ArticlePDF Available

Belowground foundations of tropical forest restoration

Authors:
Biotropica. 2024;56:e13296. 
|
1 of 6
https://doi.org/10.1111/btp.13296
wileyonlinelibrary.com/journal/btp
Received:21August2023 
|
Revised:7N ovember2 023 
|
Accepted :12Decemb er2023
DOI:10.1111/btp.13296
COMMENTARY
Belowground foundations of tropical forest restoration
Lindsay A. McCulloch1,2 | Cecilia M. Prada1| Wenying Liao1| Marijn Bauters3,4 |
Lauren Church1| Ming Yang Lee5| Laura Toro6,7| Viktor Van de Velde3|
Anita Weissflog7| Michelle Wong8,9| Benton N. Taylor1
1Depar tmentofOrganismicandEvolutionaryBiology,Harvar dUniver sity,Cambridge,Massa chusetts,USA
2Nationa lCenterforAtmosphericResearch,NationalOceanographican dAtmosp hericA genc y,Boulder,Col orado,USA
3IsotopeB ioscienceLab orator y(ISOFYS),DepartmentofGreenChemistr yandTechn ology,GhentUniversit y,Ghent,B elgium
4ResearchGroupPLECO(Plant sandEcosystem s),Depar tmentofBiolog y,UniversityofAntwerp,Wilrijk,Belgium
5AsianSchooloftheEnvironment,NanyangTechnologicalUniversit y,Singapore,Singapore
6Depar tmentofPlantandMicrobialBiology,Univer sityofM innesota,St.Paul,Mi nnesot a,USA
7SchooloftheEnvironment ,YaleUniversity,NewH aven,Connecticut,USA
8CaryInstit uteofEcosystemStudies,M illbro ok,NewYork ,USA
9Depar tmentofEcologyandEvolut ionar yBiology,YaleUniversity,NewH aven,Connect icut,U SA
Correspondence
LindsayA.McC ulloch,DepartmentofOrga nismicandEvoluti onar yBiolog y,HarvardUnive rsit y,Cambridge1300CentreSt .Roslin dale,MA02131,USA.
Email:la.mcculloch9@gmail.com
Funding information
OrganizationForTropicalSt udies,Grant /AwardNumber:Rex fordDau benmireFellowshipFund514/564;NOA AClimateandGlobalChangePostd octor al
Fellowsh ip,Grant/AwardNum ber:NA18NWS4 6200 43B
Associate Editor:JenniferPowers
Handling Editor: Jayashree Ratnam
Tropical fores ts are exper iencing dras tic human land u se changes
suchthat currently half of theworld's tropical forests are regener-
atingsecondary forests (FAO,2020). Thishasspurred immensein-
terest inrestorationefforts,suchasARF100,theBorneoInitiative,
Initiative20x 20,andForestStewardshipCouncil,toaidthe natural
regenerationoftropicalforests(UNEP&CBD,2018;UNIQUE,2020;
Vergaraetal.,2015).Restor at io nr ange sf romp assive toac tivestr at-
egies, such as natural regeneration to active species selectionand
inoculationwith nativesoil.However,restoration efforts areof ten
not effective (Lindenmayer,2020) . One of the reaso ns is the lack
of connection with ecologicaltheor y and processes(e.g., compe-
tition, dispersal, succession), par ticularly with belowground pro-
cesses.Belowgroundprocessesarerelativelyunderstudied(Averill
etal.,2022;Seidl&Turner,2022;Werdenetal.,2022),yettheinter-
actionsofplantroots,soilmicrobes,andsoilpropertiesdrivecritical
belowgroundecosystemser vicessuchaserosioncontrol,waterand
nutrientcycling, and soil carbon sequestration. Attention to these
critical interactions has the potential to substantially increase the
success of restoration efforts. Here we highlight the most import-
ant belowground processes for active tropical forest restoration
(Figure 1),whenspecificrestorationpracticesshouldbeconsidered,
andsuggestkeyresearchpriorities.
Belowground processes are of ten mediated by microorganisms,
whichcreatecritical links between plants and soil (Figure 1b). These
plant–microbial interactions can occur via established symbioses
wheremicrobesarephysicallyconne ctedtoplantroots(e.g.,symbiotic
nitrogen-fixingbacteriaandmycorrhizalfungi)orviathefree-livingsoil
microbialcommunity(e.g.,throughrootexudationandsoilpathogens).
Interac tions betwee n roots and soil mic robes often dri ve reciprocal
effectsbetweenplants and the soil,called plant–soilfeedbacks(PSF),
which canmakethe local soil either more (positive PSF) or less(neg-
ative PSF) favorable toparticular plant species.These plant–microbe
inte rac t io nsare im p or t a nt fo rfo re s tr ecove r y,a sh igh li ghted by ag lob al
analysisshowingplantbiomassrecovered64%fasterafterinoculating
plantswithmicrobiomesfromnativeecosystems(Averilletal.,2022).
Disentangling the multitude of plant–soil–microbe interactions
and their impact s on the many belowground processes relevant to
tr op ica lfo re s tr est ora tionc anb ec hal le ngi ng.Wes t ruc t ur eou ra r ticle
around several keyrestoration objectives: soil stabilization and c ar-
bonstorage,nutrient cyclingrecovery and forestgrowth, and forest
diversityandmultifunctionality.Herewedefineforestmultifunction-
ality as:aforestecosystemthatcan providea mixofenvironmental,
©2024AssociationforTropicalBiolog yandConserv ation.
2 of 6 
|
     McCULLOCH e t al.
ecological, economic, and social services and goods (Mansourian
etal.,2005).Foreachoftheserestorationobjectives,wehighlightthe
management strategies that can impact the respective belowground
players an d processes , and call for m ore inclusio n of plant–soil–mi-
crobe interactions in restoration research and practice.
1  | SOIL STABILIZATION AND CARBON
STOR AGE
Oneobjectiveofrestorationissoilstabilizationtopreventerosion
a n df u r t h e r d eg r a d a t i o n ,w h i l e pr o m o t i n gc a r b o n s t or a g e . I nc r e a s e d
carbon storage can be observed in less than a decade when above-
groundcarbonismeasuredinrestoredareas(Philipsonetal.,2020),
withchangesinsoilcarbonstocksoccurringupto40 years(Holl&
Zahawi,2014;Jonesetal.,2 019;Zaninietal.,2021).However,the
trajec tories of soil st abilization ( Ford et al., 2016), plant survival
(Werden et al., 2022), and soilcarbonstorage(Craig et al., 2018)
in regenerating forests are affec ted by the belowground plant
growthstrategiesoftheselectedplantspecies(Figure 1c).Forex-
ample,specieswiththickfinerootsanddeeprootstructureshave
been linked to slower growth rates andplantestablishment, both
ofwhich increase the amountofcarbon storedin the ecosystem
(Werdenetal.,2022).Theem ergenceofglob alroottraitdatabase s
(e.g., Iversen et al., 2017)havehighlightedfunctional groupsthat
can help restoration practitioners select species that aid in recov-
ery. However, fur ther linking and t ranslating t raits to ecos ystem
functionisnecessaryforsuccessfulrestoration.
When forests are converted from dif ferent land uses, the soil's
physical, chemical, and biological properties change, leading to shift s
in fungal s pecies com position an d diversit y (Jones et a l., 2003; Wubs
et al., 2016). To ensure successful establishment, the proportion of
arbuscular versus ectomycorrhizal trees should be selected based
on the nati ve or reference eco system. Pla nts form nutr ient acquirin g
FIGURE 1 Graphicaldepictionof
how(a)restorationactionsthatexplicitly
consider(b)importantbelowground
element scanrestore(c)keybelowground
processesduringtropicalforest
regeneration. Key belowground elements
(roottrait s,mycorrhizae,nitrogen-
fixingbacteria[N-fixers],andothersoil
microbes)influencesoilstabilization
andcarbonstorage,nutrientcycling
recoveryandforestgrowth,andforest
diversit yandmultifunc tionality.Various
roottraitsandmycorrhizaecanpromote
thestabilizationofsoilandprotect
against erosion while also contributing
tosoilcarbonstorage.Mycorrhizaeand
N-fixerssupporttherecoveryofnutrient
cyclingandforestgrowthovertimefor
reforestedareasinthetropics.Further,
plant–soilfeedbacks(PSF)cansupport
thediversityandmultifunctionalityof
tropicalforeststhroughbothpositiveand
negativePSF.Thebelowgroundprocesses
that are mediated by these belowground
characteristicscanbeinfluencedthrough
restorationactions(depictedhereinthe
topleftwithahandaddingseedsfrom
selectedplantspecies,seedsinoculated
withmicrobialsymbionts,and/orsoil
inoculumdependingontheneedsofthe
forestbeingrestored).
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
3 of 6
McCULLOCH e t al.
symbioses with arbuscular and/or ectomycorrhizal fungi. Arbuscular
mycorrhiz al fungi grow into root ce lls and send hyphae in to the soil
to scavenge fo r available nutr ients and ecto mycorrhizal fun gi form a
sheath around roots and breakdown organic material themselves to
access soilnutrients (Phillips et al., 2013).Successful establishment of
treesandtheirmycorrhizalfungiwilllikelyhavebeneficialeffectsonsoil
proper ties that facilitate carbon storage andnutrient cyclingthrough-
outregeneration, asfoundinotherecosystems(Asmelashetal.,2016;
Policellietal.,2020). Myc orrhizalsymbiose scans tabi lizesoilsviahy ph al
networks and increase carbon storage via production ofcompounds
suchasglycoproteins(glomalin),whichslowdowndecomposition(Rillig
etal.,20 01; Figure 1b,c).Morespecifically,arbuscularmycorrhizaltrees
stimulate fast carbon cycling and mineral-associated organic matter
formation, whileec tomycorrhizaltrees drive slow decompositionand
buildupofsurfaceorganiclayers(Craigetal.,2018;Pradaetal.,2021).
When implementing active restoration, practitioners should
considerrestoringnativemycorrhizalcommunities.Providingnative
soilin oculu mi ncrea sesfu nga lb io mas sa nd abu nd anc ew hi leals oe n-
hancingabovegroundplantprocesses(Maltz&Treseder,2015;Wubs
etal.,2016; Figure 1a).However,wecautionthatmanycommercially
availablemycorrhizalinoculacontainnon-nativeandunsuitablemy-
corrhiz al taxa for mos t tropical fore st restorati on project s. These
inocula couldbeineffective or detriment al tothe goal of restoring
healthy native soil microbial communities and successful regener-
ation. Usin g native soil fo r mycorrhizal inocu lum can be be neficial
andprovideasuiteoffungalsymbiontslocaltotheregion.However,
practitionersmaywanttoexperimentwithwheretheysourcetheir
local so il inoculum fro m before full imp lementati on, as plants' re -
sponses t o soil inoculu m depend on t he successio nal stage of th e
ecosystemthattheinoculumwascollec tedfrom(Allenetal.,2003).
2  | NUTRIENT CYCLING RECOVERY AND
FOREST GROWTH
Recovery of soil b iogeochemic al cycling se rves as a key prer equi-
site to abovegr ound biomass regene ration, and soil microbes are
essential to biogeochemical cycling. The standing paradigm indi-
catesthattropicalsecondaryforeststransitionfromnitrogen(N)to
phosphorus(P)limitation(Powers&Marín-Spiotta,2017; Figure 1c),
and both mycorrhizae andN-fixing bacteria play an important role
inthesenutrientcycles.Forexample,mycorrhizalfungicanincrease
the connectivity andavailability of nutrient pools in anecosystem
by accessin g various for ms of nutrien ts, such as P, that can not be
accessed by plants (Smith & Read, 2010), thereby increasing plant
biomass,height,andspeciesrichness(Neuenkampetal.,2019).
In additi on to mycorrhizal f ungi, restor ation pract itioners have
long recognized the potential benefits of plants that form rela-
tionship s with N-fixing bacte ria (hereafte r referred to as N-fixers ;
Figure 1b)because of their ability to bring new N into the ecosys-
temand growfastasseedlings(Chaeretal.,2011).Thisiscriticalas
theN cycle can take more than 52 yearstofullyrecover(Amazonas
et al., 2011). By e nhancing soi l N from the deco mposition of t heir
N-richt issues(Bink ley& Giardina, 1997), N-fixers can co unteract
largeNlossesfromdisturbances(BooneKauffmanetal.,1995;Neill
etal.,2006)andincreasebioavailableNtomeetthehighplantNde-
mandinearlysuccessionalstages(Battermanetal.,2013;Levy-Varon
etal., 2019). However,practitioners shouldnotonly plantNfixers,
asNfixerscancompetewithneighboringtrees,negativelyaf fecting
regener ation (Taylor et al., 2 017), and inc rease soil N2O emissions
ifNavailabilityanddemandbecomeunbalanced(Kou-Giesbrecht&
Menge,2019). Wesuggestthatactive plantingofNfixerswilllikely
bemorecriticalinN-limitedecosystems(Smith-Martinetal.,2 017),
suchasmontanetropicalforests( Tanneretal., 1998) orhighly dis-
turbed o r degrade d ecosyste ms, and less s o where N is abu ndant,
suchashighly-weathered,stableoxisols(Huddelletal.,2022;Wong
etal.,2020)orregions withhighNdepositionthat may increaseN
availabilityintheenvironment(Kou-Giesbrecht&Menge,2019).
Soilcation(positivelycharged)nutrient s,suchascalcium,influence
soi l p H a n d n u t r ientm o v e m e n t i nthes o i l . T h e s e c a t i o n sc a nalsob e n e g -
ativelyimpactedbyland-usechangeandmayrequirespecialattention
inrestorationeffort s(Bauters etal.,2021;Bauters,Grau, etal.,2022;
Bauters,Janssens, et al., 2022,Figure 1c).Cationsarepredominantly
stored in woodybiomass,thus thesenutrients are depleted from the
ecosystemwhenbiomassisremovedfromnativeforests.Givencation
inputsaregenerallylow,thelong-termimpactsofcationdepletionwar-
rantfurtherstudyandtheconsiderationofcationamendmentsduring
active restorationto soils that are particularlydepleted,inaddition to
themorecommonfertilizeramendmentsofnitrogen,phosphorus,and
potassium(Fajardoetal.,2013;Toroetal.,2024).
3  | FOREST DIVERSITY AND MULTI FUN
CTI ONA LITY
Plant–soilfeedbacksare alsoimpor tant forincreasingdiversityand
multifunctionality of recoveringforests (Figure 1c), supporting the
resilien cy of these trop ical forest s (Bennett & K lironomos, 2 019).
Positive (mutualistic) and negative(pathogenic)PSFcanaffecttree
species' establishment (Sarmiento et al., 2017) and performance
(Eck et al., 2019; Manganet al., 2010) by making the environment
favorableforspecificplantgroups,affectingtheirlocalabundances
(Figure 1b,c). For example, as succession proceeds, tree species
may experience strong negative PSF (pathogen pressure) where
and when they peak in abundance during succession, as host-
specificmicrobiotamaybelocallyabundant(Bagchietal.,2014;Liu
et al., 2015). Thus, both positive and negative PSF c an affect tree
diversit yinmatureforests(Bagchietal.,2014; Comitaetal.,2014;
Corralesetal.,2016;Manganetal.,2 010)andcontext-dependency
ofPSFmaystronglycontributetosuccessionaltrajectories.
Overall,evidencestronglyindicatesthatPSFsincreaseandmain-
taintropicalforestdiversity.Diverseforestshaveahigher capacity
toservemultiplefunctions,aremoreresilienttofuturedisturbances
(Messieretal.,2022,Figure 1c),andhavehighercarbonstoragepo-
tential.However,directincorporationofPSFsintoforestrestoration
plansisinitsinfancy,andthecomplexityofthesefeedbacksmakes
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
4 of 6 
|
     McCULLOCH e t al.
theirmanagementdifficult,particularlyinthediverseforestsofthe
tropics.Atthe broadscale, restorationefforts targeted at increas-
ing soil he alth and micr obial diver sity can e nhance PSFs an d their
subsequentsupport ofdiverse, multifunctionaltropicalforests.For
example,evennativesoilinoculationsthatbringsoilpathogensmay
bebeneficialoverallbypromotingtreespeciesdiversity.Iflocalsoil
inoculumisbeingused,collectingfrommultipleareasandhomoge-
nizingbeforeimplementationcouldmaximizethebenefitsofPSF.If
activerestorationincludesselectingseedsorseedlingsforplanting,
it is impor tant that practitioners select species that are not just di-
versephylogeneticallybutalsowithrespecttotheirfunctionaltypes
tomaximizetheresilienceand func tion oftherestored area.Given
the vast diversit y of tropical forest ecosystems, small pilot studies
maybebeneficialforinformingwhichplantspecies toprioritizefor
plantingbeforelarge-scaleeffortsareimplemented.
4  | NEX T STEPS IN BELOWGROUND
TROPICAL FOREST RESTORATION
Inadditiontobiogeochemicalandecologicalbelowgroundprocesses
thatsupportsuccessful restoration,wemustbalancethe economic
andsocialneedsofrestorationareasduringthenextdecade(United
Nations,& WorldBank, 2022).Strongerpartnershipsbetweensci-
entistsandrestorationpractitionerswillhelpachievethisgoal(Holl
&Brancalion,2022;Powers,2022).Practitionersvalueinexpensive
managementstrategiesandtangibleresult s(e.g.,numberofplanted
trees, t ree surv ival, amou nt of biomass st ored) that c an be imple-
mented at la rge scales (H oll & Branc alion, 2022). However, scien-
tistsoftenfocusonmeasuringmorecomplexmetricsofrestoration
success at smaller scales(e.g., pollination,belowground carbonse-
questration,nutrientcycling;Melietal.,2017 ).Giventhismismatch,
effortstoidentifyaccessible,inexpensivemetricsthatrepresentthe
recoveryof belowground processes,andinparticularthe potential
ofsoil microbestofacilitateandsupport restorationeffortswillbe
critical to meet global restoration targets.
Microbiome interventions, such as inoculating plants prior to
planting o r transferr ing soil from int act ecosyste ms, are promisin g
to o l sto a cce l e r ater e gene r a t iona n drec o veryo f e cos y s t e mp r o c esse s
(Averilletal.,2022; Figure 1a).However,theimplementationofthese
strategies in tropical forests should be carefully evaluated based
onplant–microberelationships, ecosystemtype(e.g.,dominanceof
ectomycorrhizal symbionts inm ontaneforest s andarbuscular my-
corrhizal symbionts in lowland forests) and initial biogeochemical
conditions(Neuenkampetal.,2019).Moreover,extensiveknowledge
aboutbeneficialsourcesofinocula(Maltz&Treseder,2015)andana l-
yses that compare the cost-effectiveness of topsoil transplantsand
commercially available microbes at large scales are needed to suc-
cessfullyrestoretropicalforests(Brancalionetal.,2 019).
While evidence suggests that active management of below-
ground processes c an provide substantial restoration benefits,
our understanding of these processes lags far behind that of abo-
veground forest dynamics. Here,wepropose several next stepsto
advance our understanding of belowground processes and tropical
forestrestorationsuccess:
Researchers designing projects about active restoration should
partner and communicate with local restoration practitioners be-
forehandtoensure theirresearchobjectives willprovide action-
ableinformationtoimprovelocalrestorationef forts.
• Moretargetedstudiesareneededtodeterminethelong-termef-
fectsofarbuscularversusectomycorrhizaldominanceoncarbon
andnutrientcycling inrestoredforestsandfurtherevaluate the
feasibilityofactivelymanagingmycorrhizaldominanceataresto-
ration site.
• Often,Nfixersareprioritizedinactiverestorationeffort s,despite
equivocalevidencethattheybenefitforestregrowth.Futurework
shouldfocuson understandingthecontextinwhich prioritizing
plantingNfixersisadvantageousversuscounterproductive.
• C ations represent important and potentially limiting nutrients
outsideofNandPforforestrestorationandtheeffectsofcation
fertilizationwarrant sfurtherstudy.
• For belowgr ound trait-based (i.e. ro oting depth, r oot thicknes s)
approaches to be widely adopted in futurerestoration projects,
agreatereffortisneededtocharacterizethebelowgroundfunc-
tionaldiversit yacrossthetropicstopredictspecies'performances
underawiderangeofenvironmentalanddisturbancegradients.
• Clear,specific, and accessiblecommunicationis particularlyim-
portantfor studiesfocusingonbelowgroundprocesses,as these
are often n ot explicitly i ncluded in many re storation goa ls. For
example,valuableinformationtopractitionerscouldincludebut
is not limited to seedling size (root: shoot ratio), belowground
traitsand their potential associated functions, fertilizer addition
amounts and composition used in experiments, microbial inoc-
ulations,reasoning for plantspecies selec tion andtheir primary
microbialsymbionts(N-fixingbacteria,mycorrhizaltype,etc.).
There is agreat push from governments, NGOs, stakeholders,
andthepublictorestoredegradedecosystems,particularlytropical
foreststhatplayanoutsizedrolein globalcarbon,water,andnutri-
entcycling.Herewe argue thatbelowgrounddynamics,particularly
plant–microbeinteractions,arefundamentalcomponentsofsuccess-
fultropicalforestrestorationthataretoooftenoverlooked.Further,
webelieve it is important to balancethe ecological,economic ,and
socialneedsofrestoredareas.Thus,bytranslatingbelowgroundre-
searchfromthescientificcommunityintopreciseandpracticalland
man agementst ra tegie sforr es torationp ra ctit io nerstofollow,future
restorationprojectsmaybemoreef fectivelyimplemented.
ACKNOWLEDGMENTS
We are grateful to the Association for Tropical Biology and
Conversation for suppor ting the symposium: Tropical forest restora-
tion: Role of soilbiota-root symbioses”that inspiredthis commentary
and attendees who contributed their ideas and comment s during the
discus si on .A uth or sLA MandCMPweresupp ort edby th eO rga nizatio n
for Tropical Stu dies under the Re xford Daube nmire Fellowshi p Fund
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
5 of 6
McCULLOCH e t al.
(Fund 514/564), and L AM was als o suppor ted by the NOA A Climate
andGlobalChangePostdoctoralFellowshipProgram,administeredby
UCAR'sCooperative Programs for theAdvancement of Ear th System
Science(CPAESS)underaward#NA18NWS4620043B.Wewouldlike
tothan ktheTaylorLabgroupforth eirfeedbac konane ar lydraftofthis
commentary.
DATA AVA I L AB ILI T Y STATE M EN T
Nonewdatawaspresentedinthisarticle.
ORCID
Lindsay A. McCulloch https://orcid.org/0000-0001-6868-2632
Marijn Bauters https://orcid.org/0000-0003-0978-6639
REFERENCES
Allen, E. B., Allen, M. F.,Egerton-Warburton, L., Corkidi, L ., & mez-
Pompa, A. (2003). Impacts of early- and late-seral mycorrhizae
during re storation in se asonal tropic al forest, Mex ico. Ecological
Applications,13,1701–1717.
Amazona s, N. T., Mart inelli, L . A., Pic colo, M. d. C ., & Rodrig ues, R . R.
(2011). Nitrogen dynamics during ecosystem development in
tropical forest restoration. Forest Ecology and Management, 262,
1551–1557.
Asmel ash, F., Bekele, T., & Bir hane, E. (2 016).T he potenti al role of ar-
buscula r mycorrhizal fu ngi in the restor ation of degrad ed lands.
Frontiers in Microbiology,7,1095.
Averill,C.,Anthony,M.A.,Baldrian,P.,Finkbeiner,F.,vandenHoogen,J.,
Kiers,T.,Kohout,P.,Hirt,E.,Smith ,G.R.,&Crowther,T.W.(2022).
Defending Earth's terrestrial microbiome. Nature Microbiology, 7,
1717–1725.
Bagchi, R ., Gallery, R. E., Gripenberg, S., Gurr,S. J., Narayan, L., Addis,
C.E.,Freckleton, R.P.,&Lewis,O.T.(2014).Pathogensandinsect
herbivoresdriverainforestplantdiversityandcomposition.Nature,
506,85–88.
Batterman,S.A.,Hedin,L.O.,VanBreugel,M.,Ransijn,J.,Craven,D.J.,
&Hall, J.S .(2 013).Ke yro leofsymb iotic dinit rogenfixat ionintro p-
icalforestsecondarysuccession.Nature,502,224–227.ht t p s : // d o i .
org / 10. 103 8/ nat ur e1 2525
Bauters,M.,Grau,O.,Doetterl,S.,Heineman,K.D.,Dalling,J.W.,Prada,
C.M.,Griepentrog,M.,Malhi,Y.,Riut ta,T.,Scalon,M.,Oliveras,I.,
Inagawa,T.,Majalap,N.,Beeckman,H.,vandenBulcke,J.,Perring,
M.P.,Dourdain,A.,Hérault,B.,Vermeir,P.,…Janssens,I.A.(2022).
Tropicalwoodstoressubstantialamountsofnutrients,butwehave
limited understanding why. Biotropica,54,596–606.
Bauters, M., Janssens, I. A., Wasner, D., Doetterl, S., Vermeir, P.,
Griepentrog,M.,Drake, T.W.,Six,J.,B arthel,M .,Baumgar tner,S.,
VanOos t,K., Makelele,I .A .,Ewango,C., Verheyen,K.,& Boeckx,
P.(2022).IncreasingcalciumscarcityalongAfrotropicalforestsuc-
cession. Nature Ecology & Evolution,6,1122–1131.
Bauters, M., Moonen, P., Summerauer, L., Doetterl, S., Wasner, D.,
Griepentrog, M., Mumbanza, F. M., Kearsley, E., Ewango, C.,
Boyemba,F.,Six, J., Muys,B.,Verbist,B.,Boeckx,P.,&Verheyen,
K. (2021). Soil nutrient depletion and tree functional composi-
tion shif t following repeated clearing in secondaryforest s of The
CongoBasin.Ecosys tems,24, 1422–1435. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 /
s10021-020-00593-6
Bennet t, J. A.,& Klironomos, J. (2019). Mechanisms of plant–soilfeed-
back:Interactionsamongbioticandabioticdrivers.N ew Phytologist,
222,91–96.
Binkley, D., & Gi ardina, C. (1997). Nitr ogen fixation in t ropical fores t
plantations. Management of soil, nutrients and water in tropical plan-
tation forests,43,297–337.
BooneKauffman,J.,Cummings,D.L.,Ward,D.E.,Babbitt,R .,Kauffman,
J.B.,Cummings,D.L.,Ward,D.E.,&Babbit t,R .(1995).Fireinthe
BrazilianAmazon:1.Biomass,nutrientpools,andlossesinslashed
primar yforests.Oecologia,104,397–408.
Brancalion,P.H.S.,Niamir,A.,Broadbent,E.,Crouzeilles,R.,Barros,F.S.
M.,Z ambrano,A.M.A .,Baccini,A .,A ronson,J.,Goetz, S., Reid, J.
L.,Strassburg, B. B.N.,Wilson ,S.,& Chazdon,R .L .(2019).Global
restorationopportunitiesintropicalrainforestlandscapes.Science
Advances,5,3223–3226.https://doi.org/10.1126/sciadv.aav3223
Brown,K.(2005).Addressingtrade-offsinforestlandscaperestoration.
InS.Mansourian,D.Vallauri,&N.Dudley(Eds.),Forest re storation in
landscapes: Beyond planting trees(59–64).Springer.
Chaer,G. M.,Resende,A.S.,Campello,E .F.C.,DeFaria,S.M.,Boddey,
R.M.,&Schmidt,S.(2011).Nitrogen-fixinglegumetreespeciesfor
thereclamationofseverelydegradedlandsinBrazil.Tree Physiology,
31,139–149.
Comita , L. S., Queenborough, S. A., Murphy, S. J., Eck, J. L., Xu, K.,
Krishnadas, M.,Beckman,N .,& Zhu, Y.(2014).Testingpredictions
oftheJanzen-Connellhypothesis:Amet a-analysisofexperimental
evidencefor distance-and density-dependentseedandseedling
survival. Journal of Ecology,102,845–856.
Corrales,A., Mangan,S.A .,Turner,B. L., &Dalling,J. W.(2016).Anec-
tomycorr hizal nitrogen e conomy facilit ates monodomi nance in a
neotropicalforest.Ecology Letters,19,383–392.
Craig, M.E.,Turner,B.L .,Liang,C .,Clay,K.,Johnson,D.J.,&Phillips,R .
P.(2018). Tree mycor rhizal t ype pred icts wit hin-site varia bility in
the storage and distribution ofsoil organic matter. Global Change
Biology,24,3317–3330.
Eck, J. L.,Stump, S. M., Delavaux, C. S ., Mangan, S. A., & Comita, L. S.
(2019).Evidence ofwithin-species specializationby soil microbes
andtheimplicationsforplantcommunitydiversity.Proceedings of
the Nation al Academy of Scienc es of the United States of Ame rica,116,
7371–7376.
Fajardo, L., Rodríguez, J. P., González, V., & Briceño-Linares, J. M.
(2013).Restor ation of a degr aded tropicaldry forest in Macanao,
Venezuela. Journal of Arid Environments, 88, 236–243. h t t p s : //
w w w . s c i e n c e d i r e c t . c o m / s c i e n c e / a r t i c l e / p i i / S 0 1 4 0 1 9 6 3 1 2 0 0 2 3 5 2
FAO(2020).Global forest resources assessment 2020: Main report.FAO.
Ford, H., Garbut t, A., Ladd,C., Malarkey, J., & Skov, M. W.(2016). Soil
stabilizationlinked toplantdiversityandenvironmentalcontex tin
coastal wetlands. Journal of Vegetation Science,27,259–268.
Holl, K.D.,& Brancalion ,P.H. S.(2022).Which oftheplethoraoftree-
growing project s to support? One Earth,5,452–455.
Holl,K.D.,&Zahawi,R.A.(2014).Factorsexplainingvariabilityinwoody
above-ground biomass accumulation in restored tropical forest.
Forest Ecology and Management,319,36–43.
Huddell,A., Neill, C., Palm, C. A ., Nunes ,D.,&Menge, D. N. L.(2022).
Anionexchangecapacityexplainsdeepsoilnitrateaccumulationin
BrazilianAmazon croplands.Ecosys tems, 26 ,134–145.h t t p s : // d o i .
o r g / 1 0 . 1 0 0 7 / s 1 0 0 2 1 - 0 2 2 - 0 0 7 4 7 - 8
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B.,
Freschet ,G.T.,Katt ge,J.,Roumet,C.,Stover,D.B.,Soudzilovskaia,
N. A., Valverde-Barrantes, O. J., vanBodegom, P.M.,&Violle,C.
(2017). A global fine-root ecology database to address below-
ground challenges in plant e cology. New Phytologist,215,15–26.
Jones,I.L.,DeWalt,S.J.,Lopez,O.R.,Bunnefeld,L.,Pattison,Z.,&Dent,
D.H.(2019).Above-andbelowgroundcarbonstocksaredecoupled
insecondar ytropicalforestsandarepositivelyrelatedtoforestage
and soil nutrients respectively. Science of the Total Environment,697,
13 3 9 87.
Jones, M. D., Durall, D.M.,&Cairney, J.W.G. (20 03). Ectomycorrhizal
fungalcom mu ni tiesin youngfo re ststa nd sregener at in gaft erclear-
cut logging. New Phytologist,157,399–422.
Kou-Giesbrecht, S ., & Menge, D. (2019). Nitrogen-fixing trees could
exacerbate climate change under elevated nitrogen deposition.
Nature Communications,10,1493.
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
6 of 6 
|
     McCULLOCH e t al.
Levy-Varon, J. H.,Batterman, S.A., Medvigy,D., Xu,X., Hall, J. S., van
Breugel,M.,&Hedin,L.O.(2019).Tropicalcarbonsinkaccelerated
bysymbioticdinitrogenfixation.Nature Communications,10,5637.
Lindenmayer,D.(2020).Improvingrestorationprogramsthroughgreater
connection with ecological theory and better monitoring. Frontiers
in Ecology and Evolution,8,50.
Liu, Y., Fang, S. , Chesson , P., & He, F. (2015). The ef fect of so il-b orne
pathogensdependsontheabundanceofhosttreespecies.Nature
Communications,6,10017.
Maltz,M. R.,& Treseder,K .K .(2015).Sourcesof inoculainfluence my-
corrhizal colonization of plants in restoration projects: A meta-
analysis. Restoration Ecolog y,23,625–634.
Mangan,S.A.,Schnitzer,S.A.,Herre,E.A.,MacK,K.M.L.,Valencia,M.
C., San chez, E. I ., & Bever, J. D. (2010). Neg ative plant-soil fee d-
back predicts tre e-speciesrelative abundancein a tropical forest.
Nature,466,752–755.
Meli,P.,Holl,K .D.,Benayas,J.M.R.,Jones,H.P.,Jones,P.C.,Montoya,
D.,&Mateos,D.M.(2017).Aglobalreviewofpastlanduse,climate,
andactive vs. passiverestorationeffectsonforest recover y.PLoS
One,12,e0171368.
Messier, C ., Bauhus, J ., Sousa-Silva , R., Auge, H ., Baeten , L., Bar soum,
N., Bru elheide, H ., Caldwe ll, B., Cav ender-B ares, J., D hiedt, E ., &
Eisenha uer, N. (2022). For the sa ke of resili ence and multifu nc-
tionality, let's diversif y planted forests! Conservation Letters, 15,
e12829.
Neill,C.,Piccolo,M.C.,Cerri,C.C.,Steudler,P.A.,&Melillo,J.M.(2006).
Soi lsolution nitroge nloss es duringc le ar ingoflow la ndAmazo nfor-
estforpasture.Plant and Soil,281,233–245.
Neuenkamp, L., Zobel, M ., Lind, E., Gerz, M., & Moora, M . (2019).
Arbuscularmycorrhizalfungalcommunitycompositiondetermines
the comp etitive respons e of two grasslan d forbs. PLoS One, 14 ,
e0219527.
Philips on, C. D., Cu tler, M. E. J., Br odrick, P. G., A sner, G. P.,B oyd, D.
S., Mour a Costa , P.,Fidd es, J., Food y,G . M., van de r Heijden, G .
M.F.,Ledo, A.,Lincoln, P.R., Margrove,J.A .,Martin,R. E., Milne,
S., Pinard,M. A., Reynolds,G ., Snoep,M ., Tangki, H., SauWai,Y.,
… Bursle m, D. F.R . P. ( 2020). Active r estoration a ccelerates t he
carbon recover y of human-modified tropic al forests. Science,
1979(369),838–841.https://doi.org/10.1126/science.aay4490
Phillips , R. P., Brzostek, E ., & Midgley, M. G. ( 2013). The mycorrh izal-
associated nutrient economy: A new framewor k for predicting
carbo n-nutri ent couplings in te mperate fores ts. New Phytologist,
199,41–51.
Policelli,N.,Hor ton,T.R.,Hudon, A.T.,Patterson,T.R., &Bhatnagar,J.
M.(2020). Backto root s:The role ofectomycorrhizalfungi in bo-
realandtemperateforestrestoration.Frontier s in Forests and Gl obal
Change,3,97.
Powers,J.S.(2022).Opportunitiesforintegratingsocialscienceintore-
search on dr yForest res toration:Amini-review. Sustainability,14,
7351 .
Powers, J.S.,&Marín-Spiott a,E.(2017).Ecosystem processes and bio-
geochemicalcyclesinsecondarytropicalForestsuccession.Annual
Review of Ecology, Evolution, and Systematics, 48, 497–519.h t t p s: //
doi.org/10.1146/annurev-ecolsys-110316-022944
Prada , C. M., Turner, B. L. , & Dalling, J. W. (2021). G rowth resp onses
ofectomycorrhizalandarbuscularmycorrhizalseedlingstolowsoil
nitrogenavailabilityinatropicalmontaneforest.Functional Ecology,
36,107–119.
Rillig, M. C., Wright, S . F.,Nichols,K. A., Schmidt, W. F.,& Torn, M. S.
(2001). L arge contr ibution of ar buscular m ycorrhiza l fungi to soil
carbonpoolsintropicalforestsoils.Plant and Soil,233,167–177.
Sarmiento, C.,Zalamea, P.C ., Dalling, J. W.,Davis, A . S., Simon, S. M.,
U'Ren,J. M.,& Arnold,A .E. (2017). Soilborne fungihavehost af-
finit y and host-specif ic effec ts on seed ge rmination a nd survi val
inalowland tropicalforest .Pro ceedings of the National Academy of
Sciences of the United States of America,114,11458–11463.
Seidl ,R .,&Tur ner,M .G .(2022) .Post-di sturbancer eo rg an iz at io nof forest
ecosystems in a changing wor ld. Proceedings of the National Academy
of Science s of the United States of America,119,e2202190119.
Smith,S.E.,&Read,D.J.(2010).Mycorrhizal symbiosis(3rded.).Academic
Press.
Smith-Mar tin,C .M.,Gei,M.G.,Bergstrom,E.,Becklund,K.K.,Becknell,
J.M.,Waring, B. G., Werden,L .K., &Powers, J. S. (2017). Effec ts
ofsoil type and light on heightgrowth, biomass partitioning, and
nitrogendynamic son22 speciesoftropical dry forest treeseed-
lings: Comparisons between legumesand nonlegumes. American
Journal of Botany,104 ,399–410.https:// pubmed. ncbi. nlm. nih. gov/
283 41 6 31/
Tanner, E. V.J. , Vitousek , P.M., & Cu evas, E. (1998). Exp eriment al in-
vestigationofnutrientlimitationof Fores tgrow thonwet Tropical
Mountains.Ecology,79,10–22.https://doi.org/10.1890/0012-965
8(1998)079[0010:EIONLO]2.0.CO;2
Taylor, B. N., Chazdo n, R. L., Bac helot, B., & Men ge, D. N. L. (2017).
Nitrogen-fixing trees inhibit growth of regenerating Costa Ric an
rainforests.PNAS,114 ,8817–8822.
Toro,L.,Torres-Romero,F.,Salinas,S.M.,Avella-Munoz,A.,Galatowish,
S.,Secchi,S.,&Powers,J.S .(2024).Cost-ef fectivenessofmanage-
mentstrategiesinanucleationexperimentinatropicaldry forest.
Restoration Ecology.Portico.htt ps:// doi. org/ 10 . 1111/ rec. 140 94
UNEP, and CBD. (2018). Pan-African Action Agenda on Ecosystem
RestorationforIncreasedResilience.
UN IQ UE. (2 02 0).Mi d-te rmrev ie wo ft heAfr ic a nF or est la nds cap er est o-
rationinitiative(AFR100).
UnitedNations,&WorldBank.(2022).ScalingUpEcosystemRestor ation
Finance : A Stocktake Repo rt. https://openknowledge.worldbank.
org/ handle/ 10986/ 38311
Vergara, W., Gallardo Lomeli, L., Franco Chuaire, M., Weber, S., &
Zamora-Cristales, R . (2015). Initiative 20x20: A landscape resto-
ration movement rises in Latin Asmerica and the Caribbean. Wo rld
ResourcesInstitute.h t t p s : / / w w w . w r i . o r g / i n s i g h t s / i n i t i a t i v e - 2 0 x 2 0
- lands cape- resto ratio n- movem ent- rises - latin - ameri ca- and- carib
bean
Werden, L . K., Averill, C ., Crow ther, T.W.,C alderón-Morales, E.,Toro,
L., Alvarado, J. P.,Gutiérrez, L.M., Mallory, D. E., & Powers, J.S.
(2022). Below-groundtraitsmediatetree survival inatropical dry
forestrestoration.Philosophical Transac tions of the Royal Society, B:
Biological Sciences, 378, 20210067. https:// doi. org / 10. 1098/ rstb.
2021.0067
Wong,M.Y.,Neill,C.,Marino,R.,Silvério,D.V.,Brando,P.M.,&Howarth,
R.W.(2020).Biologicalnitrogenfixationdoesnotreplacenitrogen
losses af ter Forest fires in thesoutheastern Amazon. Ecosystems,
23,1037–1055.
Wubs,E.R.J.,VanDerPutten,W.H.,Bosch,M.,&Bezemer,T.M.(2016).
Soilinoculationsteersrestorationofterrestrialecosystems.Nature
Plants,2,16107.
Zanini, A. M., Mayrinck, R. C ., Vieira, S. A ., de Camargo, P. B., &
Rodrigues,R .R .(2021).The effe ctofecological restorationmeth-
ods on carbon stocks in the BrazilianAtlanticForest.Ecology and
Management,481,118734.
How to cite this article: McCulloch,L.A.,Prada,C.M.,Liao,
W.,Bauters,M.,Church,L.,Lee,M.Y.,Toro,L.,VandeVelde,
V.,Weissflog,A.,Wong,M.,&Taylor,B.N.(2024).
Belowgroundfoundationsoftropicalforestrestoration.
Biotropica,56,e13296.https ://doi .org /10.1111 /btp.13296
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Cost‐effective, large‐scale strategies are needed to restore degraded ecosystems worldwide. Applied nucleation is one technique that can accelerate succession in tropical forests. However, the effectiveness of irrigation and fertilization in the context of large‐scale applied nucleation in tropical dry forests (TDFs) has not yet been tested. To this end, we established a large‐scale experiment in southwestern Colombia on abandoned pastures. We planted 11,382 seedlings of 11 native species coupled with six management treatments that varied in the amounts of fertilizer and water. We monitored survival, height, and resprouting ability seedlings over 2 years. We also estimated the cost of seedling production, planting procedures, management, and monitoring, and assessed their cost‐effectiveness using seedling survival as an indication of effectiveness. After 2 years, 73% (8,266) of seedlings planted survived, and species survival ranged from 5 to 99%. Individuals that received the lowest amount of fertilizer (25 g of Nitrogen, Phosphorus, and Potassium [NPK]) with additional irrigation had the highest survival rates (>76%). Final height ranged from 52 to 330 cm across species. Seedlings that received the highest amount of fertilizer (50 g of NPK) without additional irrigation had the highest mean final height (174 ± 9.0 cm). The control was cheapest ($7313/ha) and the most cost‐effective method in terms of seedling survival. Our findings suggest that the best way to establish cost‐effective, large‐scale restoration projects in TDFs is to plant native species mixtures of locally adapted species without fertilization and irrigation and to invest in long‐term monitoring.
Article
Full-text available
Secondary forests constitute an increasingly important component of tropical forests worldwide. Although cycling of essential nutrients affects recovery trajectories of secondary forests, the effect of nutrient limitation on forest regrowth is poorly constrained. Here we use three lines of evidence from secondary forest succession sequences in central Africa to identify potential nutrient limitation in regrowing forests. First, we show that atmospheric phosphorus supply exceeds demand along forest succession, whereas forests rely on soil stocks to meet their base cation demands. Second, soil nutrient metrics indicate that available phosphorus increases along the succession, whereas available cations decrease. Finally, fine root, foliar and litter stoichiometry show that tissue calcium concentrations decline relative to those of nitrogen and phosphorus during succession. Taken together, these observations suggest that calcium becomes an increasingly scarce resource in central African forests during secondary succession. Furthermore, ecosystem calcium storage shifts from soil to woody biomass over succession, making it a vulnerable nutrient in the wake of land-use change scenarios that involve woody biomass export. Our results thus call for a broadened focus on elements other than nitrogen and phosphorus regarding tropical forest biogeochemical cycles and identify calcium as a scarce and potentially limiting nutrient in an increasingly disturbed and dynamic tropical forest landscape.
Article
Full-text available
Deep tropical soils with net anion exchange capacity can adsorb nitrate and might delay the eutrophication of surface waters that is often associated with many temperate croplands. We investigated anion exchange capacity and soil nitrate pools in deep soils in the Southern Brazilian Amazon, where conversion of tropical forest and Cerrado to intensive fertilized soybean and soybean-maize cropping expanded rapidly in the 2000s. We found that mean soil nitrate pools in the top 8 m increased from 143 kg N ha⁻¹ in forest to 1,052 in soybean and 1,161 kg N ha⁻¹ in soybean-maize croplands. This nitrate accumulation in croplands aligned with the estimated N surpluses in the croplands. Soil anion exchange capacity explained the magnitude of nitrate accumulation. High nitrate retention in soils was consistent with current low levels of streamwater nitrate exported from croplands. Soil exchange sites were far from saturation, which suggests that nitrate accumulation can continue for longer under current cropping practices, although mechanisms such as competition with other anions and preferential water flowpaths that bypass exchange sites could reduce the time to saturation.
Article
Full-text available
Differences in nutrient acquisition pathways between arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi are associated with greater soil organic matter accumulation and reduced inorganic nitrogen (N) availability in EM‐dominated forests. These plant–soil feedbacks are expected to influence seedling recruitment and the maintenance of diversity. Montane forests of Central America are characterized by a mosaic of AM and EM dominance. We used a seedling transplant and soil manipulation experiment on Volcán Barú, Panama, to evaluate whether patches of oak (EM‐dominated) forest and mixed (AM‐dominated) forest affect seedling growth. We predicted that (a) plant–soil feedbacks would result in lower soil inorganic N availability in oak than in mixed forests, (b) consequently AM seedlings would grow more slowly and have lower foliar N concentrations in oak forest and (c) dependence of EM seedlings on organic N uptake via mycorrhiza would mean that inorganic N addition would increase seedling performance for AM but not EM (i.e. oak) seedlings. As soil organic matter accumulation may affect seedling performance beyond altering nutrient supply, we also tested whether organic matter removal differentially affected AM and EM seedlings. Nitrogen availability was six times lower and the soil organic layer three times deeper in oak‐dominated stands compared to mixed stands. Foliar N was lower for AM seedlings growing in oak than in mixed forest, but did not differ for oak seedlings and was increased only marginally by N addition for both AM and EM seedlings growing in both AM and EM forests. Seedling growth did not respond to N addition or organic matter removal. However, AM seedlings generally grew slower in oak forest compared with AM forest, consistent with lower foliar N concentration and low‐light availability. These results suggest that changes in soil nitrogen availability have a limited effect on seedling growth. In the neotropics, EM tree communities occur at high elevation. Future upslope migration of trees may result in AM‐dominated tree communities encountering unfavourable soil conditions generated by EM‐dominated canopies. While longer term experiments are needed, our results suggest that AM seedlings may not be able to tolerate conditions associated with EM forest. A free Plain Language Summary can be found within the Supporting Information of this article.
Article
Full-text available
The Congo Basin's rapidly growing population still largely depends on shifting cultivation for both energy and food security. This nexus of population growth and ecological impact will continue to exacerbate landscape degradation in the coming decades. To quantify the effects of land-use intensity on soil nutrient stocks and the functional composition of young regrowth forest in the Congo Basin, we used fallows of different ages that had been subjected to a varying number of clearing cycles. We show that repeated clearing substantially affected soil cation stocks, reducing total K, Mg and Ca in the upper 20 cm of soil by roughly 20% per clearing cycle. Additionally, we show that plant-available nitrogen (ammonium and nitrate) and phosphorus decline in the topsoil with increasing land-use intensity. Furthermore, the tree functional composition of young fallows changed after repeated clearing cycles: we observed a decrease in abundance of pioneer species and an increase in nitrogen fixing species early in succession. Variation in soil total nutrient stocks was decoupled from changes in vegetation, and soil plant-available nutrients only marginally explained tree functional composition changes. We conclude that land-use intensity substantially affects both soil total and plant-available nutrients in a shifting cultivation system, as well as the functional composition of the regenerating vegetation. However, compositional changes of the tree community are only partly driven by land-use intensity effects on soil plant-available nutrients.
Article
Full-text available
The carbon gain in restored logged forest There is currently great interest in the capacity of global forest to store carbon and hence contribute to the mitigation of climate change in the coming decades. In a study of Southeast Asian tropical forest, Philipson et al. show that active restoration of logged forests generates higher rates of carbon accumulation than naturally regenerating forest. To estimate the economic feasibility of restoration treatments, they modeled the carbon price required to offset the cost of restoration, finding that the highest prices seen in recent years would be needed to approach those that could offset restoration costs. These results are important for tropical forest policy, establishing the importance of restoration for the carbon recovery potential of tropical forests. Science , this issue p. 838
Article
Full-text available
Tropical forest fires have become more common due to interactions between deforestation, land clearing, and drought. Forest recovery following fires may be limited by nitrogen. Biological nitrogen fixation (BNF) is the main pathway for new nitrogen (N) to enter most ecosystems, but BNF may be constrained by other nutrients, such as molybdenum and phosphorus, which are required for the process. We studied the role of BNF 7 years into the recovery of southeastern Amazon tropical forests that were burned experimentally either annually or every 3 years between 2004 and 2010. We hypothesized that, compared with unburned primary forests, BNF in burned forests would increase due to the depletion of N in the aboveground biomass pool and that soil concentrations of molybdenum and phosphorus from ash inputs would increase, reducing their potential constraints on BNF. Despite the fires depleting about half the aboveground N pool and rapid rates of recovery in leaf biomass and litterfall production, we found low rates of both free-living and symbiotic BNF. Higher concentrations of molybdenum and phosphorus in the mineral soils of the burned forests indicated that these elements were likely not limiting BNF. Our results suggest that despite the N demand for regrowth post-fire, substantial N stored in soils likely downregulates BNF. Overall, we found surprisingly low BNF rates (< 1.2 kg N ha⁻¹ y⁻¹) in this region of the Amazon, which contrasts with the traditional paradigm that (1) tropical forests fix large quantities of N and (2) that BNF increases after forest disturbance.
Article
The vast sums of money being spent on planting trees have the potential to transform landscapes and slow global warming but will accomplish little if trees do not survive and grow. We discuss ten key questions to decide which of the numerous tree-growing projects are most likely to succeed.