ArticlePDF Available

Impact of the Type and Percentage of Differential Item Functioning on the Ability Parameter of Individuals According to Parametric and Nonparametric Models of IRT

Authors:
  • Deanship of Scientific Research and Graduate Studies - Applied Science Private University
Jordan Journal of Applied Science - Humanities Series
Applied Science Private University
2024, Vol 38(1)
e-ISSN: 2708-9126
https://doi.org/10.35192/jjoas-h.v38i1.651
Research Article
Impact of the Type and Percentage of Differential Item Functioning on the
Ability Parameter of Individuals According to Parametric and Nonparametric
Models of IRT
󰑡󰐠󰐊󰍜󰐜󰢃󰍔 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱󰋦󰈱󰈇󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰊶󰈉󰋦󰍶󰓸󰐃󰑜󰋔󰋅󰎞󰐃󰈉 󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐺󰐃 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧
Issra Al-Khatib 1*, Hassan Al-Omari 1.
1The University of Jordan, Amman, Jordan.
ARTICLE INFO
*Corresponding author:
The University of Jordan, Amman, Jordan.
Email: asra32915@gmail.com.
Article history:
Received 10 Feb 2022
Accepted 18 Apr 2022
Published 01 Jan 2024
Abstract
This study aimed to investigate the impact of the type and percentage of Differential
Item Functioning (10%, 20%, and 30%) on estimating individuals’ abilities according to the
three-parameter model and Mokken’s non-parametric model of item response theory. The
experimental method was used to address the study's questions by applying hypothetical tests,
each consisting of 60 double-response items, generated using the WinGen software, to a sample
of 2,000 hypothetical individuals for each experimental condition. The study results showed that
differences in the ability parameter between the three-parameter logistic model and Mokken's
non-parametric model were not statistically significant across all experimental conditions
related to the type and percentage of Differential Item Functioning. There were also no
differences in the ability parameter due to the type of model according to the experimental
conditions related to the type and percentage of differential performance. The study
recommended using Mokken's non-parametric model when seeking the highest degree of
reliability in the test.
Keywords: Differential Items Functioning, Abilities of Individuals, Three-Parameter Logistic
Model, Moken Model.
󰌶󰊔󰐊󰐠󰐃󰈉
󰉚󰍶󰋅󰑐󰑠󰋆󰑐 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱󰋦󰈱󰈇󰑡󰍶󰋦󰍜󰐜󰢁󰈈󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰄔󰄓󰄝󰄊󰄕󰄓󰄝󰄊󰄖󰄓󰄝󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰈰󰢃󰍔 󰄊󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐺󰐃 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰈓󰑔󰒰󰍶󰐘󰋅󰊔󰉅󰌃󰈉󰑃󰍔󰑡󰖘󰈓󰊀󰓹󰐃 󰠾󰠵
󰡯󰖌󰔢󰊒󰉅󰐃󰈉󰊤󰑔󰐺󰐠󰐃󰈉 󰈓󰑔󰐺󰐜󰐑󰚠󰏼󰑸󰍀󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰈉󰎣󰒰󰉄󰍄󰉅󰈯󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰈛󰓶󰑦󰈓󰌎󰗜󰄙󰄓󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰈓󰑐󰋅󰗎󰐃󰑸󰈰󰐤󰈰󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰗎󰒚󰈓󰐺󰈱󰑜󰋦󰎞󰍶 WinGen󰑃󰐜󰑡󰐱󰑸󰏐󰐜󰑡󰐺󰒰󰍔󰢃󰍔󰄊󰄕󰄓󰄓󰄓󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰍶󰢁󰈉󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰊤󰒚󰈓󰉅󰐱󰈛󰋔󰈓󰌄󰈉󰠾󰠵
󰡯󰖌󰔢󰊒󰈰󰍬󰋦󰍁󰐑󰜄󰐃 󰠾󰠈
󰡵󰈉 󰠉
󰡣󰍶󰈉󰊶󰋦󰍶
󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰈯󰑡󰎞󰐊󰍜󰉅󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰐑󰜄󰐃󰑧󰞮󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰈉󰊶 󰠶
󰡣󰍕 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧 󰠾󰠖
󰡮󰓺󰉆󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰈉
- 22 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄔 󰑡󰐜󰋅󰎞󰐠󰐃󰈉
󰄔󰄞󰄔󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰑧󰒎󰋦󰍅󰐺󰐃󰈉󰋔󰈓󰍀󰓵󰈉
󰋦󰖌󰔵󰍄󰈰󰑧󰓚󰈓󰐺󰈯󰏼󰈓󰊒󰐜 󰠾󰠈
󰡻󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰒎󰋔󰑸󰍄󰐜󰑧 󰠈󰠶
󰡭󰉆󰊁󰈓󰖹󰐃󰈉󰊶󰑸󰑔󰊀󰈛󰋧󰎼󰋔󰒎󰊶󰑷󰈰 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰋅󰖭󰋅󰊓󰉅󰈯󰐘󰈓󰗎󰎞󰐃󰈉󰢃󰍔󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉
󰢃󰍔󰐤󰚴󰊓󰐊󰐃󰑡󰗎󰍶󰈓󰚠󰉚󰌎󰚔󰐃󰈓󰑔󰐱󰈇󰓶󰈈󰈛󰓶󰓶󰋅󰐃󰈉󰑠󰋆󰑐󰑡󰗎󰐠󰑐󰈇󰑃󰐜󰐤󰍕󰋦󰐃󰈉󰢃󰍔󰑧󰄊 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰑧󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰓚󰑸󰌫 󰠾󰠈
󰡻󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑃󰐜󰌥󰋦󰍝󰐃󰈉
󰑘󰐊󰊀󰈇󰑃󰐜󰋅󰍔󰞲󰈇󰒎󰋆󰐃󰈉󰌥󰋦󰍝󰐃󰈉󰎣󰎞󰊓󰗎󰐃󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰍶󰑡󰗎󰊁󰓺󰌪󰄊󰑃󰒟󰋅󰐃󰈉󰑧󰑡󰍝󰐊󰐃󰈉󰑧󰌙󰘡󰊒󰐃󰈓󰚠󰒍󰋦󰊂󰈇󰐑󰐜󰈉󰑸󰍜󰖘󰋦󰈱󰈑󰉅󰈰󰐨󰈇󰑃󰏐󰐠󰖭󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐨󰈇󰊷󰈈
󰋅󰌫󰑡󰍔󰑸󰐠󰊒󰐜󰑸󰊓󰐱󰞮󰈉󰠈󰠶
󰡣󰊓󰉅󰐜󰞲󰈓󰍄󰐠󰐱󰋦󰑔󰍅󰗎󰍶󰊤󰒚󰈓󰉅󰐺󰐃󰈉 󰠾󰠈
󰡻󰋦󰈱󰑷󰒟󰋅󰎙󰈓󰐠󰐜󰄊 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰑡󰍶󰈓󰌫󰈈󰄊 󰠾
󰡹󰈓󰐠󰉅󰊀󰓶󰈉󰑧󰈇󰒎󰊶󰈓󰌰󰉅󰎙󰓶󰈉󰒍󰑸󰉅󰌎󰐠󰐃󰈉󰑧
󰐱󰈑󰖘󰋸󰈓󰗎󰎞󰐠󰐃󰈉󰑧󰈇󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰍶󰎊󰌪󰑸󰈰󰑘󰗎󰐊󰍔󰑧󰄊󰑘󰗎󰐊󰍔󰓚󰈓󰐺󰈯󰑜󰋆󰊔󰉅󰐠󰐃󰈉󰈛󰈉󰋔󰈉󰋦󰎞󰐃󰈉 󰠾󰠈
󰡻󰋦󰈱󰑷󰖌󰑧󰒍󰋦󰊂󰈇󰑜󰠈󰠶
󰡣󰊓󰉅󰐜󰈓󰑔Schmidt &Hunter,
1998
󰑘󰗎󰐺󰘰󰈯󰢁󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰠈󰠶
󰡣󰊓󰈰 󰠾󰠈
󰡻󰉚󰉆󰊓󰖘 󰠾󰠉
󰡯󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰖭󰈉󰋅󰖘󰊶󰑸󰍜󰈰󰑧Binet󰓚󰈓󰚠󰋆󰐃󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰑘󰎞󰗎󰉄󰍄󰈰󰓚󰈓󰐺󰈱󰈇󰍉󰊁󰓶󰈓󰐜󰋅󰐺󰍔
󰑃󰐜󰐑󰌱󰍶󰈇󰈓󰗎󰐊󰍜󰐃󰈉󰑡󰗎󰍔󰈓󰐠󰉅󰊀󰓶󰈉󰑧󰑡󰖭󰊶󰈓󰌰󰉅󰎙󰓶󰈉󰈛󰈓󰎞󰖹󰍄󰐃󰈉󰑃󰐜 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰓚󰈉󰊶󰈉󰐨󰈇󰑧󰄊󰊶󰑸󰌎󰐃󰈉󰑃󰐜󰐑󰌱󰍶󰈇󰌷󰗎󰉄󰐃󰈉󰑃󰐜 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰓚󰈉󰊶󰈇󰐨󰈇
󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰓚󰈉󰊶󰈇󰑃󰐜󰄊 󰠾󰠵
󰡲󰐺󰘍󰌎󰙿󰐃󰈉 󰠈
󰡮󰊶󰓴󰈉󰑡󰗎󰍔󰈓󰐠󰉅󰊀󰓶󰈉󰑧󰑡󰖭󰊶󰈓󰌰󰉅󰎙󰓶󰈉󰈛󰈓󰎞󰖹󰍄󰐃󰈉󰄕󰄓󰄓󰄗 󰠈󰠶
󰡣󰊓󰉅󰐃󰈉󰐘󰑸󰑔󰎀󰐜 󰠾󰠈
󰡸󰊁󰉚󰎙󰑸󰐃󰈉󰏤󰐃󰊷󰋆󰐺󰐜󰑧󰄊
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰋅󰍜󰖘󰈓󰐠󰗎󰍶󰑘󰗎󰐊󰍔󰎣󰐊󰍀󰈇󰒎󰋆󰐃󰈉󰑧󰄊󰒎󰑸󰕷 󰠉
󰡣󰐃󰈉󰑧 󰠾
󰡴󰎀󰐺󰐃󰈉󰐤󰖌󰔵󰎞󰉅󰐃󰈉󰑧󰋸󰈓󰗎󰎞󰐃󰈉󰏼󰈓󰊒󰐜 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰉆󰊁󰈓󰖹󰐃󰈉󰐘󰈓󰐠󰉅󰑐󰈉󰢃󰍔󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐊󰐃
(DIF)󰄊󰑧󰈇󰊥󰐊󰍄󰌰󰐜DIP󰑃󰍔󰆲󰡜󰋅󰖘 DIFRyan &Chiu, 2001󰐘󰑸󰑔󰎀󰐜󰐘󰋅󰊔󰉅󰌃󰈉󰋅󰎞󰍶 󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉DIF 󰠾󰠈
󰡻
󰎔󰋦󰍜󰐃󰈉󰑧󰈇󰌙󰘡󰊒󰐃󰈉󰐑󰉆󰐜󰑃󰐜󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉󰑡󰗎󰍶󰈉󰋦󰍕󰑸󰐠󰖭󰋅󰐃󰈉󰈛󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰈉󰎣󰍶󰑧󰑜󰠈󰠶
󰡣󰊓󰉅󰐠󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰑡󰖌󰔵󰕷 󰠉
󰡣󰐃󰈉󰑧󰑡󰗎󰌎󰎀󰐺󰐃󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉
󰄊󰑜󰋔󰋅󰎞󰐃󰈉󰒍󰑸󰉅󰌎󰐜󰈛󰈉󰊷󰑃󰐜󰒍󰋦󰊂󰈇󰑃󰍔󰑡󰍔󰑸󰐠󰊒󰐜󰐑󰌫󰈓󰎀󰈰󰐨󰈇󰑃󰏐󰐠󰖭󰉛󰗎󰊁Stark, et al., 2004󰄊󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐨󰈑󰍶󰑘󰗎󰐊󰍔󰑧 󰑜󰋔󰋅󰎞󰐃󰈓󰖘󰎣󰐊󰍜󰉅󰈰󰓶󰐑󰐜󰈉󰑸󰍜󰐃󰈓󰐜󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰑜 󰠈󰠶
󰡣󰊓󰉅󰐜󰈓󰑔󰐱󰈑󰖘󰎊󰌪󰑸󰈰 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉; Gruijter &Kamp, 1994 ,et al.Camilli,
2005󰄊󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰑜󰋦󰎞󰎀󰐃󰈉󰢃󰍔󰊥󰒰󰊓󰌪󰐑󰚴󰌏󰙞󰑡󰖘󰈓󰊀󰓹󰐃󰑡󰎀󰐊󰉅󰊔󰐜󰈛󰓶󰈓󰐠󰉅󰊁󰈉󰐤󰑔󰒟󰋅󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰌙󰎀󰐱󰐤󰑔󰒟󰋅󰐃󰑃󰒟󰋆󰐃󰈉󰊶󰈉󰋦󰍶󰓴󰈉󰐨󰓴  Reynolds &Lowe, 2009; Warn, et al., 2014
󰢃󰍔󰋅󰐺󰘍󰌎󰙳󰈓󰐜󰈓󰑔󰐺󰐜󰄊󰑜󰋅󰍔󰎔󰋦󰍀󰏼󰓺󰊂󰑃󰐜 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰑜󰋅󰖭󰋅󰍔󰈛󰈓󰌃󰈉󰋔󰊶󰉚󰖌󰔢󰊀󰈇󰋅󰎞󰐃
󰑡󰖌󰔢󰍅󰐱󰢃󰍔󰋅󰐺󰘍󰌎󰙳󰈓󰐜󰈓󰑔󰐺󰐜󰑧󰄊 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰋔󰈉󰋅󰊓󰐱󰓶󰈉󰑡󰎞󰖌󰔢󰍀󰑧󰑡󰐃󰑸󰊓󰐠󰐃󰈉󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰑡󰎞󰖌󰔢󰍀󰑧󰏼󰋧󰐱󰈓󰑐󰐑󰉅󰐱󰈓󰐜󰑡󰎞󰖌󰔢󰍄󰎼󰑡󰗎󰏐󰗎󰌃󰓺󰜄󰐃󰈉󰑡󰖌󰔢󰍅󰐺󰐃󰈉
󰠈󰠶
󰡭󰈯󰑡󰊁󰈓󰌎󰐠󰐃󰈉 󰠾󰠈
󰡻󰎔󰋦󰎀󰐃󰈉 󰠌
󰡤󰑷󰐜󰑡󰎞󰖌󰔢󰍄󰎼󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰎊󰐺󰌰󰈰󰑧󰈓󰑐 󰠶
󰡣󰍕󰑧󰑡󰗎󰊓󰊀󰋔󰓴󰈉󰑡󰖹󰌎󰗰󰑡󰎞󰖌󰔢󰍀󰑧󰄊󰑜󰋦󰎞󰎀󰐃󰈉󰌶󰒚󰈓󰌰󰊂󰈛󰈓󰗎󰐺󰊓󰐺󰐜
 󰑜󰋦󰎞󰎀󰐊󰐃 󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉 󰑡󰖌󰔢󰍅󰐱 󰉙󰌎󰊁 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉 󰓚󰈉󰊶󰓴󰈉 󰑃󰍔 󰎊󰌏󰛜󰐃󰈉 󰎔󰋦󰍀IRT󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉 󰎔󰋦󰍄󰐃󰈉 󰄊󰎔󰋦󰍄󰐃󰈉 󰑃󰐜 󰠈󰠶
󰡭󰍔󰑸󰐱 󰢁󰈉 
Parametric)󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰎔󰋦󰍄󰐃󰈉󰑧󰄊Nonparametric󰄊 󰠈󰠶
󰡭󰒰󰎀󰖌 󰠌
󰡥󰐃󰈉󰄕󰄓󰄔󰄛󰄎Raju &Ellis, 2002󰊥󰐊󰍄󰌰󰐜 󰠶
󰡣󰌏󰙳󰉛󰗎󰊁󰄊
󰑜󰋦󰎞󰎀󰐃󰈉󰌶󰒚󰈓󰌰󰊂 󰠈
󰡯󰊓󰐺󰐜󰑧 󰠾
󰡺󰌫󰑸󰐠󰐃󰈉󰏼󰓺󰎞󰉅󰌃󰓶󰈉󰑧󰋅󰍜󰖹󰐃󰈉󰑡󰖭󰊶󰈓󰊁󰈇󰑃󰐜󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰌼󰑧 󰠌
󰡤󰑧󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰈉󰎣󰎞󰊓󰈰󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰐨󰈇󰢁󰈉 󰠾
󰢆󰐊󰍜󰐜
󰎊󰌏󰛜󰐃󰈉 󰠾󰠈
󰡻󰑡󰐜󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰎔󰋦󰍄󰐃󰈉󰑃󰐜󰑧󰄊󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰎔󰋦󰍄󰐃󰈉󰢁󰈈󰓚󰑸󰊒󰐊󰐃󰈉󰐤󰉅󰒟󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰓶󰈉󰑠󰋆󰑐󰋅󰊁󰈇󰎨󰈓󰑔󰉅󰐱󰈉󰋅󰐺󰍔󰑧󰄊󰑡󰍔󰡥󰐃󰈉󰑃󰐜󰋔󰋦󰊓󰉅󰐃󰈉󰑧
󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱IRT󰑡󰎞󰖌󰔢󰍀󰑧󰑜󰋦󰎞󰎀󰐃󰈉󰌶󰒚󰈓󰌰󰊂󰈛󰈓󰗎󰐺󰊓󰐺󰐜 󰠈󰠶
󰡭󰈯󰑡󰊁󰈓󰌎󰐠󰐃󰈉 󰠾󰠈
󰡻󰎔󰋦󰎀󰐃󰈉 󰠌
󰡤󰑷󰐜󰑡󰎞󰖌󰔢󰍀 󰈓󰑐 󰠶
󰡣󰍕󰑧󰑸󰊀󰈉󰋔󰑡󰎞󰖌󰔢󰍀󰑧󰑡󰗎󰊓󰊀󰋔󰓴󰈉󰑡󰖹󰌎󰗰Park, 2010
󰉛󰗎󰊁󰌶󰒚󰈓󰌰󰊂 󰠈
󰡯󰊓󰐺󰐜󰐨󰈓󰚴󰐜󰉙󰌎󰊁󰑜󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰎊󰐺󰌰󰖭
󰈉󰑧󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉 󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐠󰐊󰐃󰑡󰊓󰗎󰊓󰌰󰐃󰈉󰑡󰖘󰈓󰊀󰓵󰈉󰏼󰈓󰐠󰉅󰊁󰈉 󰠈󰠶
󰡭󰈯󰍈󰕷󰔢󰒟󰒎󰋆󰐃󰈉󰑜󰋦󰎞󰎀󰐃󰈉󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃 󰉛󰗎󰊁󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰐑󰐠󰉅󰌏󰗜
󰑃󰐜󰑧󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈓󰖘󰢆󰌎󰘍󰍶󰈓󰑔󰒰󰍶󰐨󰋔󰈓󰎞󰐱 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰈓󰐜󰈇󰄊󰐤󰍅󰉅󰐺󰐠󰐃󰈉 󰠶
󰡣󰍕󰑧󰈇󰐤󰍅󰉅󰐺󰐠󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉
󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰊶󰑸󰊀󰑧󰒍󰋅󰐜󰢃󰍔󰐤󰚴󰊓󰐃󰈉󰈓󰐺󰐺󰏐󰐠󰖭 󰠈󰠶
󰡭󰒰󰐺󰊓󰐺󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰖭󰊶󰑸󰐜󰈓󰍜󰐃󰈉󰎔󰑧󰋦󰎀󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉󰑡󰊁󰈓󰌎󰐠󰐃󰈉󰏼󰓺󰊂
󰐑󰉆󰐜󰈜󰈓󰊓󰖘󰓴󰈉󰑧󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰈛󰋔󰈓󰌄󰈉󰋅󰎞󰐃Hambleton &rogers, 1986; Swaminathan &rogers, 1990; pae,
2019; Raquel, 2011; Karami &Salmani Nodoushan, 2004 󰠈󰠶
󰡭󰍔󰑸󰐱󰢁󰈉 󰑃󰐜 󰓚󰈉󰊶󰓴󰈉 󰓚󰈉󰊶󰓴󰈉󰈓󰐠󰑐 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉
󰐤󰍅󰉅󰐺󰐠󰐃󰈉 UDIF󰈓󰐜󰋅󰐺󰍔󰋦󰑔󰍅󰖭󰒎󰋆󰐃󰈉󰑧 󰓶 󰒎󰈇󰈜󰋅󰊓󰖭 󰐑󰍔󰈓󰎀󰈰 󰠈󰠶
󰡭󰈯 󰒍󰑸󰉅󰌎󰐜 󰑜󰋔󰋅󰎞󰐃󰈉 󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰑧 󰠾󰠉
󰡯󰐃󰈉 󰈓󰑔󰒰󰐃󰈈 󰠾
󰢆󰉅󰘡󰒟 󰄎󰊶󰋦󰎀󰐃󰈉 󰒎󰈇 󰐨󰈇
󰏼󰈓󰐠󰉅󰊁󰈉 󰑡󰖘󰈓󰊀󰓵󰈉 󰑡󰊓󰗎󰊓󰌰󰐃󰈉 󰐨󰑸󰏐󰖭 󰠵
󰡣󰛈󰈇 󰞮󰈓󰐠󰒚󰈉󰊶 󰒍󰋅󰊁󰓵 󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰋅󰐺󰍔 󰍤󰒰󰐠󰊀 󰈛󰈓󰖌󰔵󰉅󰌎󰐜 󰄊󰑜󰋔󰋅󰎞󰐃󰈉 󰐨󰑸󰏐󰈰󰑧 󰄊󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰐤󰐃󰈓󰍜󰐜 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧
󰑡󰖌󰑧󰈓󰌎󰘍󰐜 󰠈󰠶
󰡭󰈯 󰄊󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰑃󰛜󰐃󰑧 󰐤󰐃󰈓󰍜󰐜 󰑡󰕷󰔵󰍜󰌰󰐃󰈉 󰠈
󰡯󰊓󰐺󰐠󰐃 󰌶󰒚󰈓󰌰󰊂 󰑜󰋦󰎞󰎀󰐃󰈉 󰠶
󰡣󰍕 󰑡󰖌󰑧󰈓󰌎󰘍󰐜 󰠈󰠶
󰡭󰈯 󰋦󰑔󰍄󰖭󰈓󰐠󰐺󰘰󰈯󰄊󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰍌󰔵󰐺󰐃󰈉 󰐤󰍅󰉅󰐺󰐠󰐃󰈉 󰠶
󰡣󰍕 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰢆󰌎󰙒󰑧 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉NUDIF󰄊󰈓󰑔󰒰󰐃󰈈 󰠾
󰢆󰉅󰘡󰒟 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰑧󰑜󰋔󰋅󰎞󰐃󰈉󰒍󰑸󰉅󰌎󰐜 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰈰󰋅󰊀󰑸󰒟󰈓󰐠󰐺󰒰󰊁
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉 󰑧󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰈯󰑡󰎞󰐊󰍜󰉅󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐊󰐃󰈓 󰞮
󰎞󰍶󰑧󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰍌󰔵󰐺󰐃󰒍󰋧󰍜󰈰󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧󰐘󰋅󰍔
󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠾󰠈
󰡻󰈛󰈓󰖹󰉆󰐃󰈉󰈛󰈓󰊀󰋔󰊶󰢃󰍔󰈉 󰠾󰠈
󰡱󰑸󰈰󰋅󰐺󰍔 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰉚󰌪󰑧󰈇󰋅󰎙󰑧󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉
󰑡󰗎󰊁󰈓󰉅󰎀󰐠󰐃󰈉󰈛󰈓󰐠󰐊󰜄󰐃󰈉
󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰄊󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰉆󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰄊󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰄊󰑜󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉
- 23 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰒍󰋅󰊁󰈈 󰊥󰐃󰈓󰌰󰐃 󰐨󰑸󰏐󰖭 󰋅󰎞󰍶 󰄊󰑜󰋔󰋅󰎞󰐃󰈉 󰈛󰈓󰖌󰔵󰉅󰌎󰐜 󰠾󰠈
󰡻 󰑡󰑔󰈯󰈓󰌏󰘍󰐜 󰉚󰌎󰚔󰐃 󰑡󰊓󰗎󰊓󰌰󰐃󰈉 󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉 󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰈉 󰠾󰠈
󰡻 󰎔󰋦󰎀󰐃󰈉 󰐨󰈇 󰒎󰈇 󰄎󰊶󰋦󰎀󰐃󰈉
󰑡󰎀󰐊󰉅󰊔󰐜 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰐤󰐃󰈓󰍜󰐜 󰠾󰠈
󰡻󰍬󰓺󰉅󰊂󰈉󰍤󰐜󰄊󰋦󰊂󰈆󰑜󰋔󰋅󰎙󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰒍󰋦󰊂󰈇󰑡󰍔󰑸󰐠󰊒󰐜󰊥󰐃󰈓󰌰󰐃󰑧󰄊 󰠈󰠶
󰡭󰍜󰐜󰑜󰋔󰋅󰎙󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉
 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰐤󰐃󰈓󰍜󰐜 󰠾󰠈
󰡻󰑧󰈓󰌎󰗜󰑧󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠵
󰡣󰍔Hanson, 1998
󰐃󰈉󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓺󰐃󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰉮󰊷󰈓󰐠󰐺Non Parametric Item Response Theory Models
󰊶󰋅󰊓󰐜󰐑󰚴󰌄󰊶󰋅󰊓󰈰󰓶 󰠾󰠉
󰡯󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰏤󰐊󰈰 󰠾
󰢇󰑧󰒎󰈇󰌥 󰠉
󰡣󰎀󰈰󰓶󰈓󰑔󰐱󰈇󰈓󰐠󰚠󰄊󰑡󰌰󰎙󰈓󰐺󰉅󰐜󰐨󰑸󰏐󰈰󰓶󰈇󰓚󰈓󰐺󰉆󰘍󰌃󰈓󰖘󰑜󰋦󰎞󰎀󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰑡󰐃󰈉󰋅󰐃
󰢁󰈈 󰈚󰋦󰎙󰈇 󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉 󰉮󰊷󰈓󰐠󰐺󰐃󰈉 󰏼󰓺󰊂 󰑃󰐜 󰈓󰑔󰒰󰐊󰍔 󰏼󰑸󰌰󰊓󰐃󰈉 󰐤󰉅󰒟 󰠾󰠉
󰡯󰐃󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰏼󰈉󰑧󰊶 󰐨󰈇󰌥󰈉 󰠉
󰡣󰍶󰓶󰈉󰑃󰏐󰐠󰖭 󰈓󰐠󰚠󰄎󰎣󰈯󰈓󰌃󰐑󰚴󰌄
󰠉
󰡣󰍶󰈉󰢃󰍔󰋅󰐠󰉅󰍜󰈰󰈓󰑔󰐱󰓴󰄎󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰑃󰐜󰈓󰑔󰒰󰐊󰍔󰏼󰑸󰌰󰊓󰐃󰈉󰐤󰉅󰒟 󰠾󰠉
󰡯󰐃󰈉󰑡󰗎󰎞󰗎󰎞󰊓󰐃󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰏼󰑸󰊁󰐑󰎙󰈇󰈛󰈓󰌫󰈉 Van der Linden &Hambleton, 1997
󰋔󰈓󰐺󰒰󰐃󰑸󰐜󰑧󰈓󰐠󰉅󰊒󰗎󰌃 󰠶
󰡣󰌏󰙒󰑧Sijtsma &Molenaar, 2002󰑃󰐜󰑡󰍔󰑸󰐠󰊒󰐜󰢃󰍔󰐘󰑸󰎞󰈰󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰐨󰈇󰢁󰈈 
󰋅󰍜󰖹󰐃󰈉󰑡󰖭󰊶󰈓󰊁󰈇 󰠾
󰢇󰑧󰄊󰈉 󰞮󰊶󰋅󰌏󰗜󰐑󰎙󰈇󰈓󰑔󰐱󰈇󰓶󰈈󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰋔󰈉󰋦󰍕󰢃󰍔󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰓶󰈉One-dimensionality󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰈉󰐨󰈉 󰠾󰠈
󰡯󰍜󰈰󰑧 󰋧󰐜󰋦󰐃󰈓󰖘󰑘󰐃󰋧󰐜󰋦󰒟󰋅󰍜󰖹󰐃󰈉󰒎󰊶󰈓󰊁󰈇󰑃󰐜󰈓󰚠 󰠶
󰡣󰍝󰉅󰐜󰍤󰉄󰘍󰈰󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰢃󰍔 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉θ 󰠾
󰡺󰌫󰑸󰐠󰐃󰈉󰏼󰓺󰎞󰉅󰌃󰓶󰈉󰑧󰄊Local Independence
󰄊󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠾󰠈
󰡻󰒍󰋦󰊂󰈇󰑜󰋦󰎞󰍶 󰒎󰈇󰢃󰍔󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈓󰖘󰑡󰍄󰖹󰈰󰋦󰐜 󰠶
󰡣󰍕󰑜󰋦󰎞󰍶󰒎󰈇󰢃󰍔 󰌤󰑸󰊓󰎀󰐠󰐃󰈉󰐑󰖹󰎙󰑃󰐜󰑡󰖘󰈓󰊀󰓵󰈉󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰈉󰐨󰈑󰖘󰐑󰉆󰐠󰉅󰈰󰑧
󰑡󰖭󰊶󰈉󰋦󰍀󰓵󰈉󰑧Monotonicity󰌤󰑸󰊓󰎀󰐠󰐃󰈉󰑜󰋔󰋅󰎙󰈛󰊶󰈉󰋕󰈓󰐠󰐊󰚠󰑘󰐱󰈇 󰠾󰠈
󰡯󰍜󰈰󰑧θ󰑡󰖘󰈓󰊀󰓵󰈉󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰈉󰈛󰊶󰈉󰊶󰋕󰈉󰄊 󰠉
󰡼󰖹󰈰󰑧󰈇󰑜󰋦󰎞󰎀󰐃󰈉󰢃󰍔󰑡󰗎󰊓󰌰󰐃󰈉 󰑡󰎀󰍔󰈓󰌱󰐠󰐃󰈉󰑡󰖭󰊶󰈉󰋦󰍀󰓵󰈉󰈉 󰠶
󰡣󰊂󰈇󰑧󰄊󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰈉󰈛󰈓󰖌󰔵󰉅󰌎󰐜󰑃󰐠󰌫󰑡󰉅󰈯󰈓󰈱Double Monotonicity󰏼󰈉󰑧󰊶󰎨󰓺󰉅󰐜󰈓󰖘󰎣󰐊󰍜󰉅󰐠󰐃󰈉󰑧
󰠈󰠶
󰡭󰌎󰚔󰒚󰋔 󰠈󰠶
󰡭󰒰󰐠󰌎󰎙󰢁󰈈󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰐤󰌎󰎞󰐺󰈰󰑸󰊓󰐺󰐃󰈉󰈉󰋆󰑐󰢃󰍔󰑧󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉󰐑󰚴󰌏󰗜 󰠾󰠉
󰡯󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰑡󰍜󰍀󰈓󰎞󰉅󰐜 󰠶
󰡣󰍕󰑡󰖘󰈓󰊒󰉅󰌃󰈉
󰈓󰐠󰑐
 󰒎󰊶󰈉󰋦󰍀󰓵󰈉 󰌙󰗰󰈓󰊒󰉅󰐃󰈉 󰉮󰊷󰑸󰐠󰐱Monotone Homogeneous Model󰑃󰎼󰑸󰐜 󰉮󰊷󰑸󰐠󰐺󰈯 󰍬󰑧󰋦󰍜󰐠󰐃󰈉 󰉮󰊷󰑸󰐠󰐺󰐃󰈉 󰑸󰑐󰑧 Mokken󰈓󰐠󰌎󰘍󰊒󰗎󰌃󰑘󰎀󰌪󰑧󰊷󰈈󰄊󰑡󰗎󰒚󰈓󰐺󰉆󰐃󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉 󰠾󰠈
󰡻󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰉅󰐃󰐘󰋅󰊔󰉅󰌎󰙳󰒎󰋆󰐃󰈉󰑧󰄊Sijtsma, 1998󰑘󰐱󰈑󰖘
󰠾󰠖
󰡮󰓺󰉆󰐃󰈉󰑧 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰑃󰍔 󰠾
󰡳󰈓󰌃󰈇󰐑󰚴󰌏󰙞󰎊󰐊󰉅󰊔󰖭󰉛󰗎󰊁󰄊󰐨󰈓󰐠󰈰󰑸󰊀󰈚󰑸󰐊󰌃󰓴󰈓 󰞮
󰎞󰍶󰑧󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰉅󰐃󰑡󰐃󰋅󰍜󰐜󰑡󰊔󰌎󰗰
󰐑󰚴󰌄󰢃󰍔󰐨󰑸󰏐󰈰󰐨󰈉󰑃󰏐󰐠󰐠󰐃󰈉󰑃󰐜󰐑󰖘󰈓󰞮󰗎󰘍󰌎󰊀󰑸󰐃 󰆲
󰡟󰚴󰌄󰋆󰊂󰈑󰈰󰐨󰈇󰑜󰋔󰑧 󰠈
󰡧󰐃󰈓󰖘󰑃󰐜󰌙󰚔󰐃󰑜󰋦󰎞󰎀󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰑡󰐃󰈉󰊶󰐨󰈇 󰠾󰠈
󰡻󰑡󰐠󰐊󰍜󰐠󰐃󰈉
󰑡󰐃󰈉󰊶󰎣󰍶󰈉󰑸󰉅󰈰󰈓󰐜󰋅󰐺󰍔󰑧󰄊󰈓󰑐 󰠶
󰡣󰍕󰑧󰈇󰑡󰗎󰌃󰈇󰑧󰈇󰑡󰗎󰍄󰊂󰑡󰐃󰊶󰈓󰍜󰐜󰑡󰗎󰐃󰈓󰉆󰐜󰋅󰍜󰈰󰈓󰑔󰐱󰈒󰍶󰒎󰊶󰈉󰋦󰍀󰓵󰈉󰌙󰗰󰈓󰊒󰉅󰐃󰈉󰉮󰊷󰑸󰐠󰐱󰍤󰐜󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉 󰉙󰚔󰈰󰋦󰈰󰍬󰋅󰑔󰐃󰈉󰐨󰈓󰚠󰈉󰊷󰈈󰑜󰋔󰋅󰎞󰐃󰈉󰐑󰌰󰉅󰐜󰢃󰍔󰐤󰑔󰈰󰋔󰋅󰎞󰐃󰞮󰈓󰎞󰍶󰑧󰊶󰈉󰋦󰍶󰓴󰈉θ󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰢃󰍔󰑡󰗎󰐊󰜄󰐃󰈉󰐤󰑔󰉅󰊀󰋔󰊶󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘Sijtsma
&Molenaar, 2002
󰎊󰍔󰈓󰌱󰐠󰐃󰈉󰊶󰈉󰋦󰍀󰓶󰈉󰉮󰊷󰑸󰐠󰐱Double Monotonicity Model󰒎󰋆󰐃󰈉󰑧󰄊󰑃󰎼󰑸󰐠󰐃 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰑸󰑐󰑧󰍤󰒰󰐠󰊀󰌥 󰠉
󰡣󰎀󰖭
󰉯󰈓󰐠󰌎󰐃󰈉󰍤󰐜󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰏼󰈉󰑧󰊶󰍤󰍀󰈓󰎞󰈰󰐘󰋅󰍔󰌥󰈉 󰠉
󰡣󰍶󰈉󰢁󰈈󰑡󰍶󰈓󰌫󰓵󰈓󰖘󰄊󰒎󰊶󰈉󰋦󰍀󰓵󰈉󰌙󰗰󰈓󰊒󰉅󰐃󰈉󰉮󰊷󰑸󰐠󰐱󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰈉
󰎣󰒰󰎞󰊓󰉅󰐃󰈉󰉙󰍜󰌪󰈓󰊀󰊷󰑸󰐠󰐱󰑘󰐺󰐜󰐑󰍜󰊒󰖭󰈓󰐠󰐜󰄊󰑡󰍶󰋦󰍄󰉅󰐠󰐃󰈉󰎣󰍀󰈓󰐺󰐠󰐃󰈉 󰠾󰠈
󰡻󰋸󰈓󰐠󰉅󰐃󰈓󰖘󰈓󰑔󰐃Sijtsma, 1998󰈉󰋆󰑐 󰠵
󰡣󰉅󰍜󰖭 󰠾
󰢁󰈓󰉅󰐃󰈓󰕷󰑧󰄊
󰉮󰊷󰑸󰐠󰐱󰎣󰖌󰔢󰍀󰑃󰍔󰈓󰑐 󰠶
󰡣󰌎󰎀󰈰󰑃󰏐󰐠󰖭 󰠾󰠉
󰡯󰐃󰈉󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐜󰐨󰈇󰉛󰗎󰊁󰒎󰊶󰈉󰋦󰍀󰓵󰈉󰌙󰗰󰈓󰊒󰉅󰐃󰈉󰉮󰊷󰑸󰐠󰐱󰑃󰐜󰑡󰌪󰈓󰊂󰑡󰐃󰈓󰊁󰉮󰊷󰑸󰐠󰐺󰐃󰈉
󰊥󰒰󰊓󰌪 󰠶
󰡣󰍕 󰌙󰏐󰍜󰐃󰈉󰑧 󰑡󰎀󰍔󰈓󰌱󰐠󰐃󰈉 󰑡󰖭󰊶󰈉󰋦󰍀󰓵󰈉 󰉮󰊷󰑸󰐠󰐱 󰎣󰖌󰔢󰍀 󰑃󰍔 󰈓󰑐 󰠶
󰡣󰌎󰎀󰈰 󰑃󰏐󰐠󰖭 󰒎󰊶󰈉󰋦󰍀󰓵󰈉 󰌙󰗰󰈓󰊒󰉅󰐃󰈉Sijtsma
&Molenaar, 2002󰄊󰑜󰋔󰋅󰎞󰐊󰐃󰞮󰈓󰍜󰖹󰈰󰊶󰈉󰋦󰍶󰓴󰈉󰉙󰚔󰈰󰋦󰈰󰐤󰉅󰒟󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰈉󰋆󰑔󰐃󰞮󰈓󰍜󰖹󰈰󰑧󰄊󰢃󰍔󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰉙󰚔󰈰󰋦󰈰󰑡󰗎󰐱󰈓󰚴󰐜󰈈󰍤󰐜 󰐑󰌰󰉅󰐠󰐃󰈉󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰑡󰐠󰐊󰍜󰐠󰐃 󰠾
󰢆󰎙󰋔󰋦󰒟󰋅󰎞󰉅󰈯󰊥󰐠󰌎󰙳󰓶󰑘󰐱󰈇󰓶󰈈󰄊󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱 󰠾󰠈
󰡻󰈓󰐠󰚠Sijtsma &Verweij,
1992
󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱 󰠾󰠈
󰡻󰐤󰐃󰈓󰍜󰐠󰐃󰈉󰈛󰈉󰋦󰒟󰋅󰎞󰈰
󰑃󰐜󰑧󰄊󰑜󰋔󰋅󰎞󰐃󰈉󰋸󰈓󰗎󰎞󰐜󰢃󰍔󰌤󰑸󰊓󰎀󰐠󰐃󰈉󰍤󰎙󰑸󰐜󰋅󰖭󰋅󰊓󰈰󰑸󰑐󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰓚󰑸󰌫 󰠾󰠈
󰡻 󰠾
󰡳󰈓󰌃󰓴󰈉󰑧󰏼󰑧󰓴󰈉󰍬󰋅󰑔󰐃󰈉󰐨󰈉󰑡󰍶󰋦󰍜󰐜󰐤󰈱󰈛󰈓󰐱󰋔󰈓󰎞󰐠󰐃󰈉󰓚󰈉󰋦󰊀󰈈󰑸󰑔󰍶 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰍬󰋅󰑔󰐃󰈉󰈓󰐜󰈇󰄊󰈓󰑔󰛜󰐊󰉅󰐠󰖭 󰠾󰠉
󰡯󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰈉󰊶󰑧󰋅󰊁 󰠾󰠈
󰡻󰑘󰐠󰗎󰒰󰎞󰈰󰑧󰄊󰌤󰑸󰊓󰎀󰐜󰐑󰜄󰐃󰑡󰊓󰗎󰊓󰌰󰐃󰈉󰑡󰖘󰈓󰊀󰓵󰈉󰏼󰈓󰐠󰉅󰊁󰈉
󰐤󰑔󰎞󰊓󰖘󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉󰈛󰈉󰋔󰈉󰋦󰎞󰐃󰈉󰊷󰈓󰊔󰈰󰈉󰑧󰈛󰈓󰐜󰓺󰍜󰐃󰈉󰐤󰑔󰒚󰈓󰍄󰍔󰈈󰍬󰋅󰑔󰈯 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯Fitzpatrick & Wendy, 2001󰑘󰗎󰐊󰍔󰑧󰄊
󰠾
󰢇󰎔󰋦󰍄󰐃󰈉󰑠󰋆󰑐󰑧󰄎󰈛󰈉󰋦󰎞󰎀󰐊󰐃󰐤󰐃󰈓󰍜󰐠󰐃󰈉󰑧 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰑜󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰉅󰐃󰐘󰋅󰊔󰉅󰌎󰗜󰎔󰋦󰍀󰑜󰋅󰍔󰎨󰈓󰐺󰑐
 󰢆󰍅󰍜󰐃󰈉 󰑡󰗎󰊓󰊀󰋔󰓴󰈉 󰋦󰒟󰋅󰎞󰈰Maximum Likelihood Estimation Methods󰋦󰒟󰋅󰎞󰈰 󰑡󰎞󰖌󰔢󰍄󰐃󰈉 󰑠󰋆󰑐 󰠾󰠈
󰡻 󰐤󰉅󰒟
󰑡󰐺󰒰󰍔 󰑃󰍔 󰑡󰗎󰍶󰈓󰚠󰈛󰈓󰐜󰑸󰐊󰍜󰐜 󰋦󰍶󰑸󰈰 󰋅󰐺󰍔 󰄊󰈓󰑐󰋦󰒟󰋅󰎞󰈰 󰊶󰈉󰋦󰐠󰐃󰈉 󰑡󰐠󰐊󰍜󰐠󰐊󰐃 󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰓶󰈉 󰐤󰗎󰍅󰍜󰈰 󰈛󰈉󰓚󰈉󰋦󰊀󰈈 󰏼󰓺󰊂 󰑃󰐜 󰐤󰐃󰈓󰍜󰐠󰐃󰈉
󰍌󰔵󰐺󰐃󰈉󰑃󰐜󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰐜󰑡󰍔󰑸󰐠󰊒󰐜󰢃󰍔 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰍈󰐠󰐱󰢃󰍔󰑡󰎞󰖌󰔢󰍄󰐃󰈉󰑠󰋆󰑐󰋅󰐠󰉅󰍜󰈰󰉛󰗎󰊁󰄊 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰄔󰄊
- 24 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄓󰈛󰈉󰋦󰎞󰍶 󰑡󰍶󰈓󰚠󰢃󰍔󰑡󰒫󰍀󰈓󰊂󰑧󰈇󰑡󰊓󰗎󰊓󰌪󰑡󰖘󰈓󰊀󰈈󰌤󰑸󰊓󰎀󰐠󰐃󰈉󰑡󰖘󰈓󰊀󰈈󰋅󰐺󰍔󰋦󰑔󰍅󰈰 󰑡󰎞󰖌󰔢󰍄󰐃󰈉󰑠󰋆󰑐 󰈛󰈉󰊶󰋅󰊓󰐜󰋅󰊁󰈇󰐨󰈇󰓶󰈈󰄊
󰈓󰐜󰈈󰑘󰈰󰋔󰋅󰎙󰊥󰉄󰌰󰈰 󰠾
󰢁󰈓󰉅󰐃󰈓󰕷󰑧󰄊󰋔󰈓󰖹󰉅󰊂󰓶󰈉-∞, ∞ 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰋦󰒟󰋅󰎞󰈰 󰠾󰠈
󰡻󰑜󰋔󰋅󰎞󰐃󰈉󰋦󰍶󰑸󰈰󰐘󰋅󰍔󰈓 󰞮
󰌱󰖭󰈇󰈓󰑔󰈰󰈉󰊶󰋅󰊓󰐜󰑃󰐜󰑧󰄊
󰈛󰈓󰖘󰈓󰊀󰈈 󰐨󰑸󰉄󰒰󰊒󰖭󰑃󰒟󰋆󰐃󰈉 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰍬󰋆󰊁󰐤󰉅󰒟󰈉󰋆󰐃󰄊󰑡󰊓󰗎󰊓󰌪 󰑧󰈇 󰑡󰒫󰍀󰈓󰊂󰑡󰖘󰈓󰊀󰈈 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰍤󰒰󰐠󰊀󰈓󰑔󰒰󰐊󰍔󰉙󰗎󰊒󰖭
󰈓󰑔󰒰󰐊󰍔󰉙󰊒󰖭󰐤󰐃 󰠾󰠉
󰡯󰐃󰈉󰑧 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰑡󰍶󰈓󰚠󰈓󰑔󰒰󰐊󰍔󰈚󰈓󰊀󰈇 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰍬󰋆󰊁󰑧󰈇󰄊󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰍤󰒰󰐠󰊀󰢃󰍔󰑡󰒫󰍀󰈓󰊂󰑧󰈇󰑡󰊓󰗎󰊓󰌪
󰒎󰈇
󰈛󰈉󰊶󰋅󰊓󰐠󰐃󰈉󰑠󰋆󰑐󰢃󰍔󰉙󰐊󰍝󰉅󰐊󰐃󰄊󰌤󰑸󰊓󰎀󰐜
 󰠈󰠶
󰡣󰒰󰈯󰋦󰒟󰋅󰎞󰈰󰑡󰎞󰖌󰔢󰍀Bayesian Estimation Method󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰈛󰈉󰊶󰋅󰊓󰐠󰐃󰈉 󰠾󰠈
󰡻󰓺󰉅󰐃󰑡󰎞󰖌󰔢󰍄󰐃󰈉󰑠󰋆󰑐󰢁󰈈󰓚󰑸󰊒󰐊󰐃󰈉󰐤󰉅󰒟
󰑡󰎞󰖘󰈓󰌃󰈛󰈉 󰠵
󰡣󰊂󰑃󰐜󰑜󰋦󰍶󰑸󰉅󰐜󰑡󰗎󰐃󰑧󰈇󰈛󰈓󰐜󰑸󰐊󰍜󰐠󰐃󰈓󰑔󰐜󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰋕󰈓󰉅󰐠󰈰󰑧󰄊󰢆󰍅󰍜󰐃󰈉󰑡󰗎󰊓󰊀󰋔󰓴󰈉󰎔󰋦󰍀󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰍤󰐺󰐠󰈰 󰠾󰠉
󰡯󰐃󰈉󰑧󰄊󰋦󰎼󰋆󰐃󰈉
󰐃󰈓󰍜󰐠󰐃󰑜󰋅󰗎󰊀󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰢃󰍔󰏼󰑸󰌰󰊓󰐃󰈉 󰠾󰠈
󰡻 󰠈󰠶
󰡣󰒰󰈯󰑡󰎞󰖌󰔢󰍀󰋅󰍔󰈓󰌎󰗜󰈉󰋆󰑔󰄒󰄒󰕷󰑧󰄊 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰑡󰐺󰒰󰍔󰈛󰈓󰐜󰑸󰐊󰍜󰐜󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰢁󰈈󰑡󰍶󰈓󰌫󰓵󰈓󰖘󰐤
󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰊶󰈉󰋦󰍶󰓴󰈉󰑃󰐜󰑡󰍔󰑸󰐠󰊒󰐜󰒍󰋅󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰈰󰑃󰍔󰈛󰈓󰐜󰑸󰐊󰍜󰐜󰈛󰋦󰍶󰈉󰑸󰈰󰏼󰈓󰊁 󰠾󰠈
󰡻󰄊 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰈛󰈉󰋔󰋅󰎙󰑧󰈛󰈉󰋦󰎞󰎀󰐃󰈉
Garre &Vermunt, 2006
󰑜󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑧 󰠈󰠶
󰡣󰊓󰉅󰐃󰈉bias & Differential Item Functioning
󰆲󰠈
󰡯󰍜󰐜󰑠󰓚󰈉󰋔󰑧 󰠾󰠈
󰡼󰊔󰖭 󰐘󰑸󰑔󰎀󰐜 󰑘󰐱󰈇 󰢃󰍔 󰠈󰠶
󰡣󰊓󰉅󰐃󰈉 󰐘󰑸󰑔󰎀󰐠󰐃 󰋦󰍅󰐺 󰆶󰒟󰐤󰗎󰑐󰈓󰎀󰐠󰐃󰈓󰖘 󰐘󰈓󰐠󰉅󰑐󰓶󰈉󰑧 󰄊󰑡󰐃󰈉󰋅󰍜󰐃󰈉 󰐘󰋅󰍔 󰑜󰋦󰏐󰎀󰖘 󰍈󰖹󰈰󰋦󰒟 󰞮󰈓󰗎󰉄󰐊󰌃
󰐘󰋅󰍔󰢁󰈈 󰠶
󰡣󰌏󰙳󰞮󰈓󰗎󰍔󰈓󰐠󰉅󰊀󰈉 󰆲󰠈
󰡯󰍜󰐜󰐑󰐠󰊓󰖭 󰠈󰠶
󰡣󰊓󰉅󰐃󰈓󰍶󰄊󰒎 󰠉
󰡣󰐜󰑸󰏐󰗎󰌎󰐃󰈉󰐘󰑸󰑔󰎀󰐠󰐃󰈓󰖘󰑘󰍄󰕷󰋔󰑃󰐜 󰠖
󰡣󰛈󰈇 󰠾
󰡹󰈓󰐠󰉅󰊀󰓶󰈉󰑧 󰠾
󰡳󰈓󰗎󰌎󰐃󰈉󰉙󰐱󰈓󰊒󰐃󰈓󰖘󰑡󰐱󰑸󰊓󰌏󰐠󰐃󰈉
󰑡󰗎󰎀󰗎󰛜󰐃󰈉󰉛󰗎󰊁󰑃󰐜󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖌 󰠉
󰡣󰐜󰑸󰏐󰗎󰌎󰐃󰈉󰌶󰒚󰈓󰌰󰊔󰐃󰈉󰢁󰈈 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉 󰠶
󰡣󰌏󰙳 󰠈󰠶
󰡭󰊁 󰠾󰠈
󰡻󰄊󰑜󰈉󰑧󰈓󰌎󰐠󰐃󰈉󰑧󰑡󰐃󰈉󰋅󰍜󰐃󰈉 󰠾󰠈
󰡻󰑜󰋦󰎞󰎀󰐃󰈉󰈓󰑔󰈯󰐑󰐠󰍜󰈰 󰠾󰠉
󰡯󰐃󰈉 󰒍󰋦󰊂󰈇󰑡󰍔󰑸󰐠󰊒󰐜󰑃󰍔󰎊󰐊󰉅󰊔󰐜󰐑󰚴󰌏󰙞󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉Dorans & Holland, 1993󰋧󰐠󰗎󰐃󰑧󰋔󰈓󰌄󰈇󰋅󰎞󰍶󰄊Williams, 1997󰢁󰈈
󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰈛󰓶󰈓󰐠󰉅󰊁󰈉󰉚󰐱󰈓󰚠󰈉󰊷󰈈󰈓󰞮󰗎󰐊󰌫󰈓󰎀󰈰󰆲󰓚󰈉󰊶󰈇󰒎󰋅󰖹󰈰󰑜󰋦󰎞󰎀󰐃󰈉󰐨󰈇󰑧󰄊󰒍󰑸󰉅󰊓󰐠󰐃󰈉󰑃󰐜󰍤󰎙󰑸󰉅󰐜󰑸󰑐󰈓󰐜 󰠶
󰡣󰍕󰉚󰌃󰈓󰎙󰈉󰊷󰈈󰑜 󰠈󰠶
󰡣󰊓󰉅󰐜󰋅󰍜󰈰󰑜󰋦󰎞󰎀󰐃󰈉󰐨󰈉
󰈓󰑔󰐺󰍔󰑡󰊓󰗎󰊓󰌰󰐃󰈉󰊶󰋦󰎀󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈓󰍶󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠾󰠈
󰡻󰈓󰑔󰌃󰈓󰗎󰎙󰐤󰉅󰒟 󰠾󰠉
󰡯󰐃󰈉󰑡󰐠󰌎󰐃󰈉 󰠾󰠈
󰡻󰑃󰖌󰑧󰈓󰌎󰘍󰐠󰐃󰈉 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐊󰐃󰑡󰎀󰐊󰉅󰊔󰐜
󰑜󰋦󰎞󰎀󰐃󰈉󰌶󰒚󰈓󰌰󰊂󰈛󰈓󰗎󰐺󰊓󰐺󰐜 󰠈󰠶
󰡭󰈯󰑡󰐱󰋔󰈓󰎞󰐠󰐃󰈉󰑡󰗎󰐊󰐠󰍔󰐤󰉅󰈰󰉛󰗎󰊓󰖘ICCS󰎊󰌏󰛜󰐃󰄊 󰠈󰠶
󰡭󰍜󰐜 󰠾󰠞
󰡮󰈓󰌰󰊁󰈈󰍤󰐠󰉅󰊒󰐠󰐃 󰠈󰠶
󰡭󰉅󰒰󰍔󰋦󰎀󰐃󰈉 󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠾󰠈
󰡻
󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰈓 󰞮
󰎞󰊁󰓶󰈓󰑔󰐊󰗎󰉆󰐠󰈰󰐤󰉅󰒟 󰠾󰠉
󰡯󰐃󰈉󰑧󰄊󰈓󰑔󰐠󰐺󰘰󰈯󰑜󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉Gierl, et al. 2000
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰎔󰋦󰍀
󰏼󰈓󰚴󰌄󰈇󰑡󰍶󰈓󰚠 󰠾󰠈
󰡻󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰈓󰑔󰐃󰓺󰊂󰑃󰐜󰑃󰏐󰐠󰖭 󰠾󰠉
󰡯󰐃󰈉󰎔󰋦󰍄󰐃󰈉󰑃󰐜󰋅󰖭󰋅󰍜󰐃󰈉󰋸󰈓󰗎󰎞󰐃󰈉󰓚󰈓󰐠󰐊󰍔󰉯 󰠉
󰡣󰎙󰈉
󰑜󰈉󰑧󰈓󰌎󰐠󰐃󰈉󰑧󰑡󰐃󰈉󰋅󰍜󰐃󰈉󰈇󰋅󰖹󰐜󰎣󰒰󰎞󰊓󰈰󰑧󰄊 󰠈󰠶
󰡣󰊓󰉅󰐃󰈉󰑃󰐜󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑡󰗎󰎞󰐺󰈰󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉󰉙󰗎󰐃󰈓󰌃󰓴󰈉󰑧󰎔󰋦󰍄󰐃󰈉󰑠󰋆󰑐󰑃󰐜󰍬󰋅󰑔󰐃󰈉󰐨󰈇󰊷󰈈󰄊󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉
󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰈛󰈓󰍔󰑸󰐠󰊒󰐜 󰠈󰠶
󰡭󰈯Camili &Shepard,1994󰎨󰈓󰐺󰑐󰑧󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐺󰐃󰈓 󰞮
󰎞󰍶󰑧󰎊󰌏󰛜󰐊󰐃󰎔󰋦󰍀󰑡󰈱󰓺󰈱
󰠾
󰢇󰑧󰑜󰋦󰎞󰎀󰐊󰐃
󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰉛󰗎󰊁󰑃󰐜󰈓󰑔󰐠󰐃󰈓󰍜󰐜 󰠾󰠈
󰡻󰑘󰖘󰈓󰌏󰘍󰈰 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐨󰈇󰌥󰈉 󰠉
󰡣󰍶󰈉󰢃󰍔󰐘󰑸󰎞󰈰󰑧󰑜󰋦󰎞󰎀󰐃󰈉󰌶󰒚󰈓󰌰󰊂󰈛󰈓󰗎󰐺󰊓󰐺󰐜󰑡󰐱󰋔󰈓󰎞󰐜󰑡󰎞󰖌󰔢󰍀
󰉮󰊷󰈓󰐠󰐺󰐃󰈉 󰍬󰓺󰉅󰊂󰈓󰖘 󰋅󰊁󰈉󰑧 󰑜󰋔󰋅󰎙 󰒍󰑸󰉅󰌎󰐜 󰋅󰐺󰍔 󰄊󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉 󰑡󰗎󰍔󰑸󰐺󰐃󰈉 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉 󰈛󰈓󰍔󰑸󰐠󰊒󰐜 󰠾󰠈
󰡻 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰑧 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧
󰎊󰐊󰉅󰊔󰈰 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐨󰈇 󰠈󰠶
󰡭󰊁 󰠾󰠈
󰡻󰄊󰈓󰞮󰗎󰐊󰌫󰈓󰎀󰈰 󰆲󰓚󰈉󰊶󰈇󰒎󰋅󰖹󰈰󰓶󰑡󰗎󰘍󰌎󰊀󰑸󰐊󰐃󰈉󰑜󰋦󰎞󰎀󰐊󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰑃󰐜󰑜󰋅󰊁󰈉󰑧󰈛󰈓󰖌󰔵󰉅󰌎󰐜󰋅󰐺󰍔󰈓󰑔󰐠󰐃󰈓󰍜󰐜
󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰑜󰋦󰎞󰎀󰐃󰈉󰌶󰒚󰈓󰌰󰊂󰈛󰈓󰗎󰐺󰊓󰐺󰐜 󰠈󰠶
󰡭󰈯󰑡󰊁󰈓󰌎󰐠󰐃󰈉󰎔󰋦󰍶󰈚󰈓󰌎󰊁󰑃󰏐󰐠󰖭󰉛󰗎󰊁󰄊󰈓󰞮󰗎󰐊󰌫󰈓󰎀󰈰 󰆲󰓚󰈉󰊶󰈉󰒎󰋅󰖹󰈰󰈓󰑔󰌎󰎀󰐱
󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉Chung &Huisu, 2004
󰑜󰋔󰋅󰎙󰐤󰐊󰍜󰐜󰏼󰓺󰊂󰑃󰐜󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉󰑧󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰈓󰑔󰒰󰍶󰐘󰋅󰊔󰉅󰌎󰗜󰑧󰑜󰋦󰎞󰎀󰐊󰐃󰑜󰋔󰋅󰎞󰐠󰐃󰈉󰐤󰐃󰈓󰍜󰐠󰐃󰈉󰑡󰐱󰋔󰈓󰎞󰐜󰑡󰎞󰖌󰔢󰍀
󰊶󰈉󰋦󰍶󰓴󰈉󰄊󰐤󰐊󰍜󰐜󰑧
uncorrected
B 󰠈󰠶
󰡣󰊓󰉅󰐃󰈉󰏼󰓺󰊂󰑃󰐜󰑠󰋦󰒟󰋅󰎞󰈰󰐤󰉅󰒟󰒎󰋆󰐃󰈉󰄊BIAS1997 ,et al.Rebecca,
 󰑡󰗎󰊓󰊀󰋔󰓴󰈉 󰑡󰖹󰌎󰗰 󰠈
󰡯󰊓󰐺󰐜 󰑡󰎞󰖌󰔢󰍀
2
G
󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉 󰑜󰊶󰋅󰍜󰉅󰐜󰑧 󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉 󰑡󰗎󰒚󰈓󰐺󰈱 󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰠾󰠈
󰡻 󰐘󰋅󰊔󰉅󰌎󰗜󰑧 󰈚󰑸󰐊󰌃󰈑󰖘 Likelihood Ratio Test󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧󰐘󰋅󰍔󰢃󰍔󰌶󰐺󰈰 󰠾󰠉
󰡯󰐃󰈉󰑡󰖌󰔢󰎀󰌰󰐃󰈉󰑡󰗎󰌫󰋦󰎀󰐃󰈉󰌶󰊓󰍶 󰠾󰠈
󰡻󰄊
󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐤󰐃󰈓󰍜󰐜 󰠾󰠈
󰡻󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧󰐘󰋅󰍔󰑧󰈇󰄊󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯󰑜󰋦󰎞󰎀󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰑡󰐃󰈉󰊶 󰠾󰠈
󰡻
󰄊󰑡󰌏󰙞󰈓󰌏󰙿󰐃󰈉󰑜󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰊶󰑸󰊀󰑧󰢃󰍔󰏼󰋅󰖭󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉󰑡󰐃󰓶󰋅󰐃󰈉󰊶󰑸󰊀󰑸󰍶󰄊󰑡󰖌󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰄕󰄓󰄔󰄙
󰈛󰈉󰑸󰍄󰊂 󰎊󰌏󰛜󰐃󰈉 󰑃󰍔 󰓚󰈉󰊶󰓴󰈉 󰑘󰍔󰈉󰑸󰐱󰈉󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉
󰄊󰑡󰗎󰌎󰚔󰒚󰋦󰐃󰈉󰈛󰈉󰑸󰍄󰊔󰐃󰈉󰑃󰐜󰑡󰍔󰑸󰐠󰊒󰐜󰓚󰈉󰋦󰊀󰈈󰉙󰊀󰑸󰉅󰌎󰗜󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰢁󰈈󰍬󰋅󰑔󰈰󰑡󰌃󰈉󰋔󰊶󰑡󰖭󰈇󰐨󰈈
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰑡󰐃󰑧󰑷󰌎󰐠󰐃󰈉󰡦󰈓󰐺󰍜󰐃󰈉󰑡󰍶󰋦󰍜󰐜󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰑜󰊶󰋅󰊓󰐠󰐃󰈉󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉󰈛󰈉󰓚󰈉󰋦󰊀󰓵󰈉󰐘󰈉󰋅󰊔󰉅󰌃󰈉 󰠾󰠈
󰡻󰐑󰉆󰐠󰉆󰈱
- 25 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰐑󰚴󰚠󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑡󰗎󰘡󰕷󰑧󰑡󰌎󰚔󰎞󰐠󰐃󰈉󰑡󰐠󰌎󰐃󰈓󰖘󰑡󰎙󰓺󰍔󰈛󰈉󰊷󰉚󰐱󰈓󰚠󰈉󰊷󰈈󰈓󰐠󰗎󰍶 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰋔󰊶󰈓󰌰󰐜󰏼󰑸󰊁󰈛󰈉󰋔󰈉󰋦󰎞󰐃󰈉󰊷󰈓󰊔󰈰󰈉󰑧Uiterwijk
&Vallen, 2005
󰈓󰐠󰑐󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓸󰐃 󰠈󰠶
󰡭󰒰󰌎󰚔󰒚󰋔 󰠈󰠶
󰡭󰐠󰌎󰎙󰎨󰈓󰐺󰑐󰐨󰈇󰋦󰎼󰋆󰐃󰈓󰖘󰋦󰒟󰋅󰊒󰐃󰈉󰑃󰐜
󰐤󰍅󰉅󰐺󰐠󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰆲
󰡛󰑧󰈇Uniform Differential Item Functioning
󰑜󰋔󰋅󰎞󰐃󰈉󰒍󰑸󰉅󰌎󰐜 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰈰󰈜󰑧󰋅󰊁󰐘󰋅󰍔󰋅󰐺󰍔󰊤󰉅󰘡󰒟󰒎󰋆󰐃󰈉󰍌󰔵󰐺󰐃󰈉󰏤󰐃󰊷󰑸󰑐󰑧󰄊󰌤󰑸󰊓󰎀󰐠󰐃󰈉󰈓󰑔󰒰󰐃󰈈 󰠾
󰢆󰉅󰘡󰒟 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰑧
󰈛󰈓󰖌󰔵󰉅󰌎󰐜󰑡󰍶󰈓󰚠󰋅󰐺󰍔 󰠈󰠶
󰡭󰉅󰖌󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰒍󰋅󰊁󰓵󰈓 󰞮
󰐠󰒚󰈉󰊶 󰠵
󰡣󰛈󰈇󰐨󰑸󰏐󰖭 󰠈󰠶
󰡭󰌪󰑸󰊓󰎀󰐠󰐃󰈉󰐑󰖹󰎙󰑃󰐜󰑡󰊓󰗎󰊓󰌰󰐃󰈉󰑡󰖘󰈓󰊀󰓵󰈉󰏼󰈓󰐠󰉅󰊁󰈉󰐨󰈇󰒎󰈇
󰐜 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰑧 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑡󰐠󰐊󰍜󰐜󰑃󰐜󰐑󰚠󰐨󰑸󰏐󰈰󰊷󰈈󰄊󰑜󰋔󰋅󰎞󰐃󰈉󰌶󰒚󰈓󰌰󰊂 󰠈
󰡯󰊓󰐺󰐠󰐃󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰐤󰐊󰍜󰐜󰑃󰛜󰐃󰑧󰄊󰑡󰖌󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰖌󰑧󰈓󰌎󰘍 󰐑󰚴󰌏󰐃󰈉󰑧󰄊󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰖌󰑧󰈓󰌎󰘍󰐜 󰠶
󰡣󰍕󰑜󰋦󰎞󰎀󰐃󰈉󰄔󰏤󰐃󰊷󰊥󰌫󰑸󰒟Chung &Huisu, 2004
󰐑󰚴󰌄󰄔󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠈󰠶
󰡭󰈯 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰈛󰈉󰊷󰑜󰋦󰎞󰍶󰌶󰒚󰈓󰌰󰊂 󰠈
󰡯󰊓󰐺󰐜
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈓󰞮󰗎󰐱󰈓󰈱Non-Uniform Differential Item Functioning
󰑃󰐜󰍌󰔵󰐺󰐃󰈉󰏤󰐃󰊷󰑸󰑐󰑧󰑜󰋔󰋅󰎞󰐃󰈉󰒍󰑸󰉅󰌎󰐜 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰈰󰊶󰑸󰊀󰑧󰋅󰐺󰍔󰋦󰑔󰍅󰖭󰒎󰋆󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉θ󰈓󰑔󰒰󰐃󰈈 󰠾
󰢆󰉅󰘡󰒟 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰑧
󰊥󰐃󰈓󰌰󰐃󰐨󰑸󰏐󰈰󰋅󰎞󰍶󰄊󰑜󰋔󰋅󰎞󰐃󰈉󰈛󰈓󰖌󰔵󰉅󰌎󰐜󰑡󰍶󰈓󰚠 󰠾󰠈
󰡻󰑡󰑔󰈯󰈓󰌏󰘍󰐜󰉚󰌎󰚔󰐃󰑡󰊓󰗎󰊓󰌰󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰈉 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰍈󰐠󰐱󰐨󰈇󰒎󰈇󰄎󰌤󰑸󰊓󰎀󰐠󰐃󰈉
 󰠈󰠶
󰡭󰍜󰐜󰑜󰋔󰋅󰎙󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰖌󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈓󰍜󰐠󰊒󰐠󰐃󰈉󰒍󰋅󰊁󰈈θ󰏤󰐃󰋆󰕷󰑧󰄊󰎊󰐊󰉅󰊔󰐜󰋦󰊂󰈆󰑜󰋔󰋅󰎙󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰒍󰋦󰊂󰈇󰑡󰍔󰑸󰐠󰊒󰐜󰊥󰐃󰈓󰌰󰐃󰑧󰄊
󰐑󰚴󰌏󰐃󰈉󰑧󰄊󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠵
󰡣󰍔󰑡󰖌󰑧󰈓󰌎󰘍󰐜󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰑧 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰐤󰐊󰍜󰐜󰑃󰐜󰐑󰚠󰐨󰈇 󰠈󰠶
󰡭󰊁 󰠾󰠈
󰡻󰄊󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠵
󰡣󰍔󰑡󰎀󰐊󰉅󰊔󰐜 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰐨󰈒󰍶
󰄕󰏤󰐃󰊷󰊥󰌫󰑸󰒟Uiterwijk &Vallen, 2005
󰐑󰚴󰌄󰄕 󰠈󰠶
󰡭󰈯󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰈛󰈉󰊷󰑜󰋦󰎞󰍶󰌶󰒚󰈓󰌰󰊂 󰠈
󰡯󰊓󰐺󰐜󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐠󰐃󰈉
- 26 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄔󰄞󰄔󰄞󰄔󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉
󰓚󰈉󰊶󰓴󰈓󰖘󰑡󰎞󰐊󰍜󰉅󰐠󰐃󰈉󰈜󰈓󰊓󰖘󰓶󰈉󰑧󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰑃󰐜󰋅󰖭󰋅󰍜󰐃󰈉󰓚󰈉󰋦󰊀󰈑󰖘󰒎󰑸󰕷 󰠉
󰡣󰐃󰈉󰑧 󰠾
󰡴󰎀󰐺󰐃󰈉󰋸󰈓󰗎󰎞󰐃󰈓󰖘 󰠈󰠶
󰡭󰌰󰉅󰊔󰐠󰐃󰈉󰑧 󰠈󰠶
󰡭󰉆󰊁󰈓󰖹󰐃󰈉󰑃󰐜󰋅󰖭󰋅󰍜󰐃󰈉󰐘󰈓󰎙
󰐘󰈓󰎙󰑃󰐜󰐤󰑔󰐺󰐜󰑧󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓶󰈉󰊶󰑸󰊀󰑧󰒍󰋅󰐜󰑃󰐜󰎊󰌏󰛜󰐃󰈉󰏼󰑸󰊁󰈛󰈓󰌃󰈉󰋔󰊶󰒍󰋦󰊀󰈇󰑃󰐜󰐤󰑔󰐺󰐠󰍶󰄊󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑧󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉
󰑃󰐜󰓚󰈉󰑸󰌃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓶󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰎔󰋦󰍀󰑡󰐱󰋔󰈓󰎞󰐠󰖘
󰈓󰐠󰑐󰓺󰚠󰏼󰓺󰊂󰑃󰐜󰑧󰈇󰄊󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰑧󰈇󰑡󰗎󰏐󰗎󰌃󰓺󰜄󰐃󰈉󰑡󰖌󰔢󰍅󰐺󰐃󰈉󰏼󰓺󰊂
󰎨󰑧 󰠵
󰡣󰊀󰑸󰒰󰑐󰐘󰈓󰎙󰋅󰎞󰍶Haughbrook, 2020󰏼󰓺󰊂󰑃󰐜󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓶󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰢁󰈉󰉚󰍶󰋅󰑐󰑡󰌃󰈉󰋔󰋅󰖘 󰋸󰈓󰗎󰎞󰐜 󰠾
󰢇󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰈉󰑜󰋅󰍔(Woodcock-Johnson III Picture Vocabulary scale) 󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰑡󰗎󰎙󰋦󰍜󰐃󰈉󰈛󰈉󰠈󰠶
󰡣󰊓󰉅󰐊󰐃󰄊 󰐑󰗎󰐊󰊓󰈰DIF󰑡󰗎󰐠󰖭󰊶󰈓󰛰󰓴󰈉󰑜󰓚󰈓󰎀󰛜󰐊󰐃 󰠾
󰡹󰋦󰍶󰋸󰈓󰗎󰎞󰐜󰑧󰄊󰉙󰐃󰈓󰍄󰐃󰈉󰋕󰈓󰊒󰐱󰓵󰐤󰐊󰍜󰐠󰐃󰈉󰋦󰖌󰔢󰎞󰈰󰌶󰊓󰍶󰑧󰄊SSRS-T󰐑󰗎󰐊󰊓󰈰󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰄊DIF 󰍌󰑧 󰠌
󰡥󰐜 󰠵
󰡣󰛈󰈇󰑡󰌃󰈉󰋔󰊶󰑃󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰎼󰋔󰈓󰌏󰐠󰐃󰈉󰋔󰈓󰗎󰉅󰊂󰈉󰐤󰈰󰋅󰎙󰑧󰄊󰈓󰌱󰖭󰈉KIDS 󰠾
󰢅󰈓󰍔 󰠈󰠶
󰡭󰈯󰈉󰋅󰖌󰋔󰑸󰐊󰍶󰏼󰈓󰐠󰌄 󰠾󰠈
󰡻󰉚󰖌󰔢󰊀󰈉 󰠾󰠉
󰡯󰐃󰈉󰑧󰄊 󰄕󰄓󰄓󰄘󰄕󰄓󰄓󰄙󰑧󰄕󰄓󰄔󰄕󰄕󰄓󰄔󰄖󰑃󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐺󰒰󰍔󰉚󰐱󰑸󰏐󰈰󰋅󰎙󰑧󰄊󰄖󰄙󰄚󰄛󰐨󰈇󰢁󰈈󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋔󰈓󰌄󰈇󰑧󰄊󰌤󰑸󰊓󰎀󰐜󰄔󰄔󰑃󰐜󰄔󰄚 󰑃󰐜󰑜󰋦󰎞󰍶WJPV󰈛󰋦󰑔󰍁󰈇DIF 󰈛󰈉󰋦󰎞󰍶󰑡󰍜󰌎󰗜󰑃󰐜󰑡󰉅󰌃󰑧SSRS-T󰈛󰋦󰑔󰍁󰈇DIF 󰠶
󰡣󰌏󰗜󰑧󰄊󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉 󰠶
󰡣󰈱󰈑󰉅󰈯󰎣󰐊󰍜󰉅󰒟󰈓󰐠󰗎󰍶 󰓺󰍄󰐃󰈉󰐑󰗎󰌰󰊓󰈰󰋸󰈓󰗎󰎙󰎔󰋦󰍀󰑃󰐜󰓺󰚠󰐨󰈇󰢁󰈈󰊤󰒚󰈓󰉅󰐺󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓶󰈉󰉛󰗎󰊁󰑃󰐜󰈉󰞮󰠈󰠶
󰡣󰊓󰈰󰋦󰑔󰍅󰈰󰄊󰐤󰐊󰍜󰐠󰐃󰈉󰋦󰖌󰋔󰈓󰎞󰈰󰑧󰑜󰋅󰊁󰑸󰐠󰐃󰈉󰈛󰈓󰐠󰗎󰒰󰎞󰉅󰐃󰈉󰑧󰄊󰈚
 󰠾
󰡳󰈓󰗎󰎞󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰒍󰑸󰉅󰊁󰈉󰄊󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐 󰠾󰠈
󰡻󰑡󰊀󰋔󰋅󰐠󰐃󰈉󰈛󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰈉󰑡󰐃󰈓󰊁 󰠾󰠈
󰡻󰈓 󰞮
󰌱󰖭󰈇󰄊󰎔󰋦󰍜󰐃󰈉󰉙󰌎󰊁󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰓚󰈉󰊶󰈇󰑧WJPV󰋅󰖌󰔣󰐠󰐃󰈉󰢃󰍔 󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰡦󰈓󰐺󰍜󰐃󰈉󰑃󰐜DIF
󰐤󰊒󰊓󰐃󰈉󰑜 󰠶
󰡣󰉄󰎼󰑧󰑜 󰠶
󰡣󰉄󰎼󰉚󰐱󰈓󰚠 󰠾󰠉
󰡯󰐃󰈉
󰒎󰋦󰎼󰋕󰐘󰈓󰎙󰈓󰐠󰚠󰄕󰄓󰄕󰄓󰑡󰖭󰋅󰐃󰈉󰑸󰐃󰈉󰑡󰐊󰐜󰈓󰍜󰐠󰐃󰈉󰉙󰗎󰐃󰈓󰌃󰓴󰑸󰄒󰖹󰐜󰈈󰋔󰈓󰖹󰉅󰊂󰈉󰈛󰈉󰋦󰎞󰎀󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰉚󰍶󰋅󰑐󰑡󰌃󰈉󰋔󰋅󰖘
󰐑󰉅󰐱󰈓󰐜󰑡󰎞󰖌󰔢󰍀󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰄊󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰈓󰎞󰍶󰑧󰑡󰖌󰔵󰐱󰈓󰉆󰐃󰈉󰑡󰐊󰊁󰋦󰐠󰐃󰈉󰑡󰖹󰐊󰍀󰒍󰋅󰐃 󰑃󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐺󰒲󰍔󰉚󰐱󰑸󰏐󰈰󰑧󰄊󰏼󰋧󰐱󰈓󰑐󰄕󰄚󰄗󰈓󰖹󰐃󰈓󰍀 󰓁󰄒󰌃󰈉󰋔󰋅󰐃󰈉󰐘󰈓󰄒󰍜󰐊󰐃󰈓󰗏󰉄󰄒󰌪󰑡󰄒󰍅󰍶󰈓󰊓󰐜󰐤󰗎󰐊󰍜󰈰󰑜󰋔󰈉󰊶󰜾󰈯󰒎󰑸󰐱󰈓󰈱 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰎊󰌰󰐃󰈉󰑃󰐜󰑡󰖹󰐃󰈓󰍀󰑧󰄕󰄓󰄔󰄛
󰄕󰄓󰄔󰄜󰐤󰑔󰐺󰄒󰐜󰄊󰄔󰄖󰄗󰑧󰈓󰄒󰖹󰐃󰈓󰍀󰄔󰄗󰄓󰑡󰄒󰖹󰐃󰈓󰍀 󰑸󰄒󰖹󰐜󰈈󰋔󰈓󰄒󰖹󰉅󰊂󰈉󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰󰑧󰄊󰑡󰖭󰊶󰑸󰎞󰐺󰍜󰐃󰈉󰑡󰗎󰒚󰈉󰑸󰌏󰍜󰐃󰈉󰑡󰎞󰖌󰔢󰍄󰐃󰈓󰖘󰐤󰑐󰋔󰈓󰗎󰉅󰊂󰈉󰐤󰄒󰈰"󰊶󰑸󰄒󰊀󰑧󰊤󰒚󰈓󰄒󰉅󰐺󰐃󰈉󰈛󰋦󰄒󰑔󰍁󰈇󰑧󰄊󰑡󰖭󰋅󰐃󰈉󰑸󰐃󰈉󰑡󰐊󰐜󰈓󰍜󰐠󰐃󰈉󰉙󰗎󰐃󰈓󰌃󰓴 󰄔󰄗󰈚󰓴󰈉󰑜󰋔󰑸󰌪󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰄒󰎞󰍶󰑃󰄒󰐜󰈓󰗏󰐊󰄒󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰈛󰋦󰄒󰑔󰍁󰈇󰑜󰋦󰎞󰍶󰈓󰎞󰍶󰑧 󰠶
󰡣󰍝󰉅󰐠󰐃󰈓󰄒󰑔󰐺󰐜󰄊󰌙󰘡󰄒󰊒󰐃󰈉󰄛󰑧󰄊󰈚󰓺󰄒󰍄󰐃󰈉󰊥󰐃󰈓󰌰󰐃󰈛󰈉󰋦󰄒󰎞󰍶󰄙 󰠾
󰢃󰊂󰈉󰋅󰄒󰐃󰈉󰓚󰈓󰐺󰉄󰐃󰈉󰎔󰋅󰌪󰈛󰈉󰋦󰄒󰌄󰑷󰐠󰐃󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰏼󰈉󰊶󰋦󰄒󰄒󰈱󰈉󰊶󰑸󰊀󰑧󰐘󰋅󰍔 󰠈󰠶
󰡭󰉄󰈰󰈓󰐠󰚠󰄊󰈛󰈓󰄒󰄒󰄒󰄒󰖹󰐃󰈓󰍄󰐃󰈉󰊥󰐃󰈓󰌰󰐃󰈛󰈉󰋦󰄒󰄒󰄒󰄒󰎞󰍶RMSEA, NCP, AIC,
SRMR ,CFI󰊶󰑸󰄒󰄒󰊀󰑧󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋦󰑔󰍁󰈉󰈓󰐠󰚠󰑜󰈉󰊶󰓴󰈉󰑃󰄒󰄒󰐜 󰠾
󰢃󰄒󰄒󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓶󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰄒󰄒󰎞󰎀󰐃󰈉󰍬󰋆󰄒󰄒󰊓󰐃󰑡󰊒󰗎󰘍󰐱󰋔󰈓󰄒󰄒󰄒󰄒󰖹󰉅󰊂󰓺󰐃󰄔󰄚󰈛󰋦󰄒󰄒󰑔󰍁󰈇󰑜󰋦󰄒󰄒󰎞󰍶 󰈓󰑔󰐺󰐜󰄊󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰈓󰎞󰍶󰑧󰐘󰓴󰈉󰑜󰋔󰑸󰌪󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰍶󰑃󰐜󰈓󰗏󰐊󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰄜󰑧󰄊󰈛󰈓󰄒󰖹󰐃󰈓󰍄󰐃󰈉󰊥󰐃󰈓󰌰󰐃󰈛󰈉󰋦󰎞󰍶󰄛󰊥󰐃󰈓󰌰󰄒󰐃󰈛󰈉󰋦󰄒󰎞󰍶 󰊶󰑸󰊀󰑧󰐘󰋅󰍔 󰠈󰠶
󰡭󰉄󰈰󰈓󰐠󰚠󰄊󰈚󰓺󰄒󰍄󰐃󰈉 󰠾
󰢃󰊂󰈉󰋅󰄒󰐃󰈉󰓚󰈓󰐺󰉄󰐃󰈉󰎔󰋅󰌪󰈛󰈉󰋦󰄒󰌄󰑷󰐠󰐃󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰏼󰈉󰊶󰋦󰄒󰄒󰈱󰈇(RMSEA, NCP, AIC, SRMR, CFI)
󰑜󰈉󰊶󰓴󰈉󰑃󰐜 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓶󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰍬󰋆󰊓󰐃󰑡󰊒󰗎󰘍󰐱󰐘󰓴󰈉󰑜󰋔󰑸󰄒󰄒󰌪󰋔󰈓󰄒󰖹󰉅󰊂󰓶
󰑧 󰠈󰠶
󰡭󰎀󰖌 󰠌
󰡥󰐃󰈉󰒍󰋦󰊀󰈇󰄕󰄓󰄔󰄛󰢃󰍔󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰄊󰐤󰍅󰉅󰐺󰐜󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰋦󰈱󰈇󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰉚󰍶󰋅󰑐󰑡󰌃󰈉󰋔󰊶
󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉 󰠾󰠖
󰡮󰓺󰉆󰐃󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰑧󰄊󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑧󰄊󰈛󰈉󰋦󰎞󰎀󰐊󰐃󰑡󰖌 󰠉
󰡣󰐜󰑸󰏐󰗎󰌎󰐃󰈉󰌶󰒚󰈓󰌰󰊔󰐃󰈉
󰈉󰐤󰈰󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰍬󰋅󰑐󰎣󰒰󰎞󰊓󰉅󰐃󰑧󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐺󰐃󰐑󰚠󰐨󰑸󰄒󰏐󰈰󰄊󰊶󰋅󰍜󰉅󰐜󰑃󰐜󰋔󰈓󰗎󰉅󰊂󰓶󰈉󰍌󰔵󰄒󰐱󰑃󰐜󰋔󰈓󰖹󰉅󰊂󰓶󰑜󰋅󰐃󰑸󰐜󰈛󰈓󰐱󰈓󰗎󰈯󰐘󰈉󰋅󰊔󰉅󰌃 󰑃󰐜󰈓󰐠󰑔󰐺󰐜󰄘󰄓󰄒󰄒󰄒󰐃󰄊󰑜󰋦󰎞󰍶󰄔󰄓󰄓󰄓󰑃󰐜󰐑󰜄󰐃 󰠈󰠶
󰡭󰒰󰈯󰈓󰌎󰊓󰐃󰈉 󰠈󰠶
󰡭󰍄󰌃󰑸󰐃󰈉 󰠈󰠶
󰡭󰈯 󰠾󰠞
󰡮󰈓󰌰󰊁󰈈󰏼󰈉󰊶󰎔󰋦󰍶󰊶󰑸󰊀󰑧󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋦󰑔󰍁󰈉󰉛󰗎󰊁󰄊󰌤󰑸󰊓󰎀󰐜
󰑸󰐠󰐺󰐃󰈉󰊥󰐃󰈓󰌰󰐃󰄎󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰉮󰊷󰑸󰐠󰐺󰐃󰒍󰋧󰍜󰖭 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰑧 󰠈󰠶
󰡣󰐠󰉅󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰉮󰊷󰑸󰐠󰐺󰐃󰈓󰖘󰑡󰐱󰋔󰈓󰎞󰐜 󰠾
󰢆󰐊󰍜󰐠󰐃󰈉󰉮󰊷
󰑡󰖌󰔢󰍅󰐱󰉮󰊷󰑸󰐠󰐺󰐃󰒍󰋧󰍜󰖭󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰐤󰐃󰈓󰍜󰐠󰐃 󰠈󰠶
󰡭󰒰󰈯󰈓󰌎󰊓󰐃󰈉 󰠈󰠶
󰡭󰍄󰌃󰑸󰐃󰈉 󰠈󰠶
󰡭󰈯󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰏼󰈉󰊶󰎔󰋦󰍶󰊶󰑸󰊀󰑧󰈓󰌱󰖭󰈉󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋦󰑔󰍁󰈉󰑧󰄊 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉
󰑡󰐃󰈉󰊶 󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧󰢁󰈉󰊤󰒚󰈓󰄒󰉅󰐺󰐃󰈉󰈛󰋔󰈓󰌄󰈇󰑧󰄊 󰠾
󰢆󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈓󰖘󰑡󰐱󰋔󰈓󰎞󰐜 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰊥󰐃󰈓󰌰󰐃󰄎󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉
󰠾󰠈
󰡻󰞮󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰈓󰐠󰚠󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰑧󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰒍󰋧󰍜󰈰 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰑃󰐜󰐑󰜄󰐃 󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰐃󰈉
󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰊥󰐃󰈓󰌰󰐃󰄊󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰒍󰋧󰍜󰖭󰋔󰈓󰖹󰉅󰊂󰓺󰐃󰈛󰈓󰐜󰑸󰐊󰍜󰐜󰑡󰗎󰐠󰜄󰐃 󰠈󰠶
󰡭󰒰󰈯󰈓󰌎󰊓󰐃󰈉 󰠈󰠶
󰡭󰍄󰌃󰑸󰐃󰈉 󰠈󰠶
󰡭󰈯 󰠾󰠞
󰡮󰈓󰌰󰊁󰈈󰏼󰈉󰊶󰎔󰋦󰍶󰊶󰑸󰊀󰑧󰢁󰈈󰊤󰒚󰈓󰄒󰉅󰐺󰐃󰈉󰈛󰋔󰈓󰌄󰈇
󰐺󰐃󰈉󰉚󰐺󰘰󰕷󰑧󰄊 󰠾
󰢆󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈓󰖘󰑡󰐱󰋔󰈓󰎞󰐜 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰐤󰗎󰎙󰐨󰈇󰑧󰄊󰑡󰗎󰐃󰈓󰍔󰉚󰐱󰈓󰚠 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰑜󰋔󰋅󰎞󰐠󰐃󰈉󰈛󰈓󰖹󰉆󰐃󰈉󰈛󰓺󰐜󰈓󰍜󰐜󰐤󰗎󰎙󰐨󰈇󰊤󰒚󰈓󰉅
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰑧󰈇󰈓󰐠󰍅󰉅󰐺󰐜󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰐨󰈓󰚠󰓚󰈉󰑸󰌃󰄊󰢃󰍔󰓴󰈉󰉚󰐱󰈓󰚠 󰠾
󰢆󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰑜󰋔󰋅󰎞󰐠󰐃󰈉󰈛󰈓󰖹󰉆󰐃󰈉󰈛󰓺󰐜󰈓󰍜󰐜
󰐨󰈓󰍔󰋦󰎞󰐃󰈉󰐘󰈓󰎙 󰈓󰐠󰚠 󰠾󰠉
󰡯󰖌󰔵󰛜󰐃󰈉󰑧AlQuraan &ALKuwaiti, 2017󰑡󰍶󰋦󰍜󰐠󰐃󰈉󰐑󰎞󰊁 󰋦󰈱󰈇󰡶󰎞󰈰󰢁󰈈󰉚󰍶󰋅󰑐󰑡󰌃󰈉󰋔󰋅󰖘
󰎣󰒰󰎞󰊓󰉅󰐃󰑧󰄊󰉙󰐃󰈓󰍄󰐃󰈉󰋦󰍅󰐱󰑡󰑔󰊀󰑧󰑃󰐜 󰠾
󰢁󰈓󰍜󰐃󰈉󰐤󰗎󰐊󰍜󰉅󰐃󰈉󰑜󰊶󰑸󰊀󰑧󰑡󰗎󰐃󰈓󰍜󰍶󰐤󰗎󰒰󰎞󰈰󰈛󰈉󰋦󰎞󰍶 󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓸󰐃󰋔󰋅󰌰󰐠󰚠󰉙󰐃󰈓󰍄󰐊󰐃󰌶󰌰󰊔󰉅󰐃󰈉
󰢃󰍔󰏼󰑸󰌰󰊓󰐃󰈉󰌥󰈉󰋦󰍕󰓴󰈓󰑔󰍜󰐠󰊒󰖘󰐑󰌰󰗎󰍶󰑃󰈯󰑃󰐠󰊁󰋦󰐃󰈉󰋅󰖹󰍔󰐘󰈓󰐜󰓴󰈉󰑡󰍜󰐜󰈓󰊀󰉚󰐜󰈓󰎙 󰠾󰠉
󰡯󰐃󰈉󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰑃󰐜󰑜󰊶󰈓󰎀󰉅󰌃󰓶󰈉󰐤󰈰󰋅󰎞󰍶󰄊󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰍬󰋅󰑐
󰐑󰗎󰐊󰊓󰈰󰐤󰈰󰋅󰎞󰍶󰄊󰐘󰈓󰍜󰐃󰈉 󰠾
󰢆󰖭󰊶󰈓󰛰󰓴󰈉󰊶󰈓󰐠󰉅󰍔󰓶󰈉󰄖󰄜󰄗󰄘󰄜󰋹󰈉󰋔󰉮󰊷󰑸󰐠󰐱󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰑡󰌃󰋅󰐺󰑔󰐃󰈉󰄊󰑡󰊓󰌰󰐃󰈉󰄊󰑡󰗎󰕷 󰠉
󰡣󰐃󰈉󰈛󰈓󰗎󰐊󰚠󰈜󰓺󰈱 󰠾󰠈
󰡻󰑡󰐱󰈓󰖹󰘍󰌃󰈉
󰏤󰐊󰈰󰐨󰑸󰏐󰈰󰐨󰈇󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰒍󰑸󰉅󰊓󰐜󰋅󰛈󰈉󰑧󰄊󰑡󰗎󰐊󰜄󰐃󰈉󰉙󰌎󰊁󰞮󰈓󰗎󰐊󰌫󰈓󰎀󰈰󰆲󰓚󰈉󰊶󰈉󰈛󰋅󰖘󰈇󰈛󰈉󰋦󰎞󰍶󰍤󰄒󰄒󰕷󰋔󰈇󰊶󰑸󰊀󰑧󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋦󰑔󰍁󰈇󰑧󰄊󰏼󰋅󰍜󰐠󰐃󰈉
󰒍󰋦󰊂󰈇󰐨󰑧󰊶󰑡󰗎󰐊󰜄󰐃󰑜󰠈󰠶
󰡣󰊓󰉅󰐜󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰠈󰠶
󰡭󰌎󰊓󰈰 󰠾󰠈
󰡻󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰋅󰕷󰑧󰐤󰑔󰌎󰙳 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰍬󰋆󰊁󰐨󰈇󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰉚󰐺󰘰󰈯󰈓󰐠󰚠 󰑜󰈉󰊶󰓸󰐃󰓚󰈓󰐺󰉄󰐃󰈉󰎔󰋅󰌪.
- 27 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰒎󰑧󰈓󰐺󰍄󰌄󰑧󰒎󰋦󰐠󰍜󰐃󰈉󰐘󰈓󰎙󰑧󰄕󰄓󰄔󰄙 󰠾󰠈
󰡮󰊶󰋔󰓴󰈉 󰠾󰠈
󰡯󰍀󰑸󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰎀󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰢁󰈈󰉚󰍶󰋅󰑐󰑡󰌃󰈉󰋔󰋅󰖘
󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐺󰒰󰍔󰉚󰍝󰐊󰖘󰑧󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰈓󰍜󰖹󰈰 󰠌
󰡤󰈓󰍜󰐃󰈉󰎊󰌰󰐊󰐃󰈛󰈓󰗎󰌫󰈓󰖌󰔢󰐃󰈉󰑜󰊶󰈓󰐠󰐃󰄕󰄗󰄓󰄓󰍤󰎙󰈉󰑸󰈯󰑡󰖹󰐃󰈓󰍀󰑧󰞮󰈓󰖹󰐃󰈓󰍀󰄔󰄕󰄓󰄓󰑧󰉙󰐃󰈓󰍀 󰄔󰄕󰄓󰄓 󰠾
󰡳󰈉󰋔󰋅󰐃󰈉󰐘󰈓󰍜󰐊󰐃󰋔󰈓󰖹󰉅󰊂󰓺󰐃󰈉󰑸󰐜󰋅󰎞󰈰󰑃󰐠󰐜󰑡󰖹󰐃󰈓󰍀󰄕󰄓󰄔󰄖
󰄕󰄓󰄔󰄗󰑡󰎞󰐊󰍜󰉅󰐠󰐃󰈉󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰢃󰍔󰏼󰑸󰌰󰊓󰐃󰈉󰐤󰈰󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰍬󰋅󰑐󰎣󰒰󰎞󰊓󰉅󰐃󰑧 󰑃󰐜 󰐨 󰆸
󰑸󰏐󰐠󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰢃󰍔󰑡󰖹󰐊󰍄󰐃󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰈓󰖘󰄖󰄜 󰠾󰠈
󰡶󰖌󰔵󰍜󰈰󰓺󰐃󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉 󰠌
󰡤󰑷󰐜󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰󰑧󰑜󰋦󰎞󰍶NCDIF 󰠾󰠈
󰡻󰎀󰐃󰈉󰑡󰎞󰖘󰈓󰍄󰐜󰋅󰍜󰖘󰑡󰗎󰒚󰈓󰑔󰐺󰐃󰈉󰈓󰑔󰈰󰋔󰑸󰌪 󰠾󰠈
󰡻󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰊶󰋅󰍔󰍥󰐊󰖘󰉛󰗎󰊁󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰑡󰐜󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐊󰐃󰈛󰈉󰋦󰎞 󰄕󰄘󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉󰒎󰊶󰈓󰊁󰓴󰈉󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰑡󰎞󰖘󰈓󰍄󰐜󰑜󰋦󰎞󰍶󰄖󰄗󰓚󰈉󰊶󰈇󰊶󰑸󰊀󰑧󰑃󰍔󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰉚󰎀󰌏󰎼󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰑡󰎞󰖘󰈓󰍄󰐜󰑜󰋦󰎞󰍶 󰄒󰐃󰐤󰍅󰉅󰐺󰐜 󰠾
󰢃󰌫󰈓󰎀󰈰󰄜󰐑󰌪󰈇󰑃󰐜󰈛󰈉󰋦󰎞󰍶󰄔󰄙 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰊶󰑸󰊀󰑧󰑃󰍔󰑧󰈛󰈓󰖹󰐃󰈓󰍄󰐃󰈉󰑧󰈚󰓺󰍄󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰎼 󰠉
󰡣󰌏󰐠󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰊶󰋅󰍔 󰠾
󰢇󰑜󰋦󰎞󰍶 󰄒󰐃󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰄔󰄘󰐑󰌪󰈇󰑃󰐜󰑜󰋦󰎞󰍶󰄕󰄙󰢁󰈈󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐󰉚󰌰󰐊󰊂󰑧󰈛󰈓󰖹󰐃󰈓󰍄󰐃󰈉󰑧󰈚󰓺󰍄󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰎼 󰠉
󰡣󰌏󰐠󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰊶󰋅󰍔 󰠾
󰢇󰑜󰋦󰎞󰍶
󰐤󰗎󰐊󰍜󰉅󰐃󰈉󰑡󰗎󰍔󰑸󰐱󰍈󰖹󰌱󰐃 󰠾󰠈
󰡯󰍀󰑸󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰎀󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰏼󰑧󰈓󰐺󰘍󰈰󰑡󰎀󰐊󰉅󰊔󰐜󰈛󰈓󰌃󰈉󰋔󰊶󰓚󰈉󰋦󰊀󰈈󰢁󰈈󰑸󰍔󰋅󰈰󰈛󰈓󰗎󰌪󰑸󰉅󰐃󰈉󰑃󰐜󰑡󰐊󰐠󰊀
󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰑧󰄊󰈛󰈓󰗎󰌫󰈓󰖌󰔢󰐃󰈉 󰠶
󰡣󰍕󰒍󰋦󰊂󰈇󰉛󰊁󰈓󰖹󰐜 󰠾󰠈
󰡻󰈓󰌪󰑸󰌰󰊂󰑧󰈓󰗎󰐱󰑧 󰠉
󰡣󰛜󰐃󰈉󰈓󰑔󰎞󰗎󰉄󰍄󰈰󰐤󰈰 󰠾󰠉
󰡯󰐃󰈉󰒍󰋦󰊂󰓴󰈉󰑡󰗎󰐺󰍀󰑸󰐃󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓺󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶
󰑡󰖹󰐊󰍄󰐃󰈉󰢃󰍔
󰈓󰎙󰄊󰑡󰐺󰒟󰈓󰖹󰉅󰐜󰑡󰖌󰋔󰈓󰖹󰉅󰊂󰈉󰍬󰑧󰋦󰍁󰉚󰊓󰈰󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰋅󰗎󰐃󰑸󰈰 󰠾󰠈
󰡻󰑜󰈓󰛰󰈓󰊓󰐠󰐃󰈉󰈚󰑸󰐊󰌃󰈇󰈓󰑔󰒰󰍶󰐘󰋅󰊔󰉅󰌃󰈉󰑡󰌃󰈉󰋔󰊶 󰠾󰠈
󰡻󰑧󰄊󰑡󰐊󰍶󰈉󰑸󰐺󰐃󰈉󰐘󰄕󰄓󰄔󰄖 󰋦󰈱󰈇󰑡󰍶󰋦󰍜󰐠󰖘 󰑡󰖹󰌎󰗰 󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰈛󰈉󰊷 󰓚󰈉󰊶󰓴󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉 󰒍󰑸󰉅󰌎󰐜󰑧 󰓚󰈉󰊶󰓴󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉 󰠾󰠈
󰡻 󰋦󰒟󰋅󰎞󰈰 󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐤󰐃󰈓󰍜󰐜 󰈛󰈉󰋔󰋅󰎙󰑧 󰊶󰈉󰋦󰍶󰓴󰈉 󰎣󰍶󰑧 󰉮󰊷󰑸󰐠󰐺󰐃󰈉
󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱 󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋔󰈓󰌄󰈉󰄊󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰊶󰑸󰊀󰑧󰢁󰈉󰈓󰑔󰒰󰍶 󰑡󰐃󰓶󰊶 󰠈󰠶
󰡭󰈯󰑡󰗎󰒚󰈓󰌰󰊁󰈈 󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰈛󰈉󰋦󰒟󰋅󰎞󰈰 󰐤󰐃󰈓󰍜󰐜 󰑡󰕷󰔵󰍜󰌰󰐃󰈉 󰒍󰋧󰍜󰈰 󰢁󰈈
󰉙󰌎󰗰 󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉 󰊥󰐃󰈓󰌰󰐃 󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰄊󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉 󰈛󰈓󰎙󰑧󰋦󰍶󰑧 󰑡󰎀󰐊󰉅󰊔󰐜 󰠈󰠶
󰡭󰈯 󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰐤󰐃󰈓󰍜󰐜 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧
󰊥󰐃󰈓󰌰󰐃 󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰐘󰋅󰍔 󰠈󰠶
󰡭󰉄󰈰󰈓󰐠󰚠󰄊󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉 󰊶󰑸󰊀󰑧 󰎔󰑧󰋦󰍶 󰈛󰈉󰊷 󰑡󰐃󰓶󰊶 󰑡󰗎󰒚󰈓󰌰󰊁󰈈 󰠾󰠈
󰡻 󰈛󰈉󰋦󰒟󰋅󰎞󰈰 󰑜󰋔󰋅󰎞󰐃󰈉 󰒍󰋧󰍜󰈰 󰢁󰈈 󰒎󰠶
󰡣󰍝󰉅󰐜 󰄊󰑡󰌃󰈉󰋔󰋅󰐃󰈉
󰈓󰐜󰈇 󰑡󰗎󰐠󰚠 󰈛󰈓󰐜󰑸󰐊󰍜󰐠󰐃󰈉 󰈓󰑔󰐱󰈒󰍶 󰌷󰎀󰊔󰐺󰈰 󰈓󰐠󰐊󰚠 󰑡󰖹󰌎󰗰󰈛󰊶󰈉󰊶󰋕󰈉 󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰈛󰈉󰊷 󰓚󰈉󰊶󰓴󰈉
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉
󰠾
󰡴󰚔󰎞󰐃󰈉󰒍󰋦󰊀󰈉󰈓󰐠󰚠 (2013) 󰉚󰍶󰋅󰑐󰑡󰌃󰈉󰋔󰊶 󰢁󰈈 󰑡󰐱󰋔󰈓󰎞󰐜 󰑡󰎙󰊶 󰋦󰒟󰋅󰎞󰈰 󰐤󰐃󰈓󰍜󰐜 󰑜󰋦󰎞󰎀󰐃󰈉 󰑜󰋔󰋅󰎞󰐃󰈉󰑧 󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘 󰉮󰊷󰈓󰐠󰐱 󰑡󰖌󰔢󰍅󰐱
󰑡󰖘󰈓󰊒󰉅󰌃󰈉 󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉󰑜󰋦󰎞󰎀󰐃󰈉 󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰑧 󰍬󰓺󰉅󰊂󰈓󰖘 󰐤󰊒󰊁 󰑡󰐺󰒰󰍜󰐃󰈉 󰏼󰑸󰍀󰑧 󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰢃󰍔󰞮󰈉󰊶󰈓󰐠󰉅󰍔󰈉 󰒎󰠌
󰡤󰑷󰐜 󰄊󰠈󰠶
󰡣󰊓󰉅󰐃󰈉 󰋔󰋆󰊒󰐃󰈉󰑧 󰠾
󰡺󰗎󰕷 󰠉
󰡣󰐃󰈉
󰈛󰈓󰍜󰕷󰔢󰐜󰍈󰌃󰑸󰉅󰐠󰐃 󰏤󰐃󰊷󰑧󰄊󰍈󰊔󰐃󰈉 󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘 󰈛󰈓󰐱󰈓󰗎󰈯 󰢁󰈈󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰉚󰐊󰌪󰑸󰈰󰑧󰄊󰑜󰈓󰛰󰈓󰊓󰐜󰑜󰋅󰐃󰑸󰐜 󰐨󰈇 󰈛󰈉󰋦󰒟󰋅󰎞󰈰 󰐤󰐃󰈓󰍜󰐜 󰑜󰋦󰎞󰎀󰐃󰈉 󰑜󰋔󰋅󰎞󰐃󰈉󰑧
󰑡󰎞󰖌󰔢󰍄󰐃󰈓󰖘 󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉 󰈓󰑔󰐺󰐜󰐑󰎙󰈇 󰠾󰠈
󰡻 󰑡󰎞󰖌󰔢󰍄󰐃󰈉 󰈓󰐜󰐨󰈇󰈓󰐠󰚠󰄊󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉 󰎣󰐊󰍜󰉅󰒟 󰠌
󰡤󰑷󰐠󰖘 󰑡󰎙󰋅󰐃󰈉 󰠾󰠈
󰡻 󰋸󰈓󰗎󰎞󰐃󰈉 󰋅󰎞󰍶 󰉚󰐃󰊶 󰢁󰈈󰊤󰒚󰈓󰉅󰐺󰐃󰈉 󰐨󰈇 󰐤󰗎󰎙
󰈛󰈓󰍄󰌃󰑸󰉅󰐠󰐃󰈉 󰑡󰎞󰖌󰔢󰍄󰐃 󰋦󰒟󰋅󰎞󰉅󰐃󰈉 󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉 󰉚󰐱󰈓󰚠 󰐑󰎙󰈉 󰑃󰐜 󰈛󰈓󰍄󰌃󰑸󰉅󰐠󰐃󰈉 󰑡󰎞󰖌󰔢󰍄󰐃 󰋦󰒟󰋅󰎞󰉅󰐃󰈉 󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉 󰠾󰠈
󰡻 󰐑󰚠 󰈛󰓶󰈓󰊁
󰑡󰌃󰈉󰋔󰋅󰐃󰈉
󰑡󰗎󰐠󰐊󰍜󰐜󰓶󰉮󰊷󰈓󰐠󰐱󰑧󰑡󰗎󰐠󰐊󰍜󰐜󰉮󰊷󰈓󰐠󰐱󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰏼󰓺󰊂󰑃󰐜 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉 󰠾󰠈
󰡻󰎔󰋦󰍀󰈜󰓺󰈱󰑡󰗎󰐃󰈓󰍜󰍶󰑡󰐱󰋔󰈓󰎞󰐜󰍬󰋅󰑔󰄒󰄒󰕷󰑧 󰒍󰋦󰊀󰈉 󰏼󰈓󰖌 󰠵
󰡣󰊀(Gabriel, 2012) 󰑡󰎞󰖌󰔢󰍀󰈓󰑔󰒰󰍶󰐘󰋅󰊔󰉅󰌃󰈉󰄊󰑡󰌃󰈉󰋔󰊶 󰋔󰈓󰖹󰉅󰊂󰈉 󰠈󰠶
󰡣󰊓󰈰 󰑜󰋦󰎞󰎀󰐃󰈉 󰑃󰐜󰈉󰠈󰠉
󰡣󰐠󰐃󰈉 󰍤󰍀󰈓󰎞󰉅󰐠󰐃󰈉󰑧 󰍤󰐜 󰑡󰎞󰖌󰔢󰍀󰑧󰄊󰓚󰈉󰊶󰓴󰈉
󰑡󰗎󰊓󰊀󰋔󰓴󰈉󰋔󰈓󰖹󰉅󰊂󰈉 󰢆󰍅󰍜󰐃󰈉 󰠾󰠈
󰡻 󰑡󰖌󰔢󰍅󰐱 󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉 󰑡󰎞󰖌󰔢󰍀󰑧󰄊󰑜󰋦󰎞󰎀󰐊󰐃 󰋔󰈉󰋅󰊓󰐱󰓶󰈉 󰠾󰠈
󰡻 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉 󰑡󰗎󰘌󰖌󰔢󰊒󰈰󰍬󰑧󰋦󰍁 󰑡󰎀󰐊󰉅󰊔󰐜 󰑃󰐜 󰏼󰑸󰍀󰉛󰗎󰊁
󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰐤󰊒󰊁󰑧 󰑡󰐺󰒰󰍜󰐃󰈉 󰋔󰈉󰋅󰎞󰐜󰑧 󰓚󰈉󰊶󰓴󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉 󰑜󰋦󰎞󰎀󰐊󰐃 󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰈰󰑧󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑧 󰈛󰈉󰋔󰋅󰎙 󰑡󰎀󰐊󰉅󰊔󰐜 󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐊󰐃 󰄊󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉󰑧 󰐤󰈰󰑧 󰋅󰗎󰐃󰑸󰈰 󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉 󰎣󰍶󰑧 󰉮󰊷󰑸󰐠󰐺󰐃󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱 󰄊󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰈚󰈓󰌎󰊁󰑧 󰈑󰍄󰊔󰐃󰈉 󰑃󰐜 󰍌󰔵󰐺󰐃󰈉 󰑃󰐜󰑧󰏼󰑧󰓴󰈉 󰄊 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰍌󰔵󰐺󰐃󰈉 󰑜󰑸󰎙󰑧 󰋔󰈓󰖹󰉅󰊂󰓶󰈉
󰄊󰠾󰠞
󰡮󰈓󰌰󰊁󰓵󰈉 󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰉚󰐺󰘰󰕷󰑧 󰐨󰈇 󰑡󰎞󰖌󰔢󰍀 󰋔󰈉󰋅󰊓󰐱󰓶󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉 󰉚󰐱󰈓󰚠 󰐑󰌱󰍶󰈇 󰎔󰋦󰍄󰐃󰈉 󰠾󰠈
󰡻 󰑜󰑸󰎙 󰎊󰌏󰛜󰐃󰈉 󰑃󰍔 󰄊󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉 󰏼󰋅󰍜󰐜󰑧
󰈑󰍄󰊔󰐃󰈉 󰑃󰐜 󰍌󰔵󰐺󰐃󰈉 󰄊󰏼󰑧󰓴󰈉 󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰈛󰋦󰑔󰍁󰈉󰈓󰐠󰚠 󰐘󰋅󰍔 󰊶󰑸󰊀󰑧 󰑡󰎞󰖌󰔢󰍀 󰑜󰋅󰊁󰈉󰑧 󰑡󰐃󰈓󰍜󰍶 󰠈󰠶
󰡣󰐠󰈰 󰠈󰠶
󰡭󰈯 󰠾
󰡹󰑸󰐱 󰓚󰈉󰊶󰓴󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉.
󰄔󰄞󰄔󰄞󰄔󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰢃󰍔󰉙󰗎󰎞󰍜󰉅󰐃󰈉
󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰢃󰍔󰈛󰋧󰎼󰋔󰈓󰑔󰐠󰍅󰍜󰐜󰐨󰈉󰏼󰑸󰎞󰐃󰈉󰑃󰏐󰐠󰖭󰑡󰎞󰖘󰈓󰌃󰈛󰈓󰌃󰈉󰋔󰊶󰑘󰌫󰋦󰍔󰐤󰈰󰈓󰐜󰓚󰑸󰌫 󰠾󰠈
󰡻
󰊶󰑸󰊀󰑧󰐘󰋅󰍔󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐󰑘󰐃󰉚󰐊󰌪󰑸󰈰󰈓󰐜󰐨󰈇󰓶󰈈󰄊 󰠈󰠶
󰡭󰉅󰖌󰔢󰍅󰐺󰐃󰈉󰓺󰜄󰐃󰞮󰈉󰊶󰈓󰐺󰘍󰌃󰈉󰑧󰑡󰍔󰑸󰐺󰉅󰐜󰑧󰑡󰎀󰐊󰉅󰊔󰐜󰎔󰋦󰍀󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉
󰐃󰊷󰒍󰋧󰍜󰖌󰑧󰄎󰎔󰋦󰍄󰐃󰈉󰏤󰐊󰈰󰊶󰋅󰍜󰈰󰐤󰍕󰋔󰑡󰐃󰈓󰍜󰍶󰑜󰊶󰋅󰊓󰐜󰑡󰎞󰖌󰔢󰍀󰋔󰋅󰌰󰐜󰑧󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰢃󰍔󰋅󰐠󰉅󰍜󰈰󰉚󰐱󰈓󰚠󰎔󰋦󰍄󰐃󰈉󰑠󰋆󰑐󰐨󰈇󰢁󰈈󰏤
󰠾󰠉
󰡯󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉 󰠾󰠈
󰡻󰑜󰋔󰋅󰐱󰎨󰈓󰐺󰑐󰐨󰈉󰊥󰌱󰉅󰒟󰈓󰐠󰚠󰑡󰐺󰒰󰍜󰐃󰈉󰐤󰊒󰊁󰑧󰄊󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰏼󰑸󰍀󰑧󰄊󰈓󰑔󰉅󰕷󰔵󰍜󰌪󰑧󰑜󰋦󰎞󰎀󰐃󰈉 󰠈󰠶
󰡣󰒰󰐠󰈰󰒍󰑸󰉅󰌎󰐜󰑧󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉
󰉚󰐃󰑧󰈓󰐺󰈰󰋦󰈱󰈇󰑠󰋆󰑐󰋅󰍜󰈰󰑘󰗎󰐊󰍔󰑧󰄊 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑧 󰠾
󰢆󰐊󰍜󰐠󰐃󰈉 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰢃󰍔󰈓󰗎󰐊󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈉󰋦󰑔󰍅󰈰 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰗰
󰑘󰗎󰍶󰉛󰊓󰖹󰐃󰈉󰐤󰈰󰈓󰐠󰐃󰑡󰗎󰐠󰛰󰈉󰋦󰈰󰑡󰍶󰋦󰍜󰐠󰚠󰈛󰈓󰐜󰑸󰐊󰍜󰐠󰐃󰈉󰑃󰐜󰋅󰖌󰔣󰐠󰐃󰈉󰑡󰍶󰈓󰌫󰓵󰄊󰏼󰈓󰊒󰐠󰐃󰈉󰋆󰑐 󰠾󰠈
󰡻󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰑡󰗎󰉆󰊓󰖹󰐃󰈉󰊶󰑸󰑔󰊒󰐊󰐃󰓶󰈓󰐠󰚴󰉅󰌃󰈉󰑡󰌃󰈉󰋔󰋅󰐃󰈉
󰍌󰔵󰌫󰑸󰐠󰐃󰈉󰈉󰋆󰑐 󰠾󰠈
󰡻󰑘󰉅󰌃󰈉󰋔󰊶󰑧
󰄕 󰈓󰑔󰉅󰐊󰒫󰌃󰈇󰑧󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐊󰚴󰌏󰐜
󰑘󰐱󰈇󰈓󰐠󰚠󰄊󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈓󰖹󰈱󰑧󰓚󰈓󰐺󰈯󰎔󰋅󰌪󰊶󰋅󰑔󰒟󰑸󰑔󰍶󰄊󰒎󰑸󰕷 󰠉
󰡣󰐃󰈉󰑧 󰠾
󰡴󰎀󰐺󰐃󰈉󰋸󰈓󰗎󰎞󰐃󰈉󰈓󰖭󰈓󰌱󰎙󰑃󰐜󰑡󰗎󰌎󰚔󰒚󰋔󰑡󰗎󰌱󰎙 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰋅󰍜󰖭
󰊶󰑸󰊀󰑧 󰠾
󰢁󰈓󰉅󰐃󰈓󰕷󰑧󰄊󰑡󰎙󰊶󰈓󰌪 󰠶
󰡣󰍕󰑧󰑡󰎞󰗎󰎙󰊶 󰠶
󰡣󰍕󰊤󰒚󰈓󰉅󰐱󰢁󰈉󰏼󰑸󰌪󰑸󰐃󰈉󰢁󰈉󰒎󰊶󰑷󰒟󰈓󰐠󰐜󰄊󰊶󰈉󰋦󰍶󰓸󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰑧󰈛󰈉󰋦󰎞󰎀󰐊󰐃󰐤󰐃󰈓󰍜󰐠󰐃󰈉󰋦󰒟󰋅󰎞󰈰󰑡󰎙󰊶󰊶󰋅󰑔󰒟
- 28 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰌶󰊓󰍶󰉙󰊒󰖭󰑘󰐱󰈇󰢃󰍔󰑡󰗎󰌎󰎀󰐺󰐃󰈉󰑧󰑡󰖌󰔵󰕷 󰠉
󰡣󰐃󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈓󰖘󰑡󰌪󰈓󰊔󰐃󰈉 󰠶
󰡣󰒟󰈓󰍜󰐠󰐃󰈉󰉚󰌰󰐱󰋅󰎙󰑧󰄊󰑡󰖹󰒚󰈓󰌪 󰠶
󰡣󰍕󰑡󰖌󰔵󰕷󰔢󰈰󰈛󰈉󰋔󰈉󰋦󰎙󰊷󰈓󰊔󰈰󰈉󰑃󰐜󰍬󰑧󰈓󰊔󰐜
󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠾󰠈
󰡻󰍬󰈓󰌰󰐱󰓵󰈉󰑧󰑡󰐃󰈉󰋅󰍜󰐃󰈉󰐨󰈓󰐠󰌫󰐑󰊀󰈇󰑃󰐜󰞮󰈓󰗎󰐊󰌫󰈓󰎀󰈰󰆲󰓚󰈉󰊶󰈇󰋦󰑔󰍅󰈰󰋅󰎙 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰍔󰈓󰞮󰉆󰊓󰖘󰈛󰈓󰐠󰗎󰒰󰎞󰉅󰐃󰈉󰍤󰒰󰐠󰊀AERA,
APA &NCME, 1999󰄊󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰎊󰐊󰉅󰊔󰈰󰈓󰐜󰋅󰐺󰍔󰈜󰋅󰊓󰖭󰒎󰋆󰐃󰈉󰑧󰄊󰑜󰋦󰎞󰎀󰐃󰈉󰑸󰑐 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓸󰐃 󰠾
󰡳󰈓󰌃󰓶󰈉󰋔󰋅󰌰󰐠󰐃󰈉󰐨󰈇󰈓󰐠󰚠
󰊶󰈉󰋦󰍶󰓴󰈉󰑃󰐜󰑡󰎀󰐊󰉅󰊔󰐜󰈛󰈓󰍔󰑸󰐠󰊒󰐠󰐃󰐤󰗎󰒰󰎞󰉅󰐃󰈉󰑡󰎀󰗎󰍁󰑧 󰠾󰠈
󰡻󰑜󰊶󰑸󰊀󰑸󰐠󰐃󰈉 Croudace &Brown, 2012; Van de Vijver &Tanzer,
2004󰄊󰋦󰍶󰓴󰈉󰢃󰍔󰑜󰋔󰈓󰌫󰋔󰈓󰈱󰈆󰢁󰈈󰒎󰊶󰑷󰒟󰐨󰈇󰑃󰏐󰐠󰖭󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰊶󰑸󰊀󰑧󰐨󰈇󰄊󰏤󰐃󰊷󰑃󰐜󰐤󰑐󰓴󰈉󰑧󰑷󰍶󰈓󰚴󰈰󰐘󰋅󰍔󰐑󰉆󰐜󰄊󰊶󰈉󰉛󰊓󰖹󰐃󰈉 󰠾󰠈
󰡻󰎣󰒰󰎙󰋅󰐃󰈉 󰠶
󰡣󰍕󰉮󰈓󰉅󰐺󰘍󰌃󰓶󰈉󰑧 󰄊󰑡󰗎󰐠󰗎󰐊󰍜󰉅󰐃󰈉󰌤󰋦󰎀󰐃󰈉 󰠾󰠈
󰡻󰑜󰈉󰑧󰈓󰌎󰐠󰐃󰈉󰐘󰋅󰍔󰑧󰄊󰠞󰡷󰈓󰊔󰐃󰈉󰌶󰗎󰊔󰌏󰘍󰐃󰈉󰑧󰄊󰌤󰋦󰎀󰐃󰈉Croudace &
Brown, 2012
󰡺󰌎󰗜 󰠾󰠉
󰡯󰐃󰈉󰈜󰈓󰊓󰖘󰓶󰈉󰑧󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰑃󰐜󰋅󰖭󰋅󰍜󰐃󰈉󰉚󰖌󰔢󰊀󰈇󰉛󰗎󰊁󰄊󰉛󰊓󰖹󰐃󰈉󰑧󰑡󰌃󰈉󰋔󰋅󰐃󰈓󰖘󰈓󰑐󰑧󰋦󰈱󰈇󰑧󰑡󰗎󰌱󰎞󰐃󰈉󰑠󰋆󰑔󰈯󰐨󰑸󰉆󰊁󰈓󰖹󰐃󰈉󰐤󰉅󰑐󰈉󰋅󰎞󰐃
󰠈󰠶
󰡭󰈯󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧󰐘󰋅󰍔󰈓󰑔󰌱󰍜󰖘󰈛󰋦󰑔󰍁󰈇󰋅󰎙󰑧󰄊 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰑡󰐜󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰎔󰋦󰍄󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰐱󰋔󰈓󰎞󰐠󰐊󰐃
󰐱󰈓󰐜󰑧󰑡󰑔󰊀󰑃󰐜󰋅󰗎󰎞󰐠󰐃󰈉 󰠾
󰢃󰐜󰈓󰍜󰐃󰈉󰐑󰗎󰐊󰊓󰉅󰐃󰈉 󰠾󰠉
󰡯󰎞󰖌󰔢󰍀󰓚󰈉󰊶󰈇󰍤󰒰󰐠󰊀 󰠾󰠈
󰡻󰑜󰊶󰋦󰎀󰐠󰐃󰈉󰌶󰒚󰈓󰌰󰊂 󰠾󰠈
󰡯󰊓󰐺󰐜 󰠈󰠶
󰡭󰈯󰑡󰊁󰈓󰌎󰐠󰐃󰈉 󰠌
󰡤󰑷󰐜󰑡󰎞󰖌󰔢󰍀󰑧󰏼󰋧󰐱󰈓󰑐󰐑󰉅 󰄊󰠾󰠵
󰡱󰈓󰐺󰐃󰈉󰒍󰋦󰊂󰈇󰑡󰑔󰊀󰑃󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰈉󰄕󰄓󰄔󰄔󰑡󰎞󰖌󰔢󰍄󰐊󰐃󰞮󰈓󰍜󰖹󰈰 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰋅󰖭󰋅󰊓󰉅󰈯󰍬󰓺󰉅󰊂󰈉󰊶󰑸󰊀󰑧 󰠈󰠶
󰡭󰉄󰈰󰈓󰐠󰐺󰘰󰈯󰄊 󰄊 󰠾󰠵
󰡲󰐺󰘍󰌎󰙿󰐃󰈉󰑡󰍜󰖹󰉅󰐠󰐃󰈉󰄕󰄓󰄓󰄗󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰎣󰒚󰈉󰋦󰍀 󰠈󰠶
󰡭󰈯󰎔󰈓󰎀󰈰󰈉󰊶󰑸󰊀󰑧󰐘󰋅󰍔 󰠈󰠶
󰡭󰉄󰈰󰈓󰐠󰚠󰄊󰄊󰊶󰈓󰐠󰊁󰑸󰈯󰈇 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛 󰄕󰄓󰄓󰄛󰎊󰌏󰛜󰐃󰈉 󰠾󰠈
󰡻󰑡󰐜󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰑡󰎞󰖌󰔢󰍄󰐊󰐃󰞮󰈓󰍜󰖹󰈰 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰈛󰈉󰊷󰈓󰑔󰐱󰈑󰖘󰑜󰋦󰎞󰎀󰐃󰈉󰢃󰍔󰐤󰚴󰊓󰐃󰈉󰊤󰒚󰈓󰉅󰐱 󰠾󰠈
󰡻󰈓󰈰󰑧󰈓󰎀󰈰󰎨󰈓󰐺󰑐󰐨󰈇󰑧󰄊Acar
&Kelecioglu, 2010󰄊󰋅󰊀󰑸󰒟󰓶󰑘󰐱󰈇󰈓󰐠󰚠 󰑡󰎞󰖌󰔢󰍀 󰑜󰋅󰊁󰈉󰑧 󰑡󰐃󰈓󰍜󰍶 󰠈󰠶
󰡣󰐠󰈰 󰠈󰠶
󰡭󰈯 󰠾
󰡹󰑸󰐱 󰓚󰈉󰊶󰓴󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉(Gabriel, 2012󰈛󰓚󰈓󰊀󰈉󰋆󰐃󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐󰎣󰍶󰑧󰈓󰑔󰐺󰘰󰈯󰐑󰍔󰈓󰎀󰉅󰐃󰈉󰑧󰈇󰑘󰍔󰑸󰐱󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰗰󰋦󰈱󰈇󰑡󰍶󰋦󰍜󰐜󰐑󰊀󰈇󰑃󰐜󰊶󰑸󰑔󰊒󰐃󰈉󰏤󰐊󰉅󰐃󰓶󰈓󰐠󰚴󰉅󰌃󰈉
󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰎣󰍶󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰈰󰢃󰍔 󰠾󰠈
󰡻󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐊󰚴󰌏󰐜󰌶󰊔󰐊󰉅󰈰󰑘󰗎󰐊󰍔󰑧 󰑡󰗎󰐃󰈓󰉅󰐃󰈉󰑡󰐊󰒫󰌃󰓴󰈉󰑃󰍔󰑡󰖘󰈓󰊀󰓵󰈉

󰄕󰄞󰄔󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐊󰒫󰌃󰈇
󰄔 󰑡󰐃󰓶󰊶󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰋅󰊀󰑸󰈰󰐑󰑐α󰄓󰄞󰄓󰄘󰠈󰠶
󰡭󰈯󰒍󰋧󰍜󰈰󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰈛󰈓󰍄󰌃󰑸󰉅󰐜
󰄑󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰐤󰑔󰐺󰘰󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑧󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐺󰐃󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰘡󰐃
󰄕 󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰋅󰊀󰑸󰈰󰐑󰑐󰑡󰐃󰓶󰊶α󰄓󰄞󰄓󰄘󰒍󰋧󰍜󰈰󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯
󰄑󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰎣󰍶󰑧󰐤󰑔󰐺󰘰󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑧󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐺󰐃󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰘡󰐃
󰄖 󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰋅󰊀󰑸󰈰󰐑󰑐󰑡󰐃󰓶󰊶α󰄓󰄞󰄓󰄘󰒍󰋧󰍜󰈰󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯
󰄑 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰍌󰔵󰐱󰑧󰑡󰖹󰌎󰗰󰓚󰑸󰌫 󰠾󰠈
󰡻 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰄊󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐊󰐃
󰄖 󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰗎󰐠󰑐󰈇
󰏼󰈓󰐺󰈰󰏼󰈉󰋧󰈰󰓶󰑧󰉚󰐃󰈓󰐱 󰠾󰠉
󰡯󰐃󰈉󰍤󰒰󰌫󰈉󰑸󰐠󰐃󰈉󰋅󰊁󰈉󰋅󰍜󰖭󰒎󰋆󰐃󰈉󰑧󰍌󰔵󰌫󰑸󰐠󰐃󰈉󰈉󰋆󰑐 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰉆󰊁󰈓󰖹󰐃󰈉󰊶󰑸󰑔󰊀󰏼󰈓󰐠󰚴󰉅󰌃󰈉 󰠾󰠈
󰡻󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰗎󰐠󰑐󰈇󰋕 󰠵
󰡣󰈰
󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑧󰉛󰊓󰖹󰐃󰈉󰑃󰐜󰋅󰖌󰔣󰐠󰐃󰈉󰢁󰈉󰑡󰊀󰈓󰊓󰖘󰏼󰈉󰋧󰒟󰓶󰒎󰋆󰐃󰈉󰑧󰉚󰌱󰐜󰊶󰑸󰎞󰍔󰋆󰐺󰐜󰒎󰑸󰕷 󰠉
󰡣󰐃󰈉󰑧 󰠾
󰡴󰎀󰐺󰐃󰈉󰋸󰈓󰗎󰎞󰐃󰈉 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰌰󰉅󰊔󰐠󰐃󰈉󰐘󰈓󰐠󰉅󰑐󰈉󰄊 󰠾
󰡶󰎞󰉅󰐃󰈉󰑧
󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰓚󰑸󰌫 󰠾󰠈
󰡻󰊶󰈉󰋦󰍶󰓸󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜󰢃󰍔 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱󰋦󰈱󰈇󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰢁󰈉󰑘󰐃󰓺󰊂󰑃󰐜 󰠾
󰡺󰌎󰗰󰒎󰋆󰐃󰈉󰑧
󰠾󰠈
󰡻󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰑧󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰓚󰑸󰌫 󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰎣󰍶󰑧󰈛󰈓󰐱󰋔󰈓󰎞󰐜󰓚󰈉󰋦󰊀󰈉󰍤󰐜󰄊 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱
󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰑡󰐊󰌪󰈉󰑸󰉅󰐠󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰖹󰛈󰈉󰑸󰐠󰐃󰑡󰗎󰐠󰖭󰊶󰈓󰛰󰓶󰈉󰑧󰑡󰗎󰐠󰐊󰍜󰐃󰈉󰈛󰓶󰑧󰈓󰊓󰐠󰐃󰈉󰑡󰌎󰐊󰌃󰑃󰐜󰑡󰐃󰑧󰈓󰊓󰐜󰑠󰑧󰋔󰋅󰖘󰋅󰍜󰖭󰒎󰋆󰐃󰈉󰑧󰄊󰑜󰋦󰎞󰎀󰐊󰐃
󰐘󰈓󰍔󰐑󰚴󰌏󰙞󰒎󰑸󰕷 󰠉
󰡣󰐃󰈉󰑧 󰠾
󰡴󰎀󰐺󰐃󰈉󰋸󰈓󰗎󰎞󰐃󰈉󰏼󰈓󰊒󰐜 󰠾󰠈
󰡻󰐑󰌰󰊓󰈰 󰠾󰠉
󰡯󰐃󰈉󰈛󰈉󰋔󰑸󰍄󰉅󰐃󰈉󰑜󰋦󰒟󰈓󰌎󰐠󰐃󰑧󰄊󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰢁󰈉󰑜󰋅󰐺󰘍󰌎󰐠󰐃󰈉󰑧
󰏤󰐃󰋆󰎼󰑧 󰐃󰑸󰈰 󰠾󰠈
󰡻 󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉 󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉 󰈛󰈓󰗎󰊒󰐜 󰠵
󰡣󰐃󰈉 󰐘󰈉󰋅󰊔󰉅󰌃󰈉 󰠾󰠈
󰡻󰈓󰑔󰌰󰒚󰈓󰌰󰊂 󰑃󰐜 󰎣󰎞󰊓󰉅󰐃󰈉󰑧 󰈓󰑔󰒰󰐊󰍔 󰑡󰎀󰐊󰉅󰊔󰐠󰐃󰈉 󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑧 󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉 󰋅󰗎 󰑡󰗎󰊒󰐜󰋦󰈯󰐑󰉆󰐜󰏤󰐃󰊷󰑧󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉Wingen󰉮󰔵󰐊󰖭󰈓󰖹󰐃󰈉󰑡󰗎󰊒󰐜󰋦󰈯󰄊󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈓󰐱󰈓󰗎󰈯󰋅󰗎󰐃󰑸󰉅󰐃Bilog-Mg󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰉮󰈉󰋦󰊔󰉅󰌃󰓶 󰊤󰐜󰈓󰐱󰋦󰕷󰑧󰠾󰠖
󰡮󰓺󰉆󰐃󰈉 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰏼󰓺󰊂󰑃󰐜󰑜󰋔󰋅󰎞󰐃󰈉TestGraf󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰏼󰓺󰊂󰑃󰐜󰑜󰋔󰋅󰎞󰐃󰈉󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰉮󰈉󰋦󰊔󰉅󰌃󰈉󰑧󰐑󰗎󰐊󰊓󰉅󰐃 󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉󰐘󰋕󰋦󰐃󰈉󰑡󰗎󰊒󰐜󰋦󰕷󰑧󰄊󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉SPSS󰐤󰉅󰒟 󰠾󰠉
󰡯󰐃󰈉󰑧󰄎󰑡󰗎󰒚󰈓󰌰󰊁󰓵󰈉󰎔󰑧󰋦󰎀󰐃󰈉󰑧󰑡󰗎󰎀󰌪󰑸󰐃󰈉󰈛󰈉󰓚󰈓󰌰󰊁󰓶󰈉󰉮󰈉󰋦󰊔󰉅󰌃󰓶
󰑃󰐜󰎣󰎞󰊓󰉅󰐃󰈉󰑧󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰋦󰖌󰔵󰍄󰈰󰑡󰗎󰐊󰐠󰍜󰐃󰉙󰌃󰈓󰐺󰐠󰐃󰈉 󰊤󰑔󰐺󰐠󰐃󰈉󰢃󰍔󰍬󰋦󰍜󰉅󰐃󰈉󰍬󰋅󰑔󰈯󰞮󰈓󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰑡󰗎󰐊󰍜󰎀󰐃󰈉󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰑜󰈓󰛰󰈓󰊓󰐜󰈓󰑔󰐃󰓺󰊂󰑃󰐜
󰑧󰑡󰖌 󰠉
󰡣󰐜󰑸󰏐󰗎󰌎󰐃󰈉󰈓󰑔󰌰󰒚󰈓󰌰󰊂
󰑡󰖹󰌃󰈓󰐺󰐠󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰎣󰍶
- 29 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄗 󰑡󰗎󰒚󰈉󰋦󰊀󰓵󰈉󰈛󰈓󰎀󰖌󰔢󰍜󰉅󰐃󰈉
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉
󰈑󰍄󰊂 󰑡󰐠󰐊󰍜󰐠󰐃󰐘󰈓󰍅󰉅󰐱󰈓󰖘󰍤󰎀󰈰󰋦󰐜󰑧󰈉 󰠾󰠈
󰡮󰋅󰉅󰐜󰋦󰒟󰋅󰎞󰈰󰑸󰑐󰑧󰈇󰄊󰒍󰋦󰊂󰈉󰑃󰐜󰐑󰌱󰍶󰈇󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰢃󰍔󰓚󰈉󰊶󰓶󰈉󰐑󰍜󰊒󰖭󰐤󰍅󰉅󰐺󰐜
󰑡󰐺󰒰󰍜󰐃󰈉 󰠾󰠞
󰡮󰈓󰌰󰊁󰈈󰢃󰍔󰞮󰈉󰊶󰈓󰐠󰉅󰍔󰈉󰍤󰐠󰉅󰊒󰐠󰐃󰈉
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱
󰑡󰐃󰓶󰊶󰑜󰋦󰎞󰎀󰐃󰈉󰑘󰗎󰍶󰋦󰑔󰍅󰈰󰒎󰋆󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰐨󰑸󰏐󰖭󰋅󰎙󰒎󰋆󰐃󰈉󰑧󰄊󰑡󰖘󰈓󰊀󰓵󰈉󰈛󰓶󰈓󰐠󰉅󰊁󰈉 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰑃󰍔 󰠶
󰡣󰉄󰍜󰉅󰐊󰐃󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰎞󰉅󰌏󰐜
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰑧󰈉󰐤󰍅󰉅󰐺󰐜
󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉Group Focal
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰑧󰈇󰐤󰍅󰉅󰐺󰐜 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰍶󰢃󰍔󰐑󰐠󰉅󰌏󰗜 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠾
󰢇)󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰍤󰐜󰈓󰑔󰉅󰐱󰋔󰈓󰎞󰐜󰐤󰉅󰖌󰑧󰄊
󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉
󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉Group Referenced
󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰐨󰋔󰈓󰎞󰈰 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠾
󰢇󰑧󰄊 󰠾
󰢃󰌫󰈓󰎀󰈰󰓚󰈉󰊶󰈇󰈛󰈉󰊷󰑜󰋦󰎞󰍶󰒎󰈇󰢃󰍔󰐑󰐠󰉅󰌏󰗜󰓶 󰠾󰠉
󰡯󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉 󰠾
󰢇󰈓󰑔󰍜󰐜.
󰄘 󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰈛󰊶󰈉󰋅󰊓󰐜
󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰢃󰍔󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐󰈛󰡧󰉅󰎙󰈉
󰠾
󰢃󰖭󰈓󰐜
󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧󰐤󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰉮󰊷󰑸󰐠󰐱
󰉙󰌎󰘡󰐃󰐤󰗎󰎙󰈜󰓺󰈱 󰠾
󰢇󰑧󰄊󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰄔󰄓󰄝󰄊󰄕󰄓󰄝󰄊󰄗󰄓󰄝
󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉󰑡󰗎󰒚󰈓󰐺󰈱󰈛󰈉󰋦󰎞󰍶󰄓󰄊󰄔
󰑜󰋅󰐃󰑸󰐜󰈛󰈓󰐱󰈓󰗎󰈯Simulated Data󰊤󰐜󰈓󰐱󰋦󰈯󰏼󰓺󰊂󰑃󰐜WinGen󰐤󰈰󰒎󰋆󰐃󰈉󰑧󰄊󰈛󰈓󰐱󰈓󰗎󰈯󰋅󰗎󰐃󰑸󰉅󰐃 󰠾󰠵
󰡮󰑸󰌃󰈓󰊁󰊤󰐜󰈓󰐱 󰠵
󰡣󰎼󰑠󰋦󰖌󰔵󰍄󰈰 󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰉮󰊷󰈓󰐠󰐱󰑃󰐜󰋅󰖭󰋅󰍜󰐊󰐃󰊤󰄒󰄒󰄒󰄒󰖌󰋔󰋅󰉅󰐃󰈉󰑜󰊶󰋅󰍜󰉅󰐜󰑧󰑡󰗎󰒚󰈓󰐺󰈱󰑡󰖘󰈓󰊒󰉅󰌃󰈉(Han &Hambleton, 2007)
󰄙 󰑡󰎞󰖌󰔢󰍄󰐃󰈉
󰄙󰄞󰄔󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰊤󰑔󰐺󰐜
󰢃󰍔󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰈛󰋅󰐠󰉅󰍔󰈉󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈓󰑔󰈰󰈓󰛰󰈓󰊓󰐜󰏼󰓺󰊂󰑃󰐜󰏤󰐃󰊷󰑧󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰍈󰖹󰌫󰐤󰈰󰉛󰗎󰊁 󰠾󰠵
󰡯󰖌󰔢󰊒󰉅󰐃󰈉󰊤󰑔󰐺󰐠󰐃󰈉
󰈓󰑔󰒰󰐃󰈉󰑜󰋔󰈓󰌄󰓵󰈉󰐤󰈰 󰠾󰠉
󰡯󰐃󰈉󰈛󰈓󰗎󰊒󰐜 󰠵
󰡣󰐃󰈉󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰈓󰑐󰋅󰗎󰐃󰑸󰈰󰐤󰈰
󰄙󰄞󰄕󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐺󰒰󰍔
󰑃󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐺󰒰󰍔󰉚󰐱󰑸󰏐󰈰󰄕󰄓󰄓󰄓󰑡󰐺󰘰󰉄󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰐤󰑔󰈰󰈉󰋔󰋅󰎙󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰈰 󰠾
󰡾󰈓󰊓󰖌󰑧 󰠾󰠵
󰡯󰖌󰔢󰊒󰈰󰍬󰋦󰍁󰐑󰜄󰐃 󰠾󰠈
󰡵󰈉 󰠉
󰡣󰍶󰈉󰊶󰋦󰍶 󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻󰄔
󰏼󰑧󰋅󰊀󰄔󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰍬󰑧󰋦󰍁󰉙󰌎󰊁 󰠈󰠶
󰡭󰒰󰌫󰈉 󰠉
󰡣󰍶󰓶󰈉󰊶󰈉󰋦󰍶󰓴󰈉󰑜󰋔󰋅󰎙󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰈰
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕
󰑡󰖹󰌎󰘡󰐃󰈉
󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉
󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉
󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉
󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉
󰄔󰄓󰄝
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄕󰄓󰄝
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄖󰄓󰄝
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
󰄔󰄓󰄓󰄓󰄓󰄟󰄔
- 30 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄙󰄞󰄖󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑜󰈉󰊶󰈇
󰈓󰑔󰐺󰐜󰐑󰚠󰏼󰑸󰍀󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰈉󰑃󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑜󰈉󰊶󰈇󰉚󰐱󰑸󰏐󰈰󰄙󰄓󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰈓󰑐󰋅󰗎󰐃󰑸󰈰󰐤󰈰󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰗎󰒚󰈓󰐺󰈱󰑜󰋦󰎞󰍶 WinGen󰍤󰎙󰈉󰑸󰈯 󰠈󰠶
󰡭󰉄󰒰󰊒󰉅󰌎󰐠󰐃󰈉󰑃󰐜 󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐜󰋅󰗎󰐃󰑸󰈰󰒎󰋔󰈓󰖹󰉅󰊂󰈉󰍬󰋦󰍁󰐑󰜄󰐃󰑧󰐤󰈰󰊷󰈈󰄊󰄔󰄓󰄓󰄓󰍤󰌱󰊔󰈰󰑡󰍔󰑸󰐠󰊒󰐜󰐑󰚠 󰠾󰠈
󰡻󰌤󰑸󰊓󰎀󰐜  󰠾󰠵
󰡮󰈓󰌎󰊁󰍈󰌃󰑸󰉅󰐠󰖘 󰠾
󰡺󰗎󰉄󰍄󰐃󰈉󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰉅󰐊󰐃󰐤󰑔󰈰󰈉󰋔󰋅󰎙󰄓󰒎󰋔󰈓󰗎󰍜󰐜󰍬󰈉󰋦󰊓󰐱󰈉󰑧󰄔󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰉅󰐃󰈉󰌥 󰠉
󰡣󰎀󰈰 󰠾󰠉
󰡯󰐃󰈉󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐃󰈉󰍤󰐜󰈓󰐜󰈓󰊒󰌎󰗰󰈉󰏤󰐃󰊷󰑧 󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰌼󰑧 󰠌
󰡤󰎣󰒰󰎞󰊓󰉅󰐃󰑧󰄊 󰠈󰠶
󰡭󰉄󰒰󰊒󰉅󰌎󰐠󰐊󰐃󰒎󰋔󰈓󰗎󰍜󰐠󰐃󰈉 󰠾
󰡺󰗎󰉄󰍄󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰈉󰍤󰄒󰄒󰄒󰄒󰖌󰋕󰑸󰈰󰉛󰗎󰊁󰑃󰐜 󰠈󰠶
󰡭󰉅󰒫󰍶󰈓󰚴󰉅󰐜 󰠈󰠶
󰡭󰉅󰍔󰑸󰐠󰊒󰐜󰋅󰗎󰐃󰑸󰈰󰐤󰈰󰋅󰎞󰍶 󰠾
󰢃󰌫󰈓󰎀 󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰏤󰐃󰊷󰑧WinGen
󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑧󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑧󰑜󰋔󰋅󰎞󰐃󰈉󰋅󰗎󰐃󰑸󰈰 󰠾󰠈
󰡻󰑡󰌰󰌰󰊔󰉅󰐠󰐃󰈉
󰄙󰄞󰄗󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰈛󰈉󰓚󰈉󰋦󰊀󰈈
󰍌󰈓󰖹󰈰󰈉󰐤󰈰󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐊󰒫󰌃󰈇󰑃󰍔󰑡󰖘󰈓󰊀󰓹󰐃
󰑡󰗎󰐃󰈓󰉅󰐃󰈉󰈛󰈉󰓚󰈉󰋦󰊀󰓵󰈉
󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑡󰐺󰒰󰍔 󰠾󰠈
󰡻󰐤󰑔󰌰󰒚󰈓󰌰󰊔󰐃󰋔󰈓󰌏󰐠󰐃󰈉󰑧󰄊 󰠈󰠶
󰡭󰒰󰌫󰈉 󰠉
󰡣󰍶󰓶󰈉 󰠈󰠶
󰡭󰉄󰒰󰊒󰉅󰌎󰐠󰐃󰈉󰋅󰗎󰐃󰑸󰈰
󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑜󰈉󰊶󰈇 󰠾󰠈
󰡻󰈓󰑔󰐃󰋔󰈓󰌏󰐠󰐃󰈉󰑧󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰓶󰈉󰈛󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰋅󰗎󰐃󰑸󰈰
󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰󰉛󰗎󰊁󰄊󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰈉󰋅󰗎󰐃󰑸󰈰WinGen󰑡󰐺󰒰󰍔󰈛󰈉󰋔󰋅󰎙 󰠾
󰡾󰈓󰊓󰈰󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰈉󰋅󰗎󰐃󰑸󰉅󰐃 󰊤󰉅󰐱󰉛󰗎󰊁󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰓶󰈉󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰄙󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑃󰐜󰈛󰈓󰍶󰑸󰎀󰌰󰐜
󰄙󰄞󰄘󰠾󰠞
󰡮󰈓󰌰󰊁󰓵󰈉󰐑󰗎󰐊󰊓󰉅󰐃󰈉
󰑸󰊓󰐺󰐃󰈉󰢃󰍔 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰑧󰄊 󰠾
󰢆󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰉆󰐃󰈉 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰏼󰓺󰊂󰑃󰐜󰑡󰎞󰖘󰈓󰌎󰐃󰈉󰑜󰑸󰍄󰊔󰐃󰈉 󰠾󰠈
󰡻󰑜󰋅󰐃󰑸󰐠󰐃󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰐑󰗎󰐊󰊓󰈰
󰠾
󰢁󰈓󰉅󰐃󰈉
󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰓶󰈛󰈓󰐱󰈓󰗎󰉄󰐃󰈉󰑡󰎞󰖘󰈓󰍄󰐜󰒍󰋅󰐜󰑃󰐜󰎣󰎞󰊓󰉅󰐃󰈉󰐤󰈰󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉 󰠾󰠈
󰡻󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰐑󰗎󰐊󰊓󰈰
󰐑󰗎󰐊󰊓󰉅󰐃󰈉󰏼󰓺󰊂󰑃󰐜󰋅󰍜󰖹󰐃󰈉󰑡󰖭󰊶󰈓󰊁󰈇󰎣󰎞󰊓󰈰󰒍󰋅󰐜󰌶󰊓󰍶󰐤󰈰󰉛󰗎󰊁󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰈉 󰠾󰠈
󰡻󰑡󰐊󰉆󰐠󰉅󰐠󰐃󰈉󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉
󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘 󰠾
󰢃󰐜󰈓󰍜󰐃󰈉SPSS󰐨󰈇󰌥 󰠉
󰡣󰎀󰖭 󰠾󰠉
󰡯󰐃󰈉󰏼󰑧󰓴󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰈓󰑐󰡥󰎀󰖭 󰠾󰠉
󰡯󰐃󰈉󰡥󰎀󰐠󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰑡󰖹󰌎󰗰󰏼󰓺󰊂󰑃󰐜󰑧 󰄒󰐃󰈉󰈓󰑔󰉅󰐠󰗎󰎙󰋕󰑧󰈓󰊒󰉅󰈰󰄕󰄓󰄝󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰉄󰐜󰑸󰑐󰈓󰐠󰚠 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰢁󰈈󰏼󰑧󰓴󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰑡󰖹󰌎󰗰󰏼󰓺󰊂󰑃󰐜󰏤󰐃󰋆󰎼󰑧 󰄕
󰏼󰑧󰋅󰊀󰄕󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰢁󰈉󰏼󰑧󰓴󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰑡󰖹󰌎󰗰󰑧󰡥󰎀󰐠󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰉙󰌎󰗰󰑧󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰐤󰗎󰎙󰑧󰐑󰐜󰈉󰑸󰍜󰐃󰈉󰊶󰋅󰍔
󰐑󰐜󰈓󰍜󰐃󰈉
󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉
󰡥󰎀󰐠󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰑡󰖹󰌎󰗰
󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰢁󰈉󰏼󰑧󰓴󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰑡󰖹󰌎󰗰
󰐤󰍅󰉅󰐺󰐜󰄔󰄓󰄝
󰄔
󰄚󰄞󰄓󰄕󰄖
󰄔󰄔󰄞󰄚󰄓󰄘
󰄘󰄞󰄖󰄔󰄜
󰄕
󰄔󰄞󰄖󰄕󰄓
󰄕󰄞󰄕󰄓󰄔
󰄖
󰄔󰄞󰄕󰄓󰄛
󰄕󰄞󰄓󰄔󰄗
󰄗
󰄔󰄞󰄔󰄚󰄛
󰄔󰄞󰄜󰄙󰄖
󰐤󰍅󰉅󰐺󰐜󰄕󰄓󰄝
󰄔
󰄙󰄞󰄜󰄙󰄙
󰄔󰄔󰄞󰄙󰄔󰄓
󰄘󰄞󰄖󰄚󰄕
󰄕
󰄔󰄞󰄕󰄜󰄚
󰄕󰄞󰄔󰄙󰄔
󰄖
󰄔󰄞󰄕󰄓󰄓
󰄕󰄞󰄓󰄓󰄓
󰄗
󰄔󰄞󰄔󰄛󰄜
󰄔󰄞󰄜󰄛󰄕
󰐤󰍅󰉅󰐺󰐜󰄖󰄓󰄝
󰄔
󰄚󰄞󰄓󰄙󰄜
󰄔󰄔󰄞󰄚󰄛󰄔
󰄘󰄞󰄘󰄖󰄙
󰄕
󰄔󰄞󰄕󰄚󰄚
󰄕󰄞󰄔󰄕󰄛
󰄖
󰄔󰄞󰄔󰄜󰄗
󰄔󰄞󰄜󰄜󰄓
󰄗
󰄔󰄞󰄔󰄙󰄛
󰄔󰄞󰄜󰄗󰄚
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰄔󰄓󰄝
󰄔
󰄚󰄞󰄓󰄚󰄓
󰄔󰄔󰄞󰄚󰄛󰄗
󰄘󰄞󰄘󰄖󰄙
󰄕
󰄔󰄞󰄕󰄚󰄚
󰄕󰄞󰄔󰄕󰄜
󰄖
󰄔󰄞󰄕󰄓󰄜
󰄕󰄞󰄓󰄔󰄘
󰄗
󰄔󰄞󰄔󰄙󰄜
󰄔󰄞󰄜󰄗󰄛
- 31 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰄕󰄓󰄝
󰄔
󰄙󰄞󰄛󰄖󰄜
󰄔󰄔󰄞󰄖󰄜󰄜
󰄘󰄞󰄔󰄚󰄕
󰄕
󰄔󰄞󰄖󰄕󰄕
󰄕󰄞󰄕󰄓󰄗
󰄖
󰄔󰄞󰄕󰄓󰄛
󰄕󰄞󰄓󰄔󰄗
󰄗
󰄔󰄞󰄔󰄛󰄙
󰄔󰄞󰄜󰄚󰄙
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕󰄖󰄓󰄝
󰄔
󰄙󰄞󰄛󰄓󰄛
󰄔󰄔󰄞󰄖󰄗󰄚
󰄘󰄞󰄔󰄕󰄔
󰄕
󰄔󰄞󰄖󰄕󰄜
󰄕󰄞󰄕󰄔󰄙
󰄖
󰄔󰄞󰄔󰄜󰄜
󰄔󰄞󰄜󰄜󰄛
󰄗
󰄔󰄞󰄔󰄛󰄜
󰄔󰄞󰄜󰄛󰄔
󰏼󰑧󰋅󰊒󰐃󰈉󰏼󰓺󰊂󰑃󰐜 󰠈󰠶
󰡭󰉄󰘍󰒟󰄕󰉛󰗎󰊁󰑡󰎞󰎞󰊓󰉅󰐜󰋅󰍜󰖹󰐃󰈉󰑡󰖭󰊶󰈓󰊁󰈇󰐨󰈇󰑘󰐱󰈈 󰠌
󰡤󰑷󰐜󰢃󰍔󰊶󰈓󰐠󰉅󰍔󰓶󰈓󰕷󰑧Tanaka󰑡󰖹󰌎󰗰󰐨󰈉󰊥󰌱󰉅󰒟 󰢁󰈈󰏼󰑧󰓴󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉 󰑃󰐜 󰠵
󰡣󰛈󰈇 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰑃󰐜󰈓󰜄󰐃󰈉󰋔󰋆󰊒󰐃󰈉󰄕󰏼󰓺󰎞󰉅󰌃󰓶󰈉󰎣󰎞󰊓󰈰󰒍󰋅󰐜󰌶󰊓󰍶 󰐤󰈰󰈓󰐠󰚠󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉 󰐑󰜄󰐃󰑧  󰠾
󰡺󰌫󰑸󰐠󰐃󰈉Local-Dependent󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘LDID󰏼󰓺󰊂󰑃󰐜 󰠾
󰡺󰌫󰑸󰐠󰐃󰈉󰏼󰓺󰎞󰉅󰌃󰓶󰈉󰑃󰐜󰎣󰎞󰊓󰉅󰐃󰈉 󰠾󰠈
󰡻󰑡󰌰󰌰󰊔󰉅󰐠󰐃󰈉  󰠌
󰡤󰑷󰐜Q3 󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻󰑡󰐺󰘰󰉄󰐠󰐃󰈉󰑧󰄖󰊶󰈉󰋦󰍶󰓴󰈉󰑧󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰐨󰈇 󰉙󰙿󰌎󰙞󰑘󰐺󰐜 󰎣󰎞󰊓󰉅󰐃󰈉 󰐤󰉅󰒟󰐤󰐊󰍶 󰑡󰍔󰡥󰐃󰈉 󰑃󰐜 󰋔󰋦󰊓󰉅󰐊󰐃󰑡󰖹󰌎󰘡󰐃󰈓󰖘󰈓󰐜󰈇
󰑡󰗎󰌫󰈉 󰠉
󰡣󰍶󰈉󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑧
󰏼󰑧󰋅󰊀󰄖󰈓󰑔󰉅󰘌󰌎󰗰󰑧 󰠾
󰡺󰌫󰑸󰐠󰐃󰈉󰏼󰓺󰎞󰉅󰌃󰓺󰐃󰑡󰎞󰎞󰊓󰐠󰐃󰈉 󰠶
󰡣󰍕󰉮󰈉󰑧󰋕󰓴󰈉󰊶󰋅󰍔󰑧 󰠾
󰢃󰜄󰐃󰈉󰉮󰈉󰑧󰋕󰓴󰈉󰊶󰋅󰍔
U6
U12
U18
N6
N12
N18
󰠾
󰢃󰜄󰐃󰈉󰉮󰈉󰑧󰋕󰓴󰈉󰊶󰋅󰍔
󰄔󰄚󰄚󰄓
󰄔󰄚󰄚󰄓
󰄔󰄚󰄚󰄓
󰄔󰄚󰄚󰄓
󰄔󰄚󰄚󰄓
󰄔󰄚󰄚󰄓
󰑡󰎞󰎞󰊓󰐜 󰠶
󰡣󰍕󰉮󰈉󰑧󰋕󰓴󰈉󰊶󰋅󰍔
󰄙󰄘
󰄘󰄗
󰄚󰄗
󰄚󰄕
󰄙󰄓
󰄘󰄜
󰎣󰒰󰎞󰊓󰉅󰐃󰈉󰐘󰋅󰍔󰑡󰖹󰌎󰗰
󰄖󰄞󰄚󰄝
󰄖󰄞󰄔󰄝
󰄗󰄞󰄕󰄝
󰄗󰄞󰄔󰄝
󰄖󰄞󰄗󰄝
󰄖󰄞󰄖󰄝
󰏼󰑧󰋅󰊒󰐃󰈉󰏼󰓺󰊂󰑃󰐜 󰠈󰠶
󰡭󰉄󰘍󰒟󰄖󰢃󰍔󰓴󰈉󰈓󰑐󰋅󰊁 󰠾󰠈
󰡻󰉚󰍝󰐊󰖘󰋅󰎙󰎣󰒰󰎞󰊓󰉅󰐃󰈉󰐘󰋅󰍔󰑡󰖹󰌎󰗰󰐨󰈇󰄗󰄞󰄕󰄝󰉮󰈉󰑧󰋕󰓴󰈉󰑡󰖹󰌎󰘡󰐃 󰠌
󰡤󰑷󰐜󰋅󰍜󰈰 󰠾󰠉
󰡯󰐃󰈉󰑧
󰠾
󰡺󰌫󰑸󰐠󰐃󰈉󰏼󰓺󰎞󰉅󰌃󰓶󰈉󰎣󰎞󰊓󰈰󰢁󰈈 󰠶
󰡣󰌏󰙳󰈓󰐠󰐜󰄊󰑡󰌱󰎀󰊔󰐺󰐜󰑡󰖹󰌎󰗰 󰠾
󰢇󰑧󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑃󰐜󰑡󰍄󰖹󰈰󰋦󰐠󰐃󰈉
󰐤󰈰󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰊶󰈉󰋦󰍶󰓴󰈉󰑧󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰎞󰖘󰈓󰍄󰐜󰒍󰋅󰐜󰑃󰐜󰎣󰎞󰊓󰉅󰐊󰐃󰑧󰉮󰔵󰐊󰖭󰈓󰖘󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈉BILOG-MG 󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐱 󰠾󰠈
󰡻󰑡󰌰󰌰󰊔󰉅󰐠󰐃󰈉Item Response Theory󰑡󰍶󰑸󰎀󰌰󰐜󰐑󰚠 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰎞󰖘󰈓󰍄󰐠󰐃󰈉󰊶󰈉󰋦󰍶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰐤󰈰󰉛󰗎󰊁 󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰎞󰖘󰈓󰍄󰐠󰐃󰒎󰈓󰚠󰍤󰄒󰄒󰕷󰔢󰐜 󰠌
󰡤󰑷󰐜󰏼󰓺󰊂󰑃󰐜󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰈉 󰠈󰠶
󰡭󰈯󰈓󰐜󰉚󰊁󰑧󰈉󰋦󰈰 󰠾󰠉
󰡯󰐃󰈉󰑧󰄕󰄞󰄔󰄔󰄗󰄞󰄚󰉙󰌎󰊁 󰠈󰠶
󰡭󰎞󰖘󰈓󰍄󰐜󰊶󰈉󰋦󰍶󰓴󰈉󰑡󰍶󰈓󰚠󰐨󰈓󰚠󰈓󰐠󰚠
󰠾󰠌
󰡴󰐜󰈓󰑔󰐃󰈉󰏼󰈓󰐠󰉅󰊁󰓶󰈉 󰠌
󰡤󰑷󰐜
󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱 󰠾󰠈
󰡻󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰐑󰗎󰐊󰊓󰈰󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰
Test-Graf󰈛󰈓󰍶󰑸󰎀󰌰󰐜󰑃󰐜󰐑󰚠󰐑󰗎󰐊󰊓󰈰 󰠾󰠈
󰡻
󰊶󰈉󰋦󰍶󰓴󰈉󰈛󰈉󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰈰󰍬󰋅󰑔󰈯󰈛󰈓󰖘󰈓󰊒󰉅󰌃󰓶󰈉
󰄚 󰈓󰑔󰉅󰌏󰎙󰈓󰐺󰐜󰑧󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰊤󰒚󰈓󰉅󰐱
󰑡󰐃󰓶󰊶󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰋅󰊀󰑸󰈰󰐑󰑐󰏼󰑧󰓴󰈉󰏼󰈉󰑷󰌎󰐃󰈉󰑃󰍔󰑡󰖘󰈓󰊀󰓹󰐃α󰄓󰄞󰄓󰄘󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯
󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰐤󰑔󰐺󰘰󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑧󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐺󰐃󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰘡󰐃󰒍󰋧󰍜󰈰󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰈛󰈉󰋦󰒟󰋅󰎞󰈰
󰄑󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱 󰠾󰠉
󰡯󰌎󰊀󰑸󰐊󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰉙󰌎󰊁󰑘󰍔󰑸󰐱󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰑜󰋔󰋅󰎞󰐃󰈉󰋦󰒟󰋅󰎞󰈰󰐤󰈰
󰉮󰔵󰐊󰖭󰈓󰖘󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰑡󰐠󰐊󰍜󰐠󰐃󰈉BILOG-MG󰈓󰐠󰚠󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰍬󰑧󰋦󰍁󰑃󰐜󰐑󰜄󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐠󰐃 󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰉅󰐠󰐃󰈉󰉮󰈉󰋦󰊔󰉅󰌃󰈉󰑧 󰏼󰑧󰋅󰊒󰐃󰈉󰈓󰑔󰐺󰒰󰘌󰒟󰄗
󰏼󰑧󰋅󰊀󰄗󰍌󰔵󰐱󰓚󰑸󰌫 󰠾󰠈
󰡻󰑜󰋔󰋅󰎞󰐊󰐃󰒎󰋔󰈓󰗎󰍜󰐠󰐃󰈉󰍬󰈉󰋦󰊓󰐱󰓶󰈉󰑧 󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰉅󰐠󰐃󰈉󰠾󰠖
󰡮󰓺󰉆󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧
󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱
󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰
󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰉅󰐠󰐃󰈉
󰒎󰋔󰈓󰗎󰍜󰐠󰐃󰈉󰍬󰈉󰋦󰊓󰐱󰓶󰈉
󰐤󰍅󰉅󰐺󰐜
󰄔󰄓󰄝
󰄓󰄞󰄓󰄓󰄓󰄔
󰄓󰄞󰄜󰄖󰄘󰄛
󰄕󰄓󰄝
󰄓󰄞󰄓󰄓󰄔󰄗
󰄓󰄞󰄜󰄗󰄕󰄓
󰄖󰄓󰄝
󰄓󰄞󰄓󰄓󰄓󰄛
󰄓󰄞󰄜󰄖󰄙󰄖
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕
󰄔󰄓󰄝
󰄓󰄞󰄓󰄓󰄓󰄘
󰄓󰄞󰄜󰄗󰄔󰄔
󰄕󰄓󰄝
󰄓󰄞󰄓󰄓󰄕󰄓
󰄓󰄞󰄜󰄗󰄔󰄗
- 32 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄖󰄓󰄝
󰄓󰄞󰄓󰄓󰄓󰄔
󰄓󰄞󰄜󰄖󰄜󰄘
󰑡󰐺󰒰󰍜󰐃󰈉󰐤󰊒󰊁󰄕󰄓󰄓󰄓󰌤󰑸󰊓󰎀󰐜󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰏼󰑸󰍀󰑧󰄙󰄓󰑜󰋦󰎞󰍶
󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻󰑡󰗎󰈯󰈓󰌎󰊓󰐃󰈉󰈛󰈓󰍄󰌃󰑸󰉅󰐠󰐃󰈉󰑃󰐜󰍉󰊁󰓺󰖭󰄗󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰑜󰋔󰋅󰎞󰐃󰈉󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰑡󰍅󰊁󰓺󰐜󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧
󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐠󰐃󰑡󰗎󰈯󰈓󰌎󰊓󰐃󰈉󰈛󰈓󰍄󰌃󰑸󰉅󰐠󰐃󰈉 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰏤󰐊󰈰󰑡󰐃󰓶󰊶󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰐃󰋅󰒚󰈓󰍜󰐃󰈉
󰑸󰑐󰈓󰐠󰚠 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰈰󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰉄󰐜󰄘
󰏼󰑧󰋅󰊀󰄘󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉 󰑜󰋔󰋅󰎞󰐃󰈉󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰎔󰑧󰋦󰎀󰐃󰈉󰑡󰐃󰓶󰊶󰌶󰊓󰎀󰐃 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰈰
󰠾󰠖
󰡮󰓺󰉆󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉
󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰋔󰋅󰌰󰐜
󰈛󰈓󰍜󰕷󰔢󰐠󰐃󰈉󰍌󰔵󰐠󰊒󰐜
󰑡󰖌󰔢󰊓󰐃󰈉󰑡󰊀󰋔󰊶
󰈛󰈓󰍜󰕷󰔢󰐠󰐃󰈉󰍈󰌃󰑸󰉅󰐜
󰑡󰐠󰗎󰎙F
󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰓶󰈉
󰈓󰉅󰒟󰈉󰍤󰄒󰄒󰕷󰔢󰐜
󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱
󰄓󰄞󰄓󰄓󰄓
󰄔
󰄓󰄞󰄓󰄓󰄓
󰄓󰄞󰄓󰄓󰄓
󰄓󰄞󰄜󰄛󰄚
󰄓󰄞󰄓󰄓󰄓
󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰
󰄓󰄞󰄓󰄔󰄔
󰄕
󰄓󰄞󰄓󰄓󰄙
󰄓󰄞󰄓󰄓󰄙
󰄓󰄞󰄜󰄜󰄗
󰄓󰄞󰄓󰄓󰄓
󰐑󰍔󰈓󰎀󰉅󰐃󰈉
󰄓󰄞󰄓󰄓󰄔
󰄕
󰄓󰄞󰄓󰄓󰄓
󰄓󰄞󰄓󰄓󰄓
󰄔󰄞󰄓󰄓󰄓
󰄓󰄞󰄓󰄓󰄓
󰈑󰍄󰊔󰐃󰈉
󰄔󰄓󰄘󰄛󰄖󰄞󰄔󰄚󰄛
󰄔󰄔󰄜󰄜󰄗
󰄓󰄞󰄛󰄛󰄕
󰠾
󰢃󰜄󰐃󰈉
󰄔󰄓󰄘󰄛󰄖󰄞󰄔󰄜󰄓
󰄔󰄔󰄜󰄜󰄜
󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰐨󰈇 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰈰󰊤󰒚󰈓󰉅󰐱󰑃󰐜󰍉󰊁󰓺󰖭p>0.05󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰑧󰑡󰖹󰌎󰗰 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉 󰑡󰐃󰓶󰋅󰐃󰈉󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰈉󰊶 󰠶
󰡣󰍕 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉α󰄓󰄞󰄓󰄘󰈓󰐠󰐜󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰎊󰐊󰉅󰊔󰈰󰓶󰑜󰋔󰋅󰎞󰐃󰈉󰐤󰗎󰎙󰐨󰓶 󰠶
󰡣󰌏󰙳
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱 󰠾󰠈
󰡻󰑡󰐊󰉆󰐠󰉅󰐠󰐃󰈉
󰢃󰍔󰌶󰐱󰒎󰋆󰐃󰈉󰑧 󰠾󰠈
󰡮󰈓󰉆󰐃󰈉󰏼󰈉󰑷󰌎󰐃󰈉󰑃󰍔󰑡󰖘󰈓󰊀󰓹󰐃󰑡󰐃󰓶󰊶󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰋅󰊀󰑸󰈰󰐑󰑐α󰄓󰄞󰄓󰄘󰠈󰠶
󰡭󰈯󰎣󰍶󰑧󰐤󰑔󰐺󰘰󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑧󰈉 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐺󰐃󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰘡󰐃󰒍󰋧󰍜󰈰󰊶󰈉󰋦󰍶󰓶󰈉󰈛󰈉󰋔󰋅󰎙󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰈛󰈓󰍄󰌃󰑸󰉅󰐜
󰄑󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱 󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰉙󰌎󰊁󰑘󰍔󰑸󰐱󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰑜󰋔󰋅󰎞󰐃󰈉󰋦󰒟󰋅󰎞󰈰󰐤󰈰 󰑡󰗎󰊒󰐜󰋦󰈯󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘Test-Graf󰏼󰑧󰋅󰊒󰐃󰈉󰈓󰑔󰐺󰒰󰘌󰒟󰈓󰐠󰚠󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰍬󰑧󰋦󰍁󰑃󰐜󰐑󰜄󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐠󰐃 󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰉅󰐠󰐃󰈉󰉮󰈉󰋦󰊔󰉅󰌃󰈉󰑧 󰄙.
󰏼󰑧󰋅󰊀󰄙󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱󰓚󰑸󰌫 󰠾󰠈
󰡻󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐠󰐃󰒎󰋔󰈓󰗎󰍜󰐠󰐃󰈉󰍬󰈉󰋦󰊓󰐱󰓶󰈉󰑧 󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰉅󰐠󰐃󰈉
󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱
󰑡󰖹󰌎󰗰󰓚󰈉󰊶󰓴󰈉
󰠾󰠵
󰡮󰈓󰌎󰊓󰐃󰈉󰍈󰌃󰑸󰉅󰐠󰐃󰈉
󰒎󰋔󰈓󰗎󰍜󰐠󰐃󰈉󰍬󰈉󰋦󰊓󰐱󰓶󰈉
󰐤󰍅󰉅󰐺󰐜
󰄔󰄓󰄝
󰄓󰄞󰄓󰄓󰄕󰄙
󰄔󰄞󰄓󰄛󰄙󰄓
󰄕󰄓󰄝
󰄓󰄞󰄓󰄓󰄙󰄛
󰄔󰄞󰄓󰄛󰄖󰄙
󰄖󰄓󰄝
󰄓󰄞󰄓󰄓󰄓󰄛
󰄔󰄞󰄓󰄛󰄛󰄘
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕
󰄔󰄓󰄝
󰄓󰄞󰄓󰄓󰄔󰄓
󰄔󰄞󰄓󰄛󰄘󰄛
󰄕󰄓󰄝
󰄓󰄞󰄓󰄓󰄓󰄙
󰄔󰄞󰄓󰄛󰄗󰄖
󰄖󰄓󰄝
󰄓󰄞󰄓󰄓󰄔󰄘
󰄔󰄞󰄓󰄛󰄙󰄓
󰑡󰐺󰒰󰍜󰐃󰈉󰐤󰊒󰊁󰄕󰄓󰄓󰄓󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰏼󰑸󰍀󰑧󰌤󰑸󰊓󰎀󰐜󰄙󰄓󰑜󰋦󰎞󰍶
󰈛󰈓󰍄󰌃󰑸󰉅󰐠󰐃󰈉󰑃󰐜󰍉󰊁󰓺󰖭󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻󰑡󰗎󰈯󰈓󰌎󰊓󰐃󰈉󰄙󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰑜󰋔󰋅󰎞󰐃󰈉󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰑡󰍅󰊁󰓺󰐜󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧
󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐠󰐃󰑡󰗎󰈯󰈓󰌎󰊓󰐃󰈉󰈛󰈓󰍄󰌃󰑸󰉅󰐠󰐃󰈉 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰏤󰐊󰈰󰑡󰐃󰓶󰊶󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰐃󰋅󰒚󰈓󰍜󰐃󰈉
󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰉄󰐜󰑸󰑐󰈓󰐠󰚠 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰈰󰄚.
󰏼󰑧󰋅󰊀󰄚 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰎔󰑧󰋦󰎀󰐃󰈉󰑡󰐃󰓶󰊶󰌶󰊓󰎀󰐃 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰈰
󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱
󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰋔󰋅󰌰󰐜
󰈛󰈓󰍜󰕷󰔢󰐠󰐃󰈉󰍌󰔵󰐠󰊒󰐜
󰑡󰖌󰔢󰊓󰐃󰈉󰑡󰊀󰋔󰊶
󰈛󰈓󰍜󰕷󰔢󰐠󰐃󰈉󰍈󰌃󰑸󰉅󰐜
󰑡󰐠󰗎󰎙F
󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰓶󰈉
󰈓󰉅󰒟󰈉󰍤󰄒󰄒󰕷󰔢󰐜
󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱
󰄓󰄞󰄓󰄓󰄘
󰄔
󰄓󰄞󰄓󰄓󰄘
󰄓󰄞󰄓󰄓󰄗
󰄓󰄞󰄜󰄗󰄜
󰄓󰄞󰄓󰄓󰄓
󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰
󰄓󰄞󰄓󰄙󰄓
󰄕
󰄓󰄞󰄓󰄖󰄓
󰄓󰄞󰄓󰄕󰄘
󰄓󰄞󰄜󰄚󰄘
󰄓󰄞󰄓󰄓󰄓
- 33 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰐑󰍔󰈓󰎀󰉅󰐃󰈉
󰄓󰄞󰄓󰄖󰄙
󰄕
󰄓󰄞󰄓󰄔󰄛
󰄓󰄞󰄓󰄔󰄘
󰄓󰄞󰄜󰄛󰄘
󰄓󰄞󰄓󰄓󰄓
󰈑󰍄󰊔󰐃󰈉
󰄔󰄗󰄔󰄖󰄚󰄞󰄙󰄙󰄕
󰄔󰄔󰄜󰄜󰄗
󰄔󰄞󰄔󰄚󰄜
󰠾
󰢃󰜄󰐃󰈉
󰄔󰄗󰄔󰄖󰄚󰄞󰄚󰄙󰄗
󰄔󰄔󰄜󰄜󰄜
󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰐨󰈇 󰠾󰠞
󰡮󰈓󰐺󰉆󰐃󰈉󰑃󰒟󰈓󰖹󰉅󰐃󰈉󰐑󰗎󰐊󰊓󰈰󰊤󰒚󰈓󰉅󰐱󰑃󰐜󰍉󰊁󰓺󰖭p>0.05󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰑧󰑡󰖹󰌎󰗰 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉 󰑡󰐃󰓶󰋅󰐃󰈉󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰈉󰊶 󰠶
󰡣󰍕 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉α󰄓󰄞󰄓󰄘󰈓󰐠󰐜󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰎊󰐊󰉅󰊔󰈰󰓶󰑜󰋔󰋅󰎞󰐃󰈉󰐤󰗎󰎙󰐨󰓶 󰠶
󰡣󰌏󰙳
󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱 󰠾󰠈
󰡻󰑡󰐊󰉆󰐠󰉅󰐠󰐃󰈉
󰢃󰍔󰌶󰐱󰒎󰋆󰐃󰈉󰑧󰉛󰐃󰈓󰉆󰐃󰈉󰏼󰈉󰑷󰌎󰐃󰈉󰑃󰍔󰑡󰖘󰈓󰊀󰓹󰐃󰑡󰐃󰓶󰊶󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰈛󰈉󰊷󰎔󰑧󰋦󰍶󰋅󰊀󰑸󰈰󰐑󰑐α󰄓󰄞󰄓󰄘 󰠈󰠶
󰡭󰈯󰍌󰔵󰐱󰑧󰑡󰖹󰌎󰗰󰓚󰑸󰌫 󰠾󰠈
󰡻 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰄊󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰒍󰋧󰍜󰈰 󰊶󰈉󰋦󰍶󰓶󰈉 󰈛󰈉󰋔󰋅󰎙 󰈛󰈉󰋦󰒟󰋅󰎞󰈰󰈛󰈓󰍄󰌃󰑸󰉅󰐜
󰄑󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰋔󰈓󰖹󰉅󰊂󰈉󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐤󰈰t󰓚󰑸󰌫 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜󰋦󰒟󰋅󰎞󰈰 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰌶󰊓󰎀󰐃
󰏼󰑧󰋅󰊒󰐃󰈉 󰠾󰠈
󰡻 󰠈󰠶
󰡭󰉄󰐜󰑸󰑐󰈓󰐠󰚠 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱 󰠾󰠈
󰡻󰑡󰐊󰉆󰐠󰉅󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰄛.
󰏼󰑧󰋅󰊀󰄛󰋔󰈓󰖹󰉅󰊂󰈉t󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱󰓚󰑸󰌫 󰠾󰠈
󰡻󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰎔󰑧󰋦󰎀󰐃󰈉󰑡󰐃󰓶󰊶󰌶󰊓󰎀󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉
󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱
󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰
󰑡󰐠󰐊󰍜󰐠󰐃󰈉
󰋔󰈓󰖹󰉅󰊂󰈉󰑡󰐠󰗎󰎙t
󰑡󰖌󰔢󰊓󰐃󰈉󰑡󰊀󰋔󰊶
󰑡󰗎󰐃󰈓󰐠󰉅󰊁󰓶󰈉
󰐤󰍅󰉅󰐺󰐜
󰄔󰄓󰄝
󰑜󰋔󰋅󰎞󰐃󰈉
󰄓󰄞󰄓󰄛󰄖
󰄖󰄜󰄜󰄛
󰄓󰄞󰄜󰄖󰄗
󰄕󰄓󰄝
󰑜󰋔󰋅󰎞󰐃󰈉
󰄓󰄞󰄕󰄘󰄙
󰄖󰄜󰄜󰄛
󰄓󰄞󰄚󰄜󰄛
󰄖󰄓󰄝
󰑜󰋔󰋅󰎞󰐃󰈉
󰄓󰄞󰄓󰄓󰄔
󰄖󰄜󰄜󰄛
󰄔󰄞󰄓󰄓󰄓
󰐤󰍅󰉅󰐺󰐜 󰠶
󰡣󰍕
󰄔󰄓󰄝
󰑜󰋔󰋅󰎞󰐃󰈉
󰄓󰄞󰄓󰄗󰄗
󰄖󰄜󰄜󰄛
󰄓󰄞󰄜󰄙󰄘
󰄕󰄓󰄝
󰑜󰋔󰋅󰎞󰐃󰈉
󰄓󰄞󰄓󰄛󰄓
󰄖󰄜󰄜󰄛
󰄓󰄞󰄜󰄖󰄙
󰄖󰄓󰄝
󰑜󰋔󰋅󰎞󰐃󰈉
󰄓󰄞󰄓󰄗󰄖
󰄖󰄜󰄜󰄛
󰄓󰄞󰄜󰄙󰄘
󰑡󰐃󰓶󰋅󰐃󰈉󰒍󰑸󰉅󰌎󰐜α󰄓󰄞󰄓󰄘
󰋔󰈓󰖹󰉅󰊂󰈉󰊤󰒚󰈓󰉅󰐱󰑃󰐜󰍉󰊁󰓺󰖭t󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰐨󰈇󰞮󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰈉󰊶 󰠶
󰡣󰍕󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉p>0.05󰍬󰑧󰋦󰍅󰐃󰈉󰐑󰜄󰐃󰑧
󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰎊󰐊󰉅󰊔󰈰󰓶󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜󰐤󰗎󰎙󰐨󰓶 󰠶
󰡣󰌏󰙳󰈓󰐠󰐜 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰈯󰑡󰎞󰐊󰍜󰉅󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉
󰄚󰄞󰄔󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰑡󰌏󰎙󰈓󰐺󰐜
󰢁󰈈󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰉚󰐊󰌪󰑸󰈰 󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰐨󰈇p>0.05󰑡󰐃󰈉󰊶 󰠶
󰡣󰍕 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰑧󰑡󰖹󰌎󰗰 󰠈󰠶
󰡭󰈯󰐑󰍔󰈓󰎀󰉅󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉 󰑡󰐃󰓶󰋅󰐃󰈉󰒍󰑸󰉅󰌎󰐜󰋅󰐺󰍔󰈓󰗎󰒚󰈓󰌰󰊁󰈈α󰄓󰄞󰄓󰄘󰐑󰜄󰐃󰑜󰋔󰋅󰎞󰐃󰈉󰐤󰗎󰎙󰐨󰈉󰢁󰈉 󰠶
󰡣󰌏󰙳󰈓󰐠󰐜 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰑃󰐜
󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜 󰠾󰠈
󰡻󰎔󰑧󰋦󰎀󰐃󰈉󰐨󰈇󰢁󰈈󰉚󰐊󰌪󰑸󰈰󰈓󰐠󰚠󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐱 󰠾󰠈
󰡻󰑡󰐊󰉆󰐠󰉅󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰎊󰐊󰉅󰊔󰈰󰓶
󰞮󰈓󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰈉󰊶 󰠶
󰡣󰍕󰉮󰊷󰑸󰐠󰐺󰐊󰐃󰑜󰋅󰒚󰈓󰍜󰐃󰈉p>0.05󰐤󰗎󰎙󰐨󰓶 󰠶
󰡣󰌏󰙳󰈓󰐠󰐜 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰖹󰌎󰗰󰑧󰍌󰔵󰐺󰈯󰑡󰎞󰐊󰍜󰉅󰐠󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉󰍬󰑧󰋦󰍅󰐃󰈉󰐑󰜄󰐃󰑧
󰢁󰈉󰏤󰐃󰊷󰒍󰋧󰍜󰖭󰋅󰎙󰑧󰄊 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰐘󰋅󰊔󰉅󰌎󰐠󰐃󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰍬󰓺󰉅󰊂󰈓󰖘󰎊󰐊󰉅󰊔󰈰󰓶󰑜󰋔󰋅󰎞󰐃󰈉󰑡󰐠󰐊󰍜󰐜
󰒟󰈓󰍝󰈰󰓺󰐃󰈉󰑡󰗎󰐊󰍔󰎣󰐊󰍄󰖭󰈓󰐜󰑸󰑐󰑧󰍬󰑧󰋦󰍅󰐃󰈉󰑧󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰠶
󰡣󰍝󰉅󰈯󰉚󰖘󰈓󰈱󰐨󰑸󰏐󰖭󰋦󰒟󰋅󰎞󰉅󰐃󰈉󰐨󰈉󰋦Invariance 󰠾󰠈
󰡻󰐑󰉆󰐠󰉅󰐠󰐃󰈉󰑧󰑜󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰈰󰋦󰈱󰈑󰈰󰐘󰋅󰍔
󰊶󰈓󰐠󰉅󰍔󰈉󰉙󰙿󰌎󰙞 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰓺󰚠󰍬󰓺󰉅󰊂󰈓󰖘󰊶󰈉󰋦󰍶󰓴󰈉󰑜󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰈰 󰠾󰠈
󰡻󰎔󰑧󰋦󰍶󰊶󰑸󰊀󰑧󰐘󰋅󰍔 󰠶
󰡣󰌎󰎀󰈰󰑃󰏐󰐠󰖌󰑧󰈓󰐠󰚠󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰍶󰐤󰐃󰈓󰍜󰐠󰖘󰊶󰈉󰋦󰍶󰓴󰈉
󰐑󰚠󰑠󰋦󰒟󰋅󰎞󰈰󰢃󰍔󰎣󰎀󰉅󰈰󰈓󰐜󰈉󰋆󰑐󰑧󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰢃󰍔󰑘󰈰󰈓󰐜󰓺󰍔󰍌󰔵󰐠󰊒󰐜󰢃󰍔󰌙󰚔󰐃󰑧󰑜󰋔󰋅󰎞󰐃󰈉󰋦󰒟󰋅󰎞󰈰 󰠾󰠈
󰡻󰊶󰋦󰎀󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰍈󰐠󰐱󰢃󰍔󰈛󰈓󰗎󰊒󰐜 󰠵
󰡣󰐃󰈉
󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰉛󰗎󰊁󰐨󰈈󰉛󰗎󰊁󰊶󰈉󰋦󰍶󰓴󰈉󰑜󰋔󰋅󰎙󰋦󰒟󰋅󰎞󰈰󰢃󰍔󰋦󰈱󰑷󰒟󰓶󰈛󰈉󰋦󰎞󰎀󰐃󰈉 󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰐨󰈈󰎣󰐊󰊂󰌥 󰠉
󰡣󰎀󰈰 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰋅󰗎󰐃󰑸󰈰󰑡󰗎󰐃󰈆
󰑡󰌃󰈉󰋔󰊶 󰠾󰠈
󰡻󰑘󰗎󰐃󰈈󰐑󰌪󰑸󰉅󰐃󰈉󰐤󰈰󰈓󰐜󰍤󰐜󰑡󰎀󰐊󰉅󰊔󰐜󰑡󰊒󰗎󰘍󰐺󰐃󰈉󰑠󰋆󰑐󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐤󰐃󰈓󰍜󰐜 󰠾󰠈
󰡻 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑡󰐊󰍶󰈉󰑸󰐺󰐃󰈉󰄊󰄕󰄓󰄔󰄖󰊶󰑸󰊀󰑧󰉚󰐺󰘰󰈯 󰠾󰠉
󰡯󰐃󰈉󰑧 󰋦󰒟󰋅󰎞󰈰󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰑡󰗎󰒚󰈓󰌰󰊁󰈈󰑡󰐃󰓶󰊶󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰊥󰐃󰈓󰌰󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰉙󰌎󰗰󰢁󰈈󰒍󰋧󰍜󰈰󰑡󰕷󰔵󰍜󰌰󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰈛󰈉
󰑡󰌃󰈉󰋔󰊶󰑧󰄊󰑡󰗎󰍜󰊀󰋦󰐠󰐃󰈉󰑡󰍔󰑸󰐠󰊒󰐠󰐃󰈉󰊥󰐃󰈓󰌰󰐃 󰠈󰠶
󰡭󰐠󰊔󰉅󰐃󰈉󰑧 󰠈󰠶
󰡣󰒰󰐠󰉅󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰈛󰈓󰍄󰌃󰑸󰉅󰐜 󰠈󰠶
󰡭󰈯󰑡󰎀󰐊󰉅󰊔󰐜󰈛󰈓󰎙󰑧󰋦󰍶󰑧󰄊󰑡󰍶󰋅󰑔󰉅󰌎󰐠󰐃󰈉󰠾
󰡴󰚔󰎞󰐃󰈉󰄊󰄕󰄓󰄔󰄖 󰉚󰐺󰘰󰈯 󰠾󰠉
󰡯󰐃󰈉󰐨󰈇 󰈛󰈉󰋦󰒟󰋅󰎞󰈰 󰐤󰐃󰈓󰍜󰐜 󰑜󰋔󰋅󰎞󰐃󰈉 󰑡󰎞󰖌󰔢󰍄󰐃󰈓󰖘 󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉 󰈓󰑔󰐺󰐜󰐑󰎙󰈇 󰠾󰠈
󰡻 󰑡󰎞󰖌󰔢󰍄󰐃󰈉
󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉
- 34 -
https://doi.org/10.35192/jjoas-h.v38i1.651
󰄛 󰈛󰈓󰗎󰌪󰑸󰉅󰐃󰈉
󰠾
󰢃󰖭󰈓󰐠󰖘󰑡󰗎󰌪󰑸󰉅󰐃󰈉󰑃󰏐󰐠󰖭󰈓󰑔󰐃󰐑󰌪󰑸󰉅󰐃󰈉󰐤󰈰 󰠾󰠉
󰡯󰐃󰈉󰊤󰒚󰈓󰉅󰐺󰐃󰈉󰓚󰑸󰌫 󰠾󰠈
󰡻
󰄔
󰋔󰈓󰖹󰉅󰊂󰓶󰈉 󰠾󰠈
󰡻󰈛󰈓󰖹󰉆󰐃󰈉󰈛󰈓󰊀󰋔󰊶󰢃󰍔󰈉 󰠾󰠈
󰡱󰑸󰈰󰋅󰐺󰍔 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰑃󰎼󰑸󰐜󰉮󰊷󰑸󰐠󰐱󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰐑󰗎󰌱󰎀󰈰
󰄕 󰋅󰐺󰍔 󰠾
󰢆󰐊󰍜󰐜󰓶󰠾
󰢆󰐊󰍜󰐜󰉙󰌎󰗰󰓴󰈉󰉮󰊷󰑸󰐠󰐺󰐃󰈉󰋔󰈓󰗎󰉅󰊂󰈉󰐤󰉅󰒟󰏤󰐃󰊷󰓚󰑸󰌫 󰠾󰠈
󰡻󰑧󰑡󰉆󰒟󰋅󰊓󰐃󰈉󰑡󰖌󰔢󰍅󰐺󰐃󰈉󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰈉󰑃󰐜󰎣󰎞󰊓󰉅󰐃󰈉󰑜󰋔󰑧 󰠈
󰡦
󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰋦󰒟󰋅󰎞󰈰
󰄖 󰈛󰈓󰌫󰈉 󰠉
󰡣󰍶󰈉󰑧󰌼󰑧 󰠌
󰡤󰐨󰑧󰊶 󰠾
󰢆󰐊󰍜󰐜󰓺󰐃󰈉󰠾
󰢆󰐊󰍜󰐠󰐃󰈉 󰠈󰠶
󰡭󰊀󰊷󰑸󰐠󰐺󰐃󰈉󰑃󰐜󰒎󰈇󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰑃󰏐󰐠󰖭󰋦󰒟󰋅󰎞󰈰󰢁󰈈󰍬󰋅󰑔󰒟󰉛󰊓󰖹󰐃󰈉󰐨󰈓󰚠󰈉󰊷󰈈
󰊶󰈉󰋦󰍶󰓴󰈉󰈛󰈉󰋔󰋅󰎙
󰄗 󰈛󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰈉󰌷󰍜󰖘󰐘󰈉󰋅󰊔󰉅󰌃󰈉󰑧󰑜󰋅󰊁󰈉󰑧󰑡󰐠󰐊󰍜󰐠󰐃󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰑧󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉 󰠈󰠶
󰡭󰈯󰑡󰐱󰋔󰈓󰎞󰐠󰐊󰐃󰒍󰋦󰊂󰈉󰈛󰈓󰌃󰈉󰋔󰊶󰓚󰈉󰋦󰊀󰈈󰑡󰗎󰐱󰈓󰚴󰐜󰈈
󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰏼󰑸󰍀󰐑󰉆󰐜󰑡󰌃󰈉󰋔󰋅󰐃󰈉󰑠󰋆󰑐󰈓󰑔󰐃󰑧󰈓󰐺󰘍󰈰󰐤󰐃 󰠾󰠉
󰡯󰐃󰈉󰑡󰗎󰘌󰖌󰔢󰊒󰉅󰐃󰈉
󰊥󰐃󰈓󰌰󰐠󰐃󰈉󰈚󰋔󰈓󰌱󰈰󰐨󰈓󰗎󰈯
󰊥󰐃󰈓󰌰󰐠󰐃󰈉 󰠾󰠈
󰡻󰈚󰋔󰈓󰌱󰈰󰒎󰈇󰐤󰑔󰒟󰋅󰐃󰌙󰚔󰐃󰑘󰐱󰈇 󰠈󰠶
󰡭󰎀󰐃󰑷󰐠󰐃󰈉󰍤󰒰󰐠󰊀󰋦󰎞󰖭
󰍤󰊀󰈉󰋦󰐠󰐃󰈉
󰋦󰈱󰑸󰎼󰄊󰊶󰈓󰐠󰊁󰑸󰈯󰈉󰄕󰄓󰄓󰄛
󰑡󰐺󰒰󰍔 󰠾󰠈
󰡻󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉 󰠾󰠈
󰡻󰑜󰊶󰋦󰎀󰐠󰐃󰈉󰌶󰒚󰈓󰌰󰊂 󰠈
󰡯󰊓󰐺󰐜󰑡󰗎󰐊󰍔󰈓󰍶 󰠾
󰡶󰎞󰈰
󰈛󰈓󰗎󰌫󰈓󰖌󰔢󰐃󰈉 󰠾󰠈
󰡻󰋔󰈓󰖹󰉅󰊂󰈉󰑃󰐜󰑜󰋔󰈓󰉅󰊔󰐜
󰐨󰊶󰋔󰓴󰈉󰄊󰋅󰕷󰋔󰈈󰄊󰎨󰑸󰐜 󰠶
󰡣󰐃󰈉󰑡󰍜󰐜󰈓󰊀󰑜󰋔󰑸󰌏󰘡󰐜 󰠶
󰡣󰍕 󰠶
󰡣󰉅󰌎󰊀󰈓󰐜󰑡󰐃󰈓󰌃󰋔.
󰊶󰑸󰐠󰊓󰐜󰄊 󰠾󰠵
󰡲󰐺󰘍󰌎󰙿󰐃󰈉󰄕󰄓󰄓󰄗
󰑡󰗎󰐊󰎞󰍔󰈛󰈉󰋔󰋅󰎙󰋔󰈓󰖹󰉅󰊂󰈉󰈛󰈉󰋦󰎞󰍶 󰠾󰠈
󰡻󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰎔󰋦󰍀󰍤󰄒󰄒󰕷󰋔󰈇󰑡󰐱󰋔󰈓󰎞󰐜󰑡󰖌󰔢󰐠󰍜󰐃󰈉󰑡󰒫󰎀󰐊󰐃󰑡󰌪󰈓󰊂󰄔󰄘󰄔󰄙󰐨󰊶󰋔󰓴󰈉 󰠾󰠈
󰡻󰑡󰐺󰌃
󰄊󰈓󰗎󰐊󰍜󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰋅󰐊󰐃󰑡󰗎󰕷󰔢󰍜󰐃󰈉󰐨󰈓󰐠󰍔󰑡󰍜󰐜󰈓󰊀󰑜󰋔󰑸󰌏󰘡󰐜 󰠶
󰡣󰍕󰑠󰈉󰋔󰑸󰉅󰎼󰊶󰑡󰊁󰑧󰋦󰍀󰈇 󰐨󰊶󰋔󰓴󰈉󰄊󰐨󰈓󰐠󰍔.
󰋅󰐃󰈓󰊂󰄊󰑡󰌏󰙞󰈓󰌏󰙿󰐃󰈉󰄕󰄓󰄔󰄙󰐤󰐊󰍜󰉅󰐃󰈉󰑡󰗎󰍔󰑸󰐱󰍈󰖹󰌱󰐃 󰠾󰠈
󰡮󰊶󰋔󰓴󰈉 󰠾󰠈
󰡯󰍀󰑸󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰎀󰐃󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉
󰠌
󰡤󰈓󰍜󰐃󰈉󰎊󰌰󰐊󰐃󰈛󰈓󰗎󰌫󰈓󰖌󰔢󰐃󰈉󰑜󰊶󰈓󰐠󰐃.
󰄊󰎣󰖌󰋕󰈓󰎙󰋧󰐃󰈓󰖘󰑡󰗎󰕷 󰠉
󰡣󰐃󰈉󰑡󰗎󰐊󰚠󰑡󰐊󰊒󰐜󰄕󰄛
(79)󰄊󰄔󰄖󰄘.
󰠾
󰢃󰍔󰄊󰒎󰋦󰎼󰋕󰄕󰄓󰄕󰄓󰑡󰐊󰊁󰋦󰐠󰐃󰈉󰑡󰖹󰐊󰍀󰒍󰋅󰐃󰑡󰖭󰋅󰐃󰈉󰑸󰐃󰈉󰑡󰐊󰐜󰈓󰍜󰐠󰐃󰈉󰉙󰗎󰐃󰈓󰌃󰓴󰑸󰄒󰖹󰐜󰈈󰋔󰈓󰖹󰉅󰊂󰈉󰈛󰈉󰋦󰎞󰎀󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐃󰈉󰑡󰖌󰔵󰐱󰈓󰉆󰐃󰈉.
󰉮󰄊󰋦󰑐󰋕󰓴󰈉󰑡󰍜󰐜󰈓󰊀󰄊󰑡󰗎󰕷 󰠉
󰡣󰐃󰈉󰑡󰗎󰐊󰚠󰑡󰐊󰊒󰐜󰄖
(186).
󰐨󰑧󰋦󰊂󰈆󰑧󰄊󰒎󰑧󰈓󰎙 󰠌
󰡥󰐃󰈉. (1996).
󰒎󰑸󰕷 󰠉
󰡣󰐃󰈉󰑧 󰠾
󰡴󰎀󰐺󰐃󰈉󰐤󰖌󰔵󰎞󰉅󰐃󰈉󰑧󰋸󰈓󰗎󰎞󰐃󰈉 󰠾󰠈
󰡻󰑜󰡦󰈓󰍜󰐜󰈛󰈓󰑐󰈓󰊒󰈰󰈉
. 󰑡󰖌󰡧󰐠󰐃󰈉󰑸󰐊󰊒󰐱󰓶󰈉󰑜󰋦󰑐󰈓󰎞󰐃󰈉.
󰏼󰈓󰌱󰐱󰄊 󰠈󰠶
󰡭󰎀󰖌 󰠌
󰡥󰐃󰈉󰄕󰄓󰄔󰄛󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰎣󰍶󰑧󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰑧󰈛󰈉󰋦󰎞󰎀󰐊󰐃󰑡󰖌 󰠉
󰡣󰐜󰑸󰏐󰗎󰌎󰐃󰈉󰌶󰒚󰈓󰌰󰊔󰐃󰈉󰢃󰍔󰈛󰈉󰋦󰎞󰎀󰐊󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰍌󰔵󰐱󰋦󰈱󰈇
󰑜󰋦󰎞󰎀󰐊󰐃󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰑡󰖌󰔢󰍅󰐺󰐃󰑡󰗎󰐠󰐊󰍜󰐜󰓺󰐃󰈉󰉮󰊷󰈓󰐠󰐺󰐃󰈉󰑧󰑡󰗎󰐠󰐊󰍜󰐠󰐃󰈉.
󰄊󰑡󰖌󰔵󰕷 󰠉
󰡣󰐃󰈉󰐘󰑸󰐊󰍜󰐃󰈉󰈛󰈓󰌃󰈉󰋔󰊶󰑡󰐊󰊒󰐜󰄗󰄘󰄊
󰄙󰄓󰄘󰄙󰄖󰄕
󰠈󰠶
󰡭󰌎󰊁󰄊 󰠾
󰡴󰚔󰎞󰐃󰈉󰄕󰄓󰄔󰄖
󰑡󰖌 󰠉
󰡣󰐜󰈉󰋔󰈓󰖘󰓺󰐃󰈉󰑧󰑡󰖌 󰠉
󰡣󰐜󰈉󰋔󰈓󰖹󰐃󰈉󰑜󰋦󰎞󰎀󰐃󰈉󰑡󰖘󰈓󰊒󰉅󰌃󰈉󰑡󰖌󰔢󰍅󰐱󰉮󰊷󰈓󰐠󰐱󰐘󰈉󰋅󰊔󰉅󰌃󰈓󰖘󰑜󰋔󰋅󰎞󰐃󰈉󰑧󰑜󰋦󰎞󰎀󰐃󰈉󰐤󰐃󰈓󰍜󰐜󰋦󰒟󰋅󰎞󰈰󰑡󰎙󰊶
󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰏼󰑸󰍀󰑧󰑡󰐺󰒰󰍜󰐃󰈉󰐤󰊒󰊁󰍬󰓺󰉅󰊂󰈓󰖘
󰐨󰊶󰋔󰓴󰈉󰄊󰋅󰕷󰋔󰈈󰄊󰎨󰑸󰐜 󰠶
󰡣󰐃󰈉󰑡󰍜󰐜󰈓󰊀󰑜󰋔󰑸󰌏󰘡󰐜 󰠶
󰡣󰍕󰑠󰈉󰋔󰑸󰉅󰎼󰊶󰑡󰐃󰈓󰌃󰋔.
󰓻󰋅󰖹󰍔󰄊󰒎󰑧󰈓󰐺󰍄󰌏󰐃󰈉󰑧󰄊󰐨󰈓󰌎󰊁󰄊󰒎󰋦󰐠󰍜󰐃󰈉󰄕󰄓󰄔󰄙󰈛󰈓󰗎󰌫󰈓󰖌󰔢󰐃󰈉 󰠾󰠈
󰡻󰐤󰗎󰐊󰍜󰉅󰐃󰈉󰑡󰗎󰍔󰑸󰐱󰍈󰖹󰌱󰐃 󰠾󰠈
󰡯󰍀󰑸󰐃󰈉󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰎀󰐃 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰌙󰘡󰊒󰐃󰈉 󰠶
󰡣󰍝󰉅󰐠󰐃󰞮󰈓󰍜󰖹󰈰 󰠌
󰡤󰈓󰍜󰐃󰈉󰎊󰌰󰐊󰐃.
󰄊󰑡󰗎󰐱󰈓󰌎󰗰󰓵󰈉󰈜󰑸󰊓󰖹󰐊󰐃󰉯󰈓󰊒󰐺󰐃󰈉󰑡󰍜󰐜󰈓󰊀󰑡󰐊󰊒󰐜󰄖󰄓
(8)󰄊󰄔󰄘󰄖󰄓󰄔󰄘󰄘󰄗.
󰏼󰊶󰈓󰍔󰄊 󰠾󰠵
󰡱󰈓󰐺󰐃󰈉󰄕󰄓󰄔󰄔
󰑜󰊶󰋦󰎀󰐠󰐃󰈉󰢃󰍔 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰑃󰍔󰎊󰌏󰛜󰐊󰐃󰎔󰋦󰍀󰑜󰋅󰍜󰖘󰑡󰐱󰋔󰈓󰎞󰐜󰋅󰗎󰎞󰐠󰐃󰈉 󰠾
󰢃󰐜󰈓󰍜󰐃󰈉󰐑󰗎󰐊󰊓󰉅󰐃󰈉󰑡󰎞󰖌󰔢󰍀󰑡󰗎󰐊󰍔󰈓󰍶
 󰐨󰊶󰋔󰓴󰈉󰄊󰋅󰕷󰋔󰈈󰄊󰎨󰑸󰐜 󰠶
󰡣󰐃󰈉󰑡󰍜󰐜󰈓󰊀󰑜󰋔󰑸󰌏󰘡󰐜 󰠶
󰡣󰍕󰑠󰈉󰋔󰑸󰉅󰎼󰊶󰑡󰊁󰑧󰋦󰍀󰈇.
󰠾
󰢃󰍔󰄊󰑡󰐊󰍶󰈉󰑸󰐺󰐃󰈉󰄕󰄓󰄔󰄖
󰎣󰍶󰑧󰊶󰈉󰋦󰍶󰓴󰈉󰈛󰈉󰋔󰋅󰎙󰑧󰋔󰈓󰖹󰉅󰊂󰓶󰈉󰈛󰈉󰋦󰎞󰍶󰐤󰐃󰈓󰍜󰐜󰋦󰒟󰋅󰎞󰈰 󰠾󰠈
󰡻󰑠󰈉󰑸󰉅󰌎󰐜󰑧 󰠾
󰢃󰌫󰈓󰎀󰉅󰐃󰈉󰓚󰈉󰊶󰓴󰈉󰈛󰈉󰊷󰈛󰈉󰋦󰎞󰎀󰐃󰈉󰑡󰖹󰌎󰗰󰋦󰈱󰈇
󰑡󰐠󰐊󰍜󰐠󰐃󰈉 󰠾󰠖
󰡮󰓺󰈱󰑡󰖘󰈓󰊒󰉅󰌃󰓶󰈉󰉮󰊷󰑸󰐠󰐱
󰐨󰊶󰋔󰓴󰈉󰄊󰋅󰕷󰋔󰈈󰄊󰎨󰑸󰐜 󰠶
󰡣󰐃󰈉󰑡󰍜󰐜󰈓󰊀󰑜󰋔󰑸󰌏󰘡󰐜 󰠶
󰡣󰍕󰑠󰈉󰋔󰑸󰉅󰎼󰊶󰑡󰊁󰑧󰋦󰍀󰈇.
- 35 -
https://doi.org/10.35192/jjoas-h.v38i1.651
References
Acar, T., & Kelecioglu, H. (2010). Comparison of Differential Item Functioning Determination
Techniques: HGLM, LR and IRT-LR.
Educational Sciences: Theory and Practice, 10
(2),
639-649.
AERA, APA, & NCME. (1999).
The standards for educational and psychological testing
.
Washington, DC: AERA Publications Sales.
Alquraan, M., & Alkuwaiti. (2017). Differential item functioning in students rating of teaching
effectiveness surveys in higher education according to academic disciplines: Data from a
Saudi university.
Studies Psychological and Educational of J, 4
(11), 780-770.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In
F. M. Lord & M. R. Novick (Eds.),
Statistical theories of mental test scores
(pp. 397-479).
Reading, MA: Addison-Wesley.
Camilli, G., & Shepared, L. (1994).
Methods for identifying bias test item
. Sage Publications.
Chung, W., & Huisu, Y. (2004). Effects of average signed area between two item characteristic
curves and purification procedures on the DIF detection via the Mantel-Hanzel method.
Applied Measurement in Education, 17
(2), 113-144.
Croudace, T., & Brown, A. (2012). Measurement invariance and differential item functioning.
Short Course in Applied Psychometrics, Peterhouse College, 10-12.
Dorans, N., & Holland, E. (1993). DIF detection and description Mantel-Haenszel standardization.
Educational Testing Service
. (QAT24225) ED287526.
Fitzpatrick, A., & Wendy, M. (2001). The effects of test length and sample size on the reliability
and equating of tests composed of constructed response items.
Applied Measurement in
Education, 14
(1), 31-57.
Gabriel, E. L. (2012). Detection and classification of DIF types using parametric and
nonparametric methods: A comparison of the IRT-likelihood ratio test, crossing-SIBTEST,
and logistic regression procedures [Unpublished dissertation]. University of South Florida.
Garre, F., & Vermunt, J. (2006). Avoiding boundary estimates in latent class analysis by Bayesian
posterior mode estimation.
Behaviormetrika, 33
(1), 43-59.
Gierl, M. J., Jodoin, M. G., & Ackerman, T. A. (2000). Performance of Mantel-Haenszel,
Simultaneous Item Bias Test, and logistic regression when the proportion of DIF items is
large [Paper presentation]. Annual Meeting of the American Educational Research
Association (AERA), New Orleans, LA.
Gruijter, D., & Kamp, L. (2005). Statistical test theory for education and psychology. Retrieved
December 30, 2021, from www.leidenuniv.nl/gruijterdnmde.
Hambleton, K., & Rogers, J. (1986). Technical advances in credentialing examinations.
Evaluation
& the Health Professions, 9
(2), 205-229.
Hambleton, R., & Swaminathan, H. (1985).
Item response theory: Principles and application
.
Boston, MA: Kluwek NIJ Publishing.
- 36 -
https://doi.org/10.35192/jjoas-h.v38i1.651
Hambleton, R. (1990). Item response theory: Introduction and bibliography.
Psicothema, 2
(1), 97-
107.
Han, T., & Hambleton, K. (2007). User's manual: WinGen (Center for Educational Assessment
Report No. 642). Amherst, MA: University of Massachusetts, School of Education.
Hanson, A. (1998). Uniform DIF and DIF defined by differences in item response functions.
Journal of Educational and Behavioral Statistics, 23
(2), 112-129.
Haughbrook, R. (2020). Exploring racial bias in standardized assessments and teacher-reports of
student achievement with differential item and test functioning analyses [Doctoral
dissertation]. The Florida State University.
Karami, H., & Salmani Nodoushan, A. (2011). Differential item functioning (DIF): Current
problems and future directions.
Online Submission, 5
(3), 133-142.
Lord, F., & Novick, M. (1980).
Application of item response theory to practical testing problems
.
Hillsdale, NJ: Lawrence Erlbaum Associates.
Pae, I. (2004). Gender effect on reading comprehension with Korean EFL learners.
System, 32
(2),
265-281.
Park, C. (2010). Examining the relationship between differential item functioning and differential
test functioning.
Language Testing, 23
(4), 475-496.
Raju, N., & Ellis, B. (2002). Differential item and test functioning.
Jossey-Bass
, 156–188.
Raquel, M. (2019). The Rasch measurement approach to differential item functioning (DIF)
analysis in language assessment research. In
Quantitative data analysis for language
assessment, 1
, 103-131.
Rebecca, Z., Dorothy, T., & John, M. (1997). Descriptive and inferential procedures for assessing
differential item functioning in polychromous items.
Applied Measurement in Education,
10
(4), 321-344.
Reynolds, R., & Lowe, A. (2009). The problem of bias in psychological testing.
School
Psychology Handbook
, 332-374.
Ryan, E., & Chiu, S. (2001). An examination of item context effects, DIF, and gender DIF.
Applied
Measurement in Education, 14
(1), 73-90.
Schmidt, F., & Hunter, J. (1998). The validity and utility of selection methods in personnel
psychology: Practical and theoretical implications of 85 years of research findings.
Psychological Bulletin, 124
(2), 262-274.
Sijtsma, K., & Hamker, B. T. (2000). A taxonomy of IRT models for ordering of persons and items
using simple sum scores.
Journal of Educational and Behavioral Statistics, 25
(2), 391-415.
Sijtsma, K., & Molenaar, I. (2002).
Introduction to nonparametric item response theory
. Sage
Publications.
Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of
dichotomous item scores.
Applied Psychological Measurement, 22
(3), 3-31.
- 37 -
https://doi.org/10.35192/jjoas-h.v38i1.651
Sijtsma, K., & Verweij, A. C. (1992). Mokken scale analysis: Theoretical considerations and an
application to transitivity tasks.
Applied Measurement in Education, 5
(4), 355-373.
Stark, S., Chernyshenko, O. S., & Drasgow, F. (2004). Examining the effects of differential item
functioning and differential test functioning on selection decisions: When are statistically
significant effects practically important?
Journal of Applied Psychology, 2
(6), 117-135.
Swaminathan, H., & Rogers, J. (1990). Detecting differential item functioning using logistic
regression procedures.
Journal of Educational Measurement, 127
(4), 361-370.
Uiterwijk, H., & Vallen, T. (2005). Linguistic sources of item bias for second-generation
immigrants in Dutch tests.
Language Testing, 22
(2), 211-234.
Van De Vijver, F., & Tanzer, K. (2004). Bias and equivalence in cross-cultural assessment.
European Review of Applied Psychology, 54
(2), 119-135.
Van Der Linden, W. J., & Hambleton, R. K. (1997). Item response theory: Brief history, common
models, and extensions. In
Handbook of modern item response theory
(pp. 1-28). New
York, NY: Springer New York.
Warne, T., Yoon, M., & Price, J. (2014). Exploring the various interpretations of test bias”.
Cultural Diversity and Ethnic Minority Psychology, 20
(4), 570-578.
Williams, S. (1997). The "unbiased" anchor: Bridging the gap between DIF and item bias.
Applied
Measurement in Education, 10
(3), 253-267.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This study explored academic discipline as a source of differential item functioning (DIF) in students’ rating of teaching quality and effectiveness at higher education institutions. Data utilized in this study was collected by Imam Abudalruman Bin Faisal University - KSA. The total number of surveys analyzed for the purpose of this study is 36459 from three colleges: Education, Health, and Engineering. Using Extended Rasch model (Rating Scale Model), the results show that the instrument contains four DIF items. The content of these four items confirm the possibility of considering discipline as a source of DIF items in students evaluation of teaching in higher education. Moreover, the results of the current study show that removing DIF items from the instrument increases construct validity.
Article
Full-text available
This article summarizes the practical and theoretical implications of 85 years of research in personnel selection. On the basis of meta-analytic findings, this article presents the validity of 19 selection procedures for predicting job performance and training performance and the validity of paired combinations of general mental ability (GMA) and the 18 other selection procedures. Overall, the 3 combinations with the highest multivariate validity and utility for job performance were GMA plus a work sample test (mean validity of .63), GMA plus an integrity test (mean validity of .65), and GMA plus a structured interview (mean validity of .63). A further advantage of the latter 2 combinations is that they can be used for both entry level selection and selection of experienced employees. The practical utility implications of these summary findings are substantial. The implications of these research findings for the development of theories of job performance are discussed.
Article
Full-text available
Test bias is a hotly debated topic in society, especially as it relates to diverse groups of examinees who often score low on standardized tests. However, the phrase “test bias” has a multitude of interpretations that many people are not aware of. In this article, we explain five different meanings of “test bias” and summarize the empirical and theoretical evidence related to each interpretation. The five meanings are as follows: (a) mean group differences, (b) differential predictive validity, (c) differential item functioning, (d) differing factor structures of tests, and (e) unequal consequences of test use for various groups. We explain in this article why meanings (a) and (e) are not actual forms of test bias and that there are serious concerns about (b). In our conclusion, we discuss the benefits of standardized testing for diverse examinees and urge readers to be careful and precise in their use of the phrase “test bias.”
Article
Full-text available
With the rising concerns over the fairness of language tests, Differential Item Functioning (DIF) has been increasingly applied in bias analysis. Despite it widespread use in psychometric circles, however, DIF is facing a number of serious problems. This paper is an attempt to shed some light on a number of the issues involved in DIF analysis. Specifically, the paper is focused on four problems: the inter-method indeterminacy, the intra-method indeterminacy, the ad hoc interpretations, and the impact of DIF on validity. In order to orient the reader, the paper also provides a brief introduction the fundamental concepts in DIF analysis.
Article
At the Educational Testing Service, the Mantel-Haenszel procedure is used for differential item functioning (DIF) detection and the standardization procedure is used to describe DIF. This report describes these procedures. First, an important distinction is made between DIF and Impact, pointing the need to compare the comparable. Then, these two contingency table DIF procedures are described in some detail, first in terms of their own origins as DIF procedures, and then from a common framework that points out similarities and differences. The relationship between the Mantel-Haenszel procedure and IRT models in general and the Rasch model, in particular, is discussed. The utility of the standardization approach for assessing differential distractor functioning is described. Several issues in applied DIF analyses are discussed including inclusion of the studied item in the matching variable, and refinement of the matching variable. Future research topics dealing with the matching variable, the studied variable and the group variable are also discussed.
Article
The present study utilized both the IRT-LR (item response theory likelihood ratio) and a series of CFA (confirmatory factor analysis) multi-sample analyses to systematically examine the relationships between DIF (differtial item functioning) and DTF (differential test functioning) with a random sample of 15 000 Korean examinees. Specifically, DIF was detected using the IRT-LR method and the cumulative effect of DIF on DTF was gauged by the multisample analysis technique offered by the LISREL 8.5 program. The results of the current study indicate that item level DIF, once detected, may be carried to the test level bias regardless of the DIF directions, thereby showing mixed evidence to the previous findings reported in the literature. This suggests that the relation of DIF to DTF seems to be much more complex than that reported in the literature and, accordingly, more empirical studies are needed to bridge the gap in the literature about DIF-DTF relationships.
Article
The stochastic ordering of the latent trait by means of the unweighted total score is considered for 10 dichotomous IRT models and 10 polytomous IRT models. The conclusion is that the stochastic ordering property holds for all dichotomous IRT models and for two polytomous IRT models. Also, the invariant item ordering property is considered for the same 20 IRT models. It is concluded that invariant item ordering holds for three dichotomous IRT models and three polytomous IRT models. The person and item ordering results are summarized in a taxonomy of IRT models. Some consequences far practical test construction are briefly discussed.
Article
The purpose of this investigation was to compare the efficacy of three methods for detecting differential item functioning (DIF). The performance of the crossing simultaneous item bias test (CSIBTEST), the item response theory likelihood ratio test (IRT-LR), and logistic regression (LOGREG) was examined across a range of experimental conditions including different test lengths, sample sizes, DIF and differential test functioning (DTF) magnitudes, and mean differences in the underlying trait distributions of comparison groups, herein referred to as the reference and focal groups. In addition, each procedure was implemented using both an all-other anchor approach, in which the IRT-LR baseline model, CSIBEST matching subtest, and LOGREG trait estimate were based on all test items except for the one under study, and a constant anchor approach, in which the baseline model, matching subtest, and trait estimate were based on a predefined subset of DIF-free items. Response data for the reference and focal groups were generated using known item parameters based on the three-parameter logistic item response theory model (3-PLM). Various types of DIF were simulated by shifting the generating item parameters of select items to achieve desired DIF and DTF magnitudes based on the area between the groups' item response functions. Power, Type I error, and Type III error rates were computed for each experimental condition based on 100 replications and effects analyzed via ANOVA. Results indicated that the procedures varied in efficacy, with LOGREG when implemented using an all-other approach providing the best balance of power and Type I error rate. However, none of the procedures were effective at identifying the type of DIF that was simulated.