Article

Australia's recently established predators restore complexity to food webs simplified by extinction

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Since prehistory, humans have altered the composition of ecosystems by causing extinctions and introducing species. However, our understanding of how waves of species extinctions and introductions influence the structure and function of ecological networks through time remains piecemeal. Here, focusing on Australia, which has experienced many extinctions and introductions since the Late Pleistocene, we compared the functional trait composition of Late Pleistocene (130,00–115,000 years before present [ybp]), Holocene (11,700–3,000 ybp), and current Australian mammalian predator assemblages (≥70% vertebrate meat consumption; ≥1 kg adult body mass). We then constructed food webs for each period based on estimated prey body mass preferences. We found that introduced predators are functionally distinct from extinct Australian predators, but they rewire food webs toward a state that closely resembles the Late Pleistocene, prior to the megafauna extinctions. Both Late Pleistocene and current-day food webs consist of an apex predator and three smaller predators. This leads to food web networks with a similar total number of links, link densities, and compartmentalizations. However, this similarity depends on the presence of dingoes: in their absence, food webs become simplified and reminiscent of those following the Late Pleistocene extinctions. Our results suggest that recently established predators, even those implicated in species extinctions and declines, can restore complexity to food webs simplified by extinction.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Motivation Terrestrial predators play key roles in cycling nutrients, as well as limiting prey populations, and shaping the behaviour of their prey. Prehistoric, historic and ongoing declines of the world's predators have reshaped terrestrial ecosystems and are a topic of conservation concern. However, the availability of ecologically relevant predator functional traits is limited, hampering efforts to understand macroecological changes in this ecologically important functional group. Here, we present CarniTraits , a comprehensive open‐access functional trait database of all late Quaternary (~130,000 ybp) terrestrial mammalian predators (149 species, ≥1 kg body mass, ≥50% vertebrate meat consumption). Main Types of Variables Contained Mammalian terrestrial predator functional traits including body mass, diet, scavenging, locomotion, cooperative hunting, hunting habitat, hunting method, bone consumption, temporal activity patterns, brain mass and encephalisation quotient. Spatial Location and Grain Global. Time Period and Grain Late Quaternary (the last ~130,000 years). Major Taxa and Level of Measurement All late Quaternary terrestrial mammalian predators (149 species, ≥1 kg body mass, ≥50% vertebrate meat consumption). Software Format csv.
Article
Full-text available
Linking the species interactions occurring at the scale of local communities to their potential impact at evolutionary timescales is challenging. Here, we used the high‐resolution fossil record of mammals from the Iberian Peninsula to reconstruct a timeseries of trophic networks spanning more than 20 million years and asked whether predator–prey interactions affected regional extinction patterns. We found that, despite small changes in species richness, trophic networks showed long‐term trends, gradually losing interactions and becoming sparser towards the present. This restructuring of the ecological networks was driven by the loss of medium‐sized herbivores, which reduced prey availability for predators. The decrease in prey availability was associated with predator longevity, such that predators with less available prey had greater extinction risk. These results not only reveal long‐term trends in network structure but suggest that prey species richness in ecological communities may shape large scale patterns of extinction and persistence among predators.
Article
Full-text available
Across the last ~50,000 years (the late Quaternary) terrestrial vertebrate faunas have experienced severe losses of large species (megafauna), with most extinctions occurring in the Late Pleistocene and Early to Middle Holocene. Debate on the causes has been ongoing for over 200 years, intensifying from the 1960s onward. Here, we outline criteria that any causal hypothesis needs to account for. Importantly, this extinction event is unique relative to other Cenozoic (the last 66 million years) extinctions in its strong size bias. For example, only 11 out of 57 species of megaherbivores (body mass ≥1,000 kg) survived to the present. In addition to mammalian megafauna, certain other groups also experienced substantial extinctions, mainly large non-mammalian vertebrates and smaller but megafauna-associated taxa. Further, extinction severity and dates varied among continents, but severely affected all biomes, from the Arctic to the tropics. We synthesise the evidence for and against climatic or modern human (Homo sapiens) causation, the only existing tenable hypotheses. Our review shows that there is little support for any major influence of climate, neither in global extinction patterns nor in fine-scale spatiotemporal and mechanistic evidence. Conversely, there is strong and increasing support for human pressures as the key driver of these extinctions, with emerging evidence for an initial onset linked to pre-sapiens hominins prior to the Late Pleistocene. Subsequently, we synthesize the evidence for ecosystem consequences of megafauna extinctions and discuss the implications for conservation and restoration. A broad range of evidence indicates that the megafauna extinctions have elicited profound changes to ecosystem structure and functioning. The late-Quaternary megafauna extinctions thereby represent an early, large-scale human-driven environmental transformation, constituting a progenitor of the Anthropocene, where humans are now a major player in planetary functioning. Finally, we conclude that megafauna restoration via trophic rewilding can be expected to have positive effects on biodiversity across varied Anthropocene settings.
Article
Full-text available
Feral cats (Felis catus) pose a significant global threat to biodiversity, primarily through predation, disease and competition. A key gap in parameterizing models for improving management decisions for feral cat control relates to factors that drive feral cat survival and movement in the wild. Our study objective was to conduct the first continental-scale analysis of survival rates and displacement distances for feral cats. We collated data on 528 feral cats from telemetry studies in naturally-vegetated landscapes across Australia. Using Cox-proportional hazards models, we investigated the effects of sex, presence of larger predators (dingoes, Canis familiaris and introduced foxes, Vulpes vulpes), presence of introduced prey (rabbits, Oryctolagus cuniculus), body mass, landscape productivity and feral cat density on feral cat survival. We also analysed the effects of sex, body mass and landscape productivity on feral cat displacement using linear mixed model analysis. Feral cat survival was positively associated with presence of dingoes and increasing body mass, whereas there was no clear association between feral cat survival and sex, presence of rabbits, or cat density. Presence of foxes had a strong negative effect on feral cat survival, but the hazard ratio was associated with considerable uncertainty. Net displacement of male feral cats was nearly two times further than that of females, and the proportion of feral cats making long-distance movements was greater in landscapes with low productivity. Increasing body mass of feral cats was positively related to net displacement, with heavier cats moving further. Analysis of metadata from telemetry studies can provide valuable insights into wildlife survival rates and movement behaviour. Our findings will help inform the development of effective management strategies and improve feral cat management for biodiversity conservation.
Article
Full-text available
Although humans have long been predators with enduring nutritive and cultural relationships with their prey, seldom have conservation ecologists considered the divergent predatory behavior of contemporary, industrialized humans. Recognizing that the number, strength and diversity of predator-prey relationships can profoundly influence biodiversity, here we analyze humanity’s modern day predatory interactions with vertebrates and estimate their ecological consequences. Analysing IUCN ‘use and trade’ data for ~47,000 species, we show that fishers, hunters and other animal collectors prey on more than a third (~15,000 species) of Earth’s vertebrates. Assessed over equivalent ranges, humans exploit up to 300 times more species than comparable non-human predators. Exploitation for the pet trade, medicine, and other uses now affects almost as many species as those targeted for food consumption, and almost 40% of exploited species are threatened by human use. Trait space analyses show that birds and mammals threatened by exploitation occupy a disproportionally large and unique region of ecological trait space, now at risk of loss. These patterns suggest far more species are subject to human-imposed ecological (e.g., landscapes of fear) and evolutionary (e.g., harvest selection) processes than previously considered. Moreover, continued overexploitation will likely bear profound consequences for biodiversity and ecosystem function.
Article
Full-text available
Context Australia has been a battleground of invasive versus native species for ~200 years. Two of the most impactful invasive species to Australian animal communities are the toxic cane toad (Rhinella marina) and the predatory feral cat (Felis catus). Australia’s native fauna is evolutionarily naïve to both invaders because neither’s taxonomic group is native to the continent. Both invaders have had severe effects on Australian native animal communities including species extinctions, extirpations, and severe population declines, but until now their effects have generally been thought to be independent of one another. Aims We aimed to determine the impacts of invasive cane toads on monitor lizards and feral cats by estimating changes in relative abundance before and after the toad invasion. Methods We studied toad impacts at three sites in the Kimberley region of northern Australia. We used two methods for estimating relative abundance: camera traps and track station data. Data included greater than 4000 trap days and included 7 years over an 11-year period. Key results As expected, invading cane toads rapidly decimated populations of two species of monitor lizards (97–99% declines), including the top-order predatory Varanus panoptes. Unexpectedly, this loss was associated with a >10-fold mean increase in detection rates of cats by 5 years after the loss of V. panoptes, reflecting relative increases of 3.3–8.7 individual cats per site. Conclusions Although some unknown factor may have caused an increase in cats, their similar trophic position and niche to V. panoptes suggests that toads facilitated cats by effectively removing the lizards from the animal community. This interaction likely reflects one type of invasional meltdown, whereby a non-native species (cane toad) facilitated any aspect of another’s (feral cat) invasion (e.g. survival, reproduction, resource acquisition), but the latter has no detected influence on the former (+/0 interaction). Implications Because both invaders cause declines in animal populations and are difficult to control, the potentially synergistic tandem of cane toads and feral cats could have chronic, irreversible effects on animal communities.
Article
Full-text available
1. The mesopredator release theory predicts that the density of subordinate predators will increase as dominant predators decline. Persistent debate around mesopredator release in part reflects the lack of robust, replicated experiments that test this theory, and the use of population indices that confound changes in mesopredator density and detectability. This uncertainty has immediate impacts for conservationists who are faced with managing sympatric invasive predators. 2. We used replicated experimental designs and spatially explicit models to examine whether mesopredator release of the feral cat Felis catus occurs in response to targeted control of the introduced red fox Vulpes vulpes. We surveyed three Control‐Impact paired landscapes in a region with long‐term fox control (1080 poison baiting) and conducted a Before‐After Control‐Impact Paired‐Series experiment in another region. We used fox occurrence as a simple metric of fox populations and estimated feral cat density with spatial mark–resight models. 3. Lethal fox control had varying effects on fox occurrence, consistent with variation in the duration and intensity of poison baiting. Correspondingly, responses in feral cat density ranged from negligible to a 3.7‐fold higher density in fox‐baited landscapes. At a fine spatial scale (200 m²), feral cat density was negatively associated with fox occurrence probability across both regions. These results were consistent with mesopredator release, although uncertainty was high in the region where fox control had only recently commenced. 4. Feral cat detectability also varied across the (artificially manipulated) gradients of fox occurrence probability. In one region, nonlinear models indicated that feral cats had lower detection and increased movement rates when foxes were uncommon, giving way to density suppression at high fox occurrence probabilities. 5. Synthesis and applications. Our study provides replicated, experimental evidence that dominant predator suppression can be associated with a higher mesopredator density. Mesopredator release can manifest as changes in both behaviour and density, distorting inference if these processes are not distinguished. Our results may help explain why fox control does not consistently improve native prey persistence, suggesting integrated pest management may be necessary to improve conservation outcomes.
Article
Full-text available
Food webs influence ecosystem diversity and functioning. Contemporary defaunation has reduced food web complexity, but simplification caused by past defaunation is difficult to reconstruct given the sparse paleorecord of predator-prey interactions. We identified changes to terrestrial mammal food webs globally over the past ~130,000 years using extinct and extant mammal traits, geographic ranges, observed predator-prey interactions, and deep learning models. Food webs underwent steep regional declines in complexity through loss of food web links after the arrival and expansion of human populations. We estimate that defaunation has caused a 53% decline in food web links globally. Although extinctions explain much of this effect, range losses for extant species degraded food webs to a similar extent, highlighting the potential for food web restoration via extant species recovery.
Article
Full-text available
Apex predators structure ecosystems by hunting mesopredators and herbivores. Their ecological influence is determined not only by the number of animals they kill, but also by how prey alter their behaviours to reduce risk. Predation risk is variable in space and time creating a landscape of fear. In Australia, dingoes hunt red foxes and suppress their populations. As both predators are commonly subjected to eradication programs, the question arises whether humans alter the risk dingoes pose to foxes and in turn alter the foxes' avoidance behaviours. We studied the spatio-temporal activity patterns and wariness behaviours of foxes and dingoes at sites where they were protected (predator friendly), where they were persecuted (predator persecuted), and at sites where foxes were persecuted, and dingoes had been eradicated (dingo eradicated). The landscape of fear hypothesis predicts that foxes will be the most spatiotemporally restricted and most fearful at predator friendly sites, and least restricted and fearful at dingo eradicated sites. We found that fox occupancy was highest at dingo eradicated sites; and that they avoided times of heightened dingo activity at predator friendly sites more than at predator persecuted sites. Contrary to predictions, foxes were the least fearful (lowest frequency of cautious and vigilant behaviour) and most social (highest frequency of social interactions) at predator friendly sites. Our findings suggest that in the absence of persecution, mesopredators living with socially-stable apex predators can anticipate and avoid risk, reducing the need for constant vigilance (i.e. fear). Where predators are protected, predator avoidance may be driven by knowledge rather than fear alone.
Article
Full-text available
Apex predators structure ecosystems by hunting mesopredators and herbivores. These trophic cascades are driven not only by the number of animals they kill, but also by how prey alter their behaviors to reduce risk. The different levels of risk navigated by prey has been likened to a “landscape of fear.” In Australia, dingoes are known to suppress red fox populations, driving a trophic cascade. However, most of what we know of this relationship comes from circumstances where predators are persecuted, which can affect their social and trophic interactions. Utilizing camera traps, we monitored fox behavior when accessing key resource points used by territorial dingoes, in a region where both predators are protected. We predicted that foxes would avoid and be more cautious in areas of high dingo activity. Indeed, foxes avoided directly encountering dingoes. However, contrary to our expectations, foxes were not more cautious or vigilant where dingo activity was high. In fact, fox activity and scent-marking rates increased where dingo scent-marking was concentrated. Further, foxes were increasingly confident with increasing levels of conspecific activity. Our results suggest that responses to the threat of predation are more complex than fear alone. In socially stable conditions, it is possible that prey may develop knowledge of their predators, facilitating avoidance, and reducing fear.
Article
Full-text available
Background Morphological convergence is a fundamental aspect of evolution, allowing for inference of the biology and ecology of extinct species by comparison with the form and function of living species as analogues. The thylacine ( Thylacinus cynocephalus ), the iconic recently extinct marsupial, is considered a classic example of convergent evolution with the distantly related placental wolf or dog, though almost nothing is actually known regarding its ecology. This lack of data leads to questions regarding the degree of convergence with, and the similarity of, the functional ecology of the thylacine and the wolf/dog. Here, we examined the cranium of the thylacine using 3D geometric morphometrics and two quantitative tests of convergence to more precisely determine convergent analogues, within a phylogenetically informed dataset of 56 comparative species across 12 families of marsupial and placental faunivorous mammals. Using this dataset, we investigated patterns of correlation between cranial shape and diet, phylogeny, and relative prey size across these terrestrial faunivores. Results We find a correlation between cranial, facial, and neurocranial shape and the ratio of prey-to-predator body mass, though neurocranial shape may not correlate with prey size within marsupials. The thylacine was found to group with predators that routinely take prey smaller than 45% of their own body mass, not with predators that take subequal-sized or larger prey. Both convergence tests find significant levels of convergence between the thylacine and the African jackals and South American ‘foxes’, with lesser support for the coyote and red fox. We find little support for convergence between the thylacine and the wolf or dog. Conclusions Our study finds little support for a wolf/dog-like functional ecology in the thylacine, with it instead being most similar to mid-sized canids such as African jackals and South American ‘foxes’ that mainly take prey less than half their size. This work suggests that concepts of convergence should extend beyond superficial similarity, and broader comparisons can lead to false interpretations of functional ecology. The thylacine was a predator of small to mid-sized prey, not a big-game specialist like the placental wolf.
Article
Full-text available
Motivation A species’ diet is central to understanding many aspects of its biology, including its behaviour, movement, and ecological niche. The diets of terrestrial carnivorous mammals, defined here as species primarily consuming other mammals (hereafter, mammal‐consumers), have been extensively studied and can vary in the proportion of different food types, and species, consumed across their geographic ranges. Accessibility to data capturing such variation in diets of mammal‐consumers across the variety of ecosystems they occur in would provide valuable information for conservation, and open research avenues for macroevolution and macroecology. However, data on mammal‐consumer diets across their geographic ranges have not been systematically collated. Here, we present CarniDIET (version 1.0), an open‐access database containing quantitative data on the diets of terrestrial mammal‐consumers collated from the literature. Main types of variable contained Diet records capturing the percentage of mammalian prey, to the highest taxonomic resolution available, and non‐mammalian food types (e.g., birds, invertebrates) in the diets of mammal‐consumers at specific sites and times. Associated data with each diet record include, where available, age and sex of mammal‐consumer, sample size, sample origin, and quantification method as well as spatial and temporal variables including dates, season, study site, altitude and coordinates. Spatial location and grain Global, terrestrial. The spatial grain varies among sites from 0.03 to 100,000 km ² , with a median of 170 km ² . Study centroids are provided as latitude‐longitude coordinates. Time period and grain Original diet samples were collected between 1933 and 2017, with half of studies collected between 1994 and 2008. Studies summarize diets from 1 month to 66 years, with a median of 1 year. Major taxa and level of measurement Terrestrial carnivorous mammals that primarily consume other mammals (103 species). Studies generally represent species’ population averages, although can include demographic breakdowns.
Article
Full-text available
Ancestral dingoes arrived in Australia at some time, or times, during the Holocene, heralding a period of long and uneasy coexistence with the human inhabitants of the continent. For the first Australians, dingoes became a valued and integral part of the culture but also exacted diverse social and economic costs. For early Europeans and later arrivals, dingoes were alternately revered for their strength and intelligence or feared and reviled for their attacks on livestock. These disparate views have scarcely changed in 232 years; if anything, the schism in perspectives about the dingo has widened as more has been discovered about this divisive and still enigmatic animal. Here, we show that current arguments about the dingo have deep origins by tracing the history of debate about the taxon’s name, when dingoes arrived in Australia, whether they are native or introduced, the early effects of dingoes on native fauna, and their current impacts as a ‘biodiversity regulator’ and destroyer of livestock. We suggest that some debates concerning the dingo will be resolved when more evidence is gained or new discoveries are made, whereas other debates will progress only when proponents and protagonists are able to agree on a research agenda and on thresholds for interpretation of the results that the agenda produces. Such new evidence, and new collaborative thinking, should provide a more robust underpinning for when, where and how dingoes are conserved and managed in future.
Article
Full-text available
Introductions of species by humans are causing the homogenization of species composition across biogeographic barriers1–3. The ecological and evolutionary consequences of introduced species derive from their effects on networks of species interactions4,5, but we lack a quantitative understanding of the impacts of introduced species on ecological networks and their biogeographic patterns globally. Here we address this data gap by analysing mutualistic seed-dispersal interactions from 410 local networks, encompassing 24,455 unique pairwise interactions between 1,631 animal and 3,208 plant species. We show that species introductions reduce biogeographic compartmentalization of the global meta-network, in which nodes are species and links are interactions observed within any local network. This homogenizing effect extends across spatial scales, decreasing beta diversity among local networks and modularity within networks. The prevalence of introduced interactions is directly related to human environmental modifications and is accelerating, having increased sevenfold over the past 75 years. These dynamics alter the coevolutionary environments that mutualists experience⁶, and we find that introduced species disproportionately interact with other introduced species. These processes are likely to amplify biotic homogenization in future ecosystems⁷ and may reduce the resilience of ecosystems by allowing perturbations to propagate more quickly and exposing disparate ecosystems to similar drivers. Our results highlight the importance of managing the increasing homogenization of ecological complexity.
Article
Full-text available
Where wild carnivores such as the Australian dingo interact with and impact on livestock enterprises, lethal control and landscape-scale exclusion are commonly employed. However, interest in alternative non-lethal management approaches has recently increased. This is evidenced by several reviews of non-lethal methods that can be said to be working toward improved coexistence. Nevertheless, and despite centuries of conflict, our non-lethal human-wildlife coexistence toolkit remains remarkably deficient. Innovation and evaluation of non-lethal methods should be prioritised to ensure that the economic, ecological, cultural and intrinsic values of dingoes are retained, while minimising the economic and emotional costs of conflict with livestock producers. In this paper we summarise some of the practical tools that might be effective in relation to the dingo, particularly those yet to be formally investigated, and discuss some of the possible hurdles to implementation. We conclude by suggesting pathways for human-dingo coexistence, and the steps necessary for appropriately evaluating non-lethal tools.
Article
Full-text available
Significance Humans have caused extinctions of large-bodied mammalian herbivores over the past ∼100,000 y, leading to cascading changes in ecosystems. Conversely, introductions of herbivores have, in part, numerically compensated for extinction losses. However, the net outcome of the twin anthropogenic forces of extinction and introduction on herbivore assemblages has remained unknown. We found that a primary outcome of introductions has been the reintroduction of key ecological functions, making herbivore assemblages with nonnative species more similar to preextinction ones than native-only assemblages are. Our findings support calls for renewed research on introduced herbivore ecologies in light of paleoecological change and suggest that shifting focus from eradication to landscape and predator protection may have broader biodiversity benefits.
Article
Full-text available
Apex predators can have substantial and complex ecological roles in ecosystems. However, differences in species‐specific traits, population densities, and interspecific interactions are likely to determine the strength of apex predators’ roles. Here we report complementary studies examining how interactions between predator per capita metabolic rate and population density influenced the biomass, population energy use, and ecological effects of apex predators on their large mammalian prey. We first investigated how large mammal prey resources and field metabolic rates of terrestrial apex predators, comprising large mammals and the Komodo dragon (Varanus komodoensis), influenced their biomass densities and population energy use requirements. We next evaluated whether Komodo dragons, like apex mammalian predators, exerted top‐down regulation of their large mammal prey. Comparison of results from field studies demonstrates that Komodo dragons attain mean population biomass densities that are 5.75−231.82 times higher than that of apex mammalian predator species and their guilds in Africa, Asia, and North America. The high biomass of Komodo dragons resulted in 1.96−108.12 times greater population energy use than that of apex mammalian predators. Nevertheless, substantial temporal and spatial variation in Komodo dragon population energy use did not regulate the population growth rates of either of two large mammal prey species, rusa deer (Rusa timorensis) and wild pig (Sus scrofa). We suggest that multiple processes weaken the capacity of Komodo dragons to regulate large mammal prey populations. For example, a low per capita metabolic rate requiring an infrequent and inactive hunting strategy (including scavenging), would minimize lethal and nonlethal impacts on prey populations. We conclude that Komodo dragons differ in their predatory role from, including not being the ecological analogs of, apex mammalian predators.
Article
Full-text available
Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so‐called non‐native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science.
Article
Full-text available
Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.
Article
Full-text available
The world's ecosystems are experiencing unparalleled rates of biodiversity change, with invasive species implicated as one of the drivers that restructure local assemblages. Here we focus on the processes leading to biodiversity change in a biodiversity hotspot, the Brazilian Cerrado. The null expectation that invasion leads to increase in local species richness is supported by our investigation of the grass layer in two key habitats (campo sujo and campo úmido). Our analysis uncovered a linear relationship between total richness and invasive richness at the plot level. However, because the invasive species—even though few in number—are widespread, their contribution to local richness (α-diversity) is offset by their homogenizing influence on composition (β-diversity). We thus identify a mechanism that can help explain the paradox that species richness is not declining in many local assemblages, yet compositional change is exceeding the predictions of ecological theory. As such, our results emphasize the importance of quantifying both α-diversity and β-diversity in assessments of biodiversity change in the contemporary world.
Article
Full-text available
Climate change is asymmetrically altering environmental conditions in space, from local to global scales, creating novel heterogeneity. Here, we argue that this novel heterogeneity will drive mobile generalist consumer species to rapidly respond through their behaviour in ways that broadly and predictably reorganize — or rewire — food webs. We use existing theory and data from diverse ecosystems to show that the rapid behavioural responses of generalists to climate change rewire food webs in two distinct and critical ways. First, mobile generalist species are redistributing into systems where they were previously absent and foraging on new prey, resulting in topological rewiring — a change in the patterning of food webs due to the addition or loss of connections. Second, mobile generalist species, which navigate between habitats and ecosystems to forage, will shift their relative use of differentially altered habitats and ecosystems, causing interaction strength rewiring — changes that reroute energy and carbon flows through existing food web connections and alter the food web’s interaction strengths. We then show that many species with shared traits can exhibit unified aggregate behavioural responses to climate change, which may allow us to understand the rewiring of whole food webs. We end by arguing that generalists’ responses present a powerful and underutilized approach to understanding and predicting the consequences of climate change and may serve as much-needed early warning signals for monitoring the looming impacts of global climate change on entire ecosystems.
Article
Full-text available
The Australian desert ecosystem coevolved with humans over the course of fifty millennia, yet our understanding of the place of humans within the ecosystem is only now beginning to deepen; recent research suggests that the removal of Aboriginal people from homelands precipitated rapid ecosystem remodeling. We suggest that network-based approaches are instrumental in broadening our understanding of humans in ecosystems, so apply these approaches to examine nomadic-era ecosystems (when Aboriginal people lived exclusive foraging-based lifeways) and contemporary-era ecosystems (when Aboriginal people live a mixed-based economy lifestyle). Using the approach of food web modeling we explicitly place Martu Aboriginal foragers within the overall ecosystem of the Western Desert. By linking humans to the other biota in the desert, examining each species as nodes in a network and each consumption link as edges in the network, we can better understand the ways the network connectedness shifts between nomadic-era and contemporary-era food webs. Using network randomization simulations we show that the contemporary food webs deviate significantly from the nomadic era food webs, suggesting a key role of humans as “knitters” of the ecosystem. This work has implications for research on resilient ecosystems, both within Australia and beyond, and suggests that humans have significant roles to play in sustainability and resilience.
Article
Full-text available
Data needed for macroecological analyses are difficult to compile and often hidden away in supplementary material under non-standardized formats. Phylogenies, range data, and trait data often use conflicting taxonomies and require ad hoc decisions to synonymize species or fill in large amounts of missing data. Furthermore, most available data sets ignore the large impact that humans have had on species ranges and diversity. Ignoring these impacts can lead to drastic differences in diversity patterns and estimates of the strength of biological rules. To help overcome these issues, we assembled PHYLACINE, The Phylogenetic Atlas of Mammal Macroecology. This taxonomically integrated platform contains phylogenies, range maps, trait data, and threat status for all 5,831 known mammal species that lived since the last interglacial (~130,000 years ago until present). PHYLACINE is ready to use directly, as all taxonomy and metadata are consistent across the different types of data, and files are provided in easy-to-use formats. The atlas includes both maps of current species ranges and present natural ranges, which represent estimates of where species would live without anthropogenic pressures. Trait data include body mass and coarse measures of life habit and diet. Data gaps have been minimized through extensive literature searches and clearly labelled imputation of missing values. The PHYLACINE database will be archived here as well as hosted online so that users may easily contribute updates and corrections to continually improve the data. This database will be useful to any researcher who wishes to investigate large-scale ecological patterns. Previous versions of the database have already provided valuable information and have, for instance, shown that megafauna extinctions caused substantial changes in vegetation structure and nutrient transfer patterns across the globe.
Article
Full-text available
Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction of ecological systems – such as communities – through networks of interactions between their components indeed provides a way to summarize this information with single objects. The methodological framework derived from graph theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on established ecological theories as well as tools to address new challenges. However, prior to using these methods to test ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by providing a review of the tools that have been developed so far, with – what we believe to be – their appropriate uses and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks and how to build them in order to summarize ecological information of different types, we then classify methods and metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a community yields different network structures (e.g., more or less dense, modular or nested), how different measures can be used to describe and quantify these emerging structures, and how to compare communities based on these differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional and dynamic roles of species based on their position in the network and the organization of their interactions as well as associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new methodological developments to address novel ecological questions.
Article
Full-text available
Recent calls for the reintroduction of functionally important animal species are motivated by a desire to restore ecological function, but overlook the ecological roles performed by humans. Here, we consider humans in ecological context, exploring our roles in the maintenance and restoration of ecosystem function.
Article
Full-text available
The dingo (Canis dingo or C. familiaris, including hybrids with feral dogs) is the apex carnivore on mainland Australia. Fifteen non-native ungulate species have established wild populations in Australia. Dingoes are managed to reduce impacts on domestic ungulates, and introduced wild ungulates are managed to reduce impacts on natural ecosystems and to minimise competition with domestic ungulates. There is speculation about the extent to which (1) dingoes limit the abundances of introduced wild ungulates, and (2) introduced wild ungulates sustain dingo populations. We reviewed the literature to identify potential ecological interactions between dingoes and introduced wild ungulates, and to synthesise evidence for interactions between dingoes and each ungulate species (including the percentage frequency occurrence (%FO) of ungulates in dingo diets). Eleven of the 15 ungulate species were recorded in the diet of dingoes, with the highest %FO occurrences reported for feral goats (73%) and cattle (60%). Two studies concluded that dingoes reduced ungulate abundances (feral goat (Capra hircus) and feral donkey (Equus asinus)), and two studies concluded that dingoes did not regulate feral pig (Sus scrofa) abundances. A fifth study concluded that dingoes exhibited a Type III functional response to increasing sambar deer (Cervus unicolor) abundances. A sixth study concluded that dingoes made relatively little use of hunter-shot sambar deer carcasses. We propose that interactions between dingoes and introduced wild ungulates depend on the sex-age classes vulnerable to dingo predation, dingo pack sizes, the availability of escape terrain for ungulates and the availability of alternative foods for dingoes. The interplay between environmental conditions and the population growth rate of ungulates, and hence their ability to sustain losses from predation, could also be important. We predict that dingoes will have most impact on the abundance of smaller ungulate species and neonates.
Article
Full-text available
Rewilding encompasses management actions such as reintroductions and translocations with the purpose of restoring ecological processes and ecosystem functions that were lost when species were locally extirpated. The success of a species introduction is conditioned by multiple factors, in particular, ecological interactions. To predict the fate of the introduced population and the community-level outcomes of the introduction, species interaction patterns need to be considered. Here I propose that ecological network models can help in rewilding projects in at least three ways. First, combining ecological information and probabilistic models it is possible to infer the most likely ways whereby the introduced species will integrate the community and which will be its role in the topology of the food web. Second, by determining the species more likely to interact directly or indirectly with the introduced species, it is possible to identify those species that may affect the success of the introduction and those that are more likely to be affected. Third, by constructing potential interaction networks representing the rewilding scenario, one can infer the possible ways by which the overall structure of the network will change and thus devise more efficient plans to monitor the community. Network models can be an important asset in rewilding, helping in feasibility and risk assessment as well as in monitoring the consequences after species release.
Article
Full-text available
The time of arrival of people in Australia is an unresolved question. It is relevant to debates about when modern humans first dispersed out of Africa and when their descendants incorporated genetic material from Neanderthals, Denisovans and possibly other hominins. Humans have also been implicated in the extinction of Australia’s megafauna. Here we report the results of new excavations conducted at Madjedbebe, a rock shelter in northern Australia. Artefacts in primary depositional context are concentrated in three dense bands, with the stratigraphic integrity of the deposit demonstrated by artefact refits and by optical dating and other analyses of the sediments. Human occupation began around 65,000 years ago, with a distinctive stone tool assemblage including grinding stones, ground ochres, reflective additives and ground-edge hatchet heads. This evidence sets a new minimum age for the arrival of humans in Australia, the dispersal of modern humans out of Africa, and the subsequent interactions of modern humans with Neanderthals and Denisovans.
Article
Full-text available
Looking back to move forward The current impacts of humanity on nature are rapid and destructive, but species turnover and change have occurred throughout the history of life. Although there is much debate about the best approaches to take in conservation, ultimately, we need to permit or enhance the resilience of natural systems so that they can continue to adapt and function into the future. In a Review, Barnosky et al. argue that the best way to do this is to look back at paleontological history as a way to understand how ecological resilience is maintained, even in the face of change. Science , this issue p. eaah4787
Article
Full-text available
Significance Invasive mammalian predators are arguably the most damaging group of alien animal species for global biodiversity. Thirty species of invasive predator are implicated in the extinction or endangerment of 738 vertebrate species—collectively contributing to 58% of all bird, mammal, and reptile extinctions. Cats, rodents, dogs, and pigs have the most pervasive impacts, and endemic island faunas are most vulnerable to invasive predators. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.
Article
Full-text available
How and when dingoes arrived in Oceania poses a fascinating question for scientists with interest in the historical movements of humans and dogs. The dingo holds a unique position as top terrestrial predator of Australia and exists in a wild state. In the first geographical survey of genetic diversity in the dingo using whole mitochondrial genomes, we analysed 16,428 bp in 25 individuals from five separate populations. We also investigated 13 nuclear loci to compare with the mitochondrial population history patterns. Phylogenetic analyses based upon mitochondrial DNA and nuclear DNA support the hypothesis that there are at least two distinct populations of dingo, one of which occurs in the northwest and the other in the southeast of the continent. Conservative molecular dating based upon mitochondrial DNA suggest that the lineages split approximately 8300 years before present, likely outside Australia but within Oceania. The close relationship between dingoes and New Guinea Singing Dogs suggests that plausibly dingoes spread into Australia via the land bridge between Papua New Guinea and Australia although seafaring introductions cannot be rejected. The geographical distribution of these divergent lineages suggests there were multiple independent dingo immigrations. Importantly, the observation of multiple dingo populations suggests the need for revision of existing conservation and management programs that treat dingoes as a single homogeneous population.
Article
Full-text available
The importance of a species is correlated with its topological properties in a food web. Studies of keystone species provide the valuable theory and evidence for conservation ecology, biodiversity, habitat management, as well as the dynamics and stability of the ecosystem. Comparing with biological experiments, network methods based on topological structure possess particular advantage in the identification of keystone species. In present study, we quantified the relative importance of species in Carpinteria Salt Marsh food web by analyzing five centrality indices. The results showed that there were large differences in rankings species in terms of different centrality indices. Moreover, the correlation analysis of those centralities was studied in order to enhance the identifying ability of keystone species. The results showed that the combination of degree centrality and closeness centrality could better identify keystone species, and the keystone species in the CSM food web were identified as, Stictodora hancocki, small cyathocotylid, Pygidiopsoides spindalis, Phocitremoides ovale and Parorchis acanthus.
Article
Full-text available
This paper reviews the impacts of three species of introduced mammalian predators on native fauna in Australia. The feral cat Felis catus, introduced over 200 years ago, is linked with early continental extinctions of up to seven species of mammals, regional and insular extinctions of many more species of mammals and birds, and the failure of management programs attempting to reintroduce threatened native species to parts of their former ranges. Evidence for cat-impact is largely historical and circumstantial, but supported by observations that afflicted native species are, or were, small (<200 g) occupants of open habitat and hence likely to be especially vulnerable to cat predation. The red fox Vulpes vulpes was released successfully in 1871. Its subsequent spread into all except parts of arid and tropical Australia coincided with local and regional declines of medium-sized (450 - 5,000 g) mammals, birds and chelid tortoises. The fox has also created recent failures of many management attempts to recover threatened native species. Unequivocal demonstration of fox-impact has been obtained in removal experiments, especially on rock-wallables Petrogale lateralis. The dingo Canis lupus dingo, introduced 3,500-4,000 years ago, probably caused the extinction of the thylacine Thylacinus cynocephalus and Tasmanian devil Sarcophilus harrisii on mainland Australia. In effectively suppresses extant populations of large mammals, such as kangaroos, and emus, over large areas. Impacts of all three predators are wrought primarily by direct predation. Negative impacts appear to be increased in spatially fragmented forests where native species are restricted to remnant vegetation, and in arid landscapes when native species become restricted temporarily to scattered oases during drought. Alternative prey especially rabbits Oryctolagus cuniculus, enhance negative impacts on native species by supporting large populations of the predators. It is concluded that feral cats, and especially foxes have major negative impacts on certain small and medium-sized native vertebrates in Australia, whereas dingoes have major negative impacts on large species. Dingoes could have positive effects on smaller native species if they significantly suppress populations of foxes and cats. Further quantification of both the direct and indirect in pacts of the three predators on native fauna is needed and should be obtained from experimental field studies.
Article
Full-text available
Food webs are networks of feeding (trophic) interactions among species. As any other network approach, research on food webs focuses its analysis on the structure of direct and indirect interactions among diverse species, rather than looking at the particularities of certain taxa. In recent times, scholars have collected an impressive amount of empirical food-web data to study present day terrestrial and aquatic habitats.More restrictively, this approach has also been applied to trophic interactions represented in the fossil record of extinct ecosystems. Nevertheless, to our knowledge, none of them has addressed the role played by the different Pleistocene hominin species as part of such food-webs. In this work, we aim at filling this gap by focusing on the Early and Middle Pleistocene paleo-communities in Western Eurasia. Our goal is to improve our understanding on changes experienced by large mammals' interactions during this period, and shed some light on the influence of and on Homo species of those changes.We have constructed up to 27 paleo food-webs from the archaeo-paleontological record of European assemblages, covering from the Middle Villafranchian to the Late Galerian. Only large mammals have been considered, including a couple of Homo species that are present in 8 food-webs. Then, we have developed a two-steps analysis. First, we have calculated the main structural features of all the networks, and have compared them across geographical areas, periods and cases with and without Homo species. Second, we have calculated different structural centrality measures in order to assess the relevance of Homo species in their corresponding food-webs.The obtained results show that the Pleistocene food webs under study shared basic features with modern food webs, although differences in the values of some parameters might be significant. Moreover, when comparing the networks across periods, we found a marked change that could be related to the Mid-Pleistocene Revolution. Finally, our results also highlight the trophic position of hominins in the web as a central species that channeled energy fluxes.
Article
Full-text available
Significance The island continent of Australia harbors much of the world’s most distinctive biodiversity, but this review describes an extent of recent and ongoing loss of its mammal fauna that is exceptionally high and appreciably greater than previously recognized. The causes of loss are dissimilar to those responsible for most biodiversity decline elsewhere in the world.
Article
Full-text available
The dingo (Canis lupus dingo and hybrids) is the top mammalian predator on the Australian mainland and is thought to control and suppress populations of native herbivores and smaller mesopredators, including the introduced feral cat (Felis catus). Dingoes have been persecuted as a threat to domestic livestock, and local population decreases have been linked to increasing mesopredator populations, which in turn may cause the decline of small native mammals. There is little data on the dingo's dietary composition in northern Australia. We examined the diet of dingoes in north-eastern Queensland via scat collection and analysis. A total of 178 scats were examined between 1994 and 2000, comprised of 185 prey items and representing 21 discrete prey types. Native mammal prey was the most frequent dietary component (69.7%), with large-to medium-sized macropods (Macropus spp. and Wallabia bicolor) present in the majority of samples (51.1%). Critical Weight Range species were found in 18.0% of the records. Introduced species such as the European hare/rabbit (Lepus capensis/Oryctolagus cuniculus) and cattle (Bos taurus) were found in smaller amounts (14.6 and 10.1%, respectively). These results suggest that dingoes prey considerably on large-to medium-sized macropods in our study area (north-eastern Australia). Dingo diet tends to differ regionally where dingoes prey on native species that are locally common or abundant. Finally, the diets of the dingo and feral cat do not appear to considerably overlap in our study area, which may have implications for mesopredator suppression.
Article
Most terrestrial large mammals went extinct on different continents at the end of the Pleistocene, between 50,000 and 10,000 years ago. Besides the loss in species diversity and the truncation of body mass distributions, those extinctions were even more impactful to interaction diversity. Along with each extinction, dozens of ecological interactions were lost, reorganizing species interaction networks, which attained species-poor configurations with low functional redundancy. Extinctions of most large herbivores impacted energy flow and the rates of nutrient cycling, reconfiguring ecosystem-level networks. Because large mammals have high mobility, their loss also shortened seed-dispersal distance and reduced nutrient diffusivity, disrupting spatial networks. This review examines the recent advances in understanding how different types of ecological networks have been restructured by megafaunal extinctions and how this reorganization affected ecosystem functions. ▪ Megafaunal extinctions resulted in the loss of multiple ecological interactions in terrestrial systems. ▪ Interaction loss reshaped different types of ecological networks including food webs and spatial networks. ▪ The reorganization of ecological networks changed how terrestrial ecosystems are structured and function. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Predator-prey ecology and the study of animal cognition and culture have emerged as independent disciplines. Research combining these disciplines suggests that both animal cognition and culture can shape the outcomes of predator-prey interactions and their influence on ecosystems. We review the growing body of work that weaves animal cognition or culture into predator-prey ecology, and argue that both cognition and culture are significant but poorly understood mechanisms mediating how predators structure ecosystems. We present a framework exploring how previous experiences with the predation process creates feedback loops that alter the predation sequence. Cognitive and cultural predator-prey ecology offers ecologists new lenses through which to understand species interactions, their ecological consequences, and novel methods to conserve wildlife in a changing world.
Article
This note updates the list of extinct Australian terrestrial mammal species and subspecies and, from published scientific literature, reports 40 species and six subspecies that are presumed to have become extinct since European settlement of Australia.
Article
Globally, massive carnivore guild extirpations have led to trophic downgrading and compromised ecosystem services. However, the complexity of multi-carnivore food webs complicates accurate identification of species interactions and community organization. Here, we used fecal DNA metabarcoding to investigate three communities that together encompass eight large- and meso-carnivore species and their 44 prey taxa of the Qinghai–Tibet Plateau (QTP), one of the last places on Earth that still harbors intact carnivore assemblages. Quantitative food-web analyses revealed pronounced interspecific variations in the carnivores’ prey compositions and dietary partitioning both between and within guilds. Additionally, body masses of the carnivores and their prey exhibited consistent hump-shaped correlations across communities. Overall, differences in prey diversity, size category, and proportional utilization among the carnivore species result in trophic niche segregation that likely promotes carnivore coexistence in the harsh QTP environment. Network structure analyses detected significant modularity in all food webs but nestedness in only one. Furthermore, network characterization identified pikas (Ochotona spp.), bharal (Pseudois nayaur), and domestic yak (Bos grunniens) as potential keystone prey across the areas. Our results paint a holistic and detailed picture of the QTP carnivore assemblages’ trophic networks and demonstrate that the combined use of the molecular dietary approach and network analysis can generate structural insights into carnivore coexistence and can identify functionally important species in complex communities. Such knowledge can help safeguard carnivore guild integrity and enhance community resilience to environmental perturbations in the sensitive QTP ecosystems.
Article
The conversion of natural ecosystems into human-modified landscapes (HMLs) is the main driver of biodiversity loss in terrestrial ecosystems.¹,²,³ Even when species persist within habitat remnants, populations may become so small that ecological interactions are functionally lost, disrupting local interaction networks.⁴,⁵ To uncover the consequences of land use changes toward ecosystem functioning, we need to understand how changes in species richness and abundance in HMLs⁶,⁷,⁸ rearrange ecological networks. We used data from forest vertebrate surveys and combined modeling and network analysis to investigate how the structure of predator-prey networks was affected by habitat insularization induced by a hydroelectric reservoir in the Brazilian Amazonia.⁹ We found that network complexity, measured by interaction diversity, decayed non-linearly with decreasingly smaller forest area. Although on large forest islands (>100 ha) prey species were linked to 3–4 potential predators, they were linked to one or had no remaining predator on small islands. Using extinction simulations, we show that the variation in network structure cannot be explained by abundance-related extinction risk or prey availability. Our findings show that habitat loss may result in an abrupt disruption of terrestrial predator-prey networks, generating low-complexity ecosystems that may not retain functionality. Release from predation on some small islands may produce cascading effects over plants that accelerate forest degradation, whereas predator spillover on others may result in overexploited prey populations. Our analyses highlight that in addition to maintaining diversity, protecting large continuous forests is required for the persistence of interaction networks and related ecosystem functions.
Article
A case for the partitioning of prey items based upon both the body size of the predator and the prey can be made. Thylacoleo carnifex appears to have been selecting animals of large body size (though probably not Diprotodon) all of which were elements of the Australian Pleistocene megafauna. Thylacinus cynocephalus, on the other hand, seems to have been selecting animals of medium to small body size. This would suggest that the two Pleistocene marsupial carnivores, Thylacoleo carnifex and Thylacinus cynocephalus, could have coexisted within a single community because their dietary niches did not overlap.
Article
Animals experience varying levels of predation risk as they navigate heterogeneous landscapes, and behavioral responses to perceived risk can structure ecosystems. The concept of the landscape of fear has recently become central to describing this spatial variation in risk, perception, and response. We present a framework linking the landscape of fear, defined as spatial variation in prey perception of risk, to the underlying physical landscape and predation risk, and to resulting patterns of prey distribution and antipredator behavior. By disambiguating the mechanisms through which prey perceive risk and incorporate fear into decision making, we can better quantify the nonlinear relationship between risk and response and evaluate the relative importance of the landscape of fear across taxa and ecosystems.
Article
* Apex predators can benefit ecosystems through toptextendashdown control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. * We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. * Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. * Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. * Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. * ~Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
Article
This paper is an update of Abbott, I (2002) Origin and spread of the cat, Felis catus, on mainland Australia, with a discussion of the magnitude of its early impact on native fauna. Wildlife Research 29, 51-74. An additional 33 journals of expeditions of exploration or excursions beyond settled areas before 1895 were located, and as expected from the current conceptual model, none of these recorded cats. These accounts of travel through country as yet unsettled or sparsely settled by Europeans necessitate only one small modification (relating to north-east Queensland) to the conceptual model presented previously. In addition, nearly 150 new records of cats were located in other parts of Australia, and all are consistent with the chronology of spread hypothesized in the previous paper. For Tasmania, following their introduction in 1804, cats were first recorded there as feral in the 1840s. Incidental records were found indicating that in parts of Australia the spread of the cat was assisted by their release in regions experiencing their first outbreaks of rabbits, by flood-linked irruptions of the long-haired rat (Rattus villosissimus), and by their release to control rodents destroying sugar cane plantations in northern Queensland. Feral cats of large size were first detected in various regions of Australia some 10-30 years after local settlement.
Article
Paradigms of sustainable exploitation focus on population dynamics of prey and yields to humanity but ignore the behavior of humans as predators. We compared patterns of predation by contemporary hunters and fishers with those of other predators that compete over shared prey (terrestrial mammals and marine fishes). Our global survey (2125 estimates of annual finite exploitation rate) revealed that humans kill adult prey, the reproductive capital of populations, at much higher median rates than other predators (up to 14 times higher), with particularly intense exploitation of terrestrial carnivores and fishes. Given this competitive dominance, impacts on predators, and other unique predatory behavior, we suggest that humans function as an unsustainable "super predator," which—unless additionally constrained by managers—will continue to alter ecological and evolutionary processes globally. Copyright © 2015, American Association for the Advancement of Science.
Article
Invasive species have reshaped the composition of biomes across the globe, and considerable cost is now associated with minimising their ecological, social and economic impacts. Mammalian predators are among the most damaging invaders, having caused numerous species extinctions. Here, we review evidence of interactions between invasive predators and six key threats that together have strong potential to influence both the impacts of the predators, and their management. We show that impacts of invasive predators can be classified as either functional or numerical, and that they interact with other threats through both habitat- and community-mediated pathways. Ecosystem context and invasive predator identity are central in shaping variability in these relationships and their outcomes. Greater recognition of the ecological complexities between major processes that threaten biodiversity, including changing spatial and temporal relationships among species, is required to both advance ecological theory and improve conservation actions and outcomes. We discuss how novel approaches to conservation management can be used to address interactions between threatening processes and ameliorate invasive predator impacts.
Article
Novel assemblages of native and introduced species characterize a growing proportion of ecosystems worldwide. Some introduced species have contributed to extinctions, even extinction waves, spurring widespread efforts to eradicate or control them. We propose that trophic cascade theory offers insights into why introduced species sometimes become harmful, but in other cases stably coexist with natives and offer net benefits. Large predators commonly limit populations of potentially irruptive prey and mesopredators, both native and introduced. This top-down force influences a wide range of ecosystem processes that often enhance biodiversity. We argue that many species, regardless of their origin or priors, are allies for the retention and restoration of biodiversity in top-down regulated ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.