding of
citizens and stakeholders of how healthy soils
impact their lives. Collaborate with teachers
and soil scientists to develop soil-related
educational products.
Policy integration and coordination. Integrate
soil protection objectives into broader policy
frameworks, such as agricultural, environmental,
climate change, biodiversity and spatial planning

policy sectors to ensure coherence and synergy
in addressing competing demands for land
use while safeguarding soil health and
ecosystem resilience.
By adopting a multifaceted approach that
combines sustainable land management practices,
ecosystem-based approaches, stakeholder
collaboration, the inclusion of soil sciences in
teaching programmes and science-based decision-
making, it is possible to reconcile competing
demands for land use while safeguarding soil
health and ensuring the long-term resilience of
European agriculture and ecosystems.
The State of Soils in Europe - 2024 101
The interplay among various drivers and
degradation processes underscores the
intricate nature of soil health. Both natural
phenomena and human activities contribute to
soil degradation, emphasising the need for inte-
grated approaches to address these challenges
comprehensively. Citizen science is a valuable
avenue for raising awareness of the importance
of soil health and increasing public engagement in

enhance participation, particularly in urban areas.
Policy initiatives within the EU demonstrate a com-
mitment to holistic soil governance; yet challenges
persist globally, with varying approaches to soil


Moving forward, it will be imperative to prioritise
data enhancement, policy strengthening and
stakeholder engagement in sustainable soil gover-

long-term monitoring, embracing technological in-
novation and fostering international collaboration
to ensure the resilience and sustainability of our

engagement and robust policy frameworks, we can
collectively preserve soil health, safeguarding this

future generations and securing the health and
well-being of our planet.
Conclusions
he State of Soils
in Europe
The State of Soils in Europe - 2024102
References

Zone–subsoiling relationships to bulk density and
cone index on a furrow–irrigated soil. Transactions
of the ASAE
https://doi.org/https://doi.org/10.13031/2013.6118
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zub-

Global
Change Biology
https://doi.org/10.1111/gcb.14405


from construction and demolition rubble. Journal
of Soils and Sediments, 
https://doi.org/10.1007/s11368-014-0959-4


water resources: A review. Science of the Total Envi-
ronment, 599–600, 1740–1755.
https://doi.org/10.1016/j.scitotenv.2017.05.096
-
dation: socioeconomic and environmental causes
and consequences in the eastern Mediterranean.
Land Degradation & Development,
https://doi.org/https://doi.org/10.1002/ldr.1069
Achilles, F., Tischer, A., Bernhardt-Römermann, M.,
Heinze, M., Reinhardt, F., Makeschin, F., & Mi-

bioactive humus forms but stronger mineral soil

Results of a repeated site assessment after 63 and
82 years of forest conversion in Central Germany.
Forest Ecology and Management, 483.
https://doi.org/10.1016/j.foreco.2020.118769

liming and forms of nitrogen fertilizer on estab-
lished grassland. The Journal of Agricultural Science,
https://doi.org/10.1017/S0021859600063395
Agapiou, A., Lysandrou, V., & Hadjimitsis, D. G.
-
sion threat to subsurface archaeological remains.
Remote Sensing, 12
https://doi.org/10.3390/rs12040675
Ahmad, M., Ishaq, M., Shah, W. A., Adnan, M.,
Fahad, S., Saleem, M. H., Khan, F. U., Mussarat, M.,
Khan, S., Ali, B., Mostafa, Y. S., Alamri, S., & Hash-

from Organic and Inorganic Sources for Optimum
Wheat Production in Calcareous Soils. Sustainabili-
ty,https://doi.org/10.3390/su14137669
Ahmadi, H., Motesharezadeh, B., & Dadrasnia,

emphasis on chlorosis correction mechanisms in
orchards: a review. Journal of Plant Nutrition,
782–800. https://doi.org/10.1080/01904167.2022.2087088
Climate Change
Adaptation: Implications for Food Security and Nutri-
tion BT - African Handbook of Climate Change Adap-
tation 

Publishing.
https://doi.org/10.1007/978-3-030-42091-8_142-1


Journal of Hydrology, 557, 631–642.
https://doi.org/10.1016/j.jhydrol.2017.12.052
Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., &

137Cs as tracers for soil erosion assessment in
mountain grasslands. Chemosphere, 103, 274–280.
https://doi.org/10.1016/j.chemosphere.2013.12.016
Alewell, C., Ringeval, B., Ballabio, C., Robinson, D.
-
phorus shortage will be aggravated by soil erosion.
Nature Communications,
https://doi.org/10.1038/s41467-020-18326-7
The State of Soils in Europe - 2024 103
Alkharabsheh, H. M., Seleiman, M. F., Hewedy,
O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A.,

responses and management strategies to mitigate
soil salinity in modern agriculture: A review. Agron-
omy, https://doi.org/10.3390/agronomy11112299

Environmen-
tal Geochemistry and Health,https://
doi.org/10.1007/S10653-009-9255-4/TABLES/5
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van
Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S.,
Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D.,
Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton,
-
man-driven decline in global burned area. Science,

https://doi.org/10.1126/science.aal4108





NO and CO
of Kenya. Biogeochemistry,
https://doi.org/10.1007/s10533-017-0348-3
Arias-Navarro, C., Panagos, P., Jones, A., Amaral, M.
J., Schneegans, A., Van Liedekerke, M., Wojda, P., &

funded by the European Commission: Trends and
future. A systematic review of research projects.
European Journal of Soil Science, 
https://doi.org/10.1111/ejss.13423

Soil
pollution in the Western Balkans.
of the European Union. https://doi.org/10.2760/21207,
JRC138306.
Arnhold, S., Lindner, S., Lee, B., Martin, E., Ketter-
ing, J., Nguyen, T. T., Koellner, T., Ok, Y. S., & Huwe,

erosion and conservation potential for row crop
cultivation. Geoderma, 219–220, 89–105.
https://doi.org/10.1016/j.geoderma.2013.12.023

de Forges, A., Le Bas, C., Bellamy, P. H., Berényi
Üveges, J., Freudenschuß, A., Jones, A. R., Jones, R.
J. A., Kibblewhite, M. G., Simota, C., Verdoodt, A.,
 Environmental Assess-
ment of Soil for Monitoring: Volume IIa Inventory &
Monitoring.
the European Communities. EUR 23490.
https://doi.org/10.2788/93524


for Irrigation. Journal of Tekirdag Agricultural Facul-
ty,

sealing management in growing and shrinking
cities - A systemic multi-scale analysis in Germany.
Erdkunde
https://doi.org/10.3112/erdkunde.2013.03.04
Interpretation de l’analyse de terre
pour les grandes cultures et les prairies temporaires
- guide pratique. ARVALIS – Institut du végétal.
https://www.arvalis.fr/espace-presse/vient-de-paraitre-guide-pra-
tique-interpretation-de-lanalyse-de-terre#:~:text=Le diagnostic établi
par l’analyse de terre est la seule
-



metals and metalloids in topsoil and mental health
in the adult population of Spain. Environmental
Research, 179. https://doi.org/10.1016/j.envres.2019.108784

Straalen, N. M., van Gestel, C. A. M., Zhou, J., He,

community composition and functions are resilient
to metal pollution along two forest soil gradients.
FEMS Microbiology Ecology
https://doi.org/10.1093/femsec/u003
Boden in der Schweiz. Zustand und
Entwicklung.-
ben vom Bundesamt für Umwelt BAFU.
https://www.bafu.admin.ch/bafu/de/home/themen/boden/publika-
tionen-studien/publikationen/boden-in-der-schweiz.html
The State of Soils in Europe - 2024104


SaltMod, to improve subsurface drainage design in
 Agricultural Water
Management,
https://doi.org/10.1016/j.agwat.2006.05.010
Bain Bonn, C. G., A. R., S., Chapman, S., Coupar,
A., Evans, M., Gearey, B., Howat, M., Joosten, H.,
Keenleyside, C., Labadz, J., Lindsay, R., Littlewood,
N., Lunt, P., Miller, C. J., Moxey, A., Orr, H., Reed, M.,
IUCN UK
Commission of Inquiry on Peatlands. IUCN UK Peat-
land Programme. https://www.iucn-uk-peatlandprogramme.
org/resources/commission-inquiry
Bakker, M. M., Govers, G., Jones, R. A., & Rounsev-
-
rope’s crop yields. Ecosystems,
https://doi.org/10.1007/s10021-007-9090-3
Bakker, M. M., Govers, G., Kosmas, C., Vanacker, V.,

as a driver of land-use change. Agriculture, Ecosys-
tems and Environment, 
https://doi.org/10.1016/j.agee.2004.07.009
Bakker, M. M., Govers, G., & Rounsevell, M. D. A.

An analysis based on experimental work. Catena,
https://doi.org/10.1016/j.catena.2003.07.002
Baliuk, S. A., Kucher, A. V., & Maksymenko, N. V.
-
lems and strategy of sustainable management.
Ukrainian Geographical Journal,https://
doi.org/https://doi.org/10.15407/ugz2021.02.003

gas emissions: A synthesis of 20 years of experi-
mentation. European Journal of Soil Science,
https://doi.org/10.1111/ejss.12013
Ballabio, C., Jiskra, M., Osterwalder, S., Borrelli, P.,

assessment of mercury content in the European
Union topsoil. Science of the Total Environment,
769, 144755. https://doi.org/10.1016/j.scitotenv.2020.144755
-
um in topsoils of the European Union – An analysis
based on LUCAS topsoil database. Science of the
Total Environment, 912.
https://doi.org/10.1016/j.scitotenv.2023.168710
-
giazzi, A., Jones, A., Borrelli, P., Montanarella, L., &
-
ical properties at European scale using Gaussian
process regression. Geoderma, 355.
https://doi.org/10.1016/j.geoderma.2019.113912
Ballabio, C., Panagos, P., Lugato, E., Huang, J. H., Or-


in European topsoils: An assessment based on
LUCAS soil survey. Science of the Total Environment,
636, 282–298. https://doi.org/10.1016/j.scitotenv.2018.04.268
Ballabio, C., Panagos, P., & Monatanarella, L.

European scale using the LUCAS database. Geo-
derma, 261, 110–123.
https://doi.org/10.1016/j.geoderma.2015.07.006
The role
of mires in the biosphere [in Russian]. Belorusskaja
kniga.

Soil microbiomes and one health. Nature Reviews
Microbiology,
https://doi.org/10.1038/s41579-022-00779-w
Banger, K., Kukal, S. S., Toor, G., Sudhir, K., &

additions of chemical fertilizers and farm yard ma-
nure on carbon and nitrogen sequestration under
rice-cowpea cropping system in semi-arid tropics.
Plant and Soil,
https://doi.org/10.1007/s11104-008-9813-z

and land productivity. Ecological Economics,
269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004
The State of Soils in Europe - 2024 105
Batjes, N. H., Ceschia, E., Heuvelink, G. B. M., De-
menois, J., le Maire, G., Cardinael, R., Arias-Navarro,

multi-ecosystem Monitoring, Reporting and Veri-

stock change assessment. Carbon Management,
https://doi.org/10.1080/17583004.2024.2410812
Batool, M., Sarrazin, F. J., Attinger, S., Basu, N.


 Scientic Data, https://doi.org/10.1038/
s41597-022-01693-9

salinity on microbial tolerance to drying and rewet-
ting. Biogeochemistry, 
https://doi.org/10.1007/s10533-011-9672-1
Beaulne, J., Garneau, M., Magnan, G., & Boucher,

trees in forested peatlands of the boreal biome.
Scientic Reports, 
https://doi.org/10.1038/s41598-021-82004-x
Beckers, V., Poelmans, L., Van Rompaey, A., &

on agricultural dynamics: a case study in Belgium.
Journal of Land Use Science, 
https://doi.org/10.1080/1747423X.2020.1769211

-
ry, Practice. Journal of Environmental Quality, 
72–79. https://doi.org/10.2134/JEQ2000.00472425002900010009X
Beillouin, D., Corbeels, M., Demenois, J., Berre, D.,

A global meta-analysis of soil organic carbon in
the Anthropocene. Nature Communications,
1–10.
https://doi.org/10.1038/s41467-023-39338-z
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R.

soils across England and Wales 1978-2003. Nature,

https://doi.org/10.1038/nature04038
Berger, T. W., Swoboda, S., Prohaska, T., & Glatzel,

-
Forest Ecology and Management, 
234–246. https://doi.org/10.1016/j.foreco.2006.04.004
Berger, T. W., Türtscher, S., Berger, P., & Lindebner,



forest stands of the Vienna Woods. Environmen-
tal Pollution, 216, 624–635. https://doi.org/10.1016/j.
envpol.2016.06.024

M. Busse, C. P. Giardina, D. M. Morris, & D. S.
Global Change and Forest
Soils 
https://doi.org/10.1016/b978-0-444-63998-1.00003-3
Berisso, F. E., Schjønning, P., Keller, T., Lamandé,
M., Etana, A., De Jonge, L. W., Iversen, B. V., Arvids-

subsoil compaction on pore size distribution and
gas transport in a loamy soil. Soil and Tillage Re-
search, 122, 42–51. https://doi.org/10.1016/j.still.2012.02.005
Berisso, F. E., Schjønning, P., Keller, T., Laman-
dé, M., Simojoki, A., Iversen, B. V., Alakukku, L., &


compaction. Geoderma, 195–196, 184–191.
https://doi.org/10.1016/j.geoderma.2012.12.002


needs. Earth-Science Reviews, 185, 1107–1128.
https://doi.org/10.1016/j.earscirev.2018.08.006
Bhaskaran, S., Paramananda, S., & Ramnarayan, M.

methods for mapping urban features using Ikonos
satellite data. Applied Geography,
https://doi.org/10.1016/j.apgeog.2010.01.009

-

Walloon Region. Environmental Science and Policy,
https://doi.org/10.1016/S1462-9011(02)00117-X
The State of Soils in Europe - 2024106


in the Climate Stress Mitigation. Tarım Makinaları
Bilimi Dergisi (Journal of Agricultural Machinery Sci-
ence),
https://api.semanticscholar.org/CorpusID:127290188
Bispo, A., Andersen, L., Angers, D. A., Bernoux, M.,
Brossard, M., Cécillon, L., Comans, R. N. J., Harm-
sen, J., Jonassen, K., Lamé, F., Lhuillery, C., Maly, S.,
Martin, E., Mcelnea, A. E., Sakai, H., Watabe, Y., &


 Fron-
tiers in Environmental Science, 
https://doi.org/10.3389/fenvs.2017.00041
Biswas, G., Sengupta, A., Alfaisal, F. M., Alam, S.,


services: A three-decade perspective. Ecological
Informatics, 77, 102283.
https://doi.org/10.1016/j.ecoinf.2023.102283

 Geography,
https://doi.org/10.1080/00167487.2020.1862584

-
erence to soil erosion by water, with implications
for mitigating erosion on agricultural land in South
East England. Soil Use and Management,
40–47. https://doi.org/https://doi.org/10.1111/sum.12095
Soil Erosion in Eu-
rope.
in Europe. John Wiley & Sons Ltd.
https://doi.org/10.1002/0470859202
-
cio-economic factors in soil erosion and conser-
vation. Environmental Science and Policy,
https://doi.org/10.1016/S1462-9011(02)00120-X
Bobbink, R., Hicks, K., Galloway, J., Spranger, T.,
Alkemade, R., Ashmore, M., Bustamante, M.,
Cinderby, S., Davidson, E., Dentener, F., Emmett,
B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A.,


diversity: a synthesis. Ecological Applications, 
30–59. https://doi.org/10.1890/08-1140.1

-
entand heavy metal transformationand bioavail-
ability. Advances in Agronomy, 78, 215–272.
https://doi.org/10.1016/S0065-2113(02)78006-1
Bonn, A., Allott, T., Evans, M., Joosten, H., &
Peatland Restoration and
Ecosystem Services: Science, Policy and Practice.
Cambridge University Press.
Borrelli, P., Alewell, C., Yang, J. E., Bezak, N., Chen,
Y., Fenta, A. A., Fendrich, A. N., Gupta, S., Matthews,
F., Modugno, S., Haregeweyn, N., Robinson, D. A.,
Tan, F., Vanmaercke, M., Verstraeten, G., Vieira,

understanding of pathways of multiple co-occur-
ring erosion processes on global cropland. Interna-
tional Soil and Water Conservation Research,
713–725. https://doi.org/10.1016/j.iswcr.2023.07.008
Borrelli, P., Ballabio, C., Panagos, P., & Montanarel-
-
an soils. Geoderma, 232–234, 471–478.
https://doi.org/10.1016/j.geoderma.2014.06.008
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato,
E., Ballabio, C., Alewell, C., Meusburger, K., Mo-
dugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost,

assessment of the global impact of 21st century
land use change on soil erosion. Nature Communi-
cations,https://doi.org/10.1038/s41467-017-02142-7
Borselli, L., Torri, D., Øygarden, L., De Alba, S.,

Soil Erosion in Europe

https://doi.org/https://doi.org/10.1002/0470859202.ch46
The State of Soils in Europe - 2024 107
Bosello, F., Nicholls, R. J., Richards, J., Roson, R., &

change in Europe: Sea-level rise. Climatic Change,
https://doi.org/10.1007/s10584-011-0340-1
Bradis, E. M., Kuz’michov, A. I., Andrienko, T. L., &
Peat Reserves of Ukraine,
their regionalization, and their use [in Ukranian].
Naukova dumka.

solution in Swiss forest stands: A 20 year’s time

https://doi.org/10.1371/journal.pone.0227530
Briard, J., Ayrault, S., Roy-Barman, M., Bordier, L.,
L’Héritier, M., Azéma, A., Syvilay, D., & Baron, S.


Lessons for a better discrimination of chemical
signatures. Science of the Total Environment, 864.
https://doi.org/10.1016/j.scitotenv.2022.160676
Briones, M. J. I., Juan-Ovejero, R., McNamara, N. P.,

matter decomposition in temperate peatlands are
driven by local spatial heterogeneity in abiotic con-
ditions and not by vegetation structure. Soil Biology
and Biochemistry, 165.
https://doi.org/10.1016/j.soilbio.2021.108501
Broothaerts, N., Panagos, P., Arias-Navarro, C.,
Ballabio, C., Belitrandi, D., Breure, T., De Medici, D.,
De Rosa, D., Fendrich, A., Havenga, C., Koeninger, J.,
Kreiselmeier, J., Labouyrie, M., Liakos, L., Maréchal,
A., Martin Jimenez, J., Matthews, F., Michailidis, V.,
EUSO annual
bulletin 2023.
Union. https://doi.org/10.2760/46142, JRC133346.
Brunn, H., Arnold, G., Körner, W., Rippen, G., Stein-

-
bile. Reviewing the status and the need for their
phase out and remediation of contaminated sites.
Environmental Sciences Europe, 
https://doi.org/10.1186/s12302-023-00721-8
-
-
mation of pedogenic carbonates by irrigation
and fertilization and their contribution to carbon
sequestration in soil. Geoderma, 262, 12–19.
https://doi.org/10.1016/j.geoderma.2015.08.003
Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A.,

Food Security. Agronomy Journal,
2200. https://doi.org/https://doi.org/10.2134/agronj2016.06.0368
Butterbach-Bahl, K., Baggs, E. ., Dannenmann, M.,

Nitrous oxide emissions from soils: how well do we
 Phil-
osophical Transactions of the Royal Society of Lon-
don. Series B, Biological Sciences, 368, 20130122.
https://doi.org/10.1098/rstb.2013.0122
Carmona-Moreno, C., Dondeynaz, C., & Biedler, M.
Position Paper on Water, Energy, Food
and Ecosystem (WEFE) and Sustainable Development
Goals (SDGS)
Union, Luxembourg, 2019. https://doi.org/10.2760/5295,
EUR 29509
Carnicer, J., Alegria, A., Giannakopoulos, C., Di
Giuseppe, F., Karali, A., Koutsias, N., Lionello, P.,


 emissions in Europe.
Scientic Reports,
https://doi.org/10.1038/s41598-022-14480-8
Carpenter, S. R., Caraco, N. F., Correll, D. L., How-

Nonpoint Pollution of Surface Waters with Phos-
phorus and Nitrogen. Ecological Applications, 
559–568. https://doi.org/10.1890/1051-0761
Twelfth Development Plan

https://onikinciplan.sbb.gov.tr/wp-content/uploads/2023/11/
On-Ikinci-Kalkinma-Plani_2024-20 28.pdf.



https://kutuphane.tarimorman.gov.tr/vund/Record/1178980
The State of Soils in Europe - 2024108
Chagnon, M., Kreutzweiser, D., Mitchell, E. A. D.,
Morrissey, C. A., Noome, D. A., & Van Der Sluijs, J. P.
-
ticides to ecosystem functioning and services. En-
vironmental Science and Pollution Research,
119–134. https://doi.org/10.1007/s11356-014-3277-x
Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J.,
World Atlas of
Desertication.
Union. https://doi.org/10.2760/9205


 Agronomy Research,
664–673.
Cicchella, D., Giaccio, L., Lima, A., Albanese, S.,
-
sessment of the topsoil heavy metals pollution in
the Sarno River basin, south Italy. Environmental
Earth Sciences,
https://doi.org/10.1007/s12665-013-2916-8

investigation of expectations of urban forest users:
Example of Western Black Sea Region. Kastamonu
Üniversitesi Orman Fakültesi Dergisi, 
https://doi.org/10.17475/kastorman.284918

of environmental impacts of agricultural produc-

food choice. Environmental Research Letters,
064016. https://doi.org/10.1088/1748-9326/aa6cd5

Greenhouse Gas Emissions from Canadian Peat
Extraction, 1990–2000: A Life-cycle Analysis. AM-
BIO: A Journal of the Human Environment, 
456–461. https://doi.org/10.1579/0044-7447-34.6.456
-
agement as a factor controlling dissolved organic
carbon release from upland peat soils 2: Changes
in DOC productivity over four decades. Science of
the Total Environment,
https://doi.org/10.1016/j.scitotenv.2010.08.038
Codemo, A., Pianegonda, A., Ciolli, M., Favargiotti,

and Canopy Cover Using High-Resolution Airborne
Imagery and Digital Elevation Models to Support
Urban Planning. Sustainability,
https://doi.org/10.3390/su14106149

Agriculture on Soil Texture Due to Wind Erosion.
Land Degradation & Development,
https://doi.org/https://doi.org/10.1002/ldr.2297
-
gies to recover crop productivity after soil compac-
Soil
and Tillage Research, 191, 156–161.
https://doi.org/10.1016/j.still.2019.04.008
La fertilisation P-K-Mg: Les bases
du raisonnement. Comité français d’étude et de
développement de la fertilisation raisonnée.
https://comifer.asso.fr/wp-content/uploads/2015/03/COMIFER_RAP-
PORT_fertilisation_15102019.pdf

soil salinity in agricultural areas. European Journal
of Soil Science,
https://doi.org/https://doi.org/10.1111/ejss.13010

salinity assessment for agriculture across multiple

Advances in Agronomy
Inc. https://doi.org/10.1016/bs.agron.2019.07.001

actions to protect the soil cultural and natural heri-
tage of Europe. Geoderma Regional, 32.
https://doi.org/10.1016/j.geodrs.2022.e00599
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., &

particulate and mineral-associated organic matter.
Nature Geoscience, 
https://doi.org/10.1038/s41561-019-0484-6
Criscuolo, L., L’Astorina, A., van der Wal, R., & Gray,

on sustainability policies: A critical review. Current
Opinion in Environmental Science and Health, 31,
100423. https://doi.org/10.1016/j.coesh.2022.100423
The State of Soils in Europe - 2024 109

-
dation and their impact on microbial activity and
diversity. Frontiers in Microbiology, 
https://doi.org/10.3389/fmicb.2019.00338

warming in observations and models. Nature Cli-
mate Change,
https://doi.org/10.1038/nclimate1633
Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A.,
Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P.,

European scale review. Science of the Total Environ-
ment, 573, 727–739.
https://doi.org/10.1016/j.scitotenv.2016.08.177


stocks in European croplands and grasslands:
Global
Change Biology, September, 1–15.
https://doi.org/10.1111/gcb.16992


succession, soil tillage and climate on wheat yield
and soil properties. Soil and Tillage Research, 190,
209–219. https://doi.org/10.1016/j.still.2019.01.012



Land Degradation and Development
https://doi.org/10.1002/ldr.1147
De La Torre, A., Iglesias, I., Carballo, M., Ramírez, P.,

the vulnerability of European Union soils to anti-
biotic contamination. Science of the Total Environ-
ment, 414, 672–679.
https://doi.org/10.1016/j.scitotenv.2011.10.032
de Ruiter, H., Macdiarmid, J. I., Matthews, R. B.,

global agricultural land footprint associated with
UK food supply 1986–2011. Global Environmental
Change, 43, 72–81.
https://doi.org/10.1016/j.gloenvcha.2017.01.007
De Silva, S., Ball, A. S., Shahsavari, E., Indrapala, D.
-
ular emissions on the activity and diversity of the
roadside soil microbial community. Environmental
Pollution, 277, 116744.
https://doi.org/10.1016/j.envpol.2021.116744



evidences of the impact of irrigation on carbonates
in the tilled layer of semi-arid Mediterranean soils.
Geoderma, 297, 48–60.
https://doi.org/10.1016/j.geoderma.2017.03.005
-

in grasslands with contrasting nitrogen manage-
ment. Soil Biology and Biochemistry,
2103. https://doi.org/10.1016/J.SOILBIO.2006.01.008


Water, Air, and Soil Pollution, 35, 293–310.
https://doi.org/10.1007/BF00290937
De Vries, W., Posch, M., Simpson, D., de Leeuw,
F. A. A. M., Schulte-Uebbing, L. F., Sutton, M. A., &

in adverse impacts of nitrogen use in Europe on
human health, climate, and ecosystems: a review.
Earth Science Reviews, 253.
https://doi.org/10.1016/j.earscirev.2024.104789
De Vries, W., Römkens, P.F.A.M., Kros, J., Voogd,
J.C, and Schulte-Uebbing, L.F., 2022, Impacts of
nutrients and heavy metals in European agricul-
ture. Current and critical inputs in relation to air,

pages.
De Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J.
-
aries for agricultural nitrogen inputs in the Euro-
pean Union to meet air and water quality targets.
Science of the Total Environment, 786, 147283.
https://doi.org/10.1016/j.scitotenv.2021.147283
The State of Soils in Europe - 2024110
Deane McKenna, M., Grams, S. E., Barasha, M.,

and inorganic soil carbon in a semi-arid rangeland
is primarily related to abiotic factors and not live-
stock grazing. Geoderma, 419.
https://doi.org/10.1016/j.geoderma.2022.115844
-

Communications in Soil Science and Plant Analysis,
https://doi.org/10.1081/CSS-200043087
-
diversity in Europe. In Encyclopedia of Caves, Third
Edition
https://doi.org/10.1016/B978-0-12-814124-3.00017-0
-

century mining returned to disturb the rural transi-
tion. Geoforum, 116, 42–49.
https://doi.org/10.1016/j.geoforum.2020.07.012
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C.,
Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida,
F., Berhe, A. A., Cutler, N. A., Gallardo, A., García-

Hseu, Z. Y., Hu, H. W., Kirchmair, M., Neuhauser, S.,
-
ments of soil biodiversity drive ecosystem func-
tions across biomes. Nature Ecology and Evolution,

https://doi.org/10.1038/s41559-019-1084-y



Monitoring and Modelling Dynamic
Environmentshttps://doi.org/https://doi.
org/10.1002/9781118649596.ch2
Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N.
-

Study. Environmental Science & Technology,
4390–4395. https://doi.org/10.1021/es049885v
-

production: a review. Agronomy for Sustainable
Development, 
https://doi.org/10.1007/s13593-015-0346-6

of land-use and land-cover changes from 1965 to
2014 in Tam Giang-Cau Hai Lagoon, central Viet-
nam. Applied Geography, 58, 48–64.
https://doi.org/10.1016/j.apgeog.2014.12.012
Dmytruk, Y., Cherlinka, V., Cherlinka, L., & Dent, D.
International Journal
of Environmental Studies,https://doi.or
g/10.1080/00207233.2022.2152254



techniques for high-resolution mapping and quan-


Environmental Research, 235.
https://doi.org/10.1016/j.envres.2023.116679
Domínguez-Beisiegel, M., Herrero, J., & Castañeda,

example of 80 years’ decline in Monegros, Spain.
Land Degradation & Development, 
https://doi.org/https://doi.org/10.1002/ldr.1122

Permeability and channel-mediated transport of
boric acid across membrane vesicles isolated from
squash roots. Plant Physiology, 
https://doi.org/10.1104/pp.124.3.1349
-

Republic. In Soil Erosion in Europe
https://doi.org/https://doi.org/10.1002/0470859202.ch10


Turkey. Environmental Monitoring and Assessment,
https://doi.org/10.1007/s10661-008-
0597-7
Drösler, M., Verchot, L. V., Freibauer, A., & Pan,

Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N.,
2013
Supplement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories: Wetland
IPCC. http://www.ipcc-nggip.iges.or.jp/public/wetlands/
The State of Soils in Europe - 2024 111
Dupras, J., Marull, J., Parcerisas, L., Coll, F., Gon-

sprawling on ecological patterns and processes

Environmental
Science and Policy, 58, 61–73.
Dupuy, J. luc, Fargeon, H., Martin-StPaul, N., Pi-



southern Europe: a review. Annals of Forest Sci-
ence, https://doi.org/10.1007/s13595-020-00933-5
-
tion. https://www.ecsa.ngo/
Edlinger, A., Garland, G., Hartman, K., Banerjee, S.,
Degrune, F., García-Palacios, P., Hallin, S., Valza-
no-Held, A., Herzog, C., Jansa, J., Kost, E., Maestre, F.
T., Pescador, D. S., Philippot, L., Rillig, M. C., Rom-
dhane, S., Saghaï, A., Spor, A., Frossard, E., & van
-
ment and pesticide use reduce the functioning
Nature Ecology and
Evolution,
https://doi.org/10.1038/s41559-022-01799-8
The European environment — State
and outlook 2010 -
ment Agency. https://doi.org/10.1016/j.toxlet.2010.03.051
Eects of air pollution on European
ecosystems. Past and future exposure of European
freshwater and terrestrial habitats to acidifying and
eutrophying air pollutants-
pean Environment Agency. https://doi.org/10.2800/18365
Land recycling in Europe. Approach-
es to measuring extent and impacts

https://doi.org/10.2800/503177
The European
environment — state and outlook 2020: knowledge
for transition to a sustainable Europe

https://doi.org/10.1097/00010694-197108000-00011
The European environment —state
and outlook 2020. Knowledge for transition to a sus-
tainable Europe.-
an Union. https://doi.org/10.15196/TS600305
 Land take and land degradation in
functional urban areas.

Union. https://doi.org/10.2800/714139
 Soil Carbon.

https://doi.org/10.2800/680093
Soil monitoring in Europe — Indica-
tors and thresholds for soil health assessments 

Agency. https://doi.org/10.2800/956606
Landscape fragmentation by degree of
urbanisation and MAES ecosystem type, 2018, EU-
27 and the UK. Landscape Fragmentation Pressure
in Europe.
https://www.eea.europa.eu/en/analysis/indicators/landscape-frag-
mentation-pressure-in-europe?activeAccordion=546a7c35-9188-4d23
-94ee-005d97c26f2b
European Union 8th Environment
Action Programme Monitoring report on progress
towards the 8th EAP objectives 2023 edition. Euro-
pean Environment Agency. https://doi.org/10.2800/34224

impact of climate change on soil erosion and
potential for adaptation through soil conservation.
Earth-Science Reviews, 226.
https://doi.org/10.1016/j.earscirev.2022.103921
EFSA, Arena, M., Auteri, D., Barmaz, S., Bellisai, G.,
Brancato, A., Brocca, D., Bura, L., Byers, H., Chiuso-
lo, A., Court Marques, D., Crivellente, F., De Lent-
decker, C., Egsmose, M., Erdos, Z., Fait, G., Ferreira,
L., Goumenou, M., Greco, L., … Villamar-Bouza, L.
-
ment of the active substance copper compounds

hydroxide, copper oxychloride, tribasic copper
EFSA
Journal,https://doi.org/10.2903/j.efsa.2018.5152
The State of Soils in Europe - 2024112

Subnational nutrient budgets to monitor environ-
mental risks in EU agriculture: calculating phos-
phorus budgets for 243 EU28 regions using public
data. Nutrient Cycling in Agroecosystems,
199–213.
https://doi.org/10.1007/S10705-020-10064-Y/FIGURES/4
Einarsson, R., Sanz-Cobena, A., Aguilera, E., Billen,
G., Garnier, J., van Grinsven, H. J. M., & Lassaletta, L.
-


https://doi.org/10.1038/s41597-021-01061-z
Proposal of methodological devel-
opment for the LUCAS programme in accordance
with national monitoring programmes. European
Joint Programme.
https://ejpsoil.eu/leadmin/projects/ejpsoil/WP6/EJP_SOIL_Deliv-
erable_6.3_Dec_2021_nal.pdf#:~:text=Deliverable 6.3 Proposal of
methodological development
El Hadri, H., Chéry, P., Jalabert, S., Lee, A., Po-


copper in Aquitaine region by using French nation-
al databases. Science of The Total Environment, 441,
239–247. https://doi.org/10.1016/J.SCITOTENV.2012.09.070

P., Berendse, F., Liira, J., Aavik, T., Guerrero, I.,
Bommarco, R., Eggers, S., Pärt, T., Tscharntke, T.,


and Ecosystem Services. Advances in Ecological
Research, 55, 43–97.
https://doi.org/10.1016/bs.aecr.2016.08.005
Engardt, M., Simpson, D., Schwikowski, M., &
-
gen in Europe 1900–2050. Model calculations and
comparison to historical observations. Tellus, Series
B: Chemical and Physical Meteorology, 69https://
doi.org/10.1080/16000889.2017.1328945
Erdogan, H. E., Havlicek, E., Dazzi, C., Montanarel-


conservation and sustainable development goals


International Soil and Water Conservation Research,
https://doi.org/10.1016/j.iswcr.2021.02.003
-
 Soil
Science (in Turkish)

Water Erosion
Atlas of Turkey (in Turkish).
https://doi.org/978-605-9550-23-9

and spatial pattern of urban land changes in the
megacities of Southeast Asia. Land Use Policy, 48,
213–222. https://doi.org/10.1016/j.landusepol.2015.05.017

European Parliament and of the Council of 24 June
2024 on nature restoration and amending Regula-
 Ocial Journal of the European
Union, 
https://eur-lex.europa.eu/eli/reg/2024/1991/oj
Soil Atlas of Europe,
European Soils Bureau Network -
-
tions of the European Communities.
https://esdac.jrc.ec.europa.eu/content/soil-atlas-europe


of the environment, and in particular of the soil,
when sewage sludge is used in agriculture. Ocial
Journal of the European Communities,
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-
%3A31986L0278
Report from the
Commission to the European Parliament, the Coun-
cil, the European Economic and Social Committee
and the Committee of the Regions. The implemen-
tation of the Soil Thematic Strategy and ongoing
activities 
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX-
:52012DC0046#:~:text=This report provides an overview of
The State of Soils in Europe - 2024 113
Communication
from the commission to the european parliament,
the council, the european economic and social
committee and the committee of the regions.
EU Soil Strategy for 2030 Reaping the benets of
healthy soils for people, food, nature and climate.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-
%3A52021DC0699
Report from the
Commission to the European parliament, the Coun-
cil, the European Economic and Social Committee
and the Committee of the Regions. The Third Clean
Air Outlook
https://environment.ec.europa.eu/publications/third-clean-air-out-
look_en
EU missions – Soil
deal for Europe – What is the EU mission – A soil
deal for Europe, Publications Oce of the European
Union, 2023. https://ec.europa.eu/info/les/communica-
tion-commission-european-missions_en
Proposal for a
Directive of the European Parliament and of the
Council on Soil Monitoring and Resilience (Soil Moni-
toring Law)https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX:52023PC0416
European Parliament
resolution of 17 September 2020 on a strategic
approach to pharmaceuticals in the environment

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-
:52020IP0226
-
counts handbook. In Eurostat Manuals and Guide-
lines.
https://doi.org/10.2785/158567
 Urban-rural Europe - introduction.
Statistics Explained.
https://ec.europa.eu/eurostat/statistics-explained/SEPDF/
cache/112336.pdf
Evans, M. G., Alderson, D. M., Evans, C. D., Stimson,
A., Allott, T. E. H., Goulsbra, C., Worrall, F., Crouch,

Carbon Loss Pathways in Degraded Peatlands:
New Insights From Radiocarbon Measurements of
Peatland Waters. Journal of Geophysical Research:

https://doi.org/10.1029/2021JG006344
Faggioli, V., Menoyo, E., Geml, J., Kemppainen, M.,


mycorrhizal fungal communities. Mycorrhiza,
363–373. https://doi.org/10.1007/s00572-019-00895-1

water-function-based framework for understand-
ing and governing water resilience in the Anthro-
pocene. One Earth,
https://doi.org/10.1016/j.oneear.2021.01.009
Guidelines for soil description. Food
and Agriculture Organization of the United Na-
tions. https://doi.org/10.1007/978-3-030-33443-7_3
The water–energy–food nexus. A new
approach in support of food security and sustain-
able agriculture. Food and Agriculture Organization
of the United Nations.
https://doi.org/10.1016/b978-0-323-91223-5.00008-3
ITPS
Soil Letters
of the United Nations.
https://www.fao.org/3/cb8617en/cb8617en.pdf

Global Soil Partnership.
https://www.fao.org/global-soil-partnership/en/
FAO Soils Portal. https://
www.fao.org/soils-portal/about/all-denitions/en
 Status of the World’s Soil Re-
sources (SWSR) - Main Report. Food and Agriculture
Organization of the United Nations and Intergov-
ernmental Technical Panel on Soils.
https://doi.org/ISBN 978-92-5-109004-6
The State of Soils in Europe - 2024114

and Dispersive Soils in Europe. In Soil Erosion in
Europe 
https://doi.org/https://doi.org/10.1002/0470859202.ch40
Fendrich, A. N., Matthews, F., Van Eynde, E.,
Carozzi, M., Li, Z., D’Andrimont, R., Lugato, E., Mar-

to parcel scale: A high-resolution map of cover
crops across Europe combining satellite data with
statistical surveys. Science of the Total Environment,
873. https://doi.org/10.1016/j.scitotenv.2023.162300
-

elevated CO. Catena, 204.
https://doi.org/10.1016/j.catena.2021.105434
Fernandez-Ugalde, O., Scarpa, S., & Orgiazzi, A.
LUCAS 2018 Soil module. Presentation of
dataset and results-
pean Union. https://doi.org/10.2760/215013
Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni,
-
radation in the European Mediterranean region:
Processes, status and consequences. Science of
the Total Environment, 805.
https://doi.org/10.1016/j.scitotenv.2021.150106

Global
Soil Security. Progress in Soil Science
Springer. https://doi.org/10.1007/978-3-319-43394-3_2
Fleck, S., Cools, N., De Vos, B., Meesenburg, H., &

soil condition database links soil physicochemical
and hydraulic properties with long-term obser-
vations of forest condition in Europe. Annals of

https://doi.org/10.1007/s13595-016-0571-4

meaning: peatlands, heritage and folklore. Time
and Mind, 
https://doi.org/10.1080/1751696X.2020.1815293
Fluet-Chouinard, E., Stocker, B. D., Zhang, Z.,
Malhotra, A., Melton, J. R., Poulter, B., Kaplan, J. O.,
Goldewijk, K. K., Siebert, S., Minayeva, T., Hugelius,
G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F.,
Hoyt, A. M., Davidson, N., Finlayson, C. M., Leh-

wetland loss over the past three centuries. Nature,

https://doi.org/10.1038/s41586-022-05572-6
Fokaides, P. A., Kylili, A., Nicolaou, L., & Ioannou, B.

island phenomenon. Indoor and Built Environment,

https://doi.org/10.1177/1420326X16644495


production. Nature Communications,
https://doi.org/10.1038/s41467-023-41286-7
Fowler, H. J., Lenderink, G., Prein, A. F., Westra,
S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blen-

Kendon, E. J., Lewis, E., Schaer, C., Sharma, A.,
-

extremes. Nature Reviews Earth and Environment,
https://doi.org/10.1038/s43017-020-00128-6
Franco, A., Vieira, D., Clerbaux, L. A., Orgiazzi, A.,
Labouyrie, M., Köninger, J., Silva, V., Dam, R. Van,
Carnesecchi, E., Dorne, J. L. C. M., Vuaille, J., Vi-
 Health & Ecological
Risk Assessment Evaluation of the ecological risk of
pesticide residues from the European LUCAS Soil
monitoring 2018 survey.
https://doi.org/10.1002/ieam.4917
Friedrichsen, C. N., Hagen-Zakarison, S., Friesen,
M. L., McFarland, C. R., Tao, H., & Wulfhorst, J. D.

health based upon a plurality of values. Soil Securi-
ty, 2. https://doi.org/10.1016/j.soisec.2021.100004
Fryrear, D. W., Bilbro, J. D., Saleh, A., Schomberg,
-
proved wind erosion technology. Journal of Soil and
Water Conservation, 55, 183–189.
https://api.semanticscholar.org/CorpusID:129404392
The State of Soils in Europe - 2024 115

Handbook of Famine, Starvation, and Nutrient Depri-
vation, 1–23.
https://doi.org/10.1007/978-3-319-40007-5_93-1

Barabach, J., van der Knaap, W. O., & Lamentowicz,


reconstructed from a high-resolution multi-proxy
peat archive. Holocene, 
https://doi.org/10.1177/0959683614561887

R., Salvati, L., Morera, A. G., & Rodrigo-Comino,

systems’ complexity: Uncovering the latent nexus.
Land, https://doi.org/10.3390/land10010030
-
-
tion is probably induced by pedogenic carbonate
formation in Northwest China. Frontiers in Plant
Science, 8, 01282. https://doi.org/10.3389/fpls.2017.01282
Garcia-Franco, N., Wiesmeier, M., Colocho Hur-
tarte, L. C., Fella, F., Martínez-Mena, M., Almagro,

Pruning residues incorporation and reduced tillage
improve soil organic matter stabilization and struc-

orchard. Soil and Tillage Research, 213, 105129.
https://doi.org/10.1016/j.still.2021.105129
García-Ruiz, J. M., Beguería, S., Lana-Renault, N.,

-
ies. Land Degradation & Development,
https://doi.org/https://doi.org/10.1002/ldr.2641
Gascuel, C., Loiseau-Dubosc, P., Auclerc, A., Bou-
gon, N., Caquet, T., Lerouyer, V., Pierart, A., Ranjard,
L., Resche-Rigon, F., Roturier, C., Sauter, J., & Serin,
-
-
Natures Sciences
Sociétés,https://doi.org/10.1051/nss/2023014
Gavrilovic, Z., Stefanovic, M., Milovanovic, I., Cotric,

Base of rational management of erosive regions.
IOP Conference Series: Earth and Environmental
Science, 4, 012039.
https://doi.org/10.1088/1755-1307/4/1/012039
Geisen, S., Wall, D. H., & van der Putten, W. H.

Biodiversity in the Anthropocene. Current Biology,

https://doi.org/10.1016/j.cub.2019.08.007
Geissen, V., Silva, V., Lwanga, E. H., Beriot, N.,
Oostindie, K., Bin, Z., Pyne, E., Busink, S., Zomer, P.,
-
cide residues in conventional and organic farming
systems in Europe – Legacy of the past and turning
point for the future. Environmental Pollution, 278,
116827. https://doi.org/10.1016/j.envpol.2021.116827
Genc, S. ., Behradfar, A., Castanho, A. ., Kirikkaleli,

Changes in Turkish Territories: Patterns, Directions
and Socio-Economic Impacts on Territorial Man-
agement. Curr World Environ,
https://doi.org/DOI:http://dx.doi.org/10.12944/CWE.16.1.11
Gilliam, F. S., Burns, D. A., Driscoll, C. T., Frey, S. D.,

atmospheric nitrogen deposition in eastern North
America: Predicted responses of forest ecosys-
tems. Environmental Pollution, 244, 560–574. https://
doi.org/10.1016/j.envpol.2018.09.135
Girkin, N. T., Burgess, P. J., Cole, L., Cooper, H. V.,
Honorio Coronado, E., Davidson, S. J., Hannam, J.,
Harris, J., Holman, I., McCloskey, C. S., McKeown,
M. M., Milner, A. M., Page, S., Smith, J., & Young, D.
-
al, responsible agriculture, and conservation and
restoration as management trajectories in global
peatlands. Carbon Management, 
https://doi.org/10.1080/17583004.2023.2275578
Godwin, R. J., White, D. R., Dickin, E. T., Kaczorows-
ka-Dolowy, M., Millington, W. A. J., Pope, E. K., &
-
agement systems on the yield and economics of
crops grown in deep, shallow and zero tilled sandy
loam soil over eight years. Soil and Tillage Research,
223. https://doi.org/10.1016/j.still.2022.105465
The State of Soils in Europe - 2024116
Gogo, S., Laggoun-Défarge, F., Delarue, F., & Lotti-

Betula spp and Molinia caerulea impacts organic
matter biochemistry. Implications for carbon and
nutrient cycling. Biogeochemistry,
https://doi.org/10.1007/s10533-010-9433-6

importance of liming agricultural soils with partic-
ular reference to the United Kingdom. Soil Use and
Management,https://doi.org/10.1111/
SUM.12270
Govers, G., Vandaele, K., Desmet, P., Poesen, J.,
-
distribution on hillslopes. European Journal of
Soil Science,https://doi.org/https://doi.
org/10.1111/j.1365-2389.1994.tb00532.x
Graves, A. R., Morris, J., Deeks, L. K., Rickson, R. J.,
Kibblewhite, M. G., Harris, J. A., Farewell, T. S., &
-
tion in England and Wales. Ecological Economics,
119, 399–413. https://doi.org/10.1016/j.ecolecon.2015.07.026
Greenway, H., Armstrong, W., & Colmer, T. D.


root growth and metabolism. Annals of Botany,
https://doi.org/10.1093/aob/mcl076


consequences for pastures: a review. Australian
Journal of Experimental Agriculture,
1250. https://doi.org/10.1071/EA00102
Grillakis, M. G., Polykretis, C., & Alexakis, D. D.

on rainfall erosivity: Advancing our knowledge for
the eastern Mediterranean island of Crete. Catena,
193, 104625. https://doi.org/10.1016/j.catena.2020.104625
Gschwend, F., Hartmann, M., Mayerhofer, J., Hug,
A. S., Enkerli, J., Gubler, A., Meuli, R. G., Frey, B., &

-
tive taxa. FEMS Microbiology Ecology, 
https://doi.org/10.1093/femsec/ab165
Gubler, A., Wächter, D., Schwab, P., Müller, M., &

of soil organic carbon in Swiss croplands showing
stability overall but with some divergent trends.
Environ Monit Assess,https://doi.org/10.1007/
s10661-019-7435-y
Guerra, C. A., Rosa, I. M. D., Valentini, E., Wolf,


Global vulnerability of soil ecosystems to erosion.
Landscape Ecology,
https://doi.org/10.1007/s10980-020-00984-z

analysis for locating new urban forests: An exam-
ple from Isparta, Turkey. Urban Forestry and Urban
Greening,
https://doi.org/10.1016/j.ufug.2006.05.003
Gunstone, T., Cornelisse, T., Klein, K., Dubey, A.,
-
brates: A Hazard Assessment. Frontiers in Environ-
mental Science, 9, 1–21.
https://doi.org/10.3389/fenvs.2021.643847




327. https://doi.org/10.1126/SCIENCE.1182570
Climate Change & Turkey Impacts.
Sectoral Analysis. Socio-Economic Dimensions.


https://www.undp.org/sites/g/les/zskgke326/files/migration/tr/
Report.pdf
Com-
mon International Classication of Ecosystem Ser-
vices (CICES) Version 5.1.Guidance on the Application
of the Revised Structure. www.cices.eu
Haklay, M. M., Dörler, D., Heigl, F., Manzoni, M.,

The Science
of Citizen Science, 13–33.
https://doi.org/10.1007/978-3-030-58278-4_2
The State of Soils in Europe - 2024 117
-
paction in cropping systems: A review of the nature,
causes and possible solutions. Soil and Tillage Re-
search,
https://doi.org/10.1016/J.STILL.2004.08.009

of nitrogen fertilization on the acidity and salinity
of greenhouse soils. Environmental Science and
Pollution Research, 
https://doi.org/10.1007/S11356-014-3542-Z/FIGURES/3
Hannam, K. D., Kehila, D., Millard, P., Midwood, A.
J., Neilsen, D., Neilsen, G. H., Forge, T. A., Nichol,

water contribute to carbonate formation and CO
production in orchard soils under drip irrigation.
Geoderma, 266, 120–126.
https://doi.org/10.1016/j.geoderma.2015.12.015
Mires
and peatlands of Europe. Schweizerbart Science
Publishers.
http://www.schweizerbart.de//publications/detail/
isbn/9783510653836/Joosten%5C_Tanneberger%5C_Moen%5C_
Mires%5C_and%5C_peat

nutrient relationships: the diagram. Plant and Soil,
486, 209–215. https://doi.org/10.1007/s11104-022-05861-z




-
bination of Ensemble Learning and Multivariate
Geostatistics. Agronomy,
https://doi.org/10.3390/agronomy12081858
Hayas, A., Vanwalleghem, T., Laguna, A., Penã, A.,

gully dynamics in Mediterranean agricultural areas.
Hydrology and Earth System Sciences, 
249. https://doi.org/10.5194/hess-21-235-2017


extractable nutrients in a soil. Plant and Soil, 95,
327–336.
Head, J. S., Crockatt, M. E., Didarali, Z., Woodward,

science in meeting SDG targets around soil health.
Sustainability,
https://doi.org/10.3390/su122410254
Heikkinen, J., Ketoja, E., Nuutinen, V., & Regina, K.
-
land soils in 1974–2009. Global Change Biology,

https://doi.org/https://doi.org/10.1111/gcb.12137
Hemphill, C. P., Ruby, M. V., Beck, B. D., Davis, A.,

-
erations. Chemical Speciation and Bioavailability,

https://doi.org/10.1080/09542299.1991.11083165


co-creation in citizen science. The Science of Citizen
Science, 199–218.
https://doi.org/10.1007/978-3-030-58278-4_11
Hirt, H., Boukcim, H., Ducousso, M., & Saad, M. M.

lands. Trends in Plant Science,
https://doi.org/10.1016/j.tplants.2023.08.009
 Peatlands and the Historic
Environment: An Introduction to their Cultural and
Heritage Value.-



hydrochemical process and wetland restoration.
Progress in Physical Geography,
https://doi.org/10.1191/0309133304pp403ra

R., Grattan, S. R., Rengasamy, P., Ben-Gal, A., As-
souline, S., Javaux, M., Minhas, P. S., Raats, P. A. C.,

H., Lavado, R. S., Lazarovitch, N., Li, B., & Taleisnik,
-
orities in global soil salinity. Advances in Agronomy,
169, 1–191. https://doi.org/10.1016/bs.agron.2021.03.001
The State of Soils in Europe - 2024118

subsoil compaction for arable soils in Northwest
Germany at farm scale. Soil and Tillage Research,
https://doi.org/10.1016/j.still.2008.07.015

management in China at the crossroads. Nutrient
Cycling in Agroecosystems,
https://doi.org/10.1007/S10705-023-10301-0/FIGURES/2

natural susceptibility of soils to compaction. In G.
Threats to
Soil Quality in Europe. European Commission - Joint
Research Centre. https://doi.org/10.2788/8647
Huber, S., Prokop, G., Arrouays, D., Banko, G.,
Bispo, A., Jones, R. J. A., Kibblewhite, M. G., Lexer,
W., Möller, A., Rickson, R. J., Shishkov, T., Stephens,
M., Toth, G., Van den Akker, J. J. H., Varallyay, G.,
Environ-
mental assessment of soil for monitoring: volume I
indicators and criteria: Vol. I.
Publications of the European Communities.
https://doi.org/10.2788/93515
Hudson-Edwards, K., Owen, J., Kemp, D., Scussolini,
P., Lechner, A., Macklin, M., Brewer, P., Thomas,
C., Lewin, J., Eilander, D., Bird, G., Mangalaa, K., &


Dryad.
https://doi.org/https://doi.org/10.5061/dryad.j3tx95xmg
-

gaps and possible risks. Current Opinion in Environ-
mental Science and Health, 1, 6–11.
https://doi.org/10.1016/j.coesh.2017.10.006
Sci-
entic research on monitoring and survey of agri-
cultural land in Ukraine (based on the results of the
11th tour, 2016-2020).
https://www.iogu.gov.ua/literature/research/
Ionita, I., Niacsu, L., Petrovici, G., & Blebea-Apostu,
-
nia: a case study from Falciu Hills. Natural Hazards,
79, 113–138. https://doi.org/10.1007/s11069-015-1732-8
Summary for policymakers of the
assessment report on land degradation and res-
toration of the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Service
Scholes, L. Montanarella, A. Brainich, N. Barger, B.
ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gard-

https://les.ipbes.net/ipbes-web-prod-public-files/spm_3bi_ldr_dig-
ital.pdf
IPCC Special Report on climate change,
desertication, land degradation, sustainable land
management, food security, and greenhouse gas
uxes in terrestrial ecosystems
E. C. Buendia, V. Masson-Delmotte, H.-O. Pörtner,
D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van
Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M.
Pathak, J. Petzold, J. P. Pereira, P. Vyas, E. Huntley,

https://www.ipcc.ch/srccl/

Liu, L., He, B., Ejaz, I., White, P. J., Cakmak, I., Chen,
W. S., Wu, J., van der Werf, W., Li, C., Zhang, F., &

food crops with fertilizer: a global meta-analysis.
Agronomy for Sustainable Development 2023 43:6,
43
https://doi.org/10.1007/S13593-023-00923-7
Ivits, E., Milego, R., Mancosu, E., Mirko, G., Petersen,
E. J., György, B., Gergely, M., Petrik, O., Bastrup-Birk,
Land and ecosystem accounts
for Europe Towards geospatial environmental ac-
counting. European Environment Agency. Europe-
an Topic Centre on Urban, Land and Soil Systems.
https://www.eionet.europa.eu/etcs/etc-di/products/etc-uls-report-
02-2020-land-and-ecosystem-accounts-for-europe-towards-geospa-
tial-environmental-accounting


on long-term no-till and plowed soils in southwest-
ern Ohio. Soil and Tillage Research, 66
https://doi.org/10.1016/S0167-1987(02)00010-7


landscape fragmentation. Landscape Ecology, 
115–130. https://doi.org/10.1023/A:1008129329289
The State of Soils in Europe - 2024 119

-
biota in relation to soil structure. Polish Journal of
Environmental Studies, 22


of climate-induced permafrost degradation on
vegetation: A review. Advances in Climate Change
Research, 12https://doi.org/10.1016/j.ac-
cre.2020.07.002
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Hold-
en, Z. A., Brown, T. J., Williamson, G. J., & Bowman,

Nature
Communications, 6(https://doi.org/10.1038/ncom-
ms8537
Jones, A., Fernandes-Ugalde, O., Scarpa, S., & Eiselt,
LUCAS Soil 2022. EUR 30331. Publica-
https://doi.
org/10.2760/74624
Jones, A., Panagos, P., Barcelo, S., Bouraoui, F.,
-

G., Van Den Eeckhaut, M., Van Liedekerke, M.,
Verheijen, F. G. A., Yigini, Y., Erhard, M., Lukewille,
State of Soil in Europe. A
contribution of the JRC to the European Environment
Agency’s Environment State and Outlook Report—
SOER 2010
Union. https://doi.org/10.2788/77361
Jones, D. L., Cross, P., Withers, P. J. A., Deluca,


REVIEW: Nutrient stripping: the global disparity
between food security and soil nutrient stocks.
Journal of Applied Ecology, 5https://doi.
org/10.1111/1365-2664.12089

Vulnerability of subsoils in Europe to compaction:
A preliminary analysis. Soil and Tillage Research,
73https://doi.org/10.1016/S0167-
1987(03)00106-5

Picture. Peatland status and drainage related
emissions in all countries of the world. Quaternary
Science Reviews, 1–10. http://linkinghub.elsevier.com/re-
trieve/pii/S0277379111000333

Peatlands - guidance for climate change
mitigation through conservation, rehabilitation and
sustainable use. Food and Agriculture Organization
of the United Nations and Wetlands International.
http://www.fao.org/docrep/015/an762e/an762e.pdf
Jordaan, M. S., Reinecke, S. A., & Reinecke, A. J.

exposure to the pesticide azinphos-methyl on
Ecotoxicology,
2https://doi.org/10.1007/s10646-011-0821-z
Jordan-Meille, L., Rubaek, G. H., Ehlert, P. A. I.,
Genot, V., Hofman, G., Goulding, K., Recknagel, J.,

of fertilizer-P recommendations in Europe: soil
testing, calibration and fertilizer recommendations.
Soil Use and Management, 28(https://doi.
org/10.1111/j.1475-2743.2012.00453.x
EUSO Soil Degradation Dashboard.
https://esdac.jrc.ec.europa.eu/esdacviewer/euso-dashboard/

transforming the social and cultural patterns:
Atatürk forest farm in ankara. Metu Journal of the
Faculty of Architecture, 28https://doi.
org/10.4305/METU.JFA.2011.1.10
Katerji, N., van Hoorn, J. W., Hamdy, A., & Mastror-

according to soil salinity and to water stress day in-
dex. Agricultural Water Management, 43
https://doi.org/https://doi.org/10.1016/S0378-3774(99)00048-7
Kaushal, S. S., Likens, G. E., Mayer, P. M., Shatkay,
R. R., Shelton, S. A., Grant, S. B., Utz, R. M., Yaculak,
A. M., Maas, C. M., Reimer, J. E., Bhide, S. V., Malin,

cycle. Nature Reviews Earth and Environment, 4
770–784. https://doi.org/10.1038/s43017-023-00485-y
The State of Soils in Europe - 2024120
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P.,

Pachepsky, Y., Van Der Putten, W. H., Bardgett, R.
D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L.

towards realization of the United Nations sustain-
able development goals. Soil, 2https://
doi.org/10.5194/soil-2-111-2016
-

The role of soils in regulation and provision of blue
and green water. Philosophical Transactions of
the Royal Society B: Biological Sciences, 376
https://doi.org/10.1098/rstb.2020.0175
Kelishadi, H., Mosaddeghi, M. R., Ayoubi, S., & Ma-

structural stability as characterized by high energy
moisture characteristic method. Catena, 170. https://
doi.org/10.1016/j.catena.2018.06.015
Keller, T., Colombi, T., Ruiz, S., Schymanski, S. J.,
Weisskopf, P., Koestel, J., Sommer, M., Stadelmann,
V., Breitenstein, D., Kirchgessner, N., Walter, A.,

compaction: Short-term evolution of soil physi-
cal properties in a loamy soil. Soil Science Society
of America Journal, 85https://doi.
org/10.1002/saj2.20240

-
tion of soil carbonate weathering. Global Change
Biology, 26https://doi.org/10.1111/
gcb.15207


conservation practices in Austria. Journal of Agricul-
tural Science, 148https://doi.org/10.1017/
S0021859610000158
Kløve, B., Berglund, K., Berglund, Ö., Weldon, S.,
-
vated Nordic peat soils: Can land management

Environmental Science and Policy, 69, 85–93. https://
doi.org/10.1016/j.envsci.2016.12.017
Knotters, M., Teuling, K., Reijneveld, A., Lesschen,

matter contents and carbon stocks in Dutch soils,
1998–2018. Geoderma, 414.
https://doi.org/10.1016/j.geoderma.2022.115751
Knuth, D., Gai, L., Silva, V., Harkes, P., Hofman, J.,
-

Bureau, M., Alcon, F., Contreras, J., M., G., Abrantes,

Pesticide residues in organic and conventional
agricultural soils across Europe: Measured and
predicted concentrations. Environmental Science &
Technology. https://doi.org/10.1021/acs.est.3c09059
Köninger, J., Ballabio, C., Panagos, P., Jones, A.,
Schmid, M. W., Orgiazzi, A., & Briones, M. J. I.
-
versity and composition in Europe. Global Change
Biology, 29
https://doi.org/10.1111/gcb.16871
Koven, C. D., Hugelius, G., Lawrence, D. M., & Wie-
-
ture sensitivity of soil carbon in cold than warm
climates. Nature Climate Change, 7
https://doi.org/10.1038/nclimate3421
-

Earth Sur-
face Processes and Landforms, 34
https://doi.org/https://doi.org/10.1002/esp.1796
Kuhwald, M., Busche, F., Saggau, P., & Duttmann,


harvest erosion. Soil and Tillage Research, 215.
https://doi.org/10.1016/j.still.2021.105213

Y., Mandal, S., Gleeson, D. B., Seshadri, B., Zaman,
M., Barton, L., Tang, C., Luo, J., Dalal, R., Ding, W.,
-
-
house Gas Flux. Advances in Agronomy, 139, 1–71.
https://doi.org/10.1016/BS.AGRON.2016.05.001
The State of Soils in Europe - 2024 121



a hill at the outskirts of a metropolitan city. Che-
mosphere, 154, 79–89. https://doi.org/10.1016/j.chemo-
sphere.2016.03.095
Labouyrie, M., Ballabio, C., Romero, F., Panagos, P.,
Jones, A., Schmid, M. W., Mikryukov, V., Dulya, O.,
Tedersoo, L., Bahram, M., Lugato, E., van der Heij-

microbial diversity across Europe. Nature Commu-
nications, 14https://doi.org/10.1038/s41467-023-37937-4
-
 Critical
Reviews in Plant Sciences, 17https://doi.
org/10.1080/07352689891304249
Land
Degradation & Development,https://
doi.org/10.1002/ldr.472

climate change. Geoderma, 123https://
doi.org/10.1016/j.geoderma.2004.01.032
-
oping countries through restoration of the soil
organic carbon pool in agricultural lands. Land
Degradation and Development, 17, 197–209.
https://doi.org/10.1002/ldr.696

agro-ecosystems. Food Policy, 36, S33–S39. https://
doi.org/10.1016/j.foodpol.2010.12.001

Mitigation by Sustainable Management of Soils and
Other Natural Resources. Agricultural Research,
https://doi.org/10.1007/s40003-012-0031-9

role of soil in regulation of climate. Philosophical
Transactions of the Royal Society B: Biological Sci-
ences, 376https://doi.org/10.1098/rstb.2021.0084
Landemaine, V., Cerdan, O., Grangeon, T.,
Vandromme, R., Laignel, B., Evrard, O., Salva-
-

 International Soil and
Water Conservation Research, 11
https://doi.org/10.1016/j.iswcr.2023.03.004


time process and drivers of land abandonment in
Europe. Catena, 149, 810–823. https://doi.org/10.1016/j.
catena.2016.02.024
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N.

soil pH as a predictor of soil bacterial community
structure at the continental scale. Applied and Envi-
ronmental Microbiology, 75https://
doi.org/10.1128/AEM.00335-09
Laudicina, V. A., Dazzi, C., Delgado, A., Barros, H.,

gypsum as key factors for net inorganic carbon
accumulation in soils of a semiarid Mediterranean
environment. Geoderma, 398. https://doi.org/10.1016/j.
geoderma.2021.115115

Bruni, E., Cardinael, R., Ciais, P., Chenu, C., Cliv-
ot, H., Derrien, D., Ferchaud, F., Garnier, P., Goll,
D., Lashermes, G., Martin, M., Rasse, D., Rees, F.,

Soil organic carbon models need independent
time-series validation for reliable prediction.
Communications Earth and Environment, 4
https://doi.org/10.1038/s43247-023-00830-5
Le Provost, G., Schenk, N. V., Penone, C., Thiele,
J., Westphal, C., Allan, E., Ayasse, M., Blüthgen, N.,
Boeddinghaus, R. S., Boesing, A. L., Bolliger, R.,
Busch, V., Fischer, M., Gossner, M. M., Hölzel, N.,
Jung, K., Kandeler, E., Klaus, V. H., Kleinebecker, T.,
-
system services requires biodiversity across spatial
scales. Nature Ecology and Evolution, 7
https://doi.org/10.1038/s41559-022-01918-5
Ledermann, T., Herweg, K., Liniger, H. P., Schnei-

erosion damage mapping to assess and quantify
Land
Degradation and Development, 21
https://doi.org/10.1002/ldr.1008
The State of Soils in Europe - 2024122
Legrand, M., McConnell, J. R., Preunkert, S., Berga-
metti, G., Chellman, N. J., Desboeufs, K., Plach, A.,

in Europe Over the Twentieth Century Recorded in
Alpine Ice: Contributions From Coal Burning and
Cement Production. Geophysical Research Letters,
49https://doi.org/10.1029/2022GL098688
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Ril-

of soil health. Nature Reviews Earth and Environ-
ment, https://doi.org/10.1038/s43017-020-
0080-8
-

for the promotion of participation in cities. Envi-
ronment and Planning C: Politics and Space, 39
781–799. https://doi.org/10.1177/2399654420957337

may exacerbate dryland soil inorganic carbon loss
under warming climate conditions. Nature Commu-
nications, 15https://doi.org/10.1038/s41467-024-
44895-y
-
rus limitation on biomass production under in-
creasing nitrogen loading: a meta-analysis. Global
Change Biology, 22https://doi.org/10.1111/
GCB.13125

and foliar nutrient status of black spruce and
tamarack in relation to depth of water table in
some Alberta peatlands. Canadian Journal of Forest
Research, 20https://doi.org/10.1139/x90-106
Limpens, J., Berendse, F., Blodau, C., Canadell, J.
G., Freeman, C., Holden, J., Roulet, N., Rydin, H.,

the carbon cycle: From local processes to global
implications - A synthesis. Biogeosciences, 5
1475–1491. https://doi.org/10.5194/bg-5-1475-2008


soil fauna but stimulate microbial activity: insights
-
ment. Proceedings of the Royal Society B: Biological
Sciences, 287https://doi.org/10.1098/rspb.2020.1268
Lindstrom, M. J., Nelson, W. W., & Schumacher, T.

moldboard plowing. Soil and Tillage Research, 24
243–255. https://doi.org/10.1016/0167-1987(92)90090-X



Water, 15https://doi.org/10.3390/w15183274

in an urban area using satellite imagery, GIS and
landscape metrics. Applied Geography, 56, 42–54.
https://doi.org/10.1016/j.apgeog.2014.10.002
-
ling tillage erosion in the topographically complex
landscapes of southwestern Ontario, Canada. Soil
and Tillage Research, 51https://doi.
org/10.1016/S0167-1987(99)00042-2
Lobry de Bruyn, L., Jenkins, A., & Samson-Liebig, S.

Improve Land Management and Sustainable Soil
Use. Soil Science Society of America Journal, 81
427–438. https://doi.org/10.2136/sssaj2016.12.0403

of soil pH and carbonates at the European scale
using environmental variables and machine learn-
ing. Science of the Total Environment, 856. https://doi.
org/10.1016/j.scitotenv.2022.159171
Luetzenburg, G., Bittner, M. J., Calsamiglia, A., Ren-


two small agricultural catchment systems Fugnitz
– Austria, Can Revull – Spain. Science of the Total
Environment, 704, 135389. https://doi.org/10.1016/j.
scitotenv.2019.135389

exacerbated by climate extremes. Nature Climate
Change, 14(https://doi.org/10.1038/s41558-023-
01873-4
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P.,

of particulate and mineral-associated soil organic
https://
doi.org/10.1038/s41561-021-00744-x
The State of Soils in Europe - 2024 123
Lugato, E., Paustian, K., Panagos, P., Jones, A., &

on current carbon budget of European agricultural
soils at high spatial resolution. Global Change Biol-
ogy, 22https://doi.org/10.1111/gcb.13198
Ma, L., Zhu, G., Chen, B., Zhang, K., Niu, S., Wang, J.,
-
tionship between water table decline, subsidence
rate, and carbon release from peatlands. Commu-
nications Earth and Environment, 3https://
doi.org/10.1038/s43247-022-00590-8
Ma, S., Zhou, C., Pan, J., Yang, G., Sun, C., Liu, Y.,
-

-
tal risks. Journal of Cleaner Production, 333. https://
doi.org/10.1016/j.jclepro.2021.130234
MacEwan, R. J., MacEwan, A. S. A., & Toland, A. R.

Global Soil Security,
https://doi.
org/10.1007/978-3-319-43394-3_31
Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., &

Environment. In K. R. Hakeem, M. S. Akhtar, & S.
 Soil and Microbes. 
https://doi.org/10.1007/978-3-319-
27455-3
Mantovi, P., Bonazzi, G., Maestri, E., & Marmiroli,

liquid manure in agricultural soils and crop plants.
Plant and Soil 2003 250:2, 250https://
doi.org/10.1023/A:1022848131043
Marien, L., Crabit, A., Dewandel, B., Ladouche, B.,
Fleury, P., Follain, S., Cavero, J., Berteloot, V., &
-
ranean coastal areas: The legacy of historical water
infrastructures. Science of the Total Environment,
899. https://doi.org/10.1016/j.scitotenv.2023.165730
Marzen, M., Iserloh, T., de Lima, J. L. M. P., Fis-

storms on soil erosion: Experimental evaluation
of wind-driven rain and its implications for natural
hazard management. Science of the Total Envi-
ronment, 590–591, 502–513. https://doi.org/10.1016/j.
scitotenv.2017.02.190
Mason, E., Gascuel-Odoux, C., Aldrian, U., Sun, H.,
Miloczki, J., Götzinger, S., Burton, V. J., Rienks, F.,

soil citizen science: An unexploited resource for
European soil research. European Journal of Soil
Science, 75https://doi.org/10.1111/ejss.13470
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Eden-
hofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler,
E., Mach, K. J., Matschoss, P. R., Plattner, G.-K.,
Guidance note
for lead authors of the IPCC fth assessment report
on consistent treatment of uncertainties. http://www.
ipcc.ch

and water quality interactions: a global overview.
In SOLAW Background Thematic Report-TR08 
https://openknowledge.fao.org/server/api/core/bitstreams/
80c2e16a-d2ba-4231-8b5a-b5caa16a0287/content
Matthews, F., Verstraeten, G., Borrelli, P., & Pana-

evaluate the crop cover-management factor and
time-distributed erosion risk in Europe. Interna-
tional Soil and Water Conservation Research, 11
43–59. https://doi.org/10.1016/j.iswcr.2022.09.005
McDonald, M. D., Lewis, K. L., DeLaune, P. B., Hux,

fertilizer driven nitrous and nitric oxide production
is decoupled from microbial genetic potential in
low carbon, semi-arid soil. Frontiers in Soil Science,
2, 1–13. https://doi.org/10.3389/fsoil.2022.1050779
Atlas of World Pop-
ulation History. Penguin.
https://dmo.econ.msu.ru/Teaching/Histpop/Reading/Atlas of World
Pop History McEvedy&Jones.pdf
The State of Soils in Europe - 2024124
McGuire, L. A., Ebel, B. A., Rengers, F. K., Vieira, D.
-
phic processes. Nature Reviews Earth and Environ-
ment, 5, 486–503.
https://doi.org/10.1038/s43017-024-00557-7

impact of land use and rainfall patterns on the soil
loss of the hillslope. Scientic Reports, 11
https://doi.org/10.1038/s41598-021-95819-5
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F.,
Aerts, J. C. J. H., Bates, P., Bertola, M., Kemter,

Causes, impacts and patterns of disastrous river
Nature Reviews Earth and Environment, 2
592–609. https://doi.org/10.1038/s43017-021-00195-3

Estimating vegetation parameter for soil erosion
assessment in an alpine catchment by means of
 International Journal of Ap-
plied Earth Observation and Geoinformation, 12
201–207. https://doi.org/10.1016/j.jag.2010.02.009
Meusburger, K., Evrard, O., Alewell, C., Borrelli, P.,
Cinelli, G., Ketterer, M., Mabit, L., Panagos, P., van

reconstruction of caesium atmospheric fallout in
European topsoils. Scientic Reports, 10
https://doi.org/10.1038/s41598-020-68736-2
Michel, A., Kirchner, T., Anne-Katrin, P., & Schwar-
Forest Condition in Europe. The 2022
Assessment ICP Forests Technical Report under the
UNECE Convention on Long-range Transboundary
Air Pollution (Air Convention).
https://doi.org/10.3220/ICPTR1656330928000
Eco-
systems and human well-being: wetlands and water
Synthesis -
tute. https://doi.org/10.1080/17518253.2011.584217
Ministry of Environmental Protection and Natural
National report on
the state of the environment in Ukraine in 2021.
https://mepr.gov.ua/
Land
Degradation Neutrality Target for Albania and Soil
Erosion Measurement Norms and Standards 

https://www.undp.org/sites/g/les/zskgke326/files/migration/al/
WEB_nal_report.pdf

barrier on the spread of heavy metal pollution
on the example of Gorce Mountains, Southern
Poland. Environmental Monitoring and Assessment,
194https://doi.org/10.1007/s10661-022-10316-0

pollution with heavy metals in industrial and
agricultural areas: A case study of Olkusz District.
Journal of Elementology, 20
https://doi.org/10.5601/jelem.2014.19.3.691
Ministry of Agriculture and Forestry,
General Directorate of Water Management (SYGM)
İklim Değişikliği ve Uyum (Climate Change and Adap-
tation). iklim.tarimorman.gov.tr
Möhrke, A. C. F., Haegerbaeumer, A., Traunspurger,
-
-

needs. Frontiers in Environmental Science, 10. https://
doi.org/10.3389/fenvs.2022.975904

changing world. Current Opinion in Environmental
Sustainability,
https://doi.org/10.1016/j.cosust.2012.10.013
-
tion in Europe. In M. V. . Sivakumar & N. Ndiang’ui
Environmen-
tal Science and Engineering (Subseries: Environmen-
tal Science) 
https://doi.org/10.1007/978-3-540-72438-4_5
-
vance of sustainable soil management within the
European Green Deal. Land Use Policy, 100. https://
doi.org/10.1016/j.landusepol.2020.104950
Moody, J. A., Shakesby, R. A., Robichaud, P. R., Can-


processes. Earth-Science Reviews, 122, 10–37.
The State of Soils in Europe - 2024 125
https://doi.org/10.1016/j.earscirev.2013.03.004
Moreno-Jiménez, E., Orgiazzi, A., Jones, A., Saiz, H.,
-
chemical drivers of soil micronutrient and contam-
inant availability in European drylands. European
Journal of Soil Science, 73
https://doi.org/10.1111/EJSS.13163
-
ening the disciplinary study of soil. Soil Security, 1.
https://doi.org/10.1016/j.soisec.2020.100003

Jones, R. J. A., Verheijen, F. G. A., Bellamy, P. H.,

monitoring in Europe: A review of existing systems
and requirements for harmonisation. Science of the
Total Environment, 391
https://doi.org/10.1016/j.scitotenv.2007.10.046
-
ration: Some economic arithmetic. Science of the
Total Environment, 484
https://doi.org/10.1016/j.scitotenv.2014.03.033
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P.

change: Challenges for sustainable agriculture and
food security. Journal of Environmental Manage-
ment, 280. https://doi.org/10.1016/j.jenvman.2020.111736

Addressing key limitations associated with mod-
elling soil erosion under the impacts of future cli-
mate change. Agricultural and Forest Meteorology,
156, 18–30. https://doi.org/10.1016/j.agrformet.2011.12.004
Consumo di suolo, dinamiche
territoriali e servizi ecosistemici. Report SNPA 37/23
https://www.isprambiente.gov.it/it/archivio/even-
ti/2023/10/presentazione-rapporto-201cconsumo-di-suolo-dinami-
che-territoriali-e-servizi-ecosistemici201d

-
pean agricultural soils: Looking beyond current
national phosphorus budgets. Science of the Total
Environment, 906, 167143.
https://doi.org/10.1016/j.scitotenv.2023.167143




Ecological Modelling, 205
https://doi.org/10.1016/j.ecolmodel.2007.03.008

Soil compaction impact and modelling. A review.
Agronomy for Sustainable Development, 33
291–309. https://doi.org/10.1007/s13593-011-0071-8
-
-
 Fire Ecology, 5
https://doi.org/10.4996/reecology.0501129
Nelson, K., Thompson, D., Hopkinson, C., Petrone,

-
tions in Canadian boreal peatlands. Science of the
Total Environment, 769, 145212.
https://doi.org/10.1016/j.scitotenv.2021.145212

Land Take: Is Mainland Portugal on Track to Meet
 Land, 11
https://doi.org/10.3390/land11071005
-
diversity and the Environment. Annual Review of
Environment and Resources, 40, 63–90.
https://doi.org/10.1146/annurev-environ-102014-021257
Nieminen, M., Palviainen, M., Sarkkola, S., Laurén,

the impacts of ditch network maintenance on the

peatland forests. Ambio, 47(
https://doi.org/10.1007/s13280-017-0966-y



steppe. New Phytologist, 177
https://doi.org/10.1111/j.1469-8137.2007.02237.x
The State of Soils in Europe - 2024126


https://doi.org/10.1038/537488b



metal and metalloid levels in topsoil and cancer
mortality in Spain. Environmental Science and Pollu-
tion Research, 24
https://doi.org/10.1007/s11356-017-8418-6
Nurlu, E., Doygun, H., Oguz, H., & Atak Kesgin, B.

Scenarios on Urban Land Use in Izmir Metropoli-
tan Area Using the SLEUTH Urban Growth Model.
In R. Efe, C. Bizzarri, I. Cürebal, & G. N. Nyusupova
Environment and Ecology at the Beginning of
21st Century 
University Press.

trace elements in agricultural soils via phosphate
fertilizers in European countries. Science of The
Total Environment, 390
https://doi.org/10.1016/J.SCITOTENV.2007.09.031
-
-
lies. Scientic Reports, 10(
https://doi.org/10.1038/s41598-020-67530-4
Obi, J. C., Ogban, P. I., Ituen, U. J., & Udoh, B. T.

coastal plain soils using terrain attributes. Catena,
123, 252–262. https://doi.org/10.1016/j.catena.2014.08.015
Odabasi, M., Dumanoglu, Y., Ozgunerge Falay,
E., Tuna, G., Altiok, H., Kara, M., Bayram, A., Tolu-

distributions and sources of persistent organic

region using tree components. Chemosphere, 160,
114–125. https://doi.org/10.1016/j.chemosphere.2016.06.076
OECD-FAO Agricultural Outlook
2023-2032. OECD Publishing.
https://doi.org/10.1787/08801ab7-en
“Nutrient balance” (indicator). OECD
ILibrary. https://doi.org/10.1787/82add6a9-en

climate change. In M. Narasimha, V. Prasad, & M.
Climate Change and Soil Inter-
actions
https://doi.org/10.1016/b978-0-12-818032-7.00012-6
Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., De-
lusca, K., Flores-Renteria, D., Hermans, K., Jobbagy,

Land degradation. In P. R. Shukla, J. Skea, E. Calvo
Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.
C. Roberts, P. Zhai, R. Slade, S. Connors, R. van
Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi,
M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas,
IPCC special report on
climate change, desertication, land degradation,
sustainable land management, food security, and
greenhouse gas uxes in terrestrial ecosystems 
https://doi.org/10.4324/9781315838366-18


variations of trace element distribution in soils
and street dust of an industrial town in NW Spain:
15years of study. Science of the Total Environment,
524–525, 93–103.
https://doi.org/10.1016/j.scitotenv.2015.04.024
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., &
-
est expandable soil dataset for Europe: a review.

https://doi.org/10.1111/ejss.12499

and soil erosion: It is time to get married: Adding
an earthworm factor to soil erosion modelling.
Global Ecology and Biogeography, 27
1167. https://doi.org/10.1111/geb.12782

Wojda, P., Labouyrie, M., Ballabio, C., Franco, A.,

LUCAS Soil Biodiversity and LUCAS Soil Pesticides,
new tools for research and policy development.
European Journal of Soil Science, 73https://
doi.org/10.1111/ejss.13299
The State of Soils in Europe - 2024 127
Orgiazzi, A., Panagos, P., Yigini, Y., Dunbar, M. B.,

knowledge-based approach to estimating the mag-
nitude and spatial patterns of potential threats to
soil biodiversity. Science of the Total Environment,
545–546, 11–20.
https://doi.org/10.1016/j.scitotenv.2015.12.092
Ostermann, A., Gao, J., Welp, G., Siemens, J.,



veterinary antibiotics using heavy metal concen-

Environmental Monitoring and Assessment, 186
7693–7707. https://doi.org/10.1007/s10661-014-3960-x
-
-

Meddles Between Plant, Soil, and Microorganisms.
Frontiers in Plant Science, 11.
https://doi.org/10.3389/fpls.2020.553087
Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B.,
Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden,
M., Page, M. J., Peacock, D. H., Petticrew, E. L., Sa-

-
cance and management issues. River Research and
Applications, 21
https://doi.org/https://doi.org/10.1002/rra.878

Mining activity impacts on soil erodibility and res-
ervoirs silting: Evaluation of mining decommission-
ing strategies. Journal of Hydrology, 589.
https://doi.org/10.1016/j.jhydrol.2020.125107
Paes, D., Espíndola, G., Sérgio, A., Araujo, F.,
Prudêncio, A., Pereira, D. A., Mendes, L. W., Borg-
es, S., Felix, R., Alberto, C., Souza, F. De, Alves, B.,

impact on recruitment and diversity of the soil
microbiome in sub - humid tropical pastures in
Northeastern Brazil. Scientic Reports, 1–15.
https://doi.org/10.1038/s41598-024-54221-7


Rate of Lime. Soil Science Society of America Journal,
76
https://doi.org/10.2136/SSSAJ2012.0119
Pagano, M. C., Correa, E. J. A., Duarte, N. F., Yelik-


mycobiome. Agriculture, 7
https://doi.org/10.3390/agriculture7020014
Pagotto, C., Rémy, N., Legret, M., & Legret, M.

roadside soil near a major rural highway. Environ-
mental Technology, 22
https://doi.org/10.1080/09593332208618280

-
tal policy and law. Land Use Policy, 64, 163–173.
https://doi.org/10.1016/j.landusepol.2017.02.007
-
terizing soils compaction by using packing density
and compaction degree indices. Soil Science, 49
65–71.

from wastewater or animal manure to soil and ed-
ible crops. Environmental Pollution, 231, 829–836.
https://doi.org/10.1016/j.envpol.2017.08.051
Pan, S.-Y., He, K.-H., Lin, K.-T., Fan, C., & Chang, C.-T.
-
lands toward low-emission agriculture. Npj Climate
and Atmospheric Science, 5
https://doi.org/10.1038/s41612-022-00265-3
Panagos, P., Ballabio, C., Himics, M., Scarpa, S.,
Matthews, F., Bogonos, M., Poesen, J., & Borrelli, P.

Europe by 2050. Environmental Science and Policy,
124, 380–392. https://doi.org/10.1016/j.envsci.2021.07.012
Panagos, P., Ballabio, C., Poesen, J., Lugato, E.,

Soil Erosion Indicator for Supporting Agricultural,
Environmental and Climate Policies in the Europe-

https://doi.org/10.3390/RS12091365
The State of Soils in Europe - 2024128
Panagos, P., Borrelli, P., Jones, A., & Robinson, D.

Europe. European Journal of Soil Science Published,
479–488. https://doi.org/10.1016/B978-0-323-46294-5.00028-5
Panagos, P., Borrelli, P., Matthews, F., Liakos, L.,

rainfall erosivity projections for 2050 and 2070.
Journal of Hydrology, 610, 127865.
https://doi.org/10.1016/j.jhydrol.2022.127865
Panagos, P., Borrelli, P., Meusburger, K., van der


on the reduction of soil erosion by water at Euro-
pean scale. Environmental Science and Policy, 51,
23–34. https://doi.org/10.1016/j.envsci.2015.03.012
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C.,
Lugato, E., Meusburger, K., Montanarella, L., &

by water erosion in Europe. Environmental Science
and Policy, 54, 438–447.
https://doi.org/10.1016/j.envsci.2015.08.012
Panagos, P., De Rosa, D., Liakos, L., Labouyrie, M.,

assessment in Europe. Agriculture, Ecosystems and
Environment, 364, 108907.
https://doi.org/10.1016/j.agee.2024.108907
Panagos, P., Köningner, J., Ballabio, C., Liakos, L.,

Improving the phosphorus budget of European
agricultural soils. Science of The Total Environment,
853, 158706. https://doi.org/10.1016/J.SCITOTENV.2022.158706
Panagos, P., Matthews, F., Patault, E., De Michele,

Auel, C., Schleiss, A. J., Fendrich, A., Liakos, L., Van
-
standing the cost of soil erosion: An assessment of
the sediment removal costs from the reservoirs of
the European Union. Journal of Cleaner Production,
434, 140183.
https://doi.org/10.1016/j.jclepro.2023.140183
-
matic Strategy: An important contribution to policy
support , research , data development and raising
the awareness. Current Opinion in Environmental
Science & Health, 5, 38–41.
https://doi.org/10.1016/j.coesh.2018.04.008
Panagos, P., Montanarella, L., Barbero, M., Schnee-

European Union. Geoderma Regional, 29, e00510.
https://doi.org/10.1016/j.geodrs.2022.e00510
Panagos, P., Orgiazzi, A., Köninger, J., Ballabio, C.,

European Soil Data Centre 2.0: Soil data and
knowledge in support of the EU policies. European
Journal of Soil Science, March, 1–18.
https://doi.org/10.1111/ejss.13315
Panagos, P., Standardi, G., Borrelli, P., Lugato, E.,

agricultural productivity loss due to soil erosion in
the European Union: From direct cost evaluation
approaches to the use of macroeconomic models.
Land Degradation and Development, 29
484. https://doi.org/10.1002/ldr.2879
Pandey, B. K., Huang, G., Bhosale, R., Hartman, S.,
Sturrock, C. J., Jose, L., Martin, O. C., Karady, M.,
Voesenek, L. A. C. J., Ljung, K., Lynch, J. P., Brown, K.
M., Whalley, W. R., Mooney, S. J., Zhang, D., & Ben-

Science,
371https://doi.org/10.1126/science.abf3013

due to potato harvesting: A case study in western
Turkey. Soil Use and Management, 31
https://doi.org/10.1111/sum.12225
Patault, E., Ledun, J., Landemaine, V., Soulignac, A.,
Richet, J. B., Fournier, M., Ouvry, J. F., Cerdan, O.,


of two areas in the northwestern European loess

Land Use Policy, 108, 1–12. https://doi.org/10.1016/j.
landusepol.2021.105541
The State of Soils in Europe - 2024 129

 The Soils of Serbia 
Springer Science+Business Media B.V. https://doi.
org/10.1007/978-94-017-8660-7 ISSN
Peña, A., Rodríguez-Liébana, J. A., & Delgado-More-

Pesticides in Soils and Their Ecotoxicological Impli-
cations. Agronomy, 13https://doi.org/10.3390/
agronomy13030701

of nitrogenous fertilizers on carbonate dissolu-
tion in small agricultural catchments: Implications
for weathering CO uptake at regional and global
scales. Geochimica et Cosmochimica Acta, 72
3105–3123. https://doi.org/10.1016/j.gca.2008.04.011
Perron, T., Kouakou, A., Simon, C., Mareschal, L.,
Frédéric, G., Soumahoro, M., Kouassi, D., Rakoton-
drazafy, N., Rapidel, B., Laclau, J. P., & Brauman,
-
ration of soil health after clear-cutting of rubber
plantations at two sites with contrasting soils in
Africa. Science of the Total Environment, 816. https://
doi.org/10.1016/j.scitotenv.2021.151526
Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., &

communities and soil properties. Nature Reviews
Microbiology, 22, 226–239. https://doi.org/10.1038/s41579-
023-00980-5
-
ronmental threat. Environment, Development and
Sustainability, 8https://doi.org/10.1007/
s10668-005-1262-8
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair,
K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton,

Economic Costs of Soil Erosion and Conservation
Science, 267https://doi.
org/10.1126/science.267.5201.1117
Pino, V., McBratney, A., O’Brien, E., Singh, K., &

Soil Security, 9. https://doi.org/10.1016/j.
soisec.2022.100073
Pocock, M. J. O., Tweddle, J. C., Savage, J., Robin-

evolution of ecological and environmental citizen
science. PLoS ONE, 12https://doi.org/10.1371/
journal.pone.0172579

hundred years of climate change for organic carbon
stocks in global agricultural topsoils. Scientic Re-
ports, 13https://doi.org/10.1038/s41598-023-34753-0
-
tion in agricultural soils via cultivation of cover
crops - A meta-analysis. Agriculture, Ecosystems
and Environment, 200, 33–41. https://doi.org/10.1016/j.
agee.2014.10.024
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van

Temporal dynamics of soil organic carbon after
land-use change in the temperate zone – carbon
response functions as a model approach. Global
Change Biology, 17https://doi.org/
https://doi.org/10.1111/j.1365-2486.2011.02408.x
-
cene: Research needs. Earth Surface Processes and
Landforms, 43https://doi.org/10.1002/esp.4250
Poesen, J., Nachtergaele, J., Verstraeten, G., &
-
mental change: Importance and research needs.
Catena, 50https://doi.org/10.1016/S0341-
8162(02)00143-1
Poesen, J. W. A., Verstraeten, G., Soenens, R., &

of chicory roots and sugar beet: An underrated
Catena, 43https://
doi.org/10.1016/S0341-8162(00)00125-9
Polykretis, C., Alexakis, D. D., Grillakis, M. G., Aga-
piou, A., Cuca, B., Papadopoulos, N., & Sarris, A.

as a threat to cultural heritage sites: the case of
Chania prefecture, Crete Island, Greece. Big Earth
Data, 6https://doi.org/10.1080/20964471.2021
.1923231
The State of Soils in Europe - 2024130

environmental impacts through producers and
consumers. Science, 360https://doi.
org/10.1126/science.aaq0216

Security and Food Security. Soil Security, 1. https://
doi.org/10.1016/j.soisec.2020.100002
Pozzer, A., Tsimpidi, A. P., Karydis, V. A., De Meij, A.,
-

public health. Atmospheric Chemistry and Physics,
17https://doi.org/10.5194/ACP-17-
12813-2017
-
weltindikator «Erosionsrisiko». Bulletin BGS, 39,
11–18.
Prasuhn, V., Liniger, H., Gisler, S., Herweg, K., Can-

soil erosion risk map of Switzerland as strategic
policy support system. Land Use Policy, 32, 281–
291. https://doi.org/10.1016/j.landusepol.2012.11.006
Prietzel, J., Falk, W., Reger, B., Uhl, E., Pretzsch,

Scots pine forest ecosystem monitoring reveals


5796–5815. https://doi.org/10.1111/GCB.15265
-
duced changes in erosion during the 21st century
for eight U.S. locations. Water Resources Research,
38https://doi.org/10.1029/2001wr000493

arable land: An unresolved global environmental

136–161. https://doi.org/10.1177/03091333231216595

historical changes in global land cover: Croplands
from 1700 to 1992. Global Biogeochemical Cycles,
13https://doi.org/10.1029/1999GB900046

Adapting cities for climate change through urban
green infrastructure planning. TIDEE : TERI Infor-
mation Digest on Energy and Environment, 20
394. https://www.proquest.com/scholarly-journals/adapting-cities-
climate-change-through-urban/docview/2727005194/se-2?accoun-
tid=37310
Ranasinghe, R., Ruane, A., Vautard, R., Arnell, N.,
Coppola, E., Cruz, F., Dessai, S., Islam, A., Ruiz Car-
rascal, D., Sillmann, J., Sylla, M., Tebaldi, C., Wang,

Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the In-
tergovernmental Panel on Climate Change. Chap-
ter 12: Climate change information for regional
impact and for risk assessment. In Climate Change
2021 – The Physical Science Basis
Cambridge University Press. https://doi.org/10.1017/9781
009157896.014.1768

service de la qualité écologique des sols. Génie
Écologique, 33https://doi.org/10.51257/a-v1-ge1074
Ranjard, L., Sauter, J., Auclerc, A., Chauvin, C.,
Cluzeau, D., Mereau, D., Raous, S., Roturier, C., &
 Sciences et recherches participatives
sur les sols en France Bilan et perspectives. 29
381–394.

and Inorganic Carbon Pools by Biome and Soil
Taxa in Arizona. Soil Science Society of America Jour-
nal, 70https://doi.org/10.2136/sssaj2005.0118

Practice. In A. E. Hartemink & A. B. McBratney
Progress in Soil Science
Nature Switzerland AG.
https://doi.org/10.1007/978-3-030-87316-5

and soil protists: A call for research. Environmen-
tal Pollution, 241, 1128–1131. https://doi.org/10.1016/j.
envpol.2018.04.147
-
plastic transport in soil by earthworms. Scientic
Reports, 7
https://doi.org/10.1038/s41598-017-01594-7
The State of Soils in Europe - 2024 131
Robinson, L. D., Cawthray, J. L., West, S. E., Bonn, A.,
citizen science.
Citizen Science, 27–40. https://doi.org/10.2307/j.ctv550cf2.9
-
-
tion. Surveying and Land Information Science, 62
115–122.
Rodríguez-Espinosa, T., Navarro-Pedreño, J., Lucas,
-
cling, food security and Technosols. Journal of Geo-
graphical Research, 4https://doi.org/10.30564/
jgr.v4i3.3415
Romano, B., Zullo, F., Fiorini, L., Marucci, A., & Cia-

half a century of urbanization. Land Use Policy, 67,
387–400. https://doi.org/10.1016/j.landusepol.2017.06.006
Ronchi, S., Salata, S., Arcidiacono, A., Piroli, E., &

soil protection among the EU member states: A
comparative analysis. Land Use Policy, 82, 763–780.
https://doi.org/10.1016/j.landusepol.2019.01.017
Rooney, R. C., Bayley, S. E., & Schindler, D. W.

massive loss of peatland and stored carbon.
Proceedings of the National Academy of Sciences of
the United States of America, 109
https://doi.org/10.1073/pnas.1117693108
Ros, G. H., Verweij, S. E., Janssen, S. J. C., Haan, J.
-
sessment Framework Facilitating Sustainable Soil
Management. Environmental Science & Technology.
https://doi.org/10.1021/ACS.EST.2C04516
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L.,
Lozupone, C., Caporaso, J. G., Knight, R., & Fierer,

across a pH gradient in an arable soil. ISME Journal,
4https://doi.org/10.1038/ismej.2010.58

Impact of climate change on soil erosion - A
high-resolution projection on catchment scale until
Catena, 121, 99–109.
https://doi.org/10.1016/j.catena.2014.04.019
Svensk mosskultur: odling,
torvanvändning och landskapets förändring 1750-
2000 
lantbruksakademien.
Ruysschaert, G., Poesen, J., Verstraeten, G., &

 Progress in
Physical Geography, 28
https://doi.org/10.1191/0309133304pp421oa
Ruysschaert, G., Poesen, J., Verstraeten, G., & Gov-

due to sugar beet harvesting in West Europe.
Agriculture, Ecosystems and Environment, 107
317–329. https://doi.org/10.1016/j.agee.2004.12.005
Ruysschaert, G., Poesen, J., Wauters, A., Govers,


plot scale in Belgium. European Journal of Soil
Science, 58https://doi.org/10.1111/j.1365-
2389.2007.00945.x
Saarinen, T., Mohämmädighävam, S., Marttila, H.,

-
ing sediments; how to prevent acid surges. Forest
Ecology and Management, 293, 17–28.
https://doi.org/10.1016/j.foreco.2012.12.029

Limitations to Crop Productivity. In F. J. Villalobos &
Principles of Agronomy for Sustain-
able Agriculture-
tional Publishing AG.
https://doi.org/10.1007/978-3-319-46116-8_15


Microplastics in the soil environment: A critical
review. Environmental Technology and Innovation,
27, 102408. https://doi.org/10.1016/j.eti.2022.102408
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti,
P., Liberta`, G., Jacome Felix Oom, D., Branco, A.,
De Rigo, D., Suarez-Moreno, M., Ferrari, D., Roglia,
E., Scionti, N., Broglia, M., Onida, M., Tistan, A., &
Forest Fires in Europe, Middle East
and North Africa 2022
European Union. https://doi.org/10.2760/871593
The State of Soils in Europe - 2024132
Sartori, M., Philippidis, G., Ferrari, E., Borrelli, P.,

linkage between the biophysical and the economic:
Assessing the global market impacts of soil ero-
sion. Land Use Policy, 86https://doi.
org/10.1016/j.landusepol.2019.05.014
Sattari, S. Z., Bouwman, A. F., Giller, K. E., & Van

the missing piece in the global phosphorus crisis
puzzle. Proceedings of the National Academy of
Sciences of the United States of America, 109
6348–6353. https://doi.org/10.1073/PNAS.1113675109/-/DC-
SUPPLEMENTAL/PNAS.201113675SI.PDF
Im-
pact of Salinity on Soil Biological Activities : A Labora-
tory Experiment. September 2013, 37–41. https://doi.or
g/10.1080/00103624.2011.542226
Schils, R., Olesen, J. E., Kersebaum, K. C., Rijk, B.,
Oberforster, M., Kalyada, V., Khitrykau, M., Gobin,
A., Kirchev, H., Manolova, V., Manolov, I., Trnka,
M., Hlavinka, P., Paluoso, T., Peltonen-Sainio, P.,
Jauhiainen, L., Lorgeou, J., Marrou, H., Danalatos,

across Europe. European Journal of Agronomy, 101,
109–120. https://doi.org/10.1016/J.EJA.2018.09.003
Schindlbacher, A., Wunderlich, S., Borken, W.,
Kitzler, B., Zechmeister-Boltenstern, S., & Jandl,


Global Change Biology, 18
https://doi.org/10.1111/j.1365-2486.2012.02696.x
Schjønning, P., Lamandé, M., De Pue, J., Cornelis,
-
lenge in estimating soil compressive strength for

Advances in Agronomy, 178, 61–105. https://
doi.org/10.1016/bs.agron.2022.11.003
Schjønning, P., Lamandé, M., Munkholm, L. J., Lyn-
-
sion stress, penetration resistance and crop yields
-
gion sandy loam soils. Soil and Tillage Research,
163, 298–308. https://doi.org/10.1016/j.still.2016.07.003
Schjønning, P., van den Akker, J. J. H., Keller, T.,
Greve, M. H., Lamandé, M., Simojoki, A., Stettler,


analysis and risk assessment for soil compaction-A
European perspective. In Advances in Agrono-
myhttps://doi.org/10.1016/
bs.agron.2015.06.001

Monthly RUSLE soil erosion risk of Swiss grass-
lands. Journal of Maps, 15https://doi.org/
10.1080/17445647.2019.1585980
Schmitz, A., Sanders, T. G. M., Bolte, A., Bussotti,
F., Dirnböck, T., Johnson, J., Peñuelas, J., Pollastrini,
M., Prescher, A. K., Sardans, J., Verstraeten, A., &
-
tems in Europe to decreasing nitrogen deposition.
Environmental Pollution, 244, 980–994. https://doi.
org/10.1016/j.envpol.2018.09.101

layers in German agricultural soils. Part I: extent
and cause. Plant and Soil, 442https://
doi.org/10.1007/s11104-019-04185-9
Schuh, B., Münch, A., Badouix, M., Hat, K.,

Research
for AGRI Committee – The Future of the European
Farming Model: Socio- economic and territorial im-
plications of the decline in the number of farms and
farmers in the EUhttps://doi.org/10.24197/
reeap.259.2022.241-243
Searchinger, T., James, O., Dumas, P., Kastner, T.,

carbon storage and biodiversity for bioenergy.
Nature, 612https://doi.org/10.1038/d41586-
022-04133-1
Seehusen, T., Mordhorst, A., Riggert, R., Fleige, H.,

a clay soil in South-East Norway and its ameliora-
tion after 5 years. International Agrophysics, 35
145–157. https://doi.org/10.31545/INTAGR/135513
The State of Soils in Europe - 2024 133
Setia, R., Gottschalk, P., Smith, P., Marschner, P.,

decreases global soil organic carbon stocks. Sci-
ence of the Total Environment, 465, 267–272. https://
doi.org/10.1016/j.scitotenv.2012.08.028
Seyidoglu Akdeniz, N., Tumsavas, Z., & Zencirkiran,

and Woody Plant Species of Urban Boulevards in
Bursa, Turkey. Journal of Agricultural Science and
Technology (Jast), 21
Shafea, L., Yap, J., Beriot, N., Felde, V. J. M. N. L.,
-

soil biota and key soil functions. Journal of Plant
Nutrition and Soil Science, 186https://doi.
org/10.1002/jpln.202200136
Shaheb, M. R., Venkatesh, R., & Shearer, S. A.

and its Management for Sustainable Crop Pro-
duction. Journal of Biosystems Engineering, 46
417–439. https://doi.org/10.1007/s42853-021-00117-7
-
linity: Historical Perspectives and a World Overview
of the Problem. In M. Zaman, S. A. Shahid, & L.
Guideline for Salinity Assessment, Mit-
igation and Adaptation Using Nuclear and Related
Techniques. https://doi.org/10.1007/978-3-319-96190-3
Shamal, S. A. M., Alhwaimel, S. A., & Mouazen, A. M.

 Soil and
Tillage Research, 162, 78–86.
https://doi.org/10.1016/j.still.2016.04.016
Physics and Modelling of Wind
Erosion 
https://doi.org/10.1007/978-1-4020-8895-7_4

Plant Growth. In Soil Physical Environment and
Plant Growth.Evaluation and Management

https://doi.org/10.1007/978-3-031-28057-3_2
Siciliano, S. D., Palmer, A. S., Winsley, T., Lamb, E.,
Bissett, A., Brown, M. V., van Dorst, J., Ji, M., Fer-

Soil fertility is associated with fungal and bacterial
richness, whereas pH is associated with communi-
ty composition in polar soil microbial communities.
Soil Biology and Biochemistry, 78, 10–20.
https://doi.org/10.1016/J.SOILBIO.2014.07.005

in conservation tillage: Crop impacts. Agronomy
Journal, 98
https://doi.org/10.2134/agronj2006.0070
Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritse-

in European agricultural soils – A hidden reality
unfolded. Science of the Total Environment, 653,
1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441
Smith, L. C., Orgiazzi, A., Eisenhauer, N., Cesarz,
S., Lochner, A., Jones, A., Bastida, F., Patoine, G.,
Reitz, T., Buscot, F., Rillig, M. C., Heintz-Buschart, A.,

drivers of relationships between soil microbial
properties and organic carbon across Europe.
Global Ecology and Biogeography, 30
2083. https://doi.org/10.1111/geb.13371
Smith, P., Chapman, S. J., Scott, W. A., Black, H. I.
J., Wattenbach, M., Milne, R., Campbell, C. D., Lilly,
A., Ostle, N., Levy, P. E., Lumsdon, D. G., Millard, P.,

change cannot be entirely responsible for soil
carbon loss observed in England and Wales, 1978-
2003. Global Change Biology, 13
https://doi.org/10.1111/j.1365-2486.2007.01458.x

Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya,
T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.


Global change pressures on soils from land use
and management. Global Change Biology, 22
1008–1028. https://doi.org/10.1111/gcb.13068
Smith, P., Nkem, J., Calvin, K., Campbell, D., Cheru-
bini, F., Grassi, G., Korotkov, V., Hoang, A. Le, Lwasa,
S., McElwee, P., Nkonya, E., Saigusa, N., Soussana,
J.-F., Taboada, M. A., Arias-Navarro, C., Cavalett,
O., Cowie, A., House, J., Huppmann, D., … Vizzarri,


 IPCC special report on
climate change, desertication, land degradation,
The State of Soils in Europe - 2024134
sustainable land management, food security, and
greenhouse gas uxes in terrestrial ecosystems.
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/09_Chap-
ter-6.pdf

and coastal marine ecosystems: a global problem.
Environmental Science and Pollution Research Inter-
national, 10
https://doi.org/10.1065/ESPR2002.12.142
-
Trends in
Ecology & Evolution, 24
https://doi.org/10.1016/J.TREE.2008.11.009
Soudzilovskaia, N. A., van Bodegom, P. M., Terrer,
C., Zelfde, M. van’t, McCallum, I., Luke McCormack,

-
tribution linked to terrestrial carbon stocks. Nature
Communications, 10
https://doi.org/10.1038/s41467-019-13019-2

Studies in Environmental Science, 50
https://doi.org/10.1016/S0166-1116(08)70108-0

Cave and Karst
Systems of the World. Speleology of Montenegro.
Springer, Cham.
-
ty and Sodicity in Drylands: A Review of Causes,

Frontiers in Environmental Science, 9, 1–16.
https://doi.org/10.3389/fenvs.2021.712831
 Our main agricultural regions (in
Serbian). ‘St. Sava’ Press.


overview. European Journal of Soil Science, 69
159–171. https://doi.org/10.1111/EJSS.12451/FULL
Steinfurth, K., Börjesson, G., Denoroy, P.,
Eichler-Löbermann, B., Gans, W., Heyn, J., Hirte, J.,
Huyghebaert, B., Jouany, C., Koch, D., Merbach, I.,
Mokry, M., Mollier, A., Morel, C., Panten, K., Peiter,
E., Poulton, P. R., Reitz, T., Rubæk, G. H., … Buczko,

classes in European fertilizer recommendations
in relation to critical soil test phosphorus values
derived from the analysis of 55 European long-
Agriculture, Ecosystems &
Environment, 332, 107926.
https://doi.org/10.1016/J.AGEE.2022.107926

transportation as a source of soil pollution. Trans-
portation Research Part D: Transport and Environ-
ment, 57, 124–129.
https://doi.org/10.1016/j.trd.2017.09.024
Stolte, J., Tesfai, M., Øygarden, L., Kværnø, S., Keiz-
er, J., Verheijen, F., Panagos, P., Ballabio, C., & Hes-
Soil threats in Europe. status,
methods, drivers and eects on ecosystem services.
https://
doi.org/10.2788/828742
Moore in der
Landschaft. Harri Deutsch.
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R.
J., Roland, T. P., Amesbury, M. J., Lamentowicz, M.,
Turner, T. E., Gallego-Sala, A., Sim, T., Barr, I. D.,
Blaauw, M., Blundell, A., Chambers, F. M., Charman,


European peatlands in recent centuries. Nature
Geoscience, 12
https://doi.org/10.1038/s41561-019-0462-z
Szajdak, L. W., Jezierski, A., Wegner, K., Meysner, T.,

Peat Organic Matter: and Transformation. Mole-
cules, 25
https://doi.org/10.3390/molecules25112587
Tamm, L., Thuerig, B., Apostolov, S., Blogg, H.,
Borgo, E., Corneo, P. E., Fittje, S., de Palma, M.,
Donko, A., Experton, C., Marín, É. A., Pérez, Á. M.,
Pertot, I., Rasmussen, A., Steinshamn, H., Vetemaa,

Copper-Based Fungicides in Organic Agriculture
in Twelve European Countries. Agronomy, 12
https://doi.org/10.3390/agronomy12030673

-
ic pollution in agricultural soil from an emerging
The State of Soils in Europe - 2024 135
e-waste recycling town in Taizhou area, China. Jour-
nal of Soils and Sediments, 10https://doi.
org/10.1007/s11368-010-0252-0
Tanneberger, F., Appulo, L., Ewert, S., Lakner, S., Ó

The Power of Nature-Based Solutions: How Peat-
lands Can Help Us to Achieve Key EU Sustainability
Objectives. Advanced Sustainable Systems, 5
1–10. https://doi.org/10.1002/adsu.202000146
Tanneberger, F., Moen, A., Barthelmes, A., Lewis,
E., Miles, L., Sirin, A., Tegetmeyer, C., & Joosten, H.
-
tion and protection. Diversity, 13
https://doi.org/10.3390/D13080381
Tanneberger, F., Tegetmeyer, C., Busse, S., Bar-
thelmes, A., Shumka, S., Mariné, A. M., Jendered-
jian, K., Steiner, G. M., Essl, F., Etzold, J., Mendes,

-

Europe. Mires and Peat, 19 
https://doi.org/10.19189/MaP.2016.OMB.264
Tanneberger, F., Tuula, L., Sirin, A., Arias-Navarro,
C., Farrell, C., Glatzel, S., Kozulin, A., Laerke, P., Leif-
eld, J., Raisa, M., Minayeva, T., Moen, A., Oskarsson,

Assessment for Europe. In Global Peatlands Assess-
ment: The State of the World’s Peatlands.Evidence
for action toward the conservation, restoration,
and sustainable management of peatlands. Global
Peatlands Initiative. United Nations Environment
Programme.
https://www.unep.org/resources/global-peatlands-assessment-2022
Rational Use of Peat Depos-
its and Conservation of the Environment [in Russian].
Nauka i tekhnika.

change and sustainable use of land resources in
the mediterranean region of Turkey. Journal of Arid
Environments, 54
https://doi.org/10.1006/jare.2002.1078
Tarolli, P., Luo, J., Park, E., Barcaccia, G., & Masin,

and adaptation strategies combining nature-based
solutions and bioengineering. IScience, 27
108830. https://doi.org/10.1016/j.isci.2024.108830
Temmink, R. J. M., Lamers, L. P. M., Angelini, C.,
Bouma, T. J., Fritz, C., van de Koppel, J., Lexmond,
R., Rietkerk, M., Silliman, B. R., Joosten, H., & van
-
morphic feedbacks to restore the world’s biotic
carbon hotspots. Science, 376
https://doi.org/10.1126/science.abn1479
Thomas, A., Cosby, B. J., Henrys, P., & Emmett, B.

the UK: Complex interactions of land use change,
climate and pollution. Science of the Total Environ-
ment, 729
https://doi.org/10.1016/j.scitotenv.2020.138330
Thomas, M., Richardson, C., Durbridge, R., Fitz-

scientists to monitor rapidly changing acid sulfate
soils. Transactions of the Royal Society of South
Australia, 140
https://doi.org/10.1080/03721426.2016.1203141
Thompson, D. K., Simpson, B. N., Whitman, E.,

hydrological dynamics as a driver of landscape

Canada. Forestshttps://doi.org/10.3390/f10070534
Thorsøe, M. H., Noe, E. B., Lamandé, M., Fre-
lih-Larsen, A., Kjeldsen, C., Zandersen, M., &
-
ment - Farmers’ perspectives on subsoil compac-
tion and the opportunities and barriers for inter-
vention. Land Use Policy, 86, 427–437.
https://doi.org/10.1016/j.landusepol.2019.05.017

Identifying potential threats to soil biodiversity.
PeerJ, 8. https://doi.org/10.7717/peerj.9271
The State of Soils in Europe - 2024136
Tibbett, M., Gil-Martínez, M., Fraser, T., Green, I.
D., Duddigan, S., De Oliveira, V. H., Raulund-Ras-


biodiversity, fertility and function in a heathland
restoration. CATENA, 180, 401–415.
https://doi.org/10.1016/J.CATENA.2019.03.013

judgments on soil compaction to derive decision
rules for soil protection-A case study from Switzer-
land. Soil and Tillage Research, 92
https://doi.org/10.1016/j.still.2006.02.001



 Threats to Soil
Quality in Europe


-

provisioning soil functions in Europe. Ecological
Processes, 2
https://doi.org/10.1186/2192-1709-2-32


by soil in Europe: Status and outlook of cropping

PeerJ, 8https://doi.org/10.7717/peerj.8984

Threats to Soil Quality in Europe 
-
ties. https://doi.org/10.2788/8647

Choice
Reviews Online
https://doi.org/10.5860/choice.49-1185
Townsend, A. R., Howarth, R. W., Bazzaz, F. A.,
Booth, M. S., Cleveland, C. C., Townsend, A. R. ;,
Howarth, R. W. ;, Bazzaz, F. A. ;, Booth, M. S. ;,
Cleveland, C. C. ;, Collinge, S. K. ;, Dobson, A. P. ;,
Epstein, P. R. ;, Holland, E. A. ;, Keeney, D. R. ;,
Mallin, M. A. ;, Rogers, C. A. ;, Wayne, P. ;, Wolfe, A.

a Changing Global Nitrogen Cycle. Ecosystem and
Conservation Sciences Faculty Publications, 1
240–246.
https://doi.org/10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.
CO;2

drained peat bogs in Ukrainian Polesie. Eurasian
Soil Science, 47
https://doi.org/10.1134/S1064229314050238
Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., de
Ruiter, P. C., van der Putten, W. H., Birkhofer, K.,
Hemerik, L., De Vries, F. T., Bardgett, R. D., Brady,
M. V., Bjornlund, L., Jørgensen, H. B., Christensen,
S., Hertefeldt, T. D., Hotes, S., Gera Hol, W. H.,
Frouz, J., Liiri, M., Mortimer, S. R., … Hedlund, K.
-
sity across Europe. Global Change Biology, 21
973–985. https://doi.org/10.1111/gcb.12752
Turner, T. E., Swindles, G. T., & Roucoux, K. H.

dynamics of a UK raised bog: Impact of human
activity and climate change. Quaternary Science
Reviews, 84, 65–85.
https://doi.org/10.1016/j.quascirev.2013.10.030
Turrini, T., Dörler, D., Richter, A., Heigl, F., & Bonn,

citizen science - Generating knowledge, creating
learning opportunities and enabling civic partici-
pation. Biological Conservation, 225
https://doi.org/10.1016/j.biocon.2018.03.024
Bodenzustand in Deutschland - zum
„Internationalen Jahr des Bodens“. Umweltbundes-

 The state of the
environment: soil 
https://assets.publishing.service.gov.uk/government/uploads/
system/uploads/attachment_data/le/805926/State_of_the_environ-
ment_soil_report.pdf
The State of Soils in Europe - 2024 137
Ulén, B., Bechmann, M., Fö Lst Er, J., Jarvie, H. P., &

source for eutrophication in the north-west Euro-
pean countries, Norway, Sweden, United Kingdom
and Ireland: a review. Soil Use and Management,
23, 5–15. https://doi.org/10.1111/j.1475-2743.2007.00115.x
Van-camp, L., Bujarrabal, B., Gentile, A. R., Jones, R.
J. A., Montanarella, L., Olazabal, C., & Selvaradjou,
Reports of the Technical Working
Groups Established under the Thematic Strategy for
Soil Protection
European Communities.
-
paction. Encyclopedia of Soils in the Environment, 4,
285–293. https://doi.org/10.1016/B0-12-348530-4/00248-4

Europe: Status, Distribution and Conservation.
Restoration Ecology, 26
https://doi.org/10.1111/rec.12865
van Doorn, M., van Rotterdam, D., Ros, G., Koop-
mans, G. F., Smolders, E., De Vries, W., Bhatnagar,

degree as a universal agronomic and environmen-
tal soil P test. 2023 Book of Abstracts: Wageningen
Soil Conference, 42–42.
https://doi.org/10.1080/10643389.2023.2240211
Van Eynde, E., Fendrich, A. N., Ballabio, C., &

zinc concentrations in Europe. Science of the Total
Environment, 892.
https://doi.org/10.1016/j.scitotenv.2023.164512
Van Groenigen, J. W., Van Kessel, C., Hungate, B. A.,
Oenema, O., Powlson, D. S., & Van Groenigen, K. J.
-
gen Dilemma. In Environmental Science and Tech-
nology 
Chemical Society. https://doi.org/10.1021/acs.est.7b01427
Van Leeuwen, J. P., Saby, N. P. A., Jones, A., Lou-
wagie, G., Micheli, E., Rutgers, M., Schulte, R. P. O.,

assessment in current soil monitoring networks
across Europe for measuring soil functions. Envi-
ronmental Research Letters, 12
https://doi.org/10.1088/1748-9326/aa9c5c


erosion on European agricultural land. Earth Sur-
face Processes and Landforms, 34
https://doi.org/https://doi.org/10.1002/esp.1852


factors and implications for soil quality. Progress in
Physical Geography, 30
https://doi.org/10.1191/0309133306pp487ra
Vanmaercke, M., Panagos, P., Vanwalleghem, T.,
Hayas, A., Foerster, S., Borrelli, P., Rossi, M., Torri,
D., Casali, J., Borselli, L., Vigiak, O., Maerker, M.,
-
ers, C., Cerdà, A., Conoscenti, C., de Figueiredo,

managing gully erosion at large scales: A state of
the art. Earth-Science Reviews, 218
https://doi.org/10.1016/j.earscirev.2021.103637
Vanmaercke, M., Poesen, J., Van Mele, B., Demu-
zere, M., Bruynseels, A., Golosov, V., Bezerra, J. F.
R., Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y.,
Guerra, A. J. T., Haregeweyn, N., Ionita, I., Makanzu
Imwangana, F., Moeyersons, J., Moshe, I., Nazari

 Earth-Science
Reviews, 154, 336–355.
https://doi.org/10.1016/j.earscirev.2016.01.009



historical land use and soil management change
on soil erosion and agricultural sustainability
during the Anthropocene. Anthropocene, 17,
13–29. https://doi.org/10.1016/j.ancene.2017.01.002

L., Girardin, C., Garnier, P., Dignac, M. F., Houben,


of processes across scales. Earth-Science Reviews,
234. https://doi.org/10.1016/j.earscirev.2022.104214
The State of Soils in Europe - 2024138
Veerman, C., Pinto-Correia, T., Bastioli, C., Biro, B.,
Bouma, J., Cienciala, E., Emmett, B., Frison, E. A.,


Caring for soil is caring for life – ensure 75% of soils
are healthy by 2030 for healthy food, people, nature
and climate: interim report of the Mission board
for Soil health and food. 
European Union. https://doi.org/10.2777/611303
Verachtert, E., Maetens, W., Van Den Eeckhaut,

due to piping erosion. Earth Surface Processes and
Landforms, 36
https://doi.org/10.1002/esp.2186
Vereecken, H., Amelung, W., Bauke, S. L., Bogena,
H., Brüggemann, N., Montzka, C., Vanderborght,
J., Bechtold, M., Blöschl, G., Carminati, A., Javaux,
M., Konings, A. G., Kusche, J., Neuweiler, I., Or, D.,
Steele-Dunne, S., Verhoef, A., Young, M., & Zhang,
Na-
ture Reviews Earth and Environment, 3
https://doi.org/10.1038/s43017-022-00324-6
Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., &

erosion rates in Europe. Earth-Science Reviews,
94https://doi.org/10.1016/j.earscirev.2009.02.003


pond sedimentation in central Belgium. Geomor-
phology, 29
https://doi.org/https://doi.org/10.1016/S0169-555X(99)00020-3
Viana, C. M., Oliveira, S., Oliveira, S. C., & Rocha, J.

and Urban Sprawl Analysis. In H. R. Gokceoglu



https://doi.org/10.1016/b978-0-12-815226-3.00029-6


State of the art of soil management in the Western
Balkans-

https://doi.org/10.1016/j.transci.2004.01.005
Vieira, D. C. S., Borrelli, P., Jahanianfard, D., Benali,

Europe: Burned soils require attention. Environ-
mental Research, 217
https://doi.org/10.1016/j.envres.2022.114936




data. Journal of Hydrology, 523, 452–464.
https://doi.org/10.1016/j.jhydrol.2015.01.071
Vieira, D. C. S., Medici, D., Jimenez, M., Wojda, J.,
 Pesticides residues in Europe-
an agricultural soils. Results from LUCAS 2018 soil
module.
https://doi.org/10.2760/86566
Vieira, D. C. S., Yunta, F., Baragaño, D., Evrard, O.,


the European Union – An outlook. Environmental
Science and Policy, 161. https://doi.org/10.1016/j.envs-
ci.2024.103876


with soil inorganic carbon cycling. In C. Rumpel
Understanding and Fostering Soil Carbon
Sequestration. Burleigh Dodds Science Publishing.
https://doi.org/10.19103/AS.2022.0106

Conservation and Sustainable Management of
Soil Biodiversity for Agricultural Productivity. In N.
Sus-
tainable Living with Environmental Risks
https://doi.org/10.1007/978-4-431-54804-1

biodiversity and human health. Nature, 528
69–76. https://doi.org/10.1038/nature15744
The State of Soils in Europe - 2024 139
Wang, C., Morrissey, E. M., Mau, R. L., Hayer, M.,
Piñeiro, J., Mack, M. C., Marks, J. C., Bell, S. L., Miller,
S. N., Schwartz, E., Dijkstra, P., Koch, B. J., Stone, B.
W., Purcell, A. M., Blazewicz, S. J., Hofmockel, K. S.,
-
perature sensitivity of soil: microbial biodiversity,
growth, and carbon mineralization. ISME Journal,
15
https://doi.org/10.1038/s41396-021-00959-1


-
dicate depth-dependent soil carbon losses under
a warmer climate. Nature Communications, 13
https://doi.org/10.1038/s41467-022-33278-w


organic carbon to climate extremes under warm-
ing across global biomes. Nature Climate Change,
14https://doi.org/10.1038/s41558-023-01874-3
Webb, N. P., McGowan, H. A., Phinn, S. R., &

-
sion hazard in Australia. Geomorphology, 78
179–200. https://doi.org/10.1016/j.geomorph.2006.01.012
Status
and Dynamics of Forests in Germany Results.Results
of the National Forest Monitoring. Springer imprint.
https://doi.org/10.1007/978-3-030-15734-0_7
Wilkinson, S. L., Moore, P. A., Thompson, D. K., Wot-
ton, B. M., Hvenegaard, S., Schroeder, D., & Wad-

fuel management on surface fuel condition and
 Canadi-
an Journal of Forest Research, 48
https://doi.org/10.1139/cjfr-2018-0217

Legacy of war: Pedogenesis divergence and heavy
metal contamination on the WWI front line a cen-
tury after battle. European Journal of Soil Science,
73https://doi.org/10.1111/ejss.13297
Wong, V. N. L., Greene, R. S. B., Dalal, R. C., & Mur-

and sodic soils: a review. Soil Use and Management,
26
https://doi.org/https://doi.org/10.1111/j.1475-2743.2009.00251.x

-

experimental station. Science of the Total Environ-
ment, 713. https://doi.org/10.1016/j.scitotenv.2019.136249


and research direction. Carbon Balance and Man-
agement, 15
https://doi.org/10.1186/s13021-020-0137-5

on climate change – Atatürk Forest Farm in Ankara
as a sample. IOP Conference Series: Earth and Envi-
ronmental Science, 6
https://doi.org/10.1088/1755-1307/6/4/242043

Impacts of agronomic measures on crop, soil, and
environmental indicators: A review and synthesis
of meta-analysis. Agriculture, Ecosystems and
Environment, 319.
https://doi.org/10.1016/j.agee.2021.107551
Yunta, F., Di Foggia, M., Bellido-Díaz, V., Mo-

-

Good choice as iron fertilizer for organic farming.
Journal of Agricultural and Food Chemistry, 61
3995–4003.
https://doi.org/10.1021/JF305563B/ASSET/IMAGES/LARGE/JF-2012-
05563B_0009.JPEG
Yunta, F., Schillaci, C., Panagos, P., Van Eynde, E.,

of the compliance of EU Sewage Sludge Directive
by using the heavy metal concentrations from
LUCAS topsoil database. Environmental Science and
Pollution Research International.
https://doi.org/10.1007/S11356-024-31835-Y

the peatland restoration strategy in Europe. Jour-
nal of Applied Ecology, 59
https://doi.org/10.1111/1365-2664.14261
The State of Soils in Europe - 2024140

of soil inorganic carbon to atmospheric CO: More
important than previously thought. Global Change
Biology, 25https://doi.org/10.1111/gcb.14463
Zamanian, K., Pustovoytov, K., & Kuzyakov, Y.
-
tion processes. Earth-Science Reviews, 157, 1–17.
https://doi.org/10.1016/j.earscirev.2016.03.003
Zamanian, K., Taghizadeh-Mehrjardi, R., Tao, J.,
Fan, L., Raza, S., Guggenberger, G., & Kuzyakov,

nitrogen fertilization: Consequences for carbonate
losses, and soil health. Science of the Total Environ-
ment, 924
https://doi.org/10.1016/j.scitotenv.2024.171631
Zamanian, K., Zarebanadkouki, M., & Kuzyakov, Y.

inorganic carbon: A global assessment. Global
Change Biology, 24
https://doi.org/https://doi.org/10.1111/gcb.14148
Soil health
in the Western Balkans.
European Union. https://doi.org/10.2760/653515
-
es: Status, trends, ecosystem services, and restora-
bility. Annual Review of Environment and Resources,
30, 39–74.
https://doi.org/10.1146/annurev.energy.30.050504.144248




derived from the global monitoring networks. Eco-
toxicology and Environmental Safety, 216, 112180.
https://doi.org/10.1016/j.ecoenv.2021.112180


soil amendments on soil acidity and crop yields in
acidic soils: A world-wide meta-analysis. Journal of
Environmental Management, 345.
https://doi.org/10.1016/J.JENVMAN.2023.118531
Zhang, W. P., Surigaoge, S., Yang, H., Yu, R. P., Wu, J.
-
ping systems with complementary root growth
strategies improve crop adaptation to and reme-
diation of hostile soils. Plant and Soil, 0123456789.
https://doi.org/10.1007/s11104-023-06464-y

of vertical mobility and relative bioavailability of Cu
and Ni in calcareous soil. Environmental Pollutants
and Bioavailability, 32
https://doi.org/10.1080/26395940.2020.1813053
Zhou, M., Butterbach-Bahl, K., Vereecken, H., &


Global Change Biolo-
gy, 23
https://doi.org/https://doi.org/10.1111/gcb.13430
The State of Soils in Europe - 2024 141

Abbreviation
Denition
AMPA Aminomethylphosphonic acid
BD Bulk density
CCarbon
CAP Common Agricultural Policy
CHMethane
COCarbon dioxide
COeq Carbon dioxide equivalent
DDT Dichlorodiphenyltrichlo-
roethane
DEMIS Dynamic Erosion Model and
Monitoring System
EC European Commission
ECHO Engaging Citizens in soil sci-
ence: the road to Healthier
sOils
ECSA European Citizen Science Asso-
ciation
EJP SOIL European Joint Programme on
Agricultural Soil Management
ES Ecosystem Service
ESDAC European Soil Data Centre
EEA European Environment Agency
EU European Union
EUROSTAT

EUSO EU Soil Observatory
FAO Food and Agricultural Organi-
sation
FUA Functional Urban Area
GAEC Good Agricultural and Environ-
mental Condition
Abbreviation
Denition
GDP Gross Domestic Product
GDPR General Data Protection Regu-
lation
GHG Greenhouse gases
Gt Gigatonnes
ICP Forest
International Co-operative
Programme on the Assessment
and Monitoring of Air Pollution
in Forests
IPCC Intergovernmental Panel on
Climate Change
JRC Joint Research Center
KPotassium
Kg Kilogram
LDN Land degradation neutrality
LRD Large-scale Reference Data-
base
LUCAS 
Survey
LULUCF Land Use, Land Use Change,
and Forestry
MAC Maximum allowable concentra-
tions
Mt Million tonnes
NNitrogen
 Nitrous oxide
NH Ammonia
NOx Nitrogen oxides
NRR Regulation on Nature
Restoration
PPhosphorus
The State of Soils in Europe - 2024142
Glossary
Term Denition Reference
Soil The top layer of the Earth’s crust situated between the bedrock
and the land surface, which is composed of mineral particles,
organic matter, water, air and living organisms;
SML
Ecosystem A dynamic complex of plant, animal, and microorganism com-
munities and their non-living environment interacting as a
functional unit;
SML
Ecosystem
services
Contributions of ecosystems to the economic, social, cultural

SML
Soil health The physical, chemical and biological condition of the soil de-
termining its capacity to function as a vital living system and to
provide ecosystem services;
SML
Sustainable soil
management
Soil management practices that maintain or enhance the
ecosystem services provided by the soil without impairing the
functions enabling those services, or being detrimental to other
properties of the environment;
SML
Soil management
practices
Practices that impact the physical, chemical or biological quali-
ties of a soil;
SML
Abbreviation
Denition
SMA Spectral Mixture Analysis
SML Soil Monitoring and Resilience

SOC Soil organic carbon
SOx Sulphur oxides
UK United Kingdom
UNEP United Nations Environment
Programme
 Water and Planetary Health
Analytics
 Water, Energy, Food Security,
and Ecosystems
 Water Framework Directive
 World Reference Base for Soil
Resources
Abbreviation
Denition
PAHs Biphenyls polycyclic aromatic
hydrocarbons
PCBs Polychlorinated
PD Packing Density
RMQS -
ité des Sols
RUSLE Revised Universal Soil Loss
Equation
 Revised Wind Erosion Equation
SDGs Sustainable Development Goals
SGU Geological Survey of Sweden
SIC Soil Inorganic Carbon
SLCH Soil Loss due to Crop Harvest-
ing
SLU Swedish University of Agricul-
tural Sciences
The State of Soils in Europe - 2024 143
Term Denition Reference
Managed soils Soils where soil management practices are carried out; SML
Soil health
assessment
The evaluation of the health of the soil based on the measure-
ment or estimation of soil descriptors;
SML
Contaminated site -
ence of soil contamination caused by point-source anthropo-
genic activities;
SML
Soil descriptor A parameter describing a physical, chemical, or biological char-
acteristic of soil health;
SML
Land The surface of the Earth that is not covered by water; SML
Land cover The physical and biological cover of the earth’s surface; SML
Natural land 
area’s primary ecological functions and species composition;
SML
Semi-natural land An area where ecological assemblages have been substantially

activities, but maintain potentially high value in terms of biodi-
versity and the ecosystem services it provides;
SML
 Land used as a platform for constructions and infrastructure or
as a direct source of raw material or as archive for historic pat-
rimony at the expense of the capacity of soils to provide other
ecosystem services;
SML
Land take 
land;
SML
Transfer
function
A mathematical rule that allows to convert the value of a mea-

reference methodology, into the value that would be obtained
by performing the soil measurement using the reference meth-
odology;
SML
Soil
contamination
The presence of a chemical or substance in the soil in a con-
centration that may be harmful to human health or the environ-
ment;
SML
Contaminant A substance liable to cause soil contamination; SML
Regeneration An intentional activity aimed at reversing soil from degraded to
healthy condition;
SML
Risk -
ronment;
SML
Soil
remediation
A regeneration action that reduces, isolates or immobilises
contaminant concentrations in the soil;
SML
Soil erosion The wearing away of the land surface by water, wind, ice, gravity
or other natural or anthropogenic agents that abrade, detach
and remove soil particles or rock material from one point on the
earth's surface, for deposition elsewhere, including gravitational
creep and so-called tillage erosion;
ESDAC
The State of Soils in Europe - 2024144
Term Denition Reference
 
parent material is present or in regions with high rainfall, where



ESDAC
Carbon cycle Sequence of transformations whereby carbon dioxide is con-
verted to organic forms by photosynthesis or chemosynthesis,


respiration or combustion;
ESDAC
Organic soil A soil in which the sum of the thicknesses of layers comprising
organic soil materials is generally greater than the sum of the
thicknesses of mineral layers;
ESDAC
Peat Organic soil material with more than 50% of organic matter
derived from plant residues with not fully destroyed structure.
Peat forms in a wet soil environment or below the water table
where mineralisation of organic matter comes close to zero; a
peat horizon or layer is normally more than 30 cm thick;
ESDAC
Peatland A generic term for any wetland where partially decayed plant
matter accumulates; mire, moor and muskeg are terms used for
peatlands in Europe;
ESDAC
Saline soil 

limit of electrical conductivity in the saturation extract of such
soils is conventionally set at 4 dS m-1

ones at about twice this salinity;
ESDAC
Saline-sodic soil 

these soils are not suitable for agriculture;
ESDAC
 
salts, with or without high amounts of exchangeable sodium.
See also saline soil, saline-sodic soil, and sodic soil;
ESDAC
Sodic soil Soil with excess of sodium, pH is higher than 7, usually in the

very poor soil structure. These soils need special management
and are not used for agriculture; non-sodic soils are without
excess of sodium;
ESDAC
Soil degradation -

deterioration of soil properties and functions or destruction of
soil as a whole, e.g. compaction, erosion, salinisation;
ESDAC
Soil fertility 
amount of nutrients and water, and a suitable medium for root
development to assure proper plant growth and maturity;
ESDAC
Soil monitoring
Repeated observation and measurement of selected soil proper-
ties and functions, mainly for studying changes in soil conditions;
ESDAC
The State of Soils in Europe - 2024 145
Term Denition Reference
Soil
microorganisms
Represented by protozoa, viruses, bacteria, fungi and algae. The
most prevalent are bacteria and fungi, and depending on condi-




are a good indicator of soil status and quality;
ESDAC
Threshold -
-
olds are used to estimate whether soils can be considered in
good condition or degraded;
EUSO
Excess of soil nutri-
ents
Presence of nutrients in the soil that could potentially cause

water quality;
FAO

nutrients
Too low availability of soil nutrients that results in reduced plant
health, crop productivity and the nutritional quality of food for
human and animal consumption;
FAO
Nutrients
imbalance


soil contamination and contributing to water quality deterio-
ration and greenhouse gas emissions, or a lack of nutrients
resulting in low soil fertility;
FAO
Soil biodiversity The variety of life below ground, from genes and species to the
communities they form, as well as the ecological complexes
to which they contribute and to which they belong, from soil
micro-habitats to landscapes;
FAO
Habitat
provision
Refers to the capacity of soil to create and sustain suitable hab-
itats for a wide range of organisms, including microorganisms,
plants, and animals. It encompasses the physical, chemical, and
biological characteristics of the soil environment that enable the
establishment and maintenance of diverse communities;
BENCHMARKS
Soil threat 
and the services that soils provide. Examples of soil threats are:



BENCHMARKS
Soil condition Refers to the state of the soil, which includes its physical, chemi-
cal, and biological characteristics and the processes and inter-
actions that connect them; and which in turn determine the
capacity of the soil to support ecosystem services;
BENCHMARKS
Cultural All the non-material, and normally non-rival and





Young &
Potschin,

The State of Soils in Europe - 2024146
List of boxes
Box 1: War-induced soil degradation ........................................................................................................................23
Box 2: Use of remote sensing and 137
Eastern Serbia .................................................................................................................................................... 47
Box 3: Estimating sediment removal costs from the reservoirs of the EU ...................................................... 50
Box 4: Assessment of the impact of military activities on soil quality in Ukraine ...........................................59
Box 5: Coastal vulnerability and groundwater salinisation in Türkiye: Implications
and solutions ...................................................................................................................................................... 64
Box 6: Soil sealing maps of Flanders ......................................................................................................................... 72
Box 7: Annual land take maps of Italy .......................................................................................................................74

Figure 1: Major soil types in Europe, based on the World Reference Base for Soil Resources
 .................................................................................................................................................. 15
Figure 2:
and the United Kingdom. ........................................................................................................................... 27
Figure 3: -1 .......................................................................28
Figure 4: Soil pH, measured in HO, in EU and UK soils ....................................................................................... 31
Figure 5: 
and 2018 ....................................................................................................................................................... 32
Figure 6: 
depth, 2009–2018 . ....................................................................................................................................... 35
Figure 7:

and United Kingdom. . ..................................................................................................................................45
Figure box 2: Digital elevation models of gullies with sampling points ............................................................... 47
Figure 8: Future trends in water and wind erosion across agricultural landscapes in
the EU and United Kingdom . ..................................................................................................................... 48
Figure 9: Use of PD as a proxy for soil compaction to identify hotspots where soils are highly
compacted. .................................................................................................................................................... 54
Figure 10:


and inactive mine sites ............................................................................................................................. 58
Figure 11: Saline and sodic soils map for the EU-27 showing
 ........................ 63
The State of Soils in Europe - 2024 147
Figure box 5: ........................................................ 64
Figure 12:
 ........................................... 68
Figure box 7:
Figure 13: LUCAS Survey procedure ......................................................................................................................... 82
Figure 14: Soil degradation processes included in the EUSO Soil Degradation Dashboard ...................... 84
Figure 15: Convergence of evidence map of the EUSO Soil Degradation Dashboard. The map

 85
Figure 16: Combination of soil degradation factors by area .... ...........................................................................89
Figure 17: Roadmap towards assessing soil health in the EU until 2030 to achieve the Green
Deal objectives. ...........................................................................................................................................97
List of photos
Photo 1: Food and Futures ..........................................................................................................................................19
Photo 2: Soil sealing through urban expansion ..................................................................................................... 22
Photos box 1: Soil degradation caused by the war in Ukraine ..............................................................................23
Photo 3: ......................................................... 24
Photo 4: ..................................................................................................................................................... 38
Photo box 3: Sediment build up in Val Formaza, Italy ............................................................................................. 50
Photos box 4: The impact of war on soil .....................................................................................................................59
Photo 5: Citizen engagement ......................................................................................................................................93
List of tables
Table 1: Drivers of changes in communities of the main groups of soil organisms. The top three

C, carbon; temp., temperature ................................................................................................................... 69
Table 2: LUCAS’s integration in Member States and research bodies, including in soil monitoring

 ............................................................ 82
Table 3: Soil degradation and their impacts ........................................................................................................... 90
The State of Soils in Europe - 2024148
Surname Name Aliation
Akca Erhan 

Aldrian Ulrike 
Department Statistics and Analytical Epidemiology,
Graz, Austria
Alewell Christine Department of Environmental Sciences, University
of Basel, Switzerland
Anzalone Erlisiana 
Arcidiacono Andrea Department of Architecture and Urban Studies,
Politecnico di Milano, Italy
Arias-Navarro Cristina 
Ispra, Italy
Auclerc Apolline Université de Lorraine, France
Aydinsakir Koksal Ministry of Agriculture and Forestry, General
Directorate of Agricultural Research and Policies,
West Mediterranean Agricultural Research Institute

Ballabio Cristiano 
Ispra, Italy
Balog Kitti HUNREN, Centre for Agricultural Research, Institute
for Soil Sciences, Budapest, Hungary
Baragaño Diego Carbon Science and Technology Institute,
INCARCSIC, Asturias, Spain
Baritz Rainer European Environment Agency, Copenhagen, Den-
mark
Beltrandi Daniele Fincons group, Italy srl.
Bernatek-Jakiel Anita Institute of Geography and Spatial Management,

Bøe Frederik Department of Soil and Land Use, Division of Envi-
ronment and Natural Resources, Norwegian Insti-

and Land Management Group, Wageningen Univer-
sity & Research, Netherlands.
Borrelli Pasquale Department of Science, Roma Tre University, Rome,
Italy
Breure Timo 
Ispra, Italy

The State of Soils in Europe - 2024 149
Surname Name Aliation
Briones Maria J.I. Dept. Ecología y Biología Animal, Universidad de
Vigo, Vigo, Spain
Broothaerts Nils 
Ispra, Italy
Burton Victoria J Centre for UK Nature, Natural History Museum,
London, United Kingdom
Buttafuoco Gabriele National Research Council of Italy, Institute for Agri-
culture and Forestry Systems in the Mediterranean,
Rende CS, Italy
Cagnarini Claudia Italian Institute for Environmental Protection and

Cherlinka Vasyl Institute of Geography, Faculty of Science, Pavol

Chevallier Tiphaine IRD, UMR Eco&Sols, Montpellier, France
De La Torre Ana 
Madrid, Spain
De Medici Daniela Seidor Italy srl.
De Rosa Daniele School of Agriculture, Forestry, Food and Environ-
mental Sciences, University of Basilicata, Potenza,
Italy
Di Lonardo Sara National Research Council of Italy, Research Insti-
tute on Terrestrial Ecosystems, Sesto Fiorentino,
Italy; National Biodiversity Future Center, Palermo,
Italy
Dmytruk Yuriy Higher educational institution «Podillia State Univer-
sity», Kamianets Podilskyi, Ukraine
Dragovic Snezana "VINCA" Institute of Nuclear Sciences - National
Institute of the Republic of Serbia, University of
Belgrade, Belgrade, Serbia
Erpul Gunay Ankara University, Republic of Türkiye
Evrard Olivier Laboratoire des Sciences du Climat et de l’Envi-


Frank Stefan Thünen Institute of Climate Smart Agriculture,
Thünen, Germany
García Franco Noelia Technical University of Munich, Munich, Germany
Gascuel Chantal French National Research Institute for Agriculture,
Food, and Environment, France
Gezgin Sait Department of Soil Science and Plant Nutrition, Ag-
ricultural Faculty, Selcuk University, Konya, Türkiye
The State of Soils in Europe - 2024150
Surname Name Aliation
Hackenberger Davorka K. Department of Biology, Josip Juraj Strossmayer
University of Osijek, Osijek, Croatia
Havenga Christopher Seidor Italy srl.
Hinsinger Philippe Eco&Sols, Univ Montpellier, Cirad, INRAE, Institut
Agro, IRD, Montpellier, France
Jones Arwyn 
Ispra, Italy
Kaya Fuat Department of Soil Science and Plant Nutrition,
Faculty of Agriculture, Isparta University of Applied
Sciences, Isparta, Türkiye
Köninger Julia Dept. Ecología y Biología Animal, Universidad de
Vigo, Vigo, Spain
Labouyrie Maëva Department of Plant and Microbial Biology,
University of Zurich, Zürich, Switzerland;
Joint Research Centre, Ispra, Italy
Lamandé Mathieu Department of Agroecology, Aarhus University,
Denmark
Liakos Leonidas UNISYSTEMS, Luxembourg
Lugato Emanuele 
Ispra, Italy
Madenoglu Sevinc Ministry of Agriculture and Forestry, General
Directorate of Agricultural Research and Policies

Martin Jimenez Juan Seidor Italy srl
Mason Eloise French National Research Institute for Agriculture,
Food, and Environment, France
Matthews Francis Department of Earth and Environmental Sciences,
KU Leuven, Belgium
Maurischat Philipp Institute for Biology and Environmental Sciences,
Carl von Ossietzky Universität Oldenburg, Germany
Melpomeni Zoka Operational Unit “BEYOND Centre for Earth Ob-
servation Research and Satellite Remote Sensing”,
Institute for Astronomy, Astrophysics, Space
Applications and Remote Sensing, National
Observatory of Athens, Athens, Greece
Mimmo Tanja Faculty of Agricultural, Environmental and Food
Sciences, Free University of Bozen-Bolzano, Italy;
Competence Centre for Plant Health, Free
University of Bozen-Bolzano, Italy
Monokrousos Nikolaos University Center of International Programmes of
Studies, International Hellenic University,
Thessaloniki, Greece
The State of Soils in Europe - 2024 151
Surname Name Aliation
Moreno Jimenez Eduardo Department of Agricultural and Food Chemistry,

for Advanced Research in Chemical Sciences,

Munafò Michele Italian Institute for Environmental Protection and

Orgiazzi Alberto European Dynamics, Brussels, Belgium
Ortas Ibrahim Department of Soil Science and Plant Nutrition,
Agricultural Faculty, Cukurova University, Adana,
Türkiye
Ozcan Hesna Ministry of Agriculture and Forestry, General
Directorate of Agricultural Research and Policies }

Oztas Taskin Department of Soil Science and Plant Nutrition,
Agricultural Faculty, Ataturk University, Erzurum,
Türkiye
Panagos Panos 
Ispra, Italy
Peiro Alba Ibercivis Foundation, Campus Río Ebro, I+D C,

Piccini Chiara CREA Council for Agricultural Research and Eco-
nomics, Research Centre for Agriculture and Envi-
ronment, Rome, Italy
Poch Rosa M Dept of Chemistry, Physics and Environmental and
Soil Sciences, University of Lleida, Spain
Poeplau Christopher Thünen-Institut für Agrarklimaschutz,Thünen,
Germany
Poesen Jean Department of Earth and Environmental Sciences,
KU Leuven, Belgium; Institute of Earth and
Environmental Sciences, UMCS, Poland
Polat Atilla Ministry of Agriculture and Forestry, General Di-
rectorate of Agricultural Research and Policies, Soil
Fertilizer and Water Resources Research Institute,
Ankara, Türkiye
 Tanja Soil and Groundwater Management, University of
Wuppertal, Wuppertal, Germany
Rienks Froukje 
Wageningen, The Netherlands
Romanova Svitlana Soil protection Institute of Ukraine, Kyiv, Ukraine
Ronchi Silvia Department of Architecture and Urban Studies,
Politecnico di Milano, Italy
Ros Gerard Earth Systems and Global Change Group,
Wageningen University, the Netherlands
The State of Soils in Europe - 2024152
Surname Name Aliation
Sabri Ozturk Hasan Department of Soil Science and Plant Nutrition, Ag-
ricultural Faculty, Ankara University, Ankara, Türkiye
Saggau Philipp Department of Science, Roma Tre University, Rome,
Italy
Salata Stefano Department of Architecture and Urban Studies,
Politecnico di Milano, Italy
Sandén Taru 
Department for Soil Health and Plant Nutrition,
Vienna, Austria
Sanz Francisco Ibercivis Foundation, Campus Río Ebro, I+D C, Zara-
goza, Spain
Scammacca Ottone UMR Prodig, CNRS, Université Paris 1: Pan-
théon-Sorbonne, IRD, AgroParisTech, Aubervilliers,
France - French Guiana
Scarpa Simone European Dynamics, Brussels, Belgium
Schillaci Calogero 
Ispra, Italy
Serpa Dalila Centre for Environmental and Marine Studies, De-
partment of Environment and Planning, University
of Aveiro, Aveiro, Portugal
Silva Vera Soil Physics and Land Management Group, Wagen-
ingen University & Research, Netherlands.
Sonmez Bulent Ministry of Agriculture and Forestry, General Direc-
-

Spalevic Velibor University of Montenegro, Biotechnical faculty, Pod-
gorica, Montenegro
Van Der Heijden Marcel Plant-Soil Interactions group, Agroscope, Zurich,
Switzerland & Department of Plant and Microbial
Biology, University of Zurich, Zurich, Switzerland
Van Eynde Elise 
Ispra, Italy
Van Liedekerke Marc 
Ispra, Italy
Vanmaercke Matthias Department of Earth and Environmental Sciences,
KU Leuven, Belgium
 Dragana Serbian Environmental Protection Agency, Depart-
ment for Indicators and Reporting, Republic of
Serbia
Vieira Diana 
Ispra, Italy
Virto Iñigo -
lic University of Navarre, Spain
The State of Soils in Europe - 2024 153
Surname Name Aliation
Wojda Piort 
Ispra, Italy
Yunta Felipe 
Ispra, Italy
Zdruli Pandi International Centre for Advanced Mediterranean
-
nomic Institute of Bari, Italy
Zhang Chaosheng International Network for Environment and Health

Studies, University of Galway, Ireland
Zupanc Vesna University of Ljubljana, Slovenia
HE STATE OF
SOILS IN EUROPE
The State of Soils in Europe - 2024154
Getting in touch with the EU
In person


On the phone or in writing
Europe Direct is a service that answers your questions about the European Union. You can contact this
service:



Finding information about the EU
Online


EU publications
-


EU law and related documents


EU open data
The portal data.europa.eu provides access to open datasets from the EU institutions, bodies and agen-
cies. These can be downloaded and reused for free, for both commercial and non-commercial purposes.
The portal also provides access to a wealth of datasets from European countries.
The State of Soils in Europe - 2024 155
HE STATE OF
SOILS IN EUROPE
The Joint Research Centre (JRC) provides
independent, evidence-based knowledge
and science, supporting EU policies to
positively impact society
Science for policy
EU Science Hub
joint-research-centre.ec.europa.eu
... In the lower part of the catchment, the 137 Cs method indicates higher erosion rates at several locations (19,23,28,31, and 32) covered by forest, compared to the RUSLE model. This can be explained by the proximity to human settlements, where, in the past, vegetation was sparse and often controlled by human activity. ...
Article
Full-text available
This study assessed soil erosion intensity and soil properties across the Crveni Potok catchment in Serbia, a region of diverse morphology, geology, pedology, and vegetation. Soil samples were collected using a regular grid approach to identify the underlying factors contributing to erosion and the most vulnerable areas. Based on ¹³⁷Cs activities and the profile distribution (PD) model, severe erosion (>10 t ha⁻¹ y⁻¹) was predicted at nearly 60% of the studied locations. The highest mean erosion rates were detected for the lowest altitude range (300–450 m), Rendzic Leptosol soil, and grass-covered areas. A significant negative correlation was found between the erosion rates, soil organic matter, and indicators of soil structural stability (OC/clay ratio and St), indicating that the PD model successfully identifies vulnerable sites. The PD and RUSLE (revised universal soil loss equation) models provide relatively similar mean erosion rates (14.7 t ha⁻¹ y⁻¹ vs. 12.7 t ha⁻¹ y⁻¹) but significantly different median values (13.1 t ha⁻¹ y⁻¹ vs. 5.5 t ha⁻¹ y⁻¹). The model comparison revealed a positive trend. The observed inconsistencies were interpreted by the models’ spatiotemporal frameworks and RUSLE’s sensitivity to input data quality. Land use stands out as a significant factor modifying the variance of erosion rate, highlighting the importance of land management practices in mitigating erosion.
Article
Full-text available
Saline soil from the coast is a valuable and readily available resource. It is also a valuable resource for reserving arable land. Adding organic fertilizers to salinized soils is an effective method of enhancement. However, saline soils cannot be improved using a single measure, and the effects of compound measures of organic fertilizers combined with mineral elements, such as humic acid, are significant and worthy of further examination. To explore the effects of various measures on the features of pH, electrical conductivity (EC), and nutrient changes in coastal salinized soils in Yancheng, Jiangsu Province, a ryegrass–alfalfa rotation with organic fertilizer and compound measures was designed. The findings indicated that the total nitrogen (TN) content of the soil increased and that all organic fertilizer composites decreased the electrical conductivity of the surface soil. However, the organic fertilizer with microbial fertilizer and humic acid was especially effective at regulating the pH and electrical conductivity of the surface soil when salts were prone to accumulation. In conclusion, our findings highlight new approaches to lowering salinity and boosting fertility in coastal saline soils: organic fertilizer with microbial fertilizers and humic acid, as well as organic fertilizer with attapulgite clay.
Article
Full-text available
Soils are the largest terrestrial reservoir of organic carbon, yet they are easily degraded. Consistent and accurate monitoring of changes in soil organic carbon stocks and net greenhouse gas emissions, reporting, and their verification is key to facilitate investment in sustainable land use practices that maintain or increase soil organic carbon stocks, as well as to incorporate soil organic carbon sequestration in national greenhouse gas emission reduction targets. Building up on an initial review of monitoring, reporting and verification (MRV) schemes with a focus on croplands, grasslands, and forestlands we develop a framework for a modular, scalable MRV system. We then provide an inventory and classification of selected MRV methodologies and subsequently “score” them against a list of key characteristics. It appears that the main challenge in developing a unified MRV system concerns the monitoring component. Finally, we present a conceptual workflow that shows how a prototype for an operational, modular multi-ecosystem MRV tool could be systematically built.
Article
Full-text available
Soils are key components of our ecosystems and provide 95%–99% of our food. This importance is reflected by an increase in participatory citizen science projects on soils. Citizen science is a participatory research method that actively involves and engages the public in scientific enquiry to generate new knowledge or understanding. Here, we review past and current citizen science projects on agricultural soils across Europe. We conducted a web‐based survey and described 24 reviewed European citizen science projects in the light of the 10 principles of citizen science and identified success factors for citizen science. Over 66% of the projects generated soil biodiversity data; 54% and 42% of the projects generated data on vegetation cover and soil organic carbon, respectively. Our findings show that soil citizen science projects aligned with the 10 principles of citizen science offer an unexploited resource for European soil health research. We conclude that promoting co‐creation, fostering knowledge‐sharing networks and enabling long‐term communication and commitment with citizens are success factors for further development of citizen science on soils.
Article
Full-text available
Soil acidification is an ongoing problem in intensively cultivated croplands due to inefficient nitrogen (N) fertilization. We collected high-resolution data comprising 19969 topsoil (0-20 cm) samples from the Land Use and Coverage Area frame Survey (LUCAS) of the European commission in 2009 to calculate the impact of N fertilization on buffering substances such as carbonates and base cations. We have only considered the impacts of mineral fertilizers from the total added N, and a N use efficiency of 60%. Nitrogen fertilization adds annually 6.1×10 7 kmol H + to European croplands, leading to annual loss of 6.1×10 9 kg CaCO 3. Assuming similar acidification during the last 50 years, carbonates were completely removed from 3.4×10 6 ha of European croplands. In carbonate-free soils, annual loss of 2.1×10 7 kmol of basic cations will lead to strong acidification of at least 2.6 million ha of European croplands within the next 50 years. Inorganic carbon and basic cation losses at such rapid scale tremendously drop the nutrient status and production potential of croplands. Soil liming to ameliorate acidity increases pH only temporarily and with additional financial and environmental costs. Only the direct loss of soil carbonate stocks and compensation of carbonates-related CO 2 correspond to about 1.5% of the proposed budget of the European commission for 2023. Thus, controlling and decreasing soil acidification is crucial to avoid degradation of agricultural soils, which can be done by adopting best management practices and increasing nutrient use efficiency. Regular screening or monitoring of carbonate and base cations contents, especially for soils, where the carbonate stocks are at critical levels are urgently necessary.
Article
Full-text available
The topsoil Land Use and Cover Area frame Statistical survey (LUCAS) aims at collecting harmonised data about the state of soil health over the extent of European Union (EU). In the LUCAS 2018 survey, bulk density has been analysed for three depths, i.e., 0-10 cm = 6140 sites; 10-20 cm = 5684 sites and 20-30 cm =139 sites. The laboratory analysis and the assessment of the results conclude that the bulk density at 10-20 cm is 5-10% higher compared to 0-10 cm for all land uses except woodlands (20%). In the 0-20 cm depth, croplands have 1.5 times higher bulk density (mean: 1.26 g cm − 3) compared to woodlands (mean: 0.83 g cm − 3). The main driver for bulk density variation is the land use which implies that many existing pedotransfer rules have to be developed based on land use. This study applied a methodological framework using an advanced Cubist rule-based regression model to optimize the spatial prediction of bulk density in Europe. We spatialised the circa 6000 LUCAS samples and developed the high-resolution map (100 m) of bulk density for the 0-20 cm depth and the maps at 0-10 and 10-20 cm depth. The modelling results showed a very good prediction (R 2 : 0.66) of bulk density for the 0-20 cm depth which outperforms previous assessments. The bulk density maps can be used to estimate packing density which is a proxy to estimate soil compaction. Therefore, this work contributes to monitoring soil health and refine estimates on carbon and nutrients stocks in the EU topsoil.
Article
Full-text available
Low moisture conditions result in substantially more soil inorganic carbon (SIC) than soil organic carbon (SOC) in drylands. However, whether and how changes in moisture affect the temperature response of SIC in drylands are poorly understood. Here, we report that the temperature sensitivity of SIC dissolution increases but that of SOC decomposition decreases with increasing natural aridity from 30 dryland sites along a 4,500 km aridity gradient in northern China. To directly test the effects of moisture changes alone, a soil moisture control experiment also revealed opposite moisture effects on the temperature sensitivities of SIC and SOC. Moreover, we found that the temperature sensitivity of SIC was primarily regulated by pH and base cations, whereas that of SOC was mainly regulated by physicochemical protection along the aridity gradient. Given the overall increases in aridity in a warming world, our findings highlight that drought may exacerbate dryland soil carbon loss from SIC under warming.
Article
Full-text available
Background and aims Hostile soil conditions have a global impact on crop production. While root traits of individual plant species adapted to specific hostile soils are well studied, a comprehensive synthesis of how to use diversified cropping systems with complementary root growth strategies to adapt to and remediate hostile soils is lacking. Scope We begin by providing definitions, categorizations, and global distribution of hostile soils, followed by a synthesis of recent advances in below-ground niche complementarity or facilitative root interactions among crop species in diverse cropping systems across various hostile soils. Lastly, we highlight the significance of cultivating a robust understanding of root adaptations for crop diversification in hostile soils for future research. Conclusion Diversified cropping systems that incorporate complementary root growth strategies can efficiently utilize nutrients and mitigate abiotic stress in hostile soils, such as nutrient deficiency, aridity, and waterlogging conditions. Furthermore, intercropping hyperaccumulator plants or halophytes with crops is effective in reducing metal or salt accumulation in target crops grown in contaminated or saline-alkali soils, respectively. Cover crops could create biopores for succeeding crop roots in compacted soils, while diversified cropping systems aid in preventing additional soil erosion in eroded areas. Leveraging diverse root traits can also contribute to the suppression of soil‑borne diseases and pests within intercropping setups. Enhancing diversified cropping systems necessitates the application of novel methods and technologies for root studies. This multifaceted approach is crucial for sustaining yield under the challenges posed by multiple hostile soil conditions, especially within the context of climate change.
Chapter
Speleology is a cross-disciplinary field that studies caves and other karst features, as well as their structure, physical properties, history, life forms, and the processes by which they form and change over time. The understanding of geology and pedology, combined with the knowledge of chemistry, biology, physics, meteorology, cartography, and related fields is also significant for the understanding of caves as complex, evolving systems. Pedology (from Greek: pedon, “soil”; and logos, “study”), defined by Amundsen, is a discipline within soil science which focuses on understanding and characterizing soil formation, evolution, often in the context of the natural environment. With the idea of contributing to a wider understanding of speleology in Montenegro, an analysis and cartographic presentation of the soils of Montenegro was made including physical–geographical background, mapping of soils and interrelationships between geomorphic processes, soil formation, biodiversity, land use, including soil erosion. The author's idea with this presentation was to contribute to the completion of a mosaic about Montenegro, with all the research reports of the related disciplines, to provide an integral presentation of the Speleology of Montenegro.
Article
Soil salinization is among the most critical threats to agriculture and food security. Excess of salts adversely affects soil structure and fertility, plant growth, crop yield, and microorganisms. It is caused by natural processes, such as dry climates and low precipitations, high evaporation rate, poor waterlogging, and human factors, such as inappropriate irrigation practices, poor drainage systems, and excessive use of fertilizers. The growing extremization of climate with prolonged drought conditions is worsening the phenomenon. Nature-based solutions (NBS), combined with precision or conservation agriculture, represent a sustainable response, and offer benefits through revitalizing ecosystem services. This perspective explores NBS that can be adopted, along with their challenges and implementation limitations. We also argue that NBS could not be enough to combat hunger in the world’s most vulnerable regions and fully achieve the Sustainable Development Goal – Zero Hunger (SDG2). We therefore discuss their possible combination with salt-tolerant crops based on bioengineering.