Content uploaded by Ming Yang Lee
Author content
All content in this area was uploaded by Ming Yang Lee on Feb 12, 2025
Content may be subject to copyright.
Biotropica. 2024;56:e13296.
|
1 of 6
https://doi.org/10.1111/btp.13296
wileyonlinelibrary.com/journal/btp
Received:21August2023
|
Revised:7N ovember2 023
|
Accepted :12Decemb er2023
DOI:10.1111/btp.13296
COMMENTARY
Belowground foundations of tropical forest restoration
Lindsay A. McCulloch1,2 | Cecilia M. Prada1 | Wenying Liao1 | Marijn Bauters3,4 |
Lauren Church1 | Ming Yang Lee5 | Laura Toro6,7 | Viktor Van de Velde3 |
Anita Weissflog7 | Michelle Wong8,9 | Benton N. Taylor1
1Depar tmentofOrganismicandEvolutionaryBiology,Harvar dUniver sity,Cambridge,Massa chusetts,USA
2Nationa lCenterforAtmosphericResearch,NationalOceanographican dAtmosp hericA genc y,Boulder,Col orado,USA
3IsotopeB ioscienceLab orator y(ISOFYS),DepartmentofGreenChemistr yandTechn ology,GhentUniversit y,Ghent,B elgium
4ResearchGroupPLECO(Plant sandEcosystem s),Depar tmentofBiolog y,UniversityofAntwerp,Wilrijk,Belgium
5AsianSchooloftheEnvironment,NanyangTechnologicalUniversit y,Singapore,Singapore
6Depar tmentofPlantandMicrobialBiology,Univer sityofM innesota,St.Paul,Mi nnesot a,USA
7SchooloftheEnvironment ,YaleUniversity,NewH aven,Connecticut,USA
8CaryInstit uteofEcosystemStudies,M illbro ok,NewYork ,USA
9Depar tmentofEcologyandEvolut ionar yBiology,YaleUniversity,NewH aven,Connect icut,U SA
Correspondence
LindsayA.McC ulloch,DepartmentofOrga nismicandEvoluti onar yBiolog y,HarvardUnive rsit y,Cambridge1300CentreSt .Roslin dale,MA02131,USA.
Email:la.mcculloch9@gmail.com
Funding information
OrganizationForTropicalSt udies,Grant /AwardNumber:Rex fordDau benmireFellowshipFund514/564;NOA AClimateandGlobalChangePostd octor al
Fellowsh ip,Grant/AwardNum ber:NA18NWS4 6200 43B
Associate Editor:JenniferPowers
Handling Editor: Jayashree Ratnam
Tropical fores ts are exper iencing dras tic human land u se changes
suchthat currently half of theworld's tropical forests are regener-
atingsecondary forests (FAO,2020). Thishasspurred immensein-
terest inrestorationefforts,suchasARF100,theBorneoInitiative,
Initiative20x 20,andForestStewardshipCouncil,toaidthe natural
regenerationoftropicalforests(UNEP&CBD,2018;UNIQUE,2020;
Vergaraetal.,2015).Restor at io nr ange sf romp assive toac tivestr at-
egies, such as natural regeneration to active species selectionand
inoculationwith nativesoil.However,restoration efforts areof ten
not effective (Lindenmayer,2020) . One of the reaso ns is the lack
of connection with ecologicaltheor y and processes(e.g., compe-
tition, dispersal, succession), par ticularly with belowground pro-
cesses.Belowgroundprocessesarerelativelyunderstudied(Averill
etal.,2022;Seidl&Turner,2022;Werdenetal.,2022),yettheinter-
actionsofplantroots,soilmicrobes,andsoilpropertiesdrivecritical
belowgroundecosystemser vicessuchaserosioncontrol,waterand
nutrientcycling, and soil carbon sequestration. Attention to these
critical interactions has the potential to substantially increase the
success of restoration efforts. Here we highlight the most import-
ant belowground processes for active tropical forest restoration
(Figure 1),whenspecificrestorationpracticesshouldbeconsidered,
andsuggestkeyresearchpriorities.
Belowground processes are of ten mediated by microorganisms,
whichcreatecritical links between plants and soil (Figure 1b). These
plant–microbial interactions can occur via established symbioses
wheremicrobesarephysicallyconne ctedtoplantroots(e.g.,symbiotic
nitrogen-fixingbacteriaandmycorrhizalfungi)orviathefree-livingsoil
microbialcommunity(e.g.,throughrootexudationandsoilpathogens).
Interac tions betwee n roots and soil mic robes often dri ve reciprocal
effectsbetweenplants and the soil,called plant–soilfeedbacks(PSF),
which canmakethe local soil either more (positive PSF) or less(neg-
ative PSF) favorable toparticular plant species.These plant–microbe
inte rac t io nsare im p or t a nt fo rfo re s tr ecove r y,a sh igh li ghted by ag lob al
analysisshowingplantbiomassrecovered64%fasterafterinoculating
plantswithmicrobiomesfromnativeecosystems(Averilletal.,2022).
Disentangling the multitude of plant–soil–microbe interactions
and their impact s on the many belowground processes relevant to
tr op ica lfo re s tr est ora tionc anb ec hal le ngi ng.Wes t ruc t ur eou ra r ticle
around several keyrestoration objectives: soil stabilization and c ar-
bonstorage,nutrient cyclingrecovery and forestgrowth, and forest
diversityandmultifunctionality.Herewedefineforestmultifunction-
ality as:aforestecosystemthatcan providea mixofenvironmental,
©2024AssociationforTropicalBiolog yandConserv ation.
2 of 6
|
McCULLOCH e t al.
ecological, economic, and social services and goods (Mansourian
etal.,2005).Foreachoftheserestorationobjectives,wehighlightthe
management strategies that can impact the respective belowground
players an d processes , and call for m ore inclusio n of plant–soil–mi-
crobe interactions in restoration research and practice.
1 | SOIL STABILIZATION AND CARBON
STOR AGE
Oneobjectiveofrestorationissoilstabilizationtopreventerosion
a n df u r t h e r d eg r a d a t i o n ,w h i l e pr o m o t i n gc a r b o n s t or a g e . I nc r e a s e d
carbon storage can be observed in less than a decade when above-
groundcarbonismeasuredinrestoredareas(Philipsonetal.,2020),
withchangesinsoilcarbonstocksoccurringupto40 years(Holl&
Zahawi,2014;Jonesetal.,2 019;Zaninietal.,2021).However,the
trajec tories of soil st abilization ( Ford et al., 2016), plant survival
(Werden et al., 2022), and soilcarbonstorage(Craig et al., 2018)
in regenerating forests are affec ted by the belowground plant
growthstrategiesoftheselectedplantspecies(Figure 1c).Forex-
ample,specieswiththickfinerootsanddeeprootstructureshave
been linked to slower growth rates andplantestablishment, both
ofwhich increase the amountofcarbon storedin the ecosystem
(Werdenetal.,2022).Theem ergenceofglob alroottraitdatabase s
(e.g., Iversen et al., 2017)havehighlightedfunctional groupsthat
can help restoration practitioners select species that aid in recov-
ery. However, fur ther linking and t ranslating t raits to ecos ystem
functionisnecessaryforsuccessfulrestoration.
When forests are converted from dif ferent land uses, the soil's
physical, chemical, and biological properties change, leading to shift s
in fungal s pecies com position an d diversit y (Jones et a l., 2003; Wubs
et al., 2016). To ensure successful establishment, the proportion of
arbuscular versus ectomycorrhizal trees should be selected based
on the nati ve or reference eco system. Pla nts form nutr ient acquirin g
FIGURE 1 Graphicaldepictionof
how(a)restorationactionsthatexplicitly
consider(b)importantbelowground
element scanrestore(c)keybelowground
processesduringtropicalforest
regeneration. Key belowground elements
(roottrait s,mycorrhizae,nitrogen-
fixingbacteria[N-fixers],andothersoil
microbes)influencesoilstabilization
andcarbonstorage,nutrientcycling
recoveryandforestgrowth,andforest
diversit yandmultifunc tionality.Various
roottraitsandmycorrhizaecanpromote
thestabilizationofsoilandprotect
against erosion while also contributing
tosoilcarbonstorage.Mycorrhizaeand
N-fixerssupporttherecoveryofnutrient
cyclingandforestgrowthovertimefor
reforestedareasinthetropics.Further,
plant–soilfeedbacks(PSF)cansupport
thediversityandmultifunctionalityof
tropicalforeststhroughbothpositiveand
negativePSF.Thebelowgroundprocesses
that are mediated by these belowground
characteristicscanbeinfluencedthrough
restorationactions(depictedhereinthe
topleftwithahandaddingseedsfrom
selectedplantspecies,seedsinoculated
withmicrobialsymbionts,and/orsoil
inoculumdependingontheneedsofthe
forestbeingrestored).
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
3 of 6
McCULLOCH e t al.
symbioses with arbuscular and/or ectomycorrhizal fungi. Arbuscular
mycorrhiz al fungi grow into root ce lls and send hyphae in to the soil
to scavenge fo r available nutr ients and ecto mycorrhizal fun gi form a
sheath around roots and breakdown organic material themselves to
access soilnutrients (Phillips et al., 2013).Successful establishment of
treesandtheirmycorrhizalfungiwilllikelyhavebeneficialeffectsonsoil
proper ties that facilitate carbon storage andnutrient cyclingthrough-
outregeneration, asfoundinotherecosystems(Asmelashetal.,2016;
Policellietal.,2020). Myc orrhizalsymbiose scans tabi lizesoilsviahy ph al
networks and increase carbon storage via production ofcompounds
suchasglycoproteins(glomalin),whichslowdowndecomposition(Rillig
etal.,20 01; Figure 1b,c).Morespecifically,arbuscularmycorrhizaltrees
stimulate fast carbon cycling and mineral-associated organic matter
formation, whileec tomycorrhizaltrees drive slow decompositionand
buildupofsurfaceorganiclayers(Craigetal.,2018;Pradaetal.,2021).
When implementing active restoration, practitioners should
considerrestoringnativemycorrhizalcommunities.Providingnative
soilin oculu mi ncrea sesfu nga lb io mas sa nd abu nd anc ew hi leals oe n-
hancingabovegroundplantprocesses(Maltz&Treseder,2015;Wubs
etal.,2016; Figure 1a).However,wecautionthatmanycommercially
availablemycorrhizalinoculacontainnon-nativeandunsuitablemy-
corrhiz al taxa for mos t tropical fore st restorati on project s. These
inocula couldbeineffective or detriment al tothe goal of restoring
healthy native soil microbial communities and successful regener-
ation. Usin g native soil fo r mycorrhizal inocu lum can be be neficial
andprovideasuiteoffungalsymbiontslocaltotheregion.However,
practitionersmaywanttoexperimentwithwheretheysourcetheir
local so il inoculum fro m before full imp lementati on, as plants' re -
sponses t o soil inoculu m depend on t he successio nal stage of th e
ecosystemthattheinoculumwascollec tedfrom(Allenetal.,2003).
2 | NUTRIENT CYCLING RECOVERY AND
FOREST GROWTH
Recovery of soil b iogeochemic al cycling se rves as a key prer equi-
site to abovegr ound biomass regene ration, and soil microbes are
essential to biogeochemical cycling. The standing paradigm indi-
catesthattropicalsecondaryforeststransitionfromnitrogen(N)to
phosphorus(P)limitation(Powers&Marín-Spiotta,2017; Figure 1c),
and both mycorrhizae andN-fixing bacteria play an important role
inthesenutrientcycles.Forexample,mycorrhizalfungicanincrease
the connectivity andavailability of nutrient pools in anecosystem
by accessin g various for ms of nutrien ts, such as P, that can not be
accessed by plants (Smith & Read, 2010), thereby increasing plant
biomass,height,andspeciesrichness(Neuenkampetal.,2019).
In additi on to mycorrhizal f ungi, restor ation pract itioners have
long recognized the potential benefits of plants that form rela-
tionship s with N-fixing bacte ria (hereafte r referred to as N-fixers ;
Figure 1b)because of their ability to bring new N into the ecosys-
temand growfastasseedlings(Chaeretal.,2011).Thisiscriticalas
theN cycle can take more than 52 yearstofullyrecover(Amazonas
et al., 2011). By e nhancing soi l N from the deco mposition of t heir
N-richt issues(Bink ley& Giardina, 1997), N-fixers can co unteract
largeNlossesfromdisturbances(BooneKauffmanetal.,1995;Neill
etal.,2006)andincreasebioavailableNtomeetthehighplantNde-
mandinearlysuccessionalstages(Battermanetal.,2013;Levy-Varon
etal., 2019). However,practitioners shouldnotonly plantNfixers,
asNfixerscancompetewithneighboringtrees,negativelyaf fecting
regener ation (Taylor et al., 2 017), and inc rease soil N2O emissions
ifNavailabilityanddemandbecomeunbalanced(Kou-Giesbrecht&
Menge,2019). Wesuggestthatactive plantingofNfixerswilllikely
bemorecriticalinN-limitedecosystems(Smith-Martinetal.,2 017),
suchasmontanetropicalforests( Tanneretal., 1998) orhighly dis-
turbed o r degrade d ecosyste ms, and less s o where N is abu ndant,
suchashighly-weathered,stableoxisols(Huddelletal.,2022;Wong
etal.,2020)orregions withhighNdepositionthat may increaseN
availabilityintheenvironment(Kou-Giesbrecht&Menge,2019).
Soilcation(positivelycharged)nutrient s,suchascalcium,influence
soi l p H a n d n u t r ientm o v e m e n t i nthes o i l . T h e s e c a t i o n sc a nalsob e n e g -
ativelyimpactedbyland-usechangeandmayrequirespecialattention
inrestorationeffort s(Bauters etal.,2021;Bauters,Grau, etal.,2022;
Bauters,Janssens, et al., 2022,Figure 1c).Cationsarepredominantly
stored in woodybiomass,thus thesenutrients are depleted from the
ecosystemwhenbiomassisremovedfromnativeforests.Givencation
inputsaregenerallylow,thelong-termimpactsofcationdepletionwar-
rantfurtherstudyandtheconsiderationofcationamendmentsduring
active restorationto soils that are particularlydepleted,inaddition to
themorecommonfertilizeramendmentsofnitrogen,phosphorus,and
potassium(Fajardoetal.,2013;Toroetal.,2024).
3 | FOREST DIVERSITY AND MULTI FUN
CTI ONA LITY
Plant–soilfeedbacksare alsoimpor tant forincreasingdiversityand
multifunctionality of recoveringforests (Figure 1c), supporting the
resilien cy of these trop ical forest s (Bennett & K lironomos, 2 019).
Positive (mutualistic) and negative(pathogenic)PSFcanaffecttree
species' establishment (Sarmiento et al., 2017) and performance
(Eck et al., 2019; Manganet al., 2010) by making the environment
favorableforspecificplantgroups,affectingtheirlocalabundances
(Figure 1b,c). For example, as succession proceeds, tree species
may experience strong negative PSF (pathogen pressure) where
and when they peak in abundance during succession, as host-
specificmicrobiotamaybelocallyabundant(Bagchietal.,2014;Liu
et al., 2015). Thus, both positive and negative PSF c an affect tree
diversit yinmatureforests(Bagchietal.,2014; Comitaetal.,2014;
Corralesetal.,2016;Manganetal.,2 010)andcontext-dependency
ofPSFmaystronglycontributetosuccessionaltrajectories.
Overall,evidencestronglyindicatesthatPSFsincreaseandmain-
taintropicalforestdiversity.Diverseforestshaveahigher capacity
toservemultiplefunctions,aremoreresilienttofuturedisturbances
(Messieretal.,2022,Figure 1c),andhavehighercarbonstoragepo-
tential.However,directincorporationofPSFsintoforestrestoration
plansisinitsinfancy,andthecomplexityofthesefeedbacksmakes
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
4 of 6
|
McCULLOCH e t al.
theirmanagementdifficult,particularlyinthediverseforestsofthe
tropics.Atthe broadscale, restorationefforts targeted at increas-
ing soil he alth and micr obial diver sity can e nhance PSFs an d their
subsequentsupport ofdiverse, multifunctionaltropicalforests.For
example,evennativesoilinoculationsthatbringsoilpathogensmay
bebeneficialoverallbypromotingtreespeciesdiversity.Iflocalsoil
inoculumisbeingused,collectingfrommultipleareasandhomoge-
nizingbeforeimplementationcouldmaximizethebenefitsofPSF.If
activerestorationincludesselectingseedsorseedlingsforplanting,
it is impor tant that practitioners select species that are not just di-
versephylogeneticallybutalsowithrespecttotheirfunctionaltypes
tomaximizetheresilienceand func tion oftherestored area.Given
the vast diversit y of tropical forest ecosystems, small pilot studies
maybebeneficialforinformingwhichplantspecies toprioritizefor
plantingbeforelarge-scaleeffortsareimplemented.
4 | NEX T STEPS IN BELOWGROUND
TROPICAL FOREST RESTORATION
Inadditiontobiogeochemicalandecologicalbelowgroundprocesses
thatsupportsuccessful restoration,wemustbalancethe economic
andsocialneedsofrestorationareasduringthenextdecade(United
Nations,& WorldBank, 2022).Strongerpartnershipsbetweensci-
entistsandrestorationpractitionerswillhelpachievethisgoal(Holl
&Brancalion,2022;Powers,2022).Practitionersvalueinexpensive
managementstrategiesandtangibleresult s(e.g.,numberofplanted
trees, t ree surv ival, amou nt of biomass st ored) that c an be imple-
mented at la rge scales (H oll & Branc alion, 2022). However, scien-
tistsoftenfocusonmeasuringmorecomplexmetricsofrestoration
success at smaller scales(e.g., pollination,belowground carbonse-
questration,nutrientcycling;Melietal.,2017 ).Giventhismismatch,
effortstoidentifyaccessible,inexpensivemetricsthatrepresentthe
recoveryof belowground processes,andinparticularthe potential
ofsoil microbestofacilitateandsupport restorationeffortswillbe
critical to meet global restoration targets.
Microbiome interventions, such as inoculating plants prior to
planting o r transferr ing soil from int act ecosyste ms, are promisin g
to o l sto a cce l e r ater e gene r a t iona n drec o veryo f e cos y s t e mp r o c esse s
(Averilletal.,2022; Figure 1a).However,theimplementationofthese
strategies in tropical forests should be carefully evaluated based
onplant–microberelationships, ecosystemtype(e.g.,dominanceof
ectomycorrhizal symbionts inm ontaneforest s andarbuscular my-
corrhizal symbionts in lowland forests) and initial biogeochemical
conditions(Neuenkampetal.,2019).Moreover,extensiveknowledge
aboutbeneficialsourcesofinocula(Maltz&Treseder,2015)andana l-
yses that compare the cost-effectiveness of topsoil transplantsand
commercially available microbes at large scales are needed to suc-
cessfullyrestoretropicalforests(Brancalionetal.,2 019).
While evidence suggests that active management of below-
ground processes c an provide substantial restoration benefits,
our understanding of these processes lags far behind that of abo-
veground forest dynamics. Here,wepropose several next stepsto
advance our understanding of belowground processes and tropical
forestrestorationsuccess:
• Researchers designing projects about active restoration should
partner and communicate with local restoration practitioners be-
forehandtoensure theirresearchobjectives willprovide action-
ableinformationtoimprovelocalrestorationef forts.
• Moretargetedstudiesareneededtodeterminethelong-termef-
fectsofarbuscularversusectomycorrhizaldominanceoncarbon
andnutrientcycling inrestoredforestsandfurtherevaluate the
feasibilityofactivelymanagingmycorrhizaldominanceataresto-
ration site.
• Often,Nfixersareprioritizedinactiverestorationeffort s,despite
equivocalevidencethattheybenefitforestregrowth.Futurework
shouldfocuson understandingthecontextinwhich prioritizing
plantingNfixersisadvantageousversuscounterproductive.
• C ations represent important and potentially limiting nutrients
outsideofNandPforforestrestorationandtheeffectsofcation
fertilizationwarrant sfurtherstudy.
• For belowgr ound trait-based (i.e. ro oting depth, r oot thicknes s)
approaches to be widely adopted in futurerestoration projects,
agreatereffortisneededtocharacterizethebelowgroundfunc-
tionaldiversit yacrossthetropicstopredictspecies'performances
underawiderangeofenvironmentalanddisturbancegradients.
• Clear,specific, and accessiblecommunicationis particularlyim-
portantfor studiesfocusingonbelowgroundprocesses,as these
are often n ot explicitly i ncluded in many re storation goa ls. For
example,valuableinformationtopractitionerscouldincludebut
is not limited to seedling size (root: shoot ratio), belowground
traitsand their potential associated functions, fertilizer addition
amounts and composition used in experiments, microbial inoc-
ulations,reasoning for plantspecies selec tion andtheir primary
microbialsymbionts(N-fixingbacteria,mycorrhizaltype,etc.).
There is agreat push from governments, NGOs, stakeholders,
andthepublictorestoredegradedecosystems,particularlytropical
foreststhatplayanoutsizedrolein globalcarbon,water,andnutri-
entcycling.Herewe argue thatbelowgrounddynamics,particularly
plant–microbeinteractions,arefundamentalcomponentsofsuccess-
fultropicalforestrestorationthataretoooftenoverlooked.Further,
webelieve it is important to balancethe ecological,economic ,and
socialneedsofrestoredareas.Thus,bytranslatingbelowgroundre-
searchfromthescientificcommunityintopreciseandpracticalland
man agementst ra tegie sforr es torationp ra ctit io nerstofollow,future
restorationprojectsmaybemoreef fectivelyimplemented.
ACKNOWLEDGMENTS
We are grateful to the Association for Tropical Biology and
Conversation for suppor ting the symposium: “Tropical forest restora-
tion: Role of soilbiota-root symbioses”that inspiredthis commentary
and attendees who contributed their ideas and comment s during the
discus si on .A uth or sLA MandCMPweresupp ort edby th eO rga nizatio n
for Tropical Stu dies under the Re xford Daube nmire Fellowshi p Fund
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
5 of 6
McCULLOCH e t al.
(Fund 514/564), and L AM was als o suppor ted by the NOA A Climate
andGlobalChangePostdoctoralFellowshipProgram,administeredby
UCAR'sCooperative Programs for theAdvancement of Ear th System
Science(CPAESS)underaward#NA18NWS4620043B.Wewouldlike
tothan ktheTaylorLabgroupforth eirfeedbac konane ar lydraftofthis
commentary.
DATA AVA I L AB ILI T Y STATE M EN T
Nonewdatawaspresentedinthisarticle.
ORCID
Lindsay A. McCulloch https://orcid.org/0000-0001-6868-2632
Marijn Bauters https://orcid.org/0000-0003-0978-6639
REFERENCES
Allen, E. B., Allen, M. F.,Egerton-Warburton, L., Corkidi, L ., & Gómez-
Pompa, A. (2003). Impacts of early- and late-seral mycorrhizae
during re storation in se asonal tropic al forest, Mex ico. Ecological
Applications,13,1701–1717.
Amazona s, N. T., Mart inelli, L . A., Pic colo, M. d. C ., & Rodrig ues, R . R.
(2011). Nitrogen dynamics during ecosystem development in
tropical forest restoration. Forest Ecology and Management, 262,
1551–1557.
Asmel ash, F., Bekele, T., & Bir hane, E. (2 016).T he potenti al role of ar-
buscula r mycorrhizal fu ngi in the restor ation of degrad ed lands.
Frontiers in Microbiology,7,1095.
Averill,C.,Anthony,M.A.,Baldrian,P.,Finkbeiner,F.,vandenHoogen,J.,
Kiers,T.,Kohout,P.,Hirt,E.,Smith ,G.R.,&Crowther,T.W.(2022).
Defending Earth's terrestrial microbiome. Nature Microbiology, 7,
1717–1725.
Bagchi, R ., Gallery, R. E., Gripenberg, S., Gurr,S. J., Narayan, L., Addis,
C.E.,Freckleton, R.P.,&Lewis,O.T.(2014).Pathogensandinsect
herbivoresdriverainforestplantdiversityandcomposition.Nature,
506,85–88.
Batterman,S.A.,Hedin,L.O.,VanBreugel,M.,Ransijn,J.,Craven,D.J.,
&Hall, J.S .(2 013).Ke yro leofsymb iotic dinit rogenfixat ionintro p-
icalforestsecondarysuccession.Nature,502,224–227.ht t p s : // d o i .
org / 10. 103 8/ nat ur e1 2525
Bauters,M.,Grau,O.,Doetterl,S.,Heineman,K.D.,Dalling,J.W.,Prada,
C.M.,Griepentrog,M.,Malhi,Y.,Riut ta,T.,Scalon,M.,Oliveras,I.,
Inagawa,T.,Majalap,N.,Beeckman,H.,vandenBulcke,J.,Perring,
M.P.,Dourdain,A.,Hérault,B.,Vermeir,P.,…Janssens,I.A.(2022).
Tropicalwoodstoressubstantialamountsofnutrients,butwehave
limited understanding why. Biotropica,54,596–606.
Bauters, M., Janssens, I. A., Wasner, D., Doetterl, S., Vermeir, P.,
Griepentrog,M.,Drake, T.W.,Six,J.,B arthel,M .,Baumgar tner,S.,
VanOos t,K., Makelele,I .A .,Ewango,C., Verheyen,K.,& Boeckx,
P.(2022).IncreasingcalciumscarcityalongAfrotropicalforestsuc-
cession. Nature Ecology & Evolution,6,1122–1131.
Bauters, M., Moonen, P., Summerauer, L., Doetterl, S., Wasner, D.,
Griepentrog, M., Mumbanza, F. M., Kearsley, E., Ewango, C.,
Boyemba,F.,Six, J., Muys,B.,Verbist,B.,Boeckx,P.,&Verheyen,
K. (2021). Soil nutrient depletion and tree functional composi-
tion shif t following repeated clearing in secondaryforest s of The
CongoBasin.Ecosys tems,24, 1422–1435. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 /
s10021-020-00593-6
Bennet t, J. A.,& Klironomos, J. (2019). Mechanisms of plant–soilfeed-
back:Interactionsamongbioticandabioticdrivers.N ew Phytologist,
222,91–96.
Binkley, D., & Gi ardina, C. (1997). Nitr ogen fixation in t ropical fores t
plantations. Management of soil, nutrients and water in tropical plan-
tation forests,43,297–337.
BooneKauffman,J.,Cummings,D.L.,Ward,D.E.,Babbitt,R .,Kauffman,
J.B.,Cummings,D.L.,Ward,D.E.,&Babbit t,R .(1995).Fireinthe
BrazilianAmazon:1.Biomass,nutrientpools,andlossesinslashed
primar yforests.Oecologia,104,397–408.
Brancalion,P.H.S.,Niamir,A.,Broadbent,E.,Crouzeilles,R.,Barros,F.S.
M.,Z ambrano,A.M.A .,Baccini,A .,A ronson,J.,Goetz, S., Reid, J.
L.,Strassburg, B. B.N.,Wilson ,S.,& Chazdon,R .L .(2019).Global
restorationopportunitiesintropicalrainforestlandscapes.Science
Advances,5,3223–3226.https://doi.org/10.1126/sciadv.aav3223
Brown,K.(2005).Addressingtrade-offsinforestlandscaperestoration.
InS.Mansourian,D.Vallauri,&N.Dudley(Eds.),Forest re storation in
landscapes: Beyond planting trees(59–64).Springer.
Chaer,G. M.,Resende,A.S.,Campello,E .F.C.,DeFaria,S.M.,Boddey,
R.M.,&Schmidt,S.(2011).Nitrogen-fixinglegumetreespeciesfor
thereclamationofseverelydegradedlandsinBrazil.Tree Physiology,
31,139–149.
Comita , L. S., Queenborough, S. A., Murphy, S. J., Eck, J. L., Xu, K.,
Krishnadas, M.,Beckman,N .,& Zhu, Y.(2014).Testingpredictions
oftheJanzen-Connellhypothesis:Amet a-analysisofexperimental
evidencefor distance-and density-dependentseedandseedling
survival. Journal of Ecology,102,845–856.
Corrales,A., Mangan,S.A .,Turner,B. L., &Dalling,J. W.(2016).Anec-
tomycorr hizal nitrogen e conomy facilit ates monodomi nance in a
neotropicalforest.Ecology Letters,19,383–392.
Craig, M.E.,Turner,B.L .,Liang,C .,Clay,K.,Johnson,D.J.,&Phillips,R .
P.(2018). Tree mycor rhizal t ype pred icts wit hin-site varia bility in
the storage and distribution ofsoil organic matter. Global Change
Biology,24,3317–3330.
Eck, J. L.,Stump, S. M., Delavaux, C. S ., Mangan, S. A., & Comita, L. S.
(2019).Evidence ofwithin-species specializationby soil microbes
andtheimplicationsforplantcommunitydiversity.Proceedings of
the Nation al Academy of Scienc es of the United States of Ame rica,116,
7371–7376.
Fajardo, L., Rodríguez, J. P., González, V., & Briceño-Linares, J. M.
(2013).Restor ation of a degr aded tropicaldry forest in Macanao,
Venezuela. Journal of Arid Environments, 88, 236–243. h t t p s : //
w w w . s c i e n c e d i r e c t . c o m / s c i e n c e / a r t i c l e / p i i / S 0 1 4 0 1 9 6 3 1 2 0 0 2 3 5 2
FAO(2020).Global forest resources assessment 2020: Main report.FAO.
Ford, H., Garbut t, A., Ladd,C., Malarkey, J., & Skov, M. W.(2016). Soil
stabilizationlinked toplantdiversityandenvironmentalcontex tin
coastal wetlands. Journal of Vegetation Science,27,259–268.
Holl, K.D.,& Brancalion ,P.H. S.(2022).Which oftheplethoraoftree-
growing project s to support? One Earth,5,452–455.
Holl,K.D.,&Zahawi,R.A.(2014).Factorsexplainingvariabilityinwoody
above-ground biomass accumulation in restored tropical forest.
Forest Ecology and Management,319,36–43.
Huddell,A., Neill, C., Palm, C. A ., Nunes ,D.,&Menge, D. N. L.(2022).
Anionexchangecapacityexplainsdeepsoilnitrateaccumulationin
BrazilianAmazon croplands.Ecosys tems, 26 ,134–145.h t t p s : // d o i .
o r g / 1 0 . 1 0 0 7 / s 1 0 0 2 1 - 0 2 2 - 0 0 7 4 7 - 8
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B.,
Freschet ,G.T.,Katt ge,J.,Roumet,C.,Stover,D.B.,Soudzilovskaia,
N. A., Valverde-Barrantes, O. J., vanBodegom, P.M.,&Violle,C.
(2017). A global fine-root ecology database to address below-
ground challenges in plant e cology. New Phytologist,215,15–26.
Jones,I.L.,DeWalt,S.J.,Lopez,O.R.,Bunnefeld,L.,Pattison,Z.,&Dent,
D.H.(2019).Above-andbelowgroundcarbonstocksaredecoupled
insecondar ytropicalforestsandarepositivelyrelatedtoforestage
and soil nutrients respectively. Science of the Total Environment,697,
13 3 9 87.
Jones, M. D., Durall, D.M.,&Cairney, J.W.G. (20 03). Ectomycorrhizal
fungalcom mu ni tiesin youngfo re ststa nd sregener at in gaft erclear-
cut logging. New Phytologist,157,399–422.
Kou-Giesbrecht, S ., & Menge, D. (2019). Nitrogen-fixing trees could
exacerbate climate change under elevated nitrogen deposition.
Nature Communications,10,1493.
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
6 of 6
|
McCULLOCH e t al.
Levy-Varon, J. H.,Batterman, S.A., Medvigy,D., Xu,X., Hall, J. S., van
Breugel,M.,&Hedin,L.O.(2019).Tropicalcarbonsinkaccelerated
bysymbioticdinitrogenfixation.Nature Communications,10,5637.
Lindenmayer,D.(2020).Improvingrestorationprogramsthroughgreater
connection with ecological theory and better monitoring. Frontiers
in Ecology and Evolution,8,50.
Liu, Y., Fang, S. , Chesson , P., & He, F. (2015). The ef fect of so il-b orne
pathogensdependsontheabundanceofhosttreespecies.Nature
Communications,6,10017.
Maltz,M. R.,& Treseder,K .K .(2015).Sourcesof inoculainfluence my-
corrhizal colonization of plants in restoration projects: A meta-
analysis. Restoration Ecolog y,23,625–634.
Mangan,S.A.,Schnitzer,S.A.,Herre,E.A.,MacK,K.M.L.,Valencia,M.
C., San chez, E. I ., & Bever, J. D. (2010). Neg ative plant-soil fee d-
back predicts tre e-speciesrelative abundancein a tropical forest.
Nature,466,752–755.
Meli,P.,Holl,K .D.,Benayas,J.M.R.,Jones,H.P.,Jones,P.C.,Montoya,
D.,&Mateos,D.M.(2017).Aglobalreviewofpastlanduse,climate,
andactive vs. passiverestorationeffectsonforest recover y.PLoS
One,12,e0171368.
Messier, C ., Bauhus, J ., Sousa-Silva , R., Auge, H ., Baeten , L., Bar soum,
N., Bru elheide, H ., Caldwe ll, B., Cav ender-B ares, J., D hiedt, E ., &
Eisenha uer, N. (2022). For the sa ke of resili ence and multifu nc-
tionality, let's diversif y planted forests! Conservation Letters, 15,
e12829.
Neill,C.,Piccolo,M.C.,Cerri,C.C.,Steudler,P.A.,&Melillo,J.M.(2006).
Soi lsolution nitroge nloss es duringc le ar ingoflow la ndAmazo nfor-
estforpasture.Plant and Soil,281,233–245.
Neuenkamp, L., Zobel, M ., Lind, E., Gerz, M., & Moora, M . (2019).
Arbuscularmycorrhizalfungalcommunitycompositiondetermines
the comp etitive respons e of two grasslan d forbs. PLoS One, 14 ,
e0219527.
Philips on, C. D., Cu tler, M. E. J., Br odrick, P. G., A sner, G. P.,B oyd, D.
S., Mour a Costa , P.,Fidd es, J., Food y,G . M., van de r Heijden, G .
M.F.,Ledo, A.,Lincoln, P.R., Margrove,J.A .,Martin,R. E., Milne,
S., Pinard,M. A., Reynolds,G ., Snoep,M ., Tangki, H., SauWai,Y.,
… Bursle m, D. F.R . P. ( 2020). Active r estoration a ccelerates t he
carbon recover y of human-modified tropic al forests. Science,
1979(369),838–841.https://doi.org/10.1126/science.aay4490
Phillips , R. P., Brzostek, E ., & Midgley, M. G. ( 2013). The mycorrh izal-
associated nutrient economy: A new framewor k for predicting
carbo n-nutri ent couplings in te mperate fores ts. New Phytologist,
199,41–51.
Policelli,N.,Hor ton,T.R.,Hudon, A.T.,Patterson,T.R., &Bhatnagar,J.
M.(2020). Backto root s:The role ofectomycorrhizalfungi in bo-
realandtemperateforestrestoration.Frontier s in Forests and Gl obal
Change,3,97.
Powers,J.S.(2022).Opportunitiesforintegratingsocialscienceintore-
search on dr yForest res toration:Amini-review. Sustainability,14,
7351 .
Powers, J.S.,&Marín-Spiott a,E.(2017).Ecosystem processes and bio-
geochemicalcyclesinsecondarytropicalForestsuccession.Annual
Review of Ecology, Evolution, and Systematics, 48, 497–519.h t t p s: //
doi.org/10.1146/annurev-ecolsys-110316-022944
Prada , C. M., Turner, B. L. , & Dalling, J. W. (2021). G rowth resp onses
ofectomycorrhizalandarbuscularmycorrhizalseedlingstolowsoil
nitrogenavailabilityinatropicalmontaneforest.Functional Ecology,
36,107–119.
Rillig, M. C., Wright, S . F.,Nichols,K. A., Schmidt, W. F.,& Torn, M. S.
(2001). L arge contr ibution of ar buscular m ycorrhiza l fungi to soil
carbonpoolsintropicalforestsoils.Plant and Soil,233,167–177.
Sarmiento, C.,Zalamea, P.C ., Dalling, J. W.,Davis, A . S., Simon, S. M.,
U'Ren,J. M.,& Arnold,A .E. (2017). Soilborne fungihavehost af-
finit y and host-specif ic effec ts on seed ge rmination a nd survi val
inalowland tropicalforest .Pro ceedings of the National Academy of
Sciences of the United States of America,114,11458–11463.
Seidl ,R .,&Tur ner,M .G .(2022) .Post-di sturbancer eo rg an iz at io nof forest
ecosystems in a changing wor ld. Proceedings of the National Academy
of Science s of the United States of America,119,e2202190119.
Smith,S.E.,&Read,D.J.(2010).Mycorrhizal symbiosis(3rded.).Academic
Press.
Smith-Mar tin,C .M.,Gei,M.G.,Bergstrom,E.,Becklund,K.K.,Becknell,
J.M.,Waring, B. G., Werden,L .K., &Powers, J. S. (2017). Effec ts
ofsoil type and light on heightgrowth, biomass partitioning, and
nitrogendynamic son22 speciesoftropical dry forest treeseed-
lings: Comparisons between legumesand nonlegumes. American
Journal of Botany,104 ,399–410.https:// pubmed. ncbi. nlm. nih. gov/
283 41 6 31/
Tanner, E. V.J. , Vitousek , P.M., & Cu evas, E. (1998). Exp eriment al in-
vestigationofnutrientlimitationof Fores tgrow thonwet Tropical
Mountains.Ecology,79,10–22.https://doi.org/10.1890/0012-965
8(1998)079[0010:EIONLO]2.0.CO;2
Taylor, B. N., Chazdo n, R. L., Bac helot, B., & Men ge, D. N. L. (2017).
Nitrogen-fixing trees inhibit growth of regenerating Costa Ric an
rainforests.PNAS,114 ,8817–8822.
Toro,L.,Torres-Romero,F.,Salinas,S.M.,Avella-Munoz,A.,Galatowish,
S.,Secchi,S.,&Powers,J.S .(2024).Cost-ef fectivenessofmanage-
mentstrategiesinanucleationexperimentinatropicaldry forest.
Restoration Ecology.Portico.htt ps:// doi. org/ 10 . 1111/ rec. 140 94
UNEP, and CBD. (2018). Pan-African Action Agenda on Ecosystem
RestorationforIncreasedResilience.
UN IQ UE. (2 02 0).Mi d-te rmrev ie wo ft heAfr ic a nF or est la nds cap er est o-
rationinitiative(AFR100).
UnitedNations,&WorldBank.(2022).ScalingUpEcosystemRestor ation
Finance : A Stocktake Repo rt. https://openknowledge.worldbank.
org/ handle/ 10986/ 38311
Vergara, W., Gallardo Lomeli, L., Franco Chuaire, M., Weber, S., &
Zamora-Cristales, R . (2015). Initiative 20x20: A landscape resto-
ration movement rises in Latin Asmerica and the Caribbean. Wo rld
ResourcesInstitute.h t t p s : / / w w w . w r i . o r g / i n s i g h t s / i n i t i a t i v e - 2 0 x 2 0
- lands cape- resto ratio n- movem ent- rises - latin - ameri ca- and- carib
bean
Werden, L . K., Averill, C ., Crow ther, T.W.,C alderón-Morales, E.,Toro,
L., Alvarado, J. P.,Gutiérrez, L.M., Mallory, D. E., & Powers, J.S.
(2022). Below-groundtraitsmediatetree survival inatropical dry
forestrestoration.Philosophical Transac tions of the Royal Society, B:
Biological Sciences, 378, 20210067. https:// doi. org / 10. 1098/ rstb.
2021.0067
Wong,M.Y.,Neill,C.,Marino,R.,Silvério,D.V.,Brando,P.M.,&Howarth,
R.W.(2020).Biologicalnitrogenfixationdoesnotreplacenitrogen
losses af ter Forest fires in thesoutheastern Amazon. Ecosystems,
23,1037–1055.
Wubs,E.R.J.,VanDerPutten,W.H.,Bosch,M.,&Bezemer,T.M.(2016).
Soilinoculationsteersrestorationofterrestrialecosystems.Nature
Plants,2,16107.
Zanini, A. M., Mayrinck, R. C ., Vieira, S. A ., de Camargo, P. B., &
Rodrigues,R .R .(2021).The effe ctofecological restorationmeth-
ods on carbon stocks in the BrazilianAtlanticForest.Ecology and
Management,481,118734.
How to cite this article: McCulloch,L.A.,Prada,C.M.,Liao,
W.,Bauters,M.,Church,L.,Lee,M.Y.,Toro,L.,VandeVelde,
V.,Weissflog,A.,Wong,M.,&Taylor,B.N.(2024).
Belowgroundfoundationsoftropicalforestrestoration.
Biotropica,56,e13296.https ://doi .org /10.1111 /btp.13296
17447429, 2024, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/btp.13296 by NANYANG TECHNOLOGICAL UNIVERSITY, Wiley Online Library on [25/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License