Available via license: CC BY
Content may be subject to copyright.
Article Not peer-reviewed version
Effects of Religious Fasting on Markers
of Oxidative Status in Vitamin D
Deficient and Overweight Orthodox
Nuns versus Implementation of Time-
Restricted Eating in Lay Women from
Central and Northern Greece
Spyridon N Karras * , Konstantinos Michalakis , Fotios Tekos , Zoi Skaperda , Periklis Vardakas ,
Panayiotis D Ziakas , Maria Kypraiou , Marios Anemoulis , Antonios Vlastos , Georgios Tzimagiorgis ,
Konstantinos Chaitoglou , Neoklis Georgopoulos , Evangelos G. Papanikolaou , Demetrios Kouretas
Posted Date: 27 August 2024
doi: 10.20944/preprints202408.1910.v1
Keywords: oxidative stress; mediterranean diet; time restricted eating; orthodox fasting
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Article
EffectsofReligiousFastingonMarkersofOxidative
StatusinVitaminDDeficientandOverweight
OrthodoxNunsversusImplementationof
Time‐RestrictedEatinginLayWomenfromCentral
andNorthernGreece
KarrasSpyridon1,MichalakisKonstantinos2,TekosFotios3,SkaperdaZoi3,PeriklisVardakas3,
ZiakasD.Pa‐nayiotis4,KypraiouMaria5,AnemoulisMarios6,VlastosAntonios6,
TzimagiorgisGeorgios1,ChaitoglouKonstantinos1,GeorgopoulosNeoklis7andPapanikolaou
Evangelos5,KouretasDemetrios3
1LaboratoryofBiologicalChemistry,MedicalSchool,AristotleUniversity,55535Thessaloniki,Greece
2EndocrinePractice,DepartmentofObesityandMetabolism,Athens,Greece
3DepartmentofBiochemistry‐Biotechnology,SchoolofHealthSciences,UniversityofThessaly,
Larissa,Greece
4DepartmentofMedicine,UniversityofBrown,RI,USA
5AssistingNatureCentreofReproductionandGenetics,Thessaloniki,Greece
6MedicalSchool,AristotleUniversity,Thessaloniki,Greece
7DivisionofEndocrinology,DepartmentofInternalMedicine,SchoolofHealthSciences,Universityof
Patras,26504Patras,Greece
Abstract:Mediterraneandiethasbeenwidelysuggestedtoexertsignificantbeneficialeffectson
endothelialoxida‐tivestatusandcardiometabolichealth.GreekOrthodoxmonasteries,duetotheir
specificnutritionalandsartorialhabits,compriseapopulationwhichstrictlyadherestonutritional
patternswithrestrictedeatingandaplant‐basedsubsetoftheMediter‐raneandiet,often
accompaniedbyprofoundhypovitaminosisD.Time–restrictedeatingisalsoadoptedfromalarge
partofgenerallayGreekpopulationforhealthpromotingreasons,withoutrestrictionsonan‐imal
productconsumption,asimposedbyOrthodoxreligiousfasting.However,comparativeeffectsof
thesenutritionalpatternsonoxidativestressmarkersremainscarce.Thepresentstudyattempted
toevaluatetheeffectsofChristianOrthodoxfasting(COF)inagroupofvitaminD–deficientand
overweightOrthodoxnunsfromCentralandNorthernGreece,comparedtotheimplementationof
TRE,16:8dietaryregimeninacohortofadultwomenfromthegeneralpopulationfromthesame
region,withregardtomarkersofendothelialoxidativestatus.Agroupof50womenfromtwo
OrthodoxmonasteriesinNorthernGreeceandonegroupof50healthylaywomenwereincluded.
Duringenrollmentadetailedrecordingofdietaryhabitswasperformed,alongwithascientific
registryofdemographicandanthropometriccharacteristics(viabioimped‐ance).Orthodoxnuns
followedatypicalOrthodoxfastingregimen[dailyfeedingwindow(8am–4pm)]whereaslay
womenfollowedaTRE16:8regimenwiththesamefeedingtime‐windowwithrecommenda‐tion
tofollowalow‐fatdiet,withoutcharacteristicsoftheMediterraneandiet.Weincludedacomplete
biochemicalanalysis,aswellascalciotropicprofiles[Calcium‐Ca,Albumin,Parathyroidhormone‐
PTH,25‐hydroxyvitaminD‐ 25(OH)D]aswellasandmarkersofTAC(trichloroaceticacid),
(glutathione)GSHandthiobarbituricacidreactivesubstances(TBARS)concentrations,asmarkers
ofoxidativestatus.Allgroupswerecomparableatbaselineforcalcium,PTHand25(OH)D
concentrations,withnosignificantdifferencesbetweengroups.Orthodoxnunsmanifestedalower
medianGSHcomparedtocon‐trols(6.0vs.7.2,p0.04)andahighermedianTAC(0.92vs.0.77,p
<0.001).TBARScomparisonsshowednosignificantdifferencebetweenthetwogroups.No
significantassociationsofoxidativestatuswith25(OH)D,PTHandmarkersofglucosehomeostasis
wereevident.Resultsofthissmallpilotstudyindicatethatbothdietaryregimenshaveadvantages
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
2
overoxidativemarkerscomparedtoeachother,withincreasedTACinthegroupsofOrthodox
Nunsaftera16thweekperiodofCOFcomparedtoa16:8TREandincreasedGSHconcentrations
inthelaywomengroup.Futurerandomizedtrialsarerequiredtoinvestigatesuperiorityornon‐
inferioritybetweenthesedietarypatterns,inthedailyclinicalsetting.
Keywords:oxidativestress;Mediterraneandiet;timerestrictedeating;Orthodoxfasting
Introduction
ChristianOrthodoxfasting(COF),isavitalsubsetoftheMediterraneandiet(MD)
[1–4],whichforreligiousreasonsisconsideredtobedeeplyintegratedintheculturaldietary
behaviorofalargepartoftheGreekpopulation[5–9]forprolongedperiods(from120to180d)
annually[8].Orthodoxmonasteriesfollowthisarchetypepatternofdietthroughouttheyear,with
periodsofmorestrictfastingrituals2‐6weeksbeforereligiouscelebrations,asawayofphysicaland
mentalprosperityandpersonalspiritualdevelopment[1,2].However,besidesthespiritual
significanceofCOF,aplethoraofcohortstudiessuggestthatCOFsharesthebeneficialeffectsofthe
typicalMDbypromotingspecificcardioprotectivemechanisms,includingreducedintakeofdietary
cholesterolandfattyacids,thusprovidingoptimaleffectsonplasmalipidconcentrations[9,10].
Thesebenefitshavebeenmainlyattributedtotheintegrationofaplant‐baseddietalongwith
characteristicsofdietaryrestrictionofanimalproducts(meat,dairyproductsandeggs)[6]and
restrictionofcaloricintakeduringCOFperiods[11–14].Wehavepreviouslyreportedonthe
beneficialeffectsofCOFontheadipokineprofile[7,8,14]aswellasonglucosehomeostasisinboth
monasticandgeneralpopulations[15],asmarkersforpreventionofcardiovasculardyshomeostasis,
withtheexceptionofprofoundhypovitaminosis—DinOrthodoxMonks,mainlyduetotheir
sartorialhabits[11,16].
Additionally,restrictionoffoodintakeinspecifictime—framesduringtheday,hasalsobeen
hypothesizedtocontributetothebenefitsdescribedabove,acharacteristicwhichattractedsignificant
scientificandpublicinterestduringthelastdecade,throughvariousintermittent—fastingpatterns,
practicedworldwideasahealth‐promotingdiet[17].Time‐restrictedeating(TRE),includesspecific
time‐framesoffoodintakeduringtheday,whichvaryfrom4‐12hoursdaily[e.g.,20hoursoffasting
vs4hoursofpermittedfoodintake—20:4—aswellasadditionaltimeframes(18:6,16:8etc.)][18].On
theotherhand,impairmentofantioxidativecapacityofvascularendotheliumisanestablished
aggravatingfactorfordevelopmentofendothelialdysfunctionandfuturecardiovascularmajor
events[19,20].Onthatbasis,aconsiderablenumberofpreviousstudies[21–24]havesuggestedthat
MDisstronglyassociatedwithfavorableeffectsonoxidativestatus,implyingapotentialpathway
forexertingitswell—establishedcardiovascularbenefits.However,resultsonCOFasavitalsubset
ofMDanditseffectsonoxidativestatus,particularlycomparedtootherhealthynutritionalpatterns
widelyadoptedbythegeneralpopulation,remainscarce.
Additionally,thesepotentialinteractionshavesofarnotbeeninvestigatedinconjunctionwith
othermetabolicconditionsassociatedwithendothelialdysfunction,includingimpairmentofvitamin
Dstatusandinsulinresistance,particularlyinvitaminDdeficientandoverweightindividuals.These
resultscouldelucidatepotentialmechanismsofMD—relatedeffectsonantioxidativecapacityand
alsoelaborateontheresearchhypothesis,whichindicatesthemacro‐andmicronutrientsynthesis
andincreasedintakeoffoodantioxidants,ratherthanthetimingoffoodintake,asthecornerstoneof
attainedmetabolicbenefits.
ThepresentstudyattemptedtoevaluatetheeffectsofCOFinagroupofvitaminD–deficient
andoverweightOrthodoxnunsfromCentralandNorthernGreece,comparedtotheimplementation
ofTRE16:8dietaryregimeninacohortofadultwomenfromthegeneralpopulationfromthesame
region,withregardtomarkersofendothelialoxidativestatus.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
3
Methods
Design
Thiswasacross‐sectionalstudyafteraperiodof16‐weekimplementationofCOFandTRE,in
twogroupsofadultfemalenunsandlaywomen.
StudyPopulation
Weincluded50ChristianOrthodoxfemaleadultnuns,fromtwodifferentmonasteries,30–50
yearsofage,residingintheCentralandNorthernGreeceandanage—matchedcohortof50adult
laywomenfromthesameregion.
Orthodoxnuns(butnotlaywomen),withabaseline25‐hydroxyvitaminDconcentrations≥20
ng/ml(asinitiallyevaluatedfromthesameinitialcohort–resultspublishedpreviously[12–15])were
excluded.Additionalexclusioncriteriaforbothgroupswere:bodymassindex(BMI)≤ 25,
amenorrhea≥3months,pregnancy,presenceofchronickidneydisease,severeliverdisease,
diagnosisofprediabetes(fastingglucose100–125mg/dLorglycatedhemoglobin5.7–6.4%orblood
glucose140–199mg/dLat2hpost75gglucoseload)ordiabetesmellitus(fastingglucose≥126mg/dL
orglycatedhemoglobin≥6.5%orbloodglucose≥200mg/dLat2hpost75gglucoseload),
dyslipidemia,arterialhypertension,oruncontrolledhypothyroidism(notadequatelycontrolledor
firstdiagnosedandnottreated),(recentsurgeryorsevereinfections(duringthepast3months),
administrationofmedicationsthatcanalterbodyweight,glucoseandlipidmetabolism(e.g.,statins,
corticosteroids,antipsychotics),intakeofvitaminsormineralsupplements,physicaldisabilities
and/orneurodegenerativedisordersthatcouldaffectphysicalactivity,acuteinfectionsandchronic
degenerativediseases.
DietaryPatterns
Orthodoxnunswithatleast16weeksadherencetoCOFwereincludedinthestudy,whereas
womenfromthegeneralpopulation,followedTREfor16weeks,afterawash‐outperiodof3weeks,
beforeinclusioninthestudy.OrthodoxnunsfollowedtheAthoniantypeoffastingaspreviously
described[1–4],abstainingfromconsumptionofanimalproducts(meat,poultry,eggs,dairyand
cheese),withtheexceptionofseafoodandfish,whichfasterswerepermittedtoeatontwospecific
weekdays,whilethegeneralpopulationgroupwasallowedtoeatlow‐fatmeatproducts,without
specificdistributionandcut‐offsofmacronutrientsanddailycaloricintake.
Orthodoxnunsgroupadoptedan8heatinginterval(08.00to16.00),asdictatedbytypical
monasterydietaryrules,whichareobligatoryforallresidentsofthemonastery,whileTREgroup
consumedfoodfrom09:00to17:00.Adherencetodietaryplanswasevaluatedwitha3‐dayfood
record(twoweekdaysandoneweekendday)attheendofthestudyperiod,whiletheNutrition
AnalysisSoftwareFoodProcessor[https://esha.com/products/food‐processor/(accessedon2August
2024)][25]wasusedtoanalyzefoodrecords.Finally,levels,frequencyanddurationofphysical
activity,dividedinlight,moderateandintensephysicalactivity,wererecordedforallparticipants,
accordingtoAHArecommendations[26].
AnthropometricMeasurementsandBiochemicalAnalysis
Anthropometricmeasurementsandbiochemicalanalyseswereperformedinbothgroupsusing
standardizedprocedures.Exactmethods,referenceranges,equipmentused,andotherdetailswere
previouslyanalyticallydescribed[11].Inbrief,bodyweight(BW)wasrecordedtothenearest0.01kg
usingacalibratedcomputerizeddigitalbalance(K‐TronP1‐SR,OnrionLLC,Bergenfield,NJ,USA);
eachparticipantwasbarefootandlightlydressedduringmeasurement.BMIwascalculatedasthe
ratioofweightinkilogramsdividedbytheheightinmeterssquared(kg/m2)[27].Bodyfat(BF)mass
andpercentage,visceralfat(VF),musclemass,fat‐freemass,andtotalbodywaterweremeasured
usingbioelectricalimpedanceanalysis(SC‐330S,TanitaCorporation,Tokyo)[28].Bloodsamples
weredrawninthemorning,aftera12hovernightfastbyantecubitalvenipuncture,andthesamples
werestoredat−20oCpriortoanalysis.Calcium(Ca)concentrationswereevaluatedusingthe
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
4
COBAS8000automatedanalyzersystem(RocheDiagnosticsGmbH,D‐68298Mannheim,Germany).
Parathyroidhormone(PTH)and25(OH)D,weretestedintheCOBASe602immunochemistry
moduleusingelectro‐chemiluminescence(ECL)technology(RocheDiagnosticsGmbH,D‐68298
Mannheim,Germany).Referencerangesofvaluesaswellasinter‐ andintra‐assaycoefficientsof
variationfortheexaminedparametersareasfollows:Ca:8.4–10.2mg/dl,0.8–1.3%and0.5–1.3%;PTH:
15–65pg/mL(or1.6–6.9pmol/L),1.1–2.0%and2.5–3.4%;25(OH)D:≥30ng/mL,2.2–6.8%and3.4–
13.1%.Insulinresistancewascalculatedusingthehomeostasismodelassessment(HOMA‐IR)
formuladescribedbyMatthewsetal.[29]asfollows:FPI(mU/mL)xFPG(mmol/L)/22.5,whereFPI
standsforfastingplasmainsulinandFPGforfastingplasmaglucose.
MarkersofOxidativeStatus
DeterminationofGlutathione(GSH)ConcentrationinBlood
GSHconcentrationwasdeterminedaccordingtothemethodofReddyetal.[30]aspreviously
described[31].Atfirst,400μLofRBCLwasmixedwith400μLof5%trichloroaceticacid(TCA),
respectively,andcentrifuged(15,00×g,5min,5°C).Afterwards,300μLofthesupernatantwasmixed
with90μLof5%TCAandcentrifuged(15,00×g,5min,5°C).Theresultingsupernatantwascollected
andusedasthebiologicalsamplefortheassay.Regardingtheassay,20μLofthebiological
samplewasmixedwith660μLofphosphatebuffer(67mM,pH=7.95)and330μLof5,5‐dithiobis(2‐
nitrobenzoicacid)(DTNB)(1mM).Thesampleswerevortexedandincubatedfor45mininthedark
atroomtemperature(RT),andtheopticaldensitywasmeasuredat412nm.GSHconcentrationwas
calculatedbasedonthemillimolarextinctioncoefficientof2‐nitro‐5‐thiobenzoate(TNB)(13.6
L/mmol/cm).
DeterminationofTotalAntioxidantCapacity(TAC)ConcentrationsinBlood
TAClevelswereevaluatedbasedontheprotocolofJanaszewskaandBartosz[32].More
elaborately,20μLofplasmawasmixedwith480μLor460μLofphosphatebuffer(10mM,pH=7.4),
respectively,and,immediately,500μLof2,2‐diphenyl‐1‐picrylhydrazylradical(DPPH•)solution
(0.1mM)wasadded.Thesampleswerevortexed,incubatedfor1hinthedarkatRT,andcentrifuged
(15,00×g,3min,25°C).Finally,theopticaldensitywasmeasuredat520nm.TAClevelswere
expressedasthemmolofDPPH•reducedtothecorrespondinghydrazinebytheantioxidant
compoundspresentinplasmaortissuehomogenates.
DeterminationofThiobarbituricacidReactiveSubstances(TBARS)ConcentrationsinBlood
TBARSlevelsweredeterminedbyaslightlymodifiedmethodbyKelesetal.[33].Specifically,
100μLofplasmawasmixedwith500μLofTris‐HCl(200mM,pH=7.4)and500μLof35%TCAand
incubatedfor10minatRT.Afterthat,1mLofsodiumsulfate(Na2SO4)(2M)andthiobarbituricacid
(TBA)(55mM)solutionwasadded,andthesampleswereplacedinawaterbathfor45minat95°C.
Afterincubation,thesampleswerecooledonicefor5min,1mLof70%TCAwasadded,andthe
sampleswerecentrifuged(11,20×g,3min,25°C).Theresultingsupernatantwasusedtomeasurethe
opticaldensityat530nm.TBARSlevelswerecalculatedbyapplyingthemolarextinctioncoefficient
ofmalonyldialdehyde(ΜDA)(156,000L/mol/cm).
DeterminationofGSHConcentrationinBlood
EthicalConsiderations
ThestudywasconductedinaccordancewiththeDeclarationofHelsinkionthehumantrial
performance.Writteninformedconsentforinclusioninthestudywasgivenbyparticipants.Official
writtenapprovalfortheinclusionoftheOrthodoxnunsgroupwasgivenbytheHolySupervision
Councilofthemonasteries,aftersubmissionofthefullstudyprotocol12monthsbeforestudy
initiation.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
5
StatisticalAnalysis
ContinuousvariablesarereportedasmeansandS.D.’s.Dietaryandnutrientintakeonwere
comparedusingpairedsamplest‐test.Agedifferencesbetweenthegroupswithlight,moderateand
intensephysicalactivityweretestedusingone‐wayanalysisofvariancewithTukeyposthoctest.
Theeffectoflevelofphysicalactivityonoverallhealthmarkerswastestedwithanalysisofcovariance
tocontrolforage.NormalityofdistributionwastestedwithonesampleKolmogorov–Smirnovtest
(exactstatistics).
Theamong‐groupcomparisonwasmadeusingnonparametricMann‐WhitneyUtest.Linear
regressionwasusedformulti‐adjustedanalysis.Assumptionswerecheckedforeachstatistical
analysis.LevelofsignificancewassetatP<0.05(non‐directional).DatawereanalyzedusingSPSS
v22.
Results
Orthodoxnunswereolderthanlaywomen(medianage42vs.38,p<0.001)butdidnotdifferin
medianweightandBMI(Table1).Groupsdidnotdifferinbodyfat(%),leanbodymass(%)andwaist
circumference,aswellasdegreesofphysicalactivity,withtheexceptionofintenseactivity,inwhich
laywomenreportedhigherrates.Regardingnutritionalanalysis,laywomenconsumedhigher
amountsofcarbohydrates(gr)(194.3±23.4vs159.6±21.8),totalandsaturatedfat(24.4±0.6vs21.0±
0.1and16.4±0.0and12.7±0.0,respectively)whereasOrthodoxnunsreportedhigheramountsof
proteinandfibreintake(36.1±0.8vs24.2±0.8).
Althoughexpected,accordingtothestudyprotocol,hypovitaminosisDevidentintheOrthodox
nuns’group,resultedinsignificantlyhighermedianserumPTHthanamonglaywomen(45.6vs.
19.4,p<.001),afteradjustingforseasonalvariation.Inaddition,afteradjustingforageand25(OH)D3
concentrationsinlinearregressionacrossallpatients,PTHhadasignificantpositiveassociationwith
age(+6.0pg/mlper10‐yearincreaseinage,p<0.001)andasignificantnegativeassociationwithserum
25(OH)D3status(–0.61pg/mlperng/mlincreaseinserumD3).Orthodoxnunsdemonstratedlower
medianfastinginsulinconcentrations(5.3vs.7.2,p0.02)comparedtolaywomenandevenafter
adjustingforageandBMI,thedifferenceremainedsignificant;Ofmajorinterestisthefact,that
insulinconcentrationslackedasignificantassociationwithBMIorageinbothgroups.Regarding
redoxstatus,OrthodoxnunsmanifestedalowermedianGSHcomparedtocontrols(6.0vs.7.2,p.04)
andahighermedianTAC(0.92vs.0.77,p<.001).TBARScomparisonsshowednosignificant
differencebetweenthetwogroups.Afteradjustingforageinlinearregression,Orthodoxnunshad
alowerGSHconcentrationinserum(meandifference‐1.7;95%CI‐2.7to=–0.7,p.001)comparedto
controls,whiletheageeffectwasnotsignificant(p=0.45).Afteradjustingforage,nunshadahigher
TACconcentrationinserum(meandifference0.19;95%CI0.13to0.26,p<.001),whereasafter
adjustingforage,BMIandtotalfatinlinearregression,nunshadalowerGSHconcentrationinserum
(meandifference–1.6;95%significant(p=0.45).Afteradjustingforage,nunshadahigherTAC
concentrationinserum(meandifference0.19;95%CI0.13to0.26,p<.001),whereasafteradjustingfor
age,BMIandtotalfatinlinearregression,nunshadalowerGSHconcentrationinserum(mean
difference–1.6;95%CI–2.6to=–0.7,p.001)comparedtolaywomen,whiletheageandBMIeffects
werenotsignificant.AfteradjustingforageandBMI,nunshadahigherTACconcentrationinserum
(meandifference0.21;95%CI0.15to0.27p<.001);age,BMIandtotalfat,effectswerenotsignificant.
Nosignificantassociationsofoxidativestatuswith25(OH)D,PTHandmarkersofglucose
homeostasiswereevident.
Table1.
Orthodoxnuns(n=50)Laywomen(n=50)p
Demographics
Age(years)42(36‐50)38(34‐42)0.03
Wei ght(kg)71.5(64‐82)66(60‐87)0.31
BMI(kg/m2)27.0(24.2‐29.0)26.8(22.0‐32.0)0.19
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
6
Bodyfat(%)24.5±9.422.1±8.10.23
Leanbodymass
(%)39.9±6.341.2±7.10.15
Wai s t
circumference
(cm)
92.489.10.11
Physicalactivity
LightN=9N=70.31
ModerateN=27N=250.48
IntenseN=14N=180.03
Yea r s of
monasticism10.5±9.8‐‐
Deaconshipof
OrthodoxNuns
Baker(3);Botanist(2);Cook(5);Cookingassistant(5);Diningassistant(5);
Ecclesiasticalchanter(6);Gardener(3);Housekeeper(3);Iconographer(6);
Laundryassistant(4);Pharmacist(2);
Table2.
Energy(kcal)1565.9±64.51890.0±71.0<0.01
Carbohydrates(g)159.6±21.8194.3±23.40.03
Protein(g)89.2±1.372.3±1.30.04
Dailyfatintake(g)21.0±0.124.4±0.60.02
Dailysaturatedfatintake(g)12.7±0.016.4±0.00.01
Totalfibreintake(g)36.1±0.824.2±0.80.02
25‐hydroxy‐vitaminD3(ng/Ml)15.7(11.4‐19.8)26.1(18.2‐31.9)0.02
PTH(pg/ml)45.6(39.6‐54.7)19.4(13.1‐28.5)<0.001
Calcium(mg/dl)9.4(9.1‐9.7)9.1(8.8‐9.3)0.15
Insulin(IU/L)5.3(3.4‐6.7)7.1(4.7‐11)0.02
Fastingglucose(mg/dl)84.4±10.189.2±9.70.43
HOMA‐IR1.02±0.41.26±0.70.21
Oxidativestatus
TAC0.93(0.87‐0.99)0.77(0.65‐0.90)<.001
GSH6.0(4.4‐6.8)7.2(5.5‐8.8)0.04
TBARS7.3(5.8‐8.3)7.6(6.9‐8.4)0.28
Figure1.ConcentrationsofTACinOrthodoxNunsandlaywomengroup.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
7
Figure2.ConcentrationsofGSHinOrthodoxNunsandlaywomengroup.
Discussion
Toourknowledge,thisthefirstcross‐sectionalstudyreportingpreliminaryresultsonthe
comparativeeffectsofCOFonoxidativestatusinvitaminDdeficientGreekOrthodoxnunsandTRE
(16:8)dietaryregimeninagroupoflaywomenwithvitaminDsufficiency.Theseresultsindicated:
i)increasedantioxidativecapacity(TAC)inthegroupofOrthodoxNunsaftera16weekperiodof
COFcomparedtoa16:8TRE,ii)increasedGSHlevelsinthelaywomengroupcomparedtothegroup
ofOrthodoxnunsaswellascomparableofTBARSlevelsinbothgroups,afteradjustingforseveral
confounders,whichsuggestpotentialdiverseeffectsofCOFandTREonoxidativestatus.
MDisaplant‐baseddiet,richinfruit,vegetables,nuts,herbs,withfewerfishanddairyproducts
andwithlessredmeatandredwine.MDincludesvariousnutritionalcompounds,withwell‐
establishedbeneficialeffectsonoxidativestatus.Aplethoraofpreviousbasicandclinicalstudies
suggestedthatMDhasbeenshowntobeoneofthehealthiesteatingpatterns,withvariousmetabolic
benefits,partlymediatedthroughitsantioxidantcapacity[34,35].Daietal.studiedtheratioof
reducedtooxidizedglutathione(GSH/GSSG)intwins.Thehighertheratio,thelowertheoxidative
stress,givingaresultofahigherratioupto7%inindividualswhofollowedtheMediterraneandiet,
regardlessoftheadjustmentoftheenergyintake[36].Inasub‐cohortofThePREDIMEDtrial,
participantswithhighcardiovascularriskwererandomizedtoaMediterraneandietsupplemented
withextra‐virginoliveoilandmanifestedasignificantreductionincellularlipidlevelsandlipid
oxidation,aswellasmalondialdehydeconcentrationsinmononuclearcells,withoutchangesin
serumglutathioneperoxidaseactivity[37].
DocumentedbenefitsofMDincludeconsumptionofunsaturatedfattyacids,foundinoliveoil,
whichcontain3,3dimethyl‐1‐butanol,thuspreventingtheformationoftrimethylamine‐1‐oxide,one
oftheoxidantsrelatedtocardiovascularevents[38,39].
Additionally,MDsynthesisisrichinoleic‐acidandalpha‐linoleic‐acid,foundinnuts,fruitand
vegetableflavonoids,aswellasomega‐3‐polyunsaturated‐fatty‐acids,andfiberandpolyphenols,all
ofwhichhaveanti‐oxidative,anti‐bacterialandanti‐inflammatoryeffects[40–42].Moreover,whole‐
grains,asavitalcompoundofMD,containapolyaminecalledspermidine,whichhasbeenshownto
extendchronologicallife‐spaninflies,nematodes,rodents,andhumancells.Spermidineisknownto
inhibithistoneacetyltransferases,whichresultsinhigherresistancetooxidativestress[43].
TREhasbeenalsotheobjectiveofrecentstudiesregardingitspotentialbeneficialeffectson
cardiometabolichealth.Giventhefactthathormonesundergoacircadianrhythm,metabolicand
stresshormonesasinsulin,cortisol,growthhormoneandmelatoninundergothesamevariation,
givingdifferentlevelsbetweenacalorie‐restrictingdietandintermittent‐fastingdiet,whichrestricts
thefeedingtimeincertainhours[44].McAllisteretal.studiedtheimpactofintermittentfastingon
markersofcardiometabolichealth,measuringseveralmarkersofinflammation,OS,and
cardiometabolichealth(insulin,ghrelin,leptin,glucagon,adiponectin,resistin,advancedglycated‐
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
8
endproducts(AGE),advancedoxidationproteinproducts,totalnitrite‐nitratelevels,tumornecrosis
factor‐α,interleukin(IL)‐6,IL‐8,IL‐10andshowedthattime‐restrictedfeedingresultedinsignificant
reductionsinadvancedoxidationproteinproducts(∼31%)andAGEs(∼25%);however,noother
changeswerefound[45].Recentrandomizedclinicaltrialsalsodemonstratedthata6‐hrfeeding
periodfor5weeksimprovedinsulinsensitivity,β‐cellresponsivenessandoxidativestress,
irrespectiveofweightloss[46].Theseresultswerealsopreviouslyconfirmedbyother
groups,where4‐and6‐hTREfor5weeks,resultedinareductionof8‐isoprostane,asamarkerof
oxidativestresstolipids,4‐hydroxynonenaladducts,proteincarbonylsandnitrotyrosine[47].
COFisaplant‐basedsubsetofthetraditionalMDfollowedformorethanathousandyearsfrom
alargepartoftheGreekOrthodoxgeneralpopulationforreligiouspurposesfrom90–150daysper
year.GreekOrthodoxmonasteriesadheretothisdietaryregimenthroughouttheyear,withthe
additionofTRE(usually16:8)characteristicsintheirdailydietaryregimen,whichisstrictlyfollowed
byallmembersofthemonasterialcommunity,comprisinganoptimalsamplefornutritionalstudies
.WehaverepeatedlyreportedontheeffectsonCOFonbodyweight,lipidparameters,adipokines
andvitaminDstatus,regardingtheexistenceofseverehypovitaminosisDinOrthodoxmalemonks,
mainlyduetotheirsartorialhabits.
However,thisisthefirstreportontheeffectsofCOFonoxidativeequilibrium,particularly
comparedtoahealth–promotingpatternlikeTRE.
Ourresearchhypothesisraisedthequestionfornon‐inferiorityofTREcomparedtoCOF,ina
vitaminDdeficientmonasticpopulation(asmostsimilarmonasticcommunitiesinGreece),taking
intoaccountthatwomenincludedintheTRE,werenotinstructedtofollowaMD—specificdietary
pattern.Accordingtopreviousresults,chronicvitaminDdeficiencyisastateofincreasedoxidative
stress,whichreducesthecapacityofmitochondrialrespiration,throughmodulatingnuclearmRNA
downregulatingtheexpressionofcomplexIoftheelectrontransportchain,reducingofadenosine
triphosphate(ATP),resultinginincreasedformationofROS,augmentingoxidativestress[48].
Maintainingoptimumlevelsofredoxbiomarkersiscrucialforpreventingoxidativedamage,
supportingdetoxificationprocesses,andensuringproperimmunefunction.Previousliterature
proposedthatclusteringofhighandlowGSHlevelsmightprovidestrongcausalityfortype2
diabetesandmetabolicsyndrome[48].OurresultsfailedtosuggestasuperiorityofCOFoverTRE,
inagroupwithconfirmedMD‐typedietaryregimenandTREcharacteristicsasOrthodoxnuns,
comparedtoa16:8withoutspecificMD—relateddietarycharacteristics.
AplausibleexplanationcouldbethatthegeneralpopulationfollowingaTREpatterncomply
withahealthydietarypattern,whichdespitenotbeingidenticaltoMD,alsoexertsbenefitsonGSH
concentrations,alwaystakingintoaccountthelimitationsofthisstudy.Anotherexplanation,could
lieonthepotentialadverseeffectsofhypovitaminosisD,evidentinOrthodoxnunsincludedinthis
study,onGSHconcentrations,aspreviouslyreported[12].VitaminDsupplementationinthisgroup
ofvitaminDdeficientnunscouldelucidatethispotentialbiologicalassociationonGSHstatus.TRE
couldalsohaveindependentbeneficialeffectsonoxidativestatus,whichareevidentwithoutstrict
adherencetoaMD‐relatedpattern,aspreviouslyreported[12].Finally,ourstudyfailedtoestablish
anassociationofimpairedvitaminDstatusandoxidativemarkers,whichcouldbeattributedtoits
cross‐sectionaldesign.Thisstudyhasseverallimitationsandcanonlybeconsideredasapilotstudy,
withfindingswhichdefinitelyrequireconfirmationinaprospectivestudy.
Indetail,thenumberofincludedparticipantswasrelativelysmall;however,thisisa
representativesampleofOrthodoxnuns,accordingtotheirdietaryandphysicalactivityplan.We
havealsonotincludedadetailedanalysisregardingtheintakeofthedietaryantioxidativesinthe
twogroups,whichcouldexplaindiversityinmarkersofoxidativestatus.Finally,sincenobaseline
evaluation,priortotheimplementationofdietaryinterventions,wasfeasibleforbothgroups,we
wereunabletoestablishcausalassociations.
Inconclusion,resultsofthissmallpilotstudyindicatethatbothdietaryregimenshave
advantagesoveroxidativemarkers,comparedtoeachother,withincreasedTACinthegroupsof
OrthodoxNunsaftera16th‐weekperiodofCOFincomparisontoincreasedGSHconcentrationsin
thelaywomengroupfollowing16:8TRE,andcomparableconcentrationsofTBARS.Future
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
9
randomizedtrialsarerequiredtoinvestigatesuperiorityornon‐inferioritybetweenthesedietary
patterns,inthedailyclinicalsetting.
References
1. Trepanowski,J.F.;Bloomer,R.J.Theimpactofreligiousfastingonhumanhealth.Nutr.J.2010,9,57.
2. Sarri,K.O.;Linardakis,M.K.;Bervanaki,F.N.;Tzanakis,N.E.;Kafatos,A.G.GreekOrthodoxfastingrituals:
AhiddencharacteristicoftheMediterraneandietofCrete.Br.J.Nutr.2004,92,277–284.
3. Sarri,K.O.;Tzanakis,N.E.;Linardakis,M.K.;Mamalakis,G.D.;Kafatos,A.G.EffectsofGreekOrthodox
ChristianChurchfastingonserumlipidsandobesity.BMCPublicHealth2003,3,16.
4. Sarri,K.;Linardakis,M.;Codrington,C.;Kafatos,A.DoestheperiodicvegetarianismofGreekOrthodox
Christiansbenefitbloodpressure?Prev.Med.2007,44,341–348.
5. Karras,S.N.;Koufakis,T.;Adamidou,L.;Antonopoulou,V.;Karalazou,P.;Thisiadou,K.;Mitrofanova,E.;
Mulrooney,H.;Petróczi,A.;Zebekakis,P.;etal.Effectsoforthodoxreligiousfastingversuscombined
energyandtimerestrictedeatingonbodyweight,lipidconcentrationsandglycaemicprofile.Int.J.Food
Sci.Nutr.2021,72,82–92.
6. Karras,S.N.;Koufakis,T.;Adamidou,L.;Polyzos,S.A.;Karalazou,P.;Thisiadou,K.;Zebekakis,P.;
Makedou,K.;Kotsa,K.Similarlateeffectsofa7‐weekorthodoxreligiousfastingandatimerestricted
eatingpatternonanthropometricandmetabolicprofilesofoverweightadults.Int.J.FoodSci.Nutr.2021,
72,248–258.
7. Karras,S.N.;Koufakis,T.;Adamidou,L.;Dimakopoulos,G.;Karalazou,P.;Thisiadou,K.;Makedou,K.;
Kotsa,K.EffectsofChristianOrthodoxFastingVersusTime‐RestrictedEatingonPlasmaIrisin
ConcentrationsamongOverweightMetabolicallyHealthyIndividuals.Nutrients2021,13,1071.
8. Karras,S.N.;Koufakis,T.;Adamidou,L.;Dimakopoulos,G.;Karalazou,P.;Thisiadou,K.;Makedou,K.;
Zebekakis,P.;Kotsa,K.ImplementationofChristianOrthodoxfastingimprovesplasmaadiponectin
concentrationscomparedwithtime‐restrictedeatinginoverweightpremenopausalwomen.Int.J.Food
Sci.Nutr.2022,73,210–220.
9. Azzeh,F.S.;Hasanain,D.M.;Qadhi,A.H.;Ghafouri,K.J.;Azhar,W.F.;Ghaith,M.M.;Aldairi,A.F.;
Almasmoum,H.A.;Assaggaf,H.M.;Alhussain,M.H.;etal.ConsumptionofFoodComponentsofthe
MediterraneanDietDecreasestheRiskofBreastCancerintheMakkahRegion,SaudiArabia:ACase‐
ControlStudy.Front.Nutr.2022,9,863029.
10. Trichopoulou,A.;Vasilopoulou,E.;Georga,K.Macro‐andmicronutrientsinatraditionalGreekmenu.
Forum.Nutr.2005,57,135–146.
11. Karras,S.N.;Koufakis,T.;Petróczi,A.;Folkerts,D.;Kypraiou,M.;Mulrooney,H.;Naughton,D.P.;
Persynaki,A.;Zebekakis,P.;Skoutas,D.;etal.ChristianOrthodoxfastinginpractice:Acomparative
evaluationbetweenGreekOrthodoxgeneralpopulationfastersandAthonianmonks.Nutrition2019,59,
69–76.
12. Karras,S.N.;Persynaki,A.;Petróczi,A.;Barkans,E.;Mulrooney,H.;Kypraiou,M.;Tzotzas,T.;Tziomalos,
K.;Kotsa,K.;Tsioudas,A.;etal.HealthbenefitsandconsequencesoftheEasternOrthodoxfastingin
monksofMountAthos:Across‐sectionalstudy.Eur.J.Clin.Nutr.2017,71,743–749.
13. 13Karras,S.N.;Koufakis,T.;Adamidou,L.;Dimakopoulos,G.;Karalazou,P.;Thisiadou,K.;Zebekakis,P.;
Makedou,K.;Kotsa,K.Differentpatternsofchangesinfree25‐hydroxyvitaminDconcentrationsduring
intermittentfastingamongmeateatersandnon‐meateatersandcorrelationswithaminoacidintake.Int.
J.FoodSci.Nutr.2023,74,257–267.
14. KarrasSN,KoufakisT,PopovicDS,AdamidouL,KaralazouP,ThisiadouK,ZebekakisP,MakedouK,
KotsaK.Nutrients.2023Dec9;15(24):5058.doi:10.3390/nu15245058AMediterraneanEatingPattern
CombiningEnergyandTime‐RestrictedEatingImprovesVaspinandOmentinConcentrationsCompared
toIntermittentFastinginOverweightIndividuals.
15. KarrasSN,KoufakisT,DimakopoulosG,PopovicDS,KotsaK.Changesindietaryintakeofasparticacid
duringandafterintermittentfastingcorrelatewithanimprovementinfastingglucoseinoverweight
individuals.JDiabetes.2023Feb;15(2):181‐184.doi:10.1111/1753‐0407.13351.CrossRef]
16. KarrasSN,APersynaki,APetróczi,EBarkans,HMulrooney,MKypraiou1,TTzotzas,KTziomalos,K
Kotsa,ATsioudas,CPichard,DPNaughtonHealthbenefitsandconsequencesoftheEasternOrthodox
fastinginmonksofMountAthos:across‐sectionalstudyEurJClinNutr.2017Jun;71(6):743‐749.doi:
10.1038/ejcn.2017.26.Epub2017Mar22.
17. ManoogianENC,LaferrèreBTime‐restrictedeating:Whatweknowandwherethefieldisgoing..Obesity
(SilverSpring).2023Feb;31Suppl1(Suppl1):7‐8.doi:10.1002/oby.23672.
18. KoppoldDA,BreinlingerC,HanslianE,KesslerC,CramerH,KhokharAR,PetersonCM,TinsleyG,
VernieriC,BloomerRJ,BoschmannM,BragazziNL,BrandhorstS,GabelK,GoldhamerAC,Grajower
MM,HarvieM,HeilbronnL,HorneBD,KarrasSN,LanghorstJ,LischkaE,MadeoF,MitchellSJ,
Papagiannopoulos‐VatopaidinosIE,PapagiannopoulouM,PijlH,RavussinE,Ritzmann‐WidderichM,
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
10
VaradyK,AdamidouL,ChihaouiM,deCaboR,HassaneinM,LessanN,LongoV,ManoogianENC,
MattsonMP,MuhlesteinJB,PandaS,PapadopoulouSK,RodopaiosNE,StangeR,Michalsen
A.Internationalconsensusonfastingterminology.CellMetab.2024Aug6;36(8):1779‐1794.e4.doi:
10.1016/j.cmet.2024.06.013.Epub2024Jul25.
19. WangX,HeB.Endothelialdysfunction:molecularmechanismsandclinicalimplications.MedComm
(2020).2024Jul22;5(8):e651.doi:10.1002/mco2.651.eCollection2024Aug.
20. SharebianiH,MokaramM,MirghaniM,FazeliB,StanekA.TheEffectsofAntioxidantSupplementation
onthePathologicMechanismsofMetabolicSyndromeandCardiovascularDisease
Development..Nutrients.2024May27;16(11):1641.doi:10.3390/nu16111641.
21. DobroslavskaP,SilvaML,VicenteF,PereiraPMediterraneanDietaryPatternforHealthyandActive
Aging:ANarrativeReviewofanIntegrativeandSustainableApproach.Nutrients.2024May
31;16(11):1725.doi:10.3390/nu16111725.
22. RezigL,GhzaielI,KsilaM,YammineA,NuryT,ZarroukA,SamadiM,ChouaibiM,VejuxA,LizardG
CytoprotectiveactivitiesofrepresentativenutrientsfromtheMediterraneandietandofMediterraneanoils
against7‐ketocholesterol‐and7beta‐hydroxycholesterol‐inducedcytotoxicity:Applicationtoage‐related
diseasesandcivilizationdiseases..Steroids.2022Nov;187:109093.doi:10.1016/j.steroids.2022.109093.Epub
2022Aug24.
23. KhalilM,ShanmugamH,AbdallahH,JohnBrittoJS,GaleratiI,Gómez‐AmbrosiJ,FrühbeckG,Portincasa
PThePotentialoftheMediterraneanDiettoImproveMitochondrialFunctioninExperimentalModelsof
ObesityandMetabolicSyndrome..Nutrients.2022Jul28;14(15):3112.doi:10.3390/nu14153112.
24. OliveiraJS,daSilvaJA,deFreitasBVM,AlfenasRCG,BressanJ.AMediterraneandietimprovesglycation
markersinhealthypeopleandinthosewithchronicdiseases:asystematicreviewofclinicaltrials.Nutr
Rev.2024May8:nuae045.doi:10.1093/nutrit/nuae045.Onlineaheadofprint.
25. GreekNationalDietaryGuidelinesforAdults.Availableonline:
http://www.fao.org/nutrition/education/food‐ dietary‐ guidelines/regions/countries/greece/en/(accessed
on25July2024).
26. Jensen,M.D.;Ryan,D.H.;Apovian,C.M.;Ard,J.D.;Comuzzie,A.G.;Donato,K.A.;Hu,F.B.;Hubbard,V.S.;
Jakicic,J.M.;Kushner,R.F.;etal.2013AHA/ACC/TOSguidelineforthemanagementofoverweightand
obesityinadults:AreportoftheAmericanCollegeofCardiology/AmericanHeartAssociationTaskForce
onPracticeGuidelinesandTheObesitySociety.Circulation2014,129,S102–S138.
27. WHO.Globaldatabaseonbodymassindex.AccessedFebruary5,2016.Avail‐ ableat:
www.who.int/nutrition/databases/bmi/en/.
28. TanitaAcademy.Understandingyourmeasurements.Availableat:http://tanita.eu/.AccessedMay25,
2018.
29. MatthewsDR,HoskerJP,RudenskiAS,NaylorBA,TreacherDF,TurnerRC.Homeostasismodel
assessment:Insulinresistanceandb‐cellfunctionfromfastingplasmaglucoseandinsulinconcentrations
inman.Diabetologia1985;28:412–9.
30. ReddyY.,MurthyS.,KrishnaD.,PrabhakarM.C.RoleofFreeRadicalsandAntioxidantsinTuberculosis
Patients.IndianJ.Tuberc.2004;51:213–218.
31. VeskoukisA.S.,KyparosA.,PaschalisV.,NikolaidisM.G.SpectrophotometricAssaysforMeasuringRedox
BiomarkersinBlood.Biomarkers.2016;21:208–217.doi:10.3109/1354750X.2015.1126648.
32. JanaszewskaA.,BartoszG.AssayofTotalAntioxidantCapacity:ComparisonofFourMethodsasApplied
toHumanBloodPlasma.Scand.J.Clin.Lab.Invest.2002;62:231–236.doi:10.1080/003655102317475498.
33. KelesM.S.,TaysiS.,SenN.,AksoyH.,AkçayF.EffectofCorticosteroidTherapyonSerumandCSF
MalondialdehydeandAntioxidantProteinsinMultipleSclerosis.Can.J.Neurol.Sci.2001;28:141–143.doi:
10.1017/S0317167100052823.
34. CalderPC,AhluwaliaN,BrounsFetal..Dietaryfactorsandlow‐gradeinflammationinrelationto
overweightandobesity.BrJNutr.2011;106(Suppl.3):S5–78.doi:10.1017/S0007114511005460
35. EmilioRosE.,Martínez‐GonzálezM,EstruchR,Salas‐SalvadóJS,MontserratMFitóM,MartínezJA,
CorellaDMediterraneandietandcardiovascularhealth:TeachingsofthePREDIMEDstudyAdvNutr.
2014May14;5(3):330S‐6S
36. DaiJ,JonesDP,GoldbergJ,ZieglerTR,BostickRM,WilsonPW,ManatungaAK,ShallenbergerL,JonesL,
VaccarinoV.AssociationbetweenadherencetotheMediterraneandietandoxidativestress.AmJClin
Nutr.2008Nov;88(5):1364‐70.
37. FitóM,GuxensM,CorellaDetal.;PREDIMEDStudyInvestigators.EffectofatraditionalMediterranean
dietonlipoproteinoxidation:arandomizedcontrolledtrial.ArchInternMed.2007;167:1195–1203.
doi:10.1001/archinte.167.11.1195[GoogleScholar]
38. TostiV,BertozziB,FontanaL.HealthBenefitsoftheMediterraneanDiet:MetabolicandMolecular
Mechanisms.JGerontolABiolSciMedSci.2018Mar2;73(3):318‐326.
39. CalabreseCM,ValentiniA,CalabreseG.GutMicrobiotaandType1DiabetesMellitus:TheEffectof
MediterraneanDiet.FrontNutr.2021Jan13;7:612773.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1
11
40. Widmer,R.J.;Flammer,A.J.;Lerman,L.O.;Lerman,A.TheMediterraneandiet,itscomponents,and
cardiovasculardisease.Am.J.Med.2015,128,229–238
41. Hooper,L.V.;Littman,D.R.;Macpherson,A.J.Interactionsbetweenthemicrobiotaandtheimmunesystem.
Science2012,336,1268–1273MD
42. Zhou,N.;Gu,X.;Zhuang,T.;Xu,Y.;Yang,L.;Zhou,M.GutMicrobiota:APivotalHubforPolyphenolsas
Antidepressants.J.Agric.Food.Chem.2020,68,6007–6020
43. EisenbergT,AbdellatifM,SchroederSetal.Cardioprotectionandlifespanextensionbythenatural
polyaminespermidine.NatMed.2016;22:1428–1438.doi:10.1038/nm.4222
44. AlexE.Mohr,CarissaMcEvoy,DorothyD.Sears,PaulJ.Arciero,KarenL.Sweazea,Impactofintermittent
fastingregimensoncirculatingmarkersofoxidativestressinoverweightandobesehumans:Asystematic
reviewofrandomizedcontrolledtrials,AdvancesinRedoxResearch,Volume3,2021,100026
45. McAllister,MJ,Gonzalez,AE,andWaldman,HS.Impactoftimerestrictedfeedingonmarkersof
cardiometabolichealthandoxidativestressinresistance‐trainedfirefighters.JStrengthCondRes36(9):
2515‐2522,2022
46. SuttonEF,BeylR,EarlyKS,CefaluWT,RavussinE,PetersonCM.EarlyTime‐RestrictedFeedingImproves
InsulinSensitivity,BloodPressure,andOxidativeStressEvenwithoutWeightLossinMenwith
Prediabetes.CellMetab.2018Jun5;27(6):1212‐1221.e3.
47. CienfuegosS,GabelK,KalamF,EzpeletaM,WisemanE,PavlouV,LinS,OliveiraML,VaradyKA.Effects
of4‐and6‐hTime‐RestrictedFeedingonWeightandCardiometabolicHealth:ARandomizedControlled
TrialinAdultswithObesity.CellMetab.2020Sep1;32(3):366‐378
48. WimalawansaSJ.VitaminDDeficiency:EffectsonOxidativeStress,Epigenetics,GeneRegulation,and
Aging.Biology(Basel).2019May11;8(2):30
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythose
oftheindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)
disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideas,methods,instructionsor
productsreferredtointhecontent.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1910.v1