Content uploaded by Jesus Ivan Solares-Pascasio
Author content
All content in this area was uploaded by Jesus Ivan Solares-Pascasio on Apr 16, 2025
Content may be subject to copyright.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
774
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Ethnobotanical Medica, Pharmacology and Phytochemistry of the Species
Salvia del Valle de México: A Review
Rocio Ortega1, Fernando Calzada2, Ángeles Fortis-Barrera1, Jesus Solares-Pascasio1, Francisco Javier
Alarcón-Aguilar1*
1Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud,
Universidad Autónoma Metropolitana, Iztapalapa, CDMX 02200, México.
2 Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro
Médico Nacional Siglo XXI, CDMX, México.
*Corresponding author: Francisco Javier Alarcón-Aguilar, email: aaaf@xanum.uam.mx
Received May 22nd, 2024; Accepted August 4th, 2024.
DOI: http://dx.doi.org/10.29356/jmcs.v68i4.2288
Abstract. The Salvia genus is one of the most extensive in the Lamiaceae family. The Salvia genus comprises
approximately 900 species worldwide, 33 of which exist in the Valle de México, the most populated region of
Mexico. The taxonomic identification of these species often represents a problem because they present a great
variety of synonyms or variations in their nomenclature, like S. polystachya with 12 synonymies. The traditional
medicinal uses of Salvia species in Mexico are varied and include treatment for around 97 diseases. At least 20
species of the Salvia genus have well-documented medicinal ethnobotanical information with various uses,
including gastrointestinal disorders, gynecological problems, promoting childbirth, antipyretic, disinfecting
wounds, diabetes, and respiratory issues. The phytochemistry of the Salvia species from the Valle of Mexico is
also vast and diverse; at least 315 chemical compounds have been identified, mainly terpenoids, that have
received significant attention due to their multifaceted biological activities. Among the activities mentioned ar e
anticancer, anti-hyperglycemic, anti-fungal, anti-inflammatory, or anti-microbial. Some of the compounds
present more than one biological activity. Given their extensive structural diversity, terpenoids represent a great
source of compounds for developing new therapeutic agents. However, additional clinical and experimental
studies are still needed to elucidate the mechanisms of action, optimal doses, and potential toxicity of the isolated
compounds.
Keywords: Salvia spp.; lamiaceae; medicinal plants; terpenoid compounds; phytochemistry; pharmacology.
Resumen. El género Salvia es uno de los más extensos en la familia Lamiaceae. El género Salvia comprende
aproximadamente 900 especies alrededor del mundo, de las cuales 33 se encuentran en el Valle de México, la
región más poblada de México. La identificación taxonómica de estas especies representa frecuentemente un
problema al presentar una gran cantidad de sinonimias o variaciones en su nomenclatura, como S. polystachya
que tiene 12 sinonimias. Los usos en medicina tradicional de Salvias en México son variados, incluyendo
tratamiento para alrededor de 97 enfermedades. Por lo menos 20 especies del género Salvia tienen información
bien documentada de sus usos médicos y etnobotánicos, con una amplia variedad de usos que incluye desórdenes
gastrointestinales, problemas ginecológicos, promotores de parto, antipirético, para desinfectar heridas, diabetes
o problemas respiratorios. La fitoquímica de las especies de Salvia del Valle de México es también amplia y
diversa. Por lo menos 315 compuestos químicos han sido identificados y aislados, principalmente terpenoides,
que han recibido gran atención debido a sus actividades biológicas multifacéticas, como anticancerígenas,
antihiperglucémicas, antifúngica, antiinflamatorias o antimicrobianas. Algunos de los compuestos presentan más
de una actividad biológica. Dada su extensa diversidad estructural, los terpenoides representan una amplia fuente
de compuestos para el desarrollo de nuevos agentes terapéuticos. Sin embargo, estudios clínicos y experimentales
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
775
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
adicionales son necesarios para elucidar el mecanismo de acción, dosis óptimas y toxicidad potencial de los
compuestos aislados.
Palabras clave: Salvia spp.; lamiaceae; plantas medicinales; compuestos terpenoides; fitoquímica; farmacología.
Introduction
The Lamiaceae (Labiatae) family comprises approximately 236 genera and 7,173 species [1,2]. The
genus Salvia is one of the most extensive groups in this family, representing around 900 species worldwide [3,4].
The term Salvia comes from the Latin "salvare," meaning "to heal or be safe and unharmed," referring to the
healing properties of these species [2,5-9], which are recognized in worldwide traditional medicine. In the
Americas, around 500 species are registered in Mexico, Central America, and South Ame rica, representing the
second most diverse territory, with approximately 312 species, of which 75 to 88% are endemic [5,10 -12]. In
Mexico, the most significant number of Salvia species is concentrated in the western and southeastern, along the
Occidental Sierra Madre, the Trans-Mexican Volcanic Belt, and the Sierra Madre del Sur.
Salvia species are typically shrubs or climbing shrubs from 30 to 150 cm tall that can be annual or
perennial [12]. Their stems are angular, characteristic of the Lamiaceae family, with leaves that are usually
velvety or hairy, and they can often be rugose, entire, toothed, lobed, or pinnate. The flower stalks produce small
bracts different from the basal leaves. Inflorescences are borne in clusters or panicles that produce brightly
colored flowers, depending on the species [7,9,12]. The calyx is tubular or bell -shaped without a bearded throat,
divided into two lips (that is why the name of labiates): the upper whole or tridentate and the lower cleft. The
corolla is usually bilabiate. The stamens are two short structures with bicellular anthers. Many species have
trichomes (hairs) on the surface of the leaves, stems, and flowers [7,9,12].
Several Salvia species have great economic importance due to their edible, aromatic, and medicinal
properties. Many of these species contain high amounts of essential oils, phenolic compounds, antioxidants, and
other valuable chemical constituents [5]. The main compounds described in the Salvia species are terpenoids and
flavonoids. Aerial parts, especially flowers and leaves, contain flavonoids, triterpenoids, and monoterpenes,
while the roots contain primarily diterpenoids [7,9,10]. Salvia species have been used since ancient times for
different ailments, ranging from aches to epilepsy, and the primary uses are for treating colds, bronchitis,
tuberculosis, hemorrhages, and menstrual disorders, among others [7,9]. The Mexican Salvia species are highly
valued for their medicinal, nutritional, and ritualistic uses and are often used as part of vernacular medicine or in
mystical/religious rituals. Prominent examples are Salvia divinorum (“planta de la pastora”), which is a
hallucinogen plant used in rituals by the Mazatecas, an endemic population in the northeastern of Oaxaca [13],
and Salvia hispanica (chia), which is widely used as a food source since pre-Hispanic times [14].
Ramamoorthy (2001) botanically identified 33 Salvia species in the Valle de México [9] (Table 1). The
Valle de México has an altitude of 2,240 meters (7,350 ft), covering around 7,866 km2, and includes 16 town
halls in Mexico City, 59 municipalities of the State of Mexico, and one municipality in the State of Hidalgo [15].
Geographically, it is located between the Anahuac Lake and Volcano Region of the physiographic province of
the Neo-volcanic Axis and is surrounded by the mountains of Monte Alto, Monte Bajo, and Las Cruces, as well
as the Sierra Nevada and Chichinauhtzin mountain range (Fig. 1). This surface presents intermountain, valleys,
plateaus, and ravines, as well as semi-deep land, in which are located the lakes of Texcoco, Xochimilco, and
Chalco. There are also isolated topographic prominences, such as the "Cerro de la Estrella," the "Cerro del
Peñón," and the "Cerro de Chapultepec." The Valle de México also represents the most populated region of
Mexico, with more than 20 million inhabitants, who often agree with these species despite their lack of knowledge
about their medical uses and properties. In this region, 33 species of Salvia had been recorded [9]. Although
several researchers worldwide have contributed ethnobotanical, phytochemical, and pharmacological information
for some of these species [5,16-19], it is still necessary to continue working on the supplementation and
organization of this information. In certain instances, these species exhibit a broad range of botanical synonyms
or variations in their nomenclature, which can result in some confusion, like S. polystachya, that have 12 botanical
synonymies and 11 common names. Therefore, their taxonomic identification often represents a problem. This
review aims to organize and synthesize the ethnobotanical, pharmacological, and phytochemical knowledge of
the 33 Salvia species described by Ramamoorthy in the Valle de México [9]. These species have been extensively
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
776
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
documented by diverse research groups in Mexico and other regions, including Europe and Asia [20 -25]. Our
primary objective is to critically analyze and compare these data, advancing their study at the
ethnopharmacological, phytochemical, and therapeutic levels. By doing so, we seek to validate the traditional
uses attributed to these remarkable plant species.
Table 1. Scientific name of the 33 Salvia species described by Ramamoorthy in the Valle de México [9].
1.
S. axillaris Moc & Sessé ex
Benth.
2.
S. carnea Kunth.
3.
S. chamaedryoides Cav.
4.
S. circinata Cav.
5.
S. concolor Lamb. ex Benth
6.
S. elegans Vahl.
7.
S. filifolia Ramamoorthy
8.
S. fulgens Cav.
9.
S. gesneriiflora Lindl &
Paxton
10.
S. helianthemifolia Benth.
11.
S. hirsuta Jacq.
12.
S. hispanica L.
13.
S. keerlii Benth.
14.
S. laevis Benth.
15.
S. lavanduloides Kunth.
16.
S. leucantha Cav.
17.
S. melissodora Lag. Me
Vaugh.
18.
S. mexicana L.
19.
S. microphylla H.B.&H.
20.
S. misella Kunth.
21.
S. mocinoi Benth.
22.
S. moniliformis Fern.
23.
S. oreopola Fern.
24.
S. patens Cav.
25.
S. polystachya Cav.
26.
S. prunelloides Kunth.
27.
S. pulchea DC.
28.
S. reflexa Hornem.
29.
S. reptans Jacq.
30.
S. stachyoides Kunth.
31.
S. tiliifolia Vahl.
32.
S. tubifera Cav.
33.
S. verbenacea L.
Fig. 1. The delimitation of Mexican metropolitan areas (Valle de México). Modified from OECD, 2015
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
777
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Methodology
Information from the 33 species of Salvias recorded by Ramamoorthy in the Valle de México [9]
was obtained from diverse databases, such as Web of Science, Google Scholar, Google Books, Scopus,
ScienceDirect, SpringerLink, Wiley Online, PubMed, textbooks, taxonomic reviews, university theses,
and SciFinder. With the obtained data, such as botanical characteristics, botanical synonymy, empirical
uses, and biological activities, a meta-analysis was performed, and the compounds isolated were
documented.
Results and discussion
Botanical synonymy, popular names, and distribution
Plant nomenclature is ruled by the International Code of Botanical Nomenclature, which aims to
provide a correct and accepted name for a taxon based on publication priority. The application of the norms
of the code and the taxonomic studies that imply some change in the circumscription of the taxon result in
changes in nomenclature and botanic synonymy, such that in the study of medicinal plants, the synonymies
can be a problem by creating confusion in any investigation [26,27]. Therefore, the first step wa s
identifying which species had synonyms or some variation (Table 2), highlighting that many of the Salvia
species studied (84 %) presented some of these conditions. The plant with a significant number of
synonyms was S. polystachya, with 12 synonymies, seven variations, and three subspecies, followed by S.
carnea, with 13 synonymies and two variations: S. fulgens, with 11 synonymies and three variations, and
S. mexicana with nine synonymies and three variations. This situation illustrates how easy it is to make
mistakes when working with species Salvia, so taxonomic identification is a priority before any study.
Another frequent problem for species identification focuses on popular or common names with
ethnobotanical relevance. However, In Mexico, the popular names vary depending on the region where
they are found. Of the included species in the present study, 57.6% had more than one popular name,
where "mirto," "chia," and "salvia" are the most used. S. microphylla is recognized with 18 popular names,
followed by S. lavanduloides with 15 names. The consulted bibliography recorded a single popular name
for five species; no popular name for nine species was documented. The importance of the correct name
of the plant species consists in being able to avoid confusion or even a duplicate work for incorrect use of
the names; in the case of S. circinata (S. amarissima), it is possible to observe publications with both
names; it is essential to corroborate the correct and accepted scientific name of the plant. [28,29].
The geographical distribution of these 33 species is not exclusive to the Valle de México. Most
of them are distributed in several states of Mexican territory (Table 2). The data indicate that in the state
of Michoacan, there are around 27 species, followed by the State of Mexico with 18, and the State of
Hidalgo with 17. The best-distributed species in Mexico are S. polystachya and S. hispanica (Table 2).
These data are essential if we consider that the same common name can be used to name different species
of the same or other genera, or a single species can receive several names, which vary from one region to
another, and because some species share the same distribution in the Valle de México, including Ciudad
de México, Estado de México, and Hidalgo. We agree with [2] that research focused on medicinal plants
requires essential botanical assistance, especially in taxonomy and nomenclature.
The distribution of the plants in the different regions also affects the kind and concentration of
secondary metabolites in the plant. In S. hispanica, the weather, altitude, humidity, and nutrients of the
region of Veracruz, which is in the East of Mexico, with significant humidity, being a jungle area, are not
the same conditions that the State of Durango, in the north of the country, with a desert climate. The
different territorial, geographic, and climatic conditions provoke changes in the metabolites, and it may
affect all the Salvia species that have a wide distribution in the country, even in the same species with
different geographical distribution. These changes are a significant area of study to determine the impact
of the different conditions in synthesizing metabolites of pharmacological interest [28,30].
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
778
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Table 2. Scientific name, botanical synonymy, popular names, and distribution of Salvia species from the Valle
de México.
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. axillaris Moc & Sessé
ex Benth.
= S. cuneifolia Benth.
= S. axillaris var. axillaris.
Hisopo de Puebla
Vegeta
Durango
Guanajuato
Hidalgo
Jalisco
Michoacán
Oaxaca
Puebla
San Luis Potosí
Tlaxcala
Veracruz
S. carnea Kunth.
= S. membranacea Benth.
= S. pseudogracilis Epling.
= S. myriantha Epling.
= S. natalis Epling
= S. carnea var. carnea.
= S. debilis Epling.
= S. gracilis Benth.
= S. iodochroa Briq.
= S. irazuensis Fernald.
= S. killipiana Epling.
= S. martensii Galeotti.
= S. membranacea var. villosula Benth.
= S. purpurascens M. Martens & Galeotti.
= S. sidifolia M. Martens & Galeotti.
= S. simulans Fernald.
Chía
Chiapas
Guerrero
Hidalgo
Michoacán
Oaxaca
Nayarit
Veracruz
S. chamaedryoides Cav.
= S. menthifolia Ten.
= S. chamaedrifolia Andrews.
= S. chamaedryoides var. isochroma
Fernald.
= S. chamaedrys Willd.
Mirto
Hidalgo
Morelos
Nuevo León
Puebla
San Luis Potosí
Zacatecas
S. circinata Cav.
= S. amarissima Ort.
= S. amara Jacq.
= S. hirsuta Sessé & Moc. non Jacq.
Bretónica
Chupona
Diabetina
Hierba de cáncer
Hierba de tapón
Prodigiosa
Ñadri (otomí)
Estado de México
Guerrero
Michoacán
Oaxaca
San Luis Potosí
Veracruz
S. concolor Lamb. ex
Benth
= S. cyanea Benth.
= S. cyaniflora A. Dietr.
= S. cyanifera Otto ex Benth.
Hierba
Colima
Estado de México
Guerrero
Jalisco
Michoacán
Morelos
Puebla
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
779
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. elegans Vahl.
= S. camertonii Regel.
= S. incarnata Cav.
= S. longiflora Sessé & Moc.
= S. microcalyx Scheele.
= S. punicea M. Martens & Galeotti.
= S. rutilans Carrière.
= S. elegans var. sonorensis Fernald.
= S. microculis Poir.
Flor del cerro
Hierba del burro
Limoncillo
Mirto
Mirto de campo
Mirto de flor roja
Mirto inglés
Mirto mocho
Salvia
Toronjil de monte
Jetcho deni (otomí)
Chihuahua
Durango
Estado de México
Hidalgo
Michoacán
Oaxaca
Puebla
Sonora
Veracruz
S. filifolia Ramamoorthy
NS
NS
Guanajuato
Michoacán
Estado de México
S. fulgens Cav.
= S. cardinalis Kunth.
= S. boucheana Kunth.
= S. cardinalis Kunth.
= S. incana M. Martens & Galeotti.
= S. grandiflora Sessé & Moc.
= S. orizabensis Fernald.
= S. pendula Sessé & Moc.
= S. schaffneri Fernald.
= S. fulgens var. boucheana (Kunth) Benth.
= S. fulgens f. boucheana (Kunth) Voss.
= Piaradena fulgens (Cav.) Raf.
Mirto
Mirto macho
Mirto macho del
popo
Pinyesi (mazahua)
Estado de México
Michoacán
Puebla
Tlaxcala
S. gesneriiflora Lindl &
Paxton
= S. barbata Sessé & Moc.
= S. fulgens f. gesneriiflora (Lindl. &
Paxton) Voss.
Aparicua
Flor de colibrí
Flor de chuparrosa
Flor de
Tzintzungaraman
(purépecha)
Estado de México
Jalisco
Michoacán
Puebla
S. helianthemifolia
Benth.
NS
Mirto corriente
Guanajuato
Guerrero
Hidalgo
Jalisco
Michoacán
Morelos
Querétaro
San Luis Potosí
Veracruz
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
780
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. hirsuta Jacq.
= S. cryptanthos Schult.
= S. phlomoides Cav.
= S. sideritidis Vahl.
= S. bracteata Poir.
= S. ciliaris Sessé & Moc.
= S. ciliata Poir.
= S. nepetifolia Desf.
NS
Durango
Estado de México
Guanajuato
Hidalgo
Oaxaca
Querétaro
San Luis Potosí
Texcoco
Tlaxcala
Zacatecas
S. hispanica L.
= S. hispanica var. chionocalyx Fernald.
= S. hispanica var. intonsa Fernald.
= S. neohispanica Briq.
= S. prysmatica Cav.
= S. schiedeana Stapf.
= S. tetragona Moench.
= Kiosmina hispanica (L.) Raf.
= S. chia Colla.
= S. chia Sessé & Moc.
Chía
Chía blanco
Tzozolxochitl
Coahuila
Chihuahua
Durango
Guanajuato
Guerrero
Jalisco
Michoacán
Morelos
Oaxaca
Puebla
San Luis Potosí
Sonora
Veracruz
S. keerlii Benth.
NS
NS
Durango
Guanajuato
Hidalgo
Michoacán
Nuevo León
Oaxaca
Querétaro
San Luis Potosí
Tamaulipas
Zacatecas
S. laevis Benth.
= S. laevis Benth.
= S. comosa Peyr.
= S. comosa var. hypoglauca Fernald.
= S. hypoglauca Briq.
= S. pseudocomosa Epling.
Salvia real
Palmita
Durango
Estado de México
Guanajuato
Hidalgo
Jalisco
Michoacán
Oaxaca
Puebla
Querétaro
San Luis Potosí
Veracruz
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
781
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. lavanduloides Kunth.
= S. agnes Epling.
= S. humboldtiana Schult.
= S. lavanduloides Kunth var. latifolia
Benth.
= S. fratrum Standl.
= S. lavanduloides var. hispida Benth.
= S. purpurina La Llave.
Altamisa
Alucena
Azulilla
Cantuesco
Cenicilla
Chabacal
Ordoncillo
Lucema
Lúcuma
Mazorquita
Poleo
Salvia morada
Yaxal nich vomol
(tzotzil)
Recámpona
(mazahua)
Cuetehton (náhuatl)
Chiapas
Estado de México
Guerrero
Hidalgo
Michoacán
Morelos
Oaxaca
Puebla
Veracruz
S. leucantha Cav.
= S. bicolor Sessé & Moc.
= S. discolor Kunth.
= S. leucantha f. iobaphes Fernald.
Algodoncillo
Cordoncillo
Cordón de Jesús
Cordón de San
Francisco
Lana
Rabo de gato
Salvia cruz
Salvia real
Moco de pavo
Moradoxóchitl
(náhuatl)
Tochomixochitl
Estado de México
Hidalgo
Michoacán
Morelos
Oaxaca
Puebla
San Luís Potosí
Tabasco
Zacatecas
S. melissodora Lag. Me
Vaugh.
= S. scorodoniaefolia Poir.
= S. scorodoniae Desf. ex Poir.
= S. scorodoniaefolia var. crenaea Fernald.
= S. scorodonia Benth.
= S. dugesii Fernald.
Orégano
Tkulh origan (tepeh)
Tikolh origam
Chihuahua
Durango
Guerrero
Hidalgo
Michoacán
Oaxaca
Zacatecas
S. mexicana L.
= S. mexicana L. var. mexicana
= S. mexicana var. minor Benth.
= S. mexicana f. minor Sessé & Moc.
= S. mexicana var. major Benth.
= Hemistegia mexicana (L.) Raf.
= Jungia altissima Moench.
= S. amethystina Salisb.
= S. lupulina Fernald.
= S. nitidifolia Ortega.
= S. papilionacea Cav.
= Sclarea mexicana (L.) Mill.
= Sclarea mexicana (L.) Dill.
Chía
Marrubio
Tacote
Tapachichi
Azul-sipari
(purépecha)
Charahuesca
(purépecha)
Ichukuta (purépecha)
Tapachichi
Chiapas
Chihuahua
Jalisco
Michoacán
Morelos
Oaxaca
Sinaloa
Tlaxcala
Veracruz
Zacatecas
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
782
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. microphylla H.B. & H.
= S. microphylla Kunth. var. microphylla.
= S. microphylla var. neurepia.
= S. grahamii Benth.
= S. lemmonii A. Gray.
= S. microphylla Sessé & Moc.
= S. microphylla var. canescens A. Gray.
= S. microphylla var. wislizeni A. Gray.
= S. obtusa M. Martens & Galeotti.
= S. odoratissima Sessé & Moc.
= S. lesemia coccinea Raf.
Diente de acamaya
Hierba de mirto
Mastranzo
Mirto
Mirto blanco
Mirto de castilla
Mirto chico
Mirto de huerto
Mirto violeta
Toronjil
Verbena
Mistro
Mistru
Mishto (tzotzil)
Tzil bomol (tzotzil)
Ix tasalak (tepehua)
Mustia (purepecha)
Kaisto nchia
(popoloca)
Chiapas
Durango
Estado de México
Guanajuato
Hidalgo
Jalisco
Michoacán
Nuevo León
Puebla
Tamaulipas
Veracruz
S. misella Kunth.
= S. riparia Kunth.
= S. lateriflora Fernald.
= S. obscura Benth.
= S. viscosa Sessé & Moc.
= S. privoides Benth.
= S. occidentalis var. obscura (Benth.) M.
Gómez
Chía
Hierba del cáncer
Hierba de golpe
Quelite lengua de
toro
Venenosa
Baja California
Guerrero
Michoacán
Tamaulipas
Veracruz
S. mocinoi Benth.
= S. lophantha Benth.
= S. rubiginosa Benth.
= S. rubiginosa var. hebephylla Fernald.
= S. saltuensis Fernald
= S. zacuapanensis Brandegee.
= S. lophanthoides Fernald.
NS
Guerrero
Jalisco
Michoacán
Puebla
S. moniliformis Fern.
NS
NS
Estado de México
Morelos
S. oreopola Fern.
NS
NS
Estado de México
Morelos
Oaxaca
S. patens Cav.
= S. decipiens M. Martens & Galeotti.
= S. grandiflora Née ex Cav.
= S. macrantha Schltdl.
= S. spectabilis Kunth.
= S. staminea M. Martens & Galeotti.
Flor de gallito
Quiquiriquí
Mirto
Mirto azul
Estado de México
Hidalgo
Michoacán
San Luis Potosí
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
783
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. polystachya Cav.
= S. polystachya Ort.
= S. brevicalyx Benth.
= S. caesia Willd.
= S. cataria Briq.
= S. compacta Kuntze.
= S. compacta var. irazuensis Kuntze.
= S. compacta var. latifolia Kuntze.
= S. compacta var. oerstediana Kuntze.
= S. durandiana Briq. ex T. Durand &
Pittier.
= S. eremetica Cerv. ex Lag.
= S. flexuosa C. Prezl ex Benth.
= S. lilacina Fernald.
= S. lineatifolia Lag.
= S. menthiformis Fernald.
= S. polystachya var. albicans Fernald.
= S. polystachya subsp. caesia (Humb. &
Bonpl.) Briq.
= S. polystachya subsp. compacta (Kuntze)
Alziar.
= S. polystachya subsp. durandiana Briq.
= S. polystachya var. philippensis Fernald.
= S. polystachya var. potosiana Briq.
= S. polystachya var. seorsa Fernald.
= S. reducta Epling.
Alchichía
Azulema
Chía de campo
Hierba chica
Lucemilla
Mirto
Poleo azul
Romerillo
Santomexochitl
Ulcema
Xilpapah
Chiapas
Colima
Estado de México
Guanajuato
Guerrero
Hidalgo
Jalisco
Michoacán
Morelos
Nayarit
Oaxaca
Puebla
Querétaro
San Luis Potosí
Tamaulipas
Tlaxcala
Veracruz
S. prunelloides Kunth.
= S. prunelloides f. minor Loes.
= S. rhombifolia Sessé & Moc.
= S. trichandra Briq.
Hierba de gallo
Oreja de venado
Salvia azul
Suimalh nanakl
(tepech)
Chiapas
Durango
Michoacán
Nuevo León
San Luis Potosí
Zacatecas
S. pulchea DC.
= S. ancistrocarpha Fernald.
= S. doliostachys Lag. ex Benth.
NS
Estado de México
Michoacán
S. reflexa Hornem.
= S. aspidophylla Schult.
= S. trichostemoides Pursh.
Almaraduz grande
Chía
Mimititán
Estado de México
Michoacán
Nuevo León
Zacatecas
S. reptans Jacq.
= S. angustifolia Cav.
= S. angustifolia var. glabra Briq.
= S. angustifolia var. glabra A. Gray.
= S. heterotricha Fernald.
= S. leptophylla Benth.
= S. linearis Sessé & Moc.
= S. linifolia M. Martens & Galeotti.
= S. virgata Ortega.
= S. unicostata Fernald.
Hierba de golondrina
Hierba de pozuña
Romerillo
Chiapas
Estado de México
Hidalgo
Jalisco
Michoacán
Puebla
Zacatecas
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
784
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
NS = Not specified
Botanical characteristics
The different species of the Salvia genus have similar morphological characteristics [31]. Table 3 enlists
some botanical characteristics reported by Ramamoorthy in 2001 [9], complemented by Lara-Cabrera [32]. Most
of these species (75.5 %) are "perennial herbaceous" of 0.15 m (S. helianthemifolia Benth.) to 4 m (S. fulgens
Cav.) and can be found at different altitudes ranging from 650 to 2400 meters. In the different species, the leaves
vary in size from 5-8 mm to 50-140 mm long and have various shapes, from elliptical to ovate. The flowering time
in plants is of great importance; it involves essential changes in metabolism and the translocation of nutrients,
ensuring the production of seeds and, therefore, the survival of the species [33,34]. In the salvias studied, it was
possible to document data on flowering times for 14 species, less than half (42.2 %) of the studied plants, and no
pattern was observed in these data, so it is possible to find different species of Salvia in bloom throughout the year.
The colours of the bilabiate calyx and the corolla are also diverse (red, pink, blue, lilac, and white), although the
blue corolla is predominant (69.7 %). However, in at least nine species (27.3 %), the colour of the corolla can be
variable. Habitat and altitude, among other abiotic and biotic environmental factors, can modify their physical or
chemical characteristics, impacting the secondary metabolism's evolution and phenotypic plasticity [35].
Considering the similarity observed in the distinct Salvia species, it is essential and necessary to take
special care in the taxonomic identification to avoid correlation errors and extrapolation [26], which could put in
risk the reproducibility and continuation of pharmacological and chemical studies with these species [2,30]. The
chemical composition varies between species, seasons, and habitats, as well as the stage of development or the
plant organ (ontogeny of leaves, flowers, and fruits), factors that lead to significant qualitative differentiations
where the composition can undergo significant changes. Some components can vary from traces (10 %) in the
initial stages up to 50-70 % in the full bloom stage [36], which should be considered in phytochemical studies.
Scientific name
Botanical synonymy / Varieties
Common name
Distribution in
other states of
Mexico
S. stachyoides Kunth.
= S. elongata Kunth.
= S. stricta Sessé & Moc.
= S. simplex Spreng.
= S. betónica Schult.
Salvia Negra
Michoacán
Morelos
Veracruz
S. tiliifolia Vahl.
= S. fimbriata Kunth.
= S. myriantha Epling.
= S. obvallata Epling.
= S. psilophylla Epling.
= S. tiliifolia Lag.
= S. tiliifolia var. albiflora (M. Martens &
Galeotti) L.O. Williams.
= S. tiliifolia var. alvajaca (Oerst.) L. O.
Williams.
= S. tiliifolia var. cinerascens Fernald.
= S. tiliifolia var. rhyacophila Fernald.
= S. tiliaefolia Vahl.
Chia chimarrona
Chupona
Hierba de gallo
Limpia tuna
Tronadora
Chiapas
Hidalgo
Michoacán
Nuevo León
Sonora
Tamaulipas
Veracruz
Zacatecas
S. tubifera Cav.
= S. excelsa Benth.
= S. monochila Donn. Sm.
= S. venosa Fernald.
= S. longiflora Willd.
NS
Hidalgo
Guerrero
Veracruz
S. verbenacea L.
= S. vervenaca L.
NS
NS
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
785
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Table 3. Botanical characteristics of Salvia species from Valle de México. [10]
Plant name
Habitat
Leaves
Flowers
Flowering
Altitude range
(meters)
Vegetation
S. axillaris
Perennial-herbaceous
Ascending: NS
Sessile obovate to
oblanceolate
Rounded apex
7 - 12 x 30 - 45 mm
Bilabiate calyx
Corolla: Light lilac /
white
NS
2400-2800
Grasslands
Bushes
Quercus forest
Juniperus forest
S. carnea
Perennial-herbaceous
Ascending: 0.5-1.5 m
Ovate
Acuminate apex
30 - 90 x 20 - 60 mm
Bilabiate calyx
Corolla: Pink /
White
Sep - May
2800-3500
Mountain mesophyll forest
Quercus forest
Pinus forest
Pinus-Quercus Forest
Abies forest
S. chamaedryoides
Herbaceous-perennial /
subshrub
Ascending: 20-80 cm
Ovate to deltoid-elliptic
Rounded apex
6 - 20 x 3 - 10 mm
Bilabiate calyx
Corolla: Blue
NS
2300-2800
Grassland
Bushes
Quercus forest
Juniperus forest
S. circinata
Perennial-herbaceous
Ascending: 30 cm-1.5 m
Ovate
Acumite apex
30 - 100 x 12 - 45 mm
Bilabiate calyx
Corolla: Blue-
purple/white
Aug - Nov
1650-2800
Grassland
Bushes
Disturbed Areas
S. concolor
Perennial-herbaceous
Ascending: 50 cm-2 m
Ovate to ovate-deltoid
Acuminate apex
50 - 120 x 30 - 120 mm
Bilabiate calyx
Corolla: Dark blue.
Sep
2650-3300
Coniferous forest
Mesophilic forest
S. elegans
Perennial-herbaceous
/ Bushy
Ascending: 80 cm-2m
Ovate
Acute apex
8 - 6 x 6 - 35 mm
Bilabiate calyx
Corolla: Red
NS
2550-3100
Mountain mesophyll forest
Abies forest
Pinus forest
Quercus forest
S. filifolia
Perennial-herbaceous
Ascending: ± 35 cm
Sessile
Lineal sometimes
Oblanceolate / narrowly-
oblanceolate
Acute apex
10 - 60 x 2 - 3 mm
Bilabiate calyx
Corolla: Blue
Jul - Nov
2390-2800
Encino deteriorated forest
Pinus forest
Quercus forest
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
786
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Habitat
Leaves
Flowers
Flowering
Altitude range
(meters)
Vegetation
S. fulgens
Arbustive
Ascending: 1-4 m
Ovate
Acute apex
30 - 140 x 15 - 70 mm
Bilabiate calyx
Corolla: Deep
red/white
NS
2650-3400
Mountain mesophyll forest
Juniperus forest
Mixed forest
Pinus-Encino Forest
S. gesneriiflora
Climbing shrub
Ascending: 80 cm-2.5 m
Ovate
RouNSed apex
30 - 110 x 30 - 80 mm
Bilabiate calyx
Corolla: Red
Oct - May
1950-3200
Mesophyll forest
Quercus forest
Mixed forest
Coniferous forest
Pinus forest
Pinus-Quercus Forest
Shores of agricultural crops
S. helianthemifolia
Perennial-herbaceous
Ascending: 15-70 cm
Elliptic-orbicular
Rounded apex
10 - 50 x 4 - 20 mm
Bilabiate calyx
Corolla: Blue
Aug - Apr
2000-3200
Mountain mesophyll forest
Quercus forest
Pinus forest
Pinus-Quercus Forest
Coniferous forest
Secondary scrub
S. hirsuta
Perennial-herbaceous
Ascending: 20-60 cm
Oblong-elliptic
Obtuse apex
20 - 35 x 10 - 14 mm
Bilabiate calyx
Corolla: Blue
Jun - Oct
2250 – 2600
Grasslands
Scrubs
Disturbed areas
S. hispanica
Perenne
Ascending: 1 m
Ovate-lanceolate
Acuminate apex
30 - 60 x 10 - 20 mm
Bilabiate calyx
Corolla: Purple/blue
Sep - Nov
2050-2500
Quercus forest
Tropical deciduous forest
Mixed forest
S. keerlii
Bushy
Ascending: 1-3.5 m
Ovate
Acute-obtuse apex
20 - 40 x 7 - 30 mm
Bilabiate calyx
Corolla: Blue to
purple/white
Jul - Dec
2170-3100
Quercus forest
Juniperus forest
Pinus-Quercus Forest
Juniperus-quercus forest
Submontane xerophytic scrubland
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
787
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Habitat
Leaves
Flowers
Flowering
Altitude range
(meters)
Vegetation
S. laevis
Perennial-herbaceous
Ascending: 30-70 cm
Lanceolate-oblong-
lanceolate
Acute apex
25 - 80 x 3 - 12 mm
Bilabiate calyx
Corolla: Blue
Jun - Nov
1520 -3200
Quercus forest
Xerophytic scrubland
Abies forest
Pinus forest
Pinus-Quercus Forest
Mesophyll forest
Grasslands
Scrubs
S. lavanduloides
Perennial-herbaceous
Ascending: 50 cm-1 m
Elliptic
Acute apex
30 - 90 x 6 - 15 mm
Bilabiate calyx
Corolla: Blue
Oct - May
1650 -3300
Mountain mesophyll forest
Quercus forest
Pinus-Quercus Forest
Mixed forest
Secondary vegetation
S. leucantha
Ascending: 45 cm-1 m
Lanceolate
Acute apex
40 - 120 x 4 - 18 mm
Bilabiate calyx
Corolla: White and
covered with purple
hair
Sep - Dec
1000-2800
Pinus forest
Encino forest
Xerophytic scrublands
S. melissodora
Perennial-herbaceous
Arbustive
Ascending: 50 cm-2 m
Oval
Ovate-oblong / ovate-
deltoid
Acute apex
10 - 50 x 70 - 30 mm
Bilabiate calyx
Corolla: Blue-
purple/white
Jul - Mar
1550 - 2600
Xerophytic scrubland
Slopes
Hill
S. mexicana
Perennial-herbaceous
Arbustive
Ascending: 50 cm-3 m
Ovate
Acuminate apex
60 - 180 x 25 - 120 mm
Bilabiate calyx
Corolla: Blue
NS
2250 - 3000
Quercus forest
Pinus forest
Disturbed areas
S. microphylla
Arbustive
Ascending: 40 cm-1.5 m
Elliptic oval or deltoid
Acute to rounded apex
10 - 70 x 4 - 30 mm
Bilabiate calyx
Corolla: Red
NS
NS
Juniperus forest
Encino forest
Mixed forest
Evergreen forest
Pinus forest
Pinus-Encino Forest
Xerophytic scrubland
Grassland
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
788
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Habitat
Leaves
Flowers
Flowering
Altitude range
(meters)
Vegetation
S. misella
Perennial-herbaceous
Ascending: 50 cm-1.5 m
Opposite sessile/elliptic
Acuminate apex
20 - 50 x 10 - 20 mm
Bilabiate calyx
Corolla: Blue
NS
650-2250
Mountain mesophyll forest
Disturbed vegetation of tropical
deciduous forest
The transition zone between the
mountain mesophyll and encino
forest
S. mocinoi
Perennial-herbaceous
Arbustive
Ascending: 50 cm-2 m
Ovate
Acute / acuminate apex
15 - 55 x 6 - 28mm
Bilabiate calyx
Corolla: Blue
NS
2400-2650
Mountain mesophyll forest
Pinus forest
Oak forest
S. moniliformis
Perennial-herbaceous
Ascending: 40 cm-1 m
Elliptic
Acute apex
20 a 35 x 8 – 10 mm
Bilabiate calyx
Corolla: Blue
NS
2300-2800
Mountain mesophyll forest
Coniferous forest
Pinus forest
Oyamel forest
S. oreopola
Herbaceous
Ascending: ± 40 cm
Deltoid-ovate
Acute apex
14 - 40 x 10 - 35 mm
Bilabiate calyx
Corolla: Blue
NS
2600
Pinus forest
S. patens
Perennial-herbaceous
Ascending: 30 cm-1 m
Ovate to ovate-deltoid
Acute apex
50 - 140 x 40 - 120 mm
Bilabiate calyx
Corolla: Blue
NS
2500-2800
Quercus forest
S. polystachya
Perennial-herbaceous
Arbustive
Ascending: 50 cm-3.5 m
Ovate - elliptic
Acuminate apex
30 - 140 x 20 - 70 mm
Bilabiate calyx
Corolla: Blue-
violet/white
Jun.-Nov.
2250-2900
Encino forest
Pinus forest
Grassland
Secondary scrub
Disturbed areas
S. prunelloides
Perennial-herbaceous
Ascending: 15-40 cm
Rhomboid
Ovate-rhomboid / oblong
Acute to rounded apex
7 - 60 x 7 - 27 mm
Bilabiate calyx
Corolla: Blue
NS
2400-3600
Coniferous forest
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
789
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Habitat
Leaves
Flowers
Flowering
Altitude range
(meters)
Vegetation
S. pulchea
Perennial-herbaceous
Arbustive
Ascending: 1-2 m
Ovate
Acute-acuminate apex
25 - 140 x 25 - 60 mm
Bilabiate calyx
Corolla: Red
NS
2350-2400
Grassland
Xerophytic scrubland
S. reflexa
Perennial-herbaceous
Ascending: 20 cm-1 m
Oblong-elliptic / linear
Acute apex
15 - 60 x 4 - 10 mm
Bilabiate calyx
Corolla: White
NS
2250-2600
Scrub
Disturbed areas
S. reptans
Perennial-herbaceous
Ascending: 30 cm-1 m
Linear or linear-oblong
Acute-rounded apex
5 - 8 x 1 - 5 mm
Bilabiate calyx
Corolla: Purple/blue
NS
2300-2700
Pinus forest
Encino forest
Grassland
Scrub
Disturbed areas
S. stachyoides
Perennial-herbaceous
AsceNSing: 50 cm-1 m
Elliptic
Acute apex
25 - 70 x 7 - 32 mm
Bilabiate calyx
Corolla: Blue
NS
2800-3100
Pinus forest
Grassland
S. tiliifolia
Perennial-herbaceous
Ascending: 20 cm-1.5 m
Ovate-orbicular
Acute apex
10 - 50 x 10 - 50 mm
Bilabiate calyx
Corolla: Blue
NS
2300-2600
Ruderal weed
S. tubifera
Perennial-herbaceous
Ascending: ± 2 m
Ovate-orbicular
Acuminate apex
50 - 160 x 40 - 110 mm
Bilabiate calyx
Corolla: Scarlet red
NS
2300
Xerophytic scrubland
S. verbenacea
Herbaceous
Ascending: ± 20 cm
Ovate-oblong
Rounded apex
50 - 90 x 20 - 56 mm
Bilabiate calyx
Corolla: Blue
NS
2300
NS
NS: Not specified
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
790
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Traditional uses and pharmacology
Regarding Traditional Medicine, Mexico is recognized as the second most important country in the world
that uses that kind of therapy, with a tremendous ancestral tradition and richness in the use of medicinal plants to treat
different diseases and for ritual, only right after China [37]. The different ethnic groups living in Mexico maintain
deep and ancestral knowledge of medicinal plants as traditional practices and beliefs about diseases and cures [37].
This cultural legacy dates back to published works written in the 16th century and still survives in modern Mexico
[38]. The use and knowledge of medicinal plants by the Mexican population is a common practice for three main
reasons: 1) the need to treat diseases, 2) an extensive flora, and 3) the existence of many indigenous groups that
preserve their traditions [39]. Unsurprisingly, the population turns to various species of Salvia to treat diverse
ailments, given the botanical abundance and diversity these plants represent in Mexico.
Table 4 provides a detailed account of the ethnobotanical uses we have documented for the 33 Salvia species
included in this study. Based on our data, we can infer that leaves are the most frequently employed part of various
Salvia species. This preference arises due to the ease of leaf collection and the minimal impact on plant viability. In
some cases, the complete plant, or other parts of the plant (roots and steam) used are specifically described.
Comparing the metabolites expressed in different plant parts is essential to comprehensively understand metabolite
synthesis. Investigating whether specific compounds are localized to certain plant regions or distributed uniformly
across the entire plant represents a critical avenue for further research.
Of the 33 species registered in the Valle de México, 20 are used for everyday purposes, mainly S.
verbenacea, S. polystachya, S. lavanduloides, and S. elegans (Fig. 2). These species' most frequently reported uses
were gastrointestinal diseases, such as stomach pain and diarrhea. Notably, diarrhea remains a significant health
problem in Mexico, ranking as the second most common ailment across all age groups [40]. Additionally, these Salvia
species find application in promoting childbirth, managing gynecological issues (such as menstrual colic), and serving
as antipyretic agents. Furthermore, they are utilized for wound treatment, diabetes management, and respiratory
conditions (Table 4).
Pharmacological studies play an essential role in unraveling the therapeutic potential of medicinal plants. In
the case of Salvia species, approximately 13 out of the 33 species (representing 39 %) have undergone pharmacological
scrutiny involving investigations into extracts, fractions, and isolated compounds. A total of 28 distinct pharmacological
effects have been documented, with notable prominence given to antioxidant, anti-bacterial, and anti-hyperglycemic
properties. Among the studied species (Fig. 2), S. verbenacea stands out with 11 reported pharmacological activities,
followed by S. polystachya (9 activities) and S. circinata (5 activities). The predominant mode of preparation for these
species involves herbal infusions or tisanes, in which the bioactive compounds are extracted using water and heat [41].
Table 4 provides a comprehensive overview of pharmacological studies across diverse Salvia species. Notably,
cytotoxic and anticancer activities emerge as promising avenues, offering new prospects for cancer treatment. Some
species exhibit anti-bacterial, anti-fungal, and anti-parasitic effects. Other species are also used for treating fever, rheum,
and edema, while their anti-inflammatory, antinociceptive, and antipyretic actions are similar to non-steroidal anti-
inflammatory drugs (AINEs). The actions at the level of the nervous system, derived by their traditional uses of cultural
connotation ("susto," "mal de ojo," "aire"), were recorded as anti-depressants, anxiolytics, and neuroprotective in
different experimental conditions.
Interestingly, our pharmacological investigations align with the effects observed in traditional medicine.
Specifically, many studies have focused on medicinal plant species' gastrointestinal and gynecological effects. However,
it is crucial to emphasize that the number of research validating these plants' traditional uses is limited. For example,
while 120 traditional uses have been documented for 20 species, only 42 specific studies have been conducted on 12
Salvia species (Fig. 3). Even more pertinent is that only a handful of these studies have developed into identifying the
pure compounds responsible for those effects. Some species have yet to be studied; for example, based on this work,
species such as S. filifolia and S. laevis lack pharmacological studies that support the attributed medicinal uses;
furthermore, no specific compounds have been identified in these species.
Our comprehensive review underscores the imperative to validate the diverse traditional uses attributed to
Salvia species. Certain species, such as S. polystachya and S. circinata, have been associated with hypoglycemic effects
through the inhibition of α-glucosidases and sodium-dependent glucose cotransporter-1 (SGLT-1) [28,42]. Furthermore,
Salvia species find application in hypertension management, with emerging evidence at the vascular level. However,
studies supporting these effects in other Salvia species remain scarce and underscore the need for multidisciplinary
research, including bioassay-guided studies, to validate all traditional uses.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
791
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Table 4. Medicinal uses and pharmacological effects of identified Salvia species from the Valle de México.
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. axillaris
Expectorant
X
[70]
S. chamaedryoides
“Espanto”
X
Anti-bacterial
X
X
X
[71–72]
Abortive
X
Hypoglycemic
X
X
X
“Aire”
X
S. circinata
“Espanto”
X
Anti-conceptive
X
X
X
[16,29,
71-75]
“Aire”
X
Anti-hyperglycemic
X
X
Analgesic
X
Anti-inflammatory
X
X
Anti-diabetic
X
Anti-MDR
X
Diarrhea
X
X
Cytotoxic
X
Helminthiases
X
Lack of appetite
X
Menstrual colic
X
Rheumatism
X
Stomachache
X
Ulcers
X
Vomit
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
792
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. elegans
“Espanto”
X
X
Anti-hypertensive
X
X
[8,39,
71,72,
76-82]
“Mal de ojo”
X
Anti-depressant
X
“Aire”
X
Anxiolytic
X
“Aire” (in babies)
X
X
X
Anxiety
X
Cooling
X
Cough
X
Fever
X
Injured feet
X
Insomnia
X
X
Knocking / edema
X
X
X
X
Measles
X
X
X
Pain in the knees
X
Postpartum
X
X
X
X
Relapse of Ladies
X
Sick shower
X
X
X
Skin rashes
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
793
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. elegans
Stimulate saliva
X
[8,39,
71,72,
76-82]
Stomachache
X
X
X
Vomit
X
S. filifolia
Deposition
X
[83]
S. fulgens
“Fuegos” induced by fever
X
[39,72]
Sleeping draught
X
X
Sleeping draught (infants)
X
X
X
S. gesneriiflora
Diarrhea
X
Antioxidant
X
[40,76,
84,85]
Stomachache
X
Spasmolytic
X
Anti-inflammatory
X
S. hispanica
Bile
X
Antioxidant
X
[4,39,
84]
Cathartic
X
Cough
X
Diarrhea
X
X
Expulsion of larvae / foreign
bodies from the eyes
X
Eye burns
X
Labor pain
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
794
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. hispanica
Laxative
X
[4,39,
84]
Muscle pain
X
Nutritional supplement
X
Spit blood
X
S. laevis
Kidney diseases
X
[72,76,
86]
Promote conception
X
S. lavanduloides
“Torzón”
X
[39,72,
79,81,
87]
“Aire”
X
Alopecia
X
X
Anti-dysentery
X
X
Antipyretic
X
X
Bronchitis
X
X
X
Coldness (children)
X
Controlling vaginal bleeding
X
Cough
X
X
X
Diarrhea
X
Fever
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
795
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. lavanduloides
Gallbladder condition
X
X
X
[39,72,
79,81,
87]
Gynecological diseases
X
Hemostatic
X
X
Oxytocic
X
X
Paralysis
X
Stomachache
X
Toothache
X
Vomit
X
Wash wounds
X
Whooping cough
X
X
S. leucantha
“Espanto”
X
Anti-bacterial
X
[4,39,
71,72,
76,87-
89]
Abortive
X
X
Cytotoxic
X
“Aire”
X
X
Bile (courage)
X
Chest/lung pain
X
X
Cough
X
Kidney Diseases
X
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
796
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. leucantha
Liver disease
X
X
[4,39,
71,72,
76,87-
89]
Matrix fall
X
Menstrual colic
X
Postpartum
X
Relapse of ladies
X
Stomachache
X
X
Stops menstruation
X
S. melissodora
Diarrhea
X
[79,90]
Pain
X
S. mexicana
Bile
X
Anti-inflammatory
X
[72,79,
91,92].
Diarrhea
X
Antioxidant
X
Menstrual colic
X
Promote conception
X
Stomachache
X
S. microphylla
“Empacho”
X
X
X
Anti-microbial
X
[39-
40,72,
76,83,
84,89,
93,94]
“Espanto”
X
X
X
X
“Mal de ojo”
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
797
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. microphylla
“Aire”
[39-
40,72,
76,83,
84,89,
93,94]
Anti-dysentery
X
X
Bile
X
Bone strengthening
Diarrhea
X
X
Earache
X
Gynecological diseases
X
Headache
X
Insomnia
X
Leg scald
X
Menstrual colic
X
X
Nerves
X
Postpartum baths
X
X
Promote conception
X
X
Stomachache
X
X
Waist pain
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
798
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. misella
Bruising
X
X
Antioxidant
X
[39,95,
96]
Erysipelas
X
X
Skin rashes
X
Warts
X
X
Wash wounds
X
X
S. patens
Children's restroom (3 months)
X
[77]
Infected wounds
X
Joint heating
X
S. polystachya
Anti-abortion
X
Anti-protozoal
X
[39-
40,72,
76,83,
84,89,
93,94]
Anti-diuretic
X
Anti-amoebic
X
Anti-dysentery
X
Anti-giardial
X
Anti-gastric
X
Anti-hyperglycemic
X
X
X
Anti-hemorrhagic
X
Antioxidant
X
Anti-malarial
X
Acts over dermal
fibroblast expression
X
Antipyretic
X
Protective
(Cerebral ischemia)
X
Scabies
X
α-Glucosidase
Inhibitor
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
799
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. polystachya
Diarrhea
X
SGLT1 Inhibitor
X
[39-
40,72,
76,83,
84,89,
93,94]
Diuretic
X
Emollient
X
Flu
X
Gastritis
X
Hair growth
X
Headache
X
Menstrual colic
X
Nosebleed
X
X
Parasites
X
Promote conception
X
Purgative
X
X
Stomachache
X
Wounds disinfect
X
Wound healing
X
S. reflexa
Stomach affections
X
[72]
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
800
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. reptans
Diarrhea
X
X
X
Anti-bacterial
X
X
X
[72,94]
Fever
X
Stomachache
X
X
X
Swelling
X
X
Twists
X
Wound healing
X
S. tiliifolia
Abscesses
X
Neuroprotective
X
[39,91,
92,95,
96,101]
Mumps
X
Snake bite
X
Vomit
X
S. verbenacea
Abscesses
X
X
Anti-bacterial
[20]
“Aire”
X
Anticancer
Anti-hypertensive
X
Anti-fungal
Antipyretic
X
Anti-hemolytic
Anti-rheumatic
X
Anti-hyperglycemic
Antiseptic
X
Anti-hypertensive
Anti-spasmodic
X
X
Anti-leishmanial
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
801
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. verbenacea
Anti-sweat
X
X
Antioxidant
[20]
Anxiety
X
Anti-parasitic
Astringent
X
X
Immunomodulatory
Carminative
X
X
Inhibitory effect of
xanthine oxidase
Wound healing
X
X
X
X
X
Skin effect
Cooling
X
Contusion
X
Cough
X
Dermatological
X
Diabetes
X
Digestive problems
X
X
X
Disinfectant
X
X
Diuretic
X
Fever
X
Genitourinary
X
Healing
X
Healing of burns
X
X
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
802
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Plant name
Traditional use
Part used
Pharmacological
effect
Extract
Ref.
Cp
Ap
L
B
S
F
R
Sd
Fr
NS
Ext
Frt
IC
S. verbenacea
Insomnia
X
[20]
Laryngitis
X
Menstrual colic
X
Respiratory problems
X
Stomachache
X
Vulnerary
X
X
Wound treatment
X
Wound eyes
X
Cp = Complete plant; Ap = Aerial parts, L = leaf; B = Branch; S = Steam; F = Flower; R = Root; Sd = Seed; Fr = Fruit; NS = Not specified; Ext = Extract; Fr = Fraction; IC = Isolated compound
Fig. 2. Salvias traditionally more used and with more pharmacological studies.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
803
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 3. More frequent traditional uses of Salvias and its most studied pharmacological effects.
Phytochemical studies
During the 1980s and 1990s, several research groups in Mexico, led by Alfredo Ortega, Lydia Rodriguez-
Hahn, and Baldomero Esquivel, initiated innovative research focused on identifying compounds from extracts of
Mexican sages. These first studies laid the foundation for subsequent research due to the rich content of secondary
metabolites, including terpenoids and flavonoids. [43-47]. The aerial parts of these Salvia species, especially the
flowers and leaves, harbor phenolic compounds, including flavonoids and terpenoids (such as monoterpenoids,
diterpenoids, and triterpenoids); interestingly, diterpenoids were predominantly localized in the roots [46].
In conjunction with other phytochemical studies, we compiled information in Table 5 from 56 sources
that report on compounds from 20 Salvia species, resulting in a total of 315 identified compounds (Fig. 4).
Among these, S. leucantha stands out with an impressive 92 reported compounds, followed closely by S.
verbenacea (81 compounds) and S. circinata (34 compounds). Notably, 43 of these compounds are described
in more than one species, highlighting β-sitosterol, as well as ursolic and oleanolic acids that were reported in
8 and 7 different species of Salvia, respectively, compounds that have been identified as the most common
terpenes in the Salvia genus [45,46], evidencing the phylogenetic relationships in these species.
Phenolic compounds and terpenoids are the main components in fruits, vegetables, and various spices
used for nutritional purposes [48]. Interestingly, the therapeutic active principles in several plant-derived
medicinal extracts are also flavonoids and terpenoids [49,50]. In plants, terpenoids exhibit the most remarkable
structural diversity, which includes diverse subclassifications. For example, the diterpenoids could be classified
as clerodanes, kauranes, abietanes, or casbanes, to name a few [51]. They provide a chemical defense against
environmental stress and a mechanism to repair wounds and injuries. In addition, mainly monoterpenes are
usually responsible for the characteristic fragrance of many plants (pollinator attraction). On the other hand,
high concentrations of terpenoids can be toxic and, therefore, constitute an essential weapon against herbivores
and pathogens, such as anti-food or insecticides [44,51-54].
In recent years, there has been growing pharmacological interest in these compounds due to their
diverse biological activities that can focus on the prevention and therapy of various diseases, as documented in
various studies. Our research data further support this trend, revealing that many of the 315 compounds
documented (Table 5) are terpenoids (mainly diterpenes, sesquiterpenes, and monoterpenes). While the
phytochemical studies on Salvia species do not explicitly focus on identifying biological effects, some working
groups have determined that diterpenes stand out mainly for their anti-inflammatory, antitumor, anti-diabetic,
and antiviral activities. The monoterpenes show anti-microbial activity against pathogens such as
Mycobacterium tuberculosis [55] and inhibit the growth of fungi such as Rhizoctonia solani [56]. For their part,
sesquiterpenes have been shown to have a broad spectrum of biological activities that include anti-microbial,
cytotoxic, anti-inflammatory, anti-bacterial, anticancer, antiviral, and anti-fungal properties, in addition to
exerting effects on the central nervous and cardiovascular systems [57].
As previously mentioned, among the most reported compounds in these Salvias species are the
pentacyclic triterpenes: the ursolic acid, a triterpenoid, is extensively studied and boasts a multitude of biological
effects: it acts as an insulin mimetic, insulin sensitizer, anti-inflammatory, antioxidant, anticancer, anti-obesity,
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
804
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
anti-diabetic, antiangiogenic, anti-microbial, cardioprotective, neuroprotective, hepatoprotective, anti-skeletal
muscle atrophy and thermogenic [31,58-60]. Likewise, oleanolic acid, an isomer of ursolic acid, has effects such
as hepatoprotective, anti-inflammatory, anti-hyperglycemic, antioxidant, anticancer, and neuroprotective
[42,60,61]. Another noteworthy compound reported in various Salvias species is β-sitosterol, a phytosterol whose
chemical structure is similar to cholesterol, which has diverse biological actions described that include anxiolytic,
sedative, analgesic, angiogenic, anthelmintic, antimutagenic, immunomodulatory, anti-bacterial, anticancer, anti-
inflammatory, genotoxic, hypolipidemic, hypocholesterolemic, hepatoprotective, and respiratory diseases;
furthermore, β-sitosterol promotes wound healing and exhibits antioxidant and anti-diabetic effects [62,63].
Another important group of compounds in the Salvia species are the flavonoids, a class of polyphenolic
compounds that are naturally biosynthesized in plants. The subgroups of flavonoids include flavones, flavonols,
flavanones, flavanonols, anthocyanidins, flavanols, and isoflavones [64,65]. Flavonoids have long been known
to be synthesized at specific sites. They are responsible for the color and aroma of flowers and fruits to attract
pollinators, protect plants from different biotic and abiotic stresses, and act as unique UV filters, detoxifying
agents, and defensive anti-microbial compounds [64-67]. These natural products are well known for their
beneficial effects on health, such as anti-diabetic, antiulcer, antiviral, antioxidant, anti-inflammatory,
antimutagenic, cytotoxic, and anticarcinogenic [64,65,68].
The diverse compounds described from the Salvia species (Fig. 4) are evidence of structural variability,
mainly from the terpenoid structures, where a minimum change in the position or the presence and absence of
some functional groups changes the type of compound reported. This, in turn, could generate a different activity
that can be observed in biological assays [28]. Besides, some of the same compounds in different species could
not be at the same concentration [30,69] and might affect the expected effect.
Table 5. Isolated compounds of Salvia species from Valle de México.
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. axillaris
Aerial
parts
Roots
Acetone
1
Terpenoid
20-nor-abietane
cryptotanshinone
(cryptotanshinone)
[23,
102]
S.
chamaedryoides
Aerial
parts
Dichloromethane
-
-
Furano diterpenes
[22]
2
Terpenoid
7α-hydroxybacchotricuneatin
A
3
Polyphenol
Galdosol
4
Polyphenol
Rosmanol
5
Terpenoid
Salvimicrophyllin B
6
Terpenoid
Splendidin C
7
Terpenoid
Tilifodiolide
S. circinata
Aerial
parts
Flowers
Leaves
Acetone:
Methanol
Ethyl acetate
Hexane
Methanol
Aqueous
8
Terpenoid
(E)-pinocarvyl acetate
[18,
23,
29,
73,
103-
105]
9
Flavonoid
2-(3,4-dimethoxy phenyl)-5,6-
dihydroxy-7-methoxy-4H-
chromen-4-one
10
Aromatic
3-methoxy-p-cymene
11
Flavonoid
5,6,4´-trihydroxy-7,3´-
dimethoxyflavone
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
805
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. circinata
Aerial
parts
Flowers
Leaves
Acetone:
Methanol
Ethyl acetate
Hexane
Methanol
Aqueous
12
Flavonoid
5,7-O-diacetylacacetin
[18,
23,
29,
73,
103-
105]
13
Flavonoid
6-hydroxy luteolin
14
Terpenoid
Acetylamarissinin B
15-21
Terpenoid
Amarisolide A-G
22-25
Terpenoid
Amarissinins A-D
26
Flavonoid
Apigenin
27
Flavonoid
Apigenin-7-O-β-D-glucoside
28
Polyphenol
Caffeic acid
29
Polyphenol
Chlorogenic acid
30
Phenol
Ferulic acid
31
Terpenoid
Germacrene D
32
Flavonoid
Iso-quercitrin
33
Terpenoid
Oleanolic acid
34
Flavonoid
Pedalitin
35
Flavonoid
Phloretin
36
Flavonoid
Phlorizin
37
Flavonoid
Quercetin
38
Phenylpropanoid
Rosmarinic acid
39
Flavonoid
Rutin
40
Terpenoid
Spathulenol
41
Terpenoid
Teotihuacanin
42
Terpenoid
Ursolic acid
43
Terpenoid
α-amyrin
44
Terpenoid
α-bourbonene
45
Terpenoid
α-caryophyllene
46
Terpenoid
β-caryophyllene
47
Terpenoid
β-selinene
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
806
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. circinata
Aerial
parts
Flowers
Leaves
Acetone:
Methanol
Ethyl acetate
Hexane
Methanol
Aqueous
48
Terpenoid
β-sitosterol
[18,
23,
29,
73,
103-
105]
49
Terpenoid
δ-elemene
S. elegans
Flowers
Leaves
Seeds
Aqueous ethanol
50
Alcohol
2-propanol
[8,80,
82,10
6]
51
Flavonoid
3-acetoxy-7-methoxyflavone
52
Alcohol
3-octanol
53
Amino acid
Cystine
31
Terpenoid
Germacrene D
54
Terpenoid
Hederagenin (3β,23-
dihydroxyolean12-en-28-oic)
55
Terpenoid
Linalool
56
Fatty acid
Linoleic acid
57
Fatty acid
Linolenic acid
58
Amino acid
Lysine
59
Amino acid
Methione
33
Terpenoid
Oleanolic acid
40
Terpenoid
Spathulenol
60
Aldehyde
trans-3-hexenal
61
Terpenoid
trans-ocimene
42
Terpenoid
Ursolic acid
46
Terpenoid
β-caryophyllene
S. fulgens
Aerial
parts
Acetone
62
Terpenoid
10β-hydroxybacchotricuneatin
A (Bacchotricuneatin A)
[19,
23,
24,
107-
110]
63
Terpenoid
nt-19-acetoxy-15,16-epoxy-6-
hydroxy-3,13(16),14-
clerodatrien-18-al
64
Terpenoid
ent-19-O-acetoxy-15,16-
epoxy-3,13(16),14-
clerodatrien-6,18-diol
65
Terpenoid
7α-hydroxy-neoclerodane-
3,13-diene-18,19:15,16-diolide
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
807
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. fulgens
Aerial
parts
Acetone
66
Terpenoid
Dehydrokerlin
[19,
23,
24,
107-
110]
67
Terpenoid
Salvifulgenolide
68
Terpenoid
Salvigenolide
69
Terpenoid
Sandaracopimaric acid
70
Terpenoid
trans-1,2-dihydrosalvifaricin
48
Terpenoid
β-sitosterol
S. gesneriiflora
Aerial
parts
Methanol
Hexane
Dichloromethane
-
-
Alkaloids
[85,
111]
-
-
Anthraquinones
-
-
Coumarins
-
-
Saponins
28
Polyphenol
Caffeic acid
29
Polyphenol
Chlorogenic acid
38
Phenylpropanoid
Rosmarinic acid
42
Terpenoid
Ursolic acid
68
Terpenoid
Salvigenolide
S. hirsute
Roots
Acetone
71
Terpenoid
14-deoxycoleon U
[112]
72
Terpenoid
7α-acetoxy-royleanone
73
Terpenoid
8,11,13-abietatriene
74
Terpenoid
8,13-abietadiene
75
Terpenoid
Cryptojaponol
76
Terpenoid
Demethylcryptojaponol
77
Terpenoid
Royleanone
78
Terpenoid
Salviphlomone
79
Terpenoid
Sugiol
80
Terpenoid
Taxodione
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
808
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. hispánica
Seeds
Ethanol
Methanol
Hydrochloric acid
in ethanol
28
Polyphenol
Caffeic acid
[4,
113,
114]
29
Phenol
Chlorogenic acid
81
Flavonoid
Daidzin
82
Polyphenol
Gallic acid
83
Flavonoid
Kaempferol
84
Ethyl ester
Protocatechuic ethyl ester
37
Flavonoid
Quercetin
38
Phenylpropanoid
Rosmarinic acid
85
Fatty acid
α-linolenic acid
S. keerlii
Aerial
parts
Acetone
86
Terpenoid
Kerlin
[23,
108,
115]
87
Terpenoid
Kerlinic acid
88
Terpenoid
Kerlinolide
S. lavanduloides
Aerial
parts
Flowers
Roots
Acetone
Methanol
72
Terpenoid
7α-acetoxy-royleanone
[19,
23,
108,
111,
116-
118]
89
Terpenoid
Horminone
90-94
Terpenoid
Salvianduline A-E
42
Terpenoid
Ursolic acid
48
Terpenoid
β-sitosterol
S. leucantha
Aerial
parts
Flowers
Acetone
Chloroform
Methanol
Hexane
95
Terpenoid
1,10-di-epi-cubenol
[19,
21,
24,
39,
76,
88,
89,
107,
118-
120]
96
Terpenoid
1,8-cineole
97
Alcohol
1-octen-3-ol
98
Terpenoid
20-hydroxydugesin B
99
Terpenoid
2-epi-6,7-dihydrosalviandulin
E
100
Terpenoid
3-epi-tilifodiolide
101
Ketone
3-octanone
102
Terpenoid
3β-methoxyisopuberulin
103
Ketone
4-methylene-isophorone
104
Terpenoid
6,7-dehydrodugesin A
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
809
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. leucantha
Aerial
parts
Flowers
Acetone
Chloroform
Methanol
Hexane
105
Terpenoid
6,7-dehydrodugesin B
[19,
21,
24,
39,
76,
88,
89,
107,
118-
120]
106
Terpenoid
6,7-dihydrosalviandulin E
107
Terpenoid
7-epi-α-eudesmol
108
Aromatic
Apiole
109
Terpenoid
Aromadendrene
110
Terpenoid
Bicyclogermacrene
111
Terpenoid
Borneol
112
Terpenoid
Bornyl acetate
113
Terpenoid
Camphene
114
Terpenoid
Cedrene
115
Terpenoid
cis-cadin-4-en-7-ol
116
Terpenoid
cis-muurola-3,5-diene
117
Terpenoid
Citral
118
Terpenoid
Citronellal
119
Terpenoid
Citronellol
120
Ketone
Dehydrosabinaketone
121
Terpenoid
De-O-acetylsalvigenolide
122
Benzodioxol
Dillapiol
123
Terpenoid
Dugesin B
100
Terpenoid
3-epi-tilifodiolide
124
Terpenoid
Eremoligenol
125
Terpenoid
Eudesma-4(15)7-dien-1β-ol
126
Terpenoid
Geraniol
127
Terpenoid
Geranyl acetate
128-
129
Terpenoid
Germacrene A, B
31
Terpenoid
Germacrene D
130
Terpenoid
Globulol
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
810
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. leucantha
Aerial
parts
Flowers
Acetone
Chloroform
Methanol
Hexane
131
Terpenoid
Guaiol
[19,
21,
24,
39,
76,
88,
89,
107,
118-
120]
132
Alcohol
Heptanol
133
Terpenoid
Hinesol
134
Terpenoid
Isocaryophyllene
135
Flavonoid
Isosalipurpol
136
Terpenoid
Isosalvipuberulin
(Isopuberulin)
137
Terpenoid
Isothujanol
139-
142
Terpenoid
Leucansalvialin F-J
55
Terpenoid
Linalool
143
Terpenoid
Linalyl acetate
144
Terpenoid
Linalyl formate
145
Terpenoid
neo-α-clovene
146
Aldehyde
Nonanal
147
Terpenoid
p-cymene
148
Flavonoid
Quercetin-3-O-α-L-
rhamnopyranosyl-(1→6)-β-D-
glucopyranoside
90-94
Terpenoid
Salvianduline A-E
149
Terpenoid
Salvifaricin
150-
153
Terpenoid
Salvileucalin A-D
154
Terpenoid
Salvileucantholide
155-
158
Terpenoid
Salvileucanthsin A-D
40
Terpenoid
Spathulenol
159
Terpenoid
Spiroleucantholide
160
Terpenoid
Terpinen-4-ol
161
Terpenoid
Terpinolene
7
Terpenoid
Tilifodiolide
162
Terpenoid
Tiliifolin C
163
Terpenoid
t-muurolol
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
811
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. leucantha
Aerial
parts
Flowers
Acetone
Chloroform
Methanol
Hexane
164
Terpenoid
trans-calamenen-10-ol
[19,
21,
24,
39,
76,
88,
89,
107,
118-
120]
165
Terpenoid
trans-calamenene
166
Terpenoid
trans-β-farnesene
167
Terpenoid
Viridiflorol
168
Terpenoid
α-bulnesene
169
Terpenoid
α-cadinene
170
Terpenoid
α-cadinol
171
Terpenoid
α-copaene
172
Terpenoid
α-guaiene
173
Terpenoid
α-humulene
174
Terpenoid
α-muurolol
175
Terpenoid
α-pinene
176
Terpenoid
α-terpineol
177
Terpenoid
β-acoradiene
178
Terpenoid
β-atlantol
179
Terpenoid
β-bourbonene
46
Terpenoid
β-caryophyllene
180
Terpenoid
β-copaen-4α-ol
181
Terpenoid
β-elemene
182
Terpenoid
β-gurjunene
183
Terpenoid
β-phellandrene
184
Terpenoid
β-pinene
185
Terpenoid
β-thujone
186
Terpenoid
γ-cadinene
187
Terpenoid
γ-terpinene
188
Terpenoid
δ-cadinene
49
Terpenoid
δ-elemene
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
812
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. melissodora
Aerial
parts
Acetone
Ethyl acetate
189
Terpenoid
1-isopropyl-4b,8,8-trimethyl-9-
oxo-4b,5,6,7,8,8a,9,10-
octahydrophenanthrene-2,3,10-
triyl triacetate
[19,
23,
108,
122,
123]
190
Terpenoid
2α-hydroxy-7α-acetoxy-12-
oxo-15:16-epoxy-neoclerodan-
3,13(16),14-trien-18: 19-olide
191
Terpenoid
2β-7α-dihydroxy-ent-cleroda-
3,13-diene-18,19:16,15-diolide
192
Terpenoid
2β-acetoxy-7α-hydroxy-ent-
cleroda-3,13-diene-
18,19:16,15-diolide
193
Terpenoid
2β-hydroxy-7-oxo-ent-cleroda-
3,13-diene-18,19:16,15-diolide
194
Terpenoid
2β-hydroxy-ent-cleroda-3,13-
diene-18,19:16,15-diolide
195
Terpenoid
7-oxo-ent-cleroda-3,13-diene-
18,19:16,15-diolide
196
Terpenoid
7α-acetoxy-2β-hydroxy-ent-
cleroda-3,13-diene-
18,19:16,15-diolide
197
Terpenoid
7α-acetoxy-ent-cleroda-3,13-
diene-18,19:16,15-diolide
198
Terpenoid
7α-hydroxy-ent-cleroda-3,13-
diene-18,19:16,15-diolide
65
Terpenoid
7α-hydroxy-neoclerodane-
3,13-diene-18,19:15,16-diolide
199
Terpenoid
7β-18,19-trihydroxy-ent-
cleroda-3,13-dien-16,15-olide
200
Terpenoid
7β-hydroxy-ent-cleroda-3,13-
diene-18,19:16,15-diolide
201
Terpenoid
Brevifloralactone
202
Terpenoid
Maytenoquinone
203
Terpenoid
Melisodoric acid
33
Terpenoid
Oleanolic acid
204
Terpenoid
Portulide C
42
Terpenoid
Ursolic acid
48
Terpenoid
β-sitosterol
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
813
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. mexicana
Aerial
parts
Flowers
Leaves
Acetone
Chloroform
Hexane Methanol
205
Terpenoid
Arbutin
[92]
206
Terpenoid
Betulinic acid
207
Terpenoid
Betulinol
208
Terpenoid
Salvimexicanolide
209
Terpenoid
Salviolide
42
Terpenoid
Ursolic acid
48
Terpenoid
β-sitosterol
S. microphylla
Aerial
parts
Leaves
Stems
Roots
Acetone
210
Terpenoid
12-methoxycarnosic acid
[19,
25,
108,
124,
125]
211
Terpenoid
14α-18-
dihydroxyisopimaradiene
212
Terpenoid
14α-hydroxyisopimaric acid
213
Phenolic ester
2-(p-hydroxyphenyl) ethyl
eicosaheptanoic acid ester
214
Terpenoid
7,15-isopimaradien14α, 18-diol
215
Terpenoid
7-oxo-sandaracopimarate
216
Terpenoid
7-oxo-sandaracopimaric acid
217
Terpenoid
7α-acetoxyisopimara-8(14),15-
diene-18-oic acid
218
Terpenoid
7α-acetoxysandaracopimaric
acid
65
Terpenoid
7α-hydroxy-neoclerodane-
3,13-diene-18,19:15,16-diolide
219
Terpenoid
7α-hydroxysandaracopimaric
acid
220
Terpenoid
8(14),15-sandaracopimaradien-
7α,18-diol
221
Carcocyclic
8α-hydroxy-β-eudesmol
222
Ester
Eicosaheptanoic acid 2-(p-
hydroxyphenyl) ethyl ester
223
Terpenoid
Erithrodiol 3-acetate
224
Cumaric acid
Hexacosylferulate
225
Terpenoid
Lupeol
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
814
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. microphylla
Aerial
parts
Leaves
Stems
Roots
Acetone
215
Terpenoid
Methyl 7-
oxosandaracopimarate
[19,
25,
108,
124,
125]
226
Terpenoid
Methyl 7α-
hydroxysandaracopimarate
227
Terpenoid
Microphyllandiolide
33
Terpenoid
Oleanolic acid
5
Terpenoid
Salvimicrophyllin B
228-
230
Terpenoid
Salvimicrophyllins A, C, D
220
Terpenoid
Sandaracopimara-8(14),15-
diene-7α,18-diol
42
Terpenoid
Ursolic acid
231
Terpenoid
β-eudesmol
48
Terpenoid
β-sitosterol
S. patens
Flowers
Aqueous
232
Flavonoid
Protodelphin
[126]
S. polystachya
Aerial
parts
Flowers
Leaves
Steams
Acetone
Acetone:
Methanol
Ethanol
233
Terpenoid
15-epi-polystachyne G
[17,
23,
42,
98,
100,
107]
234
Flavonoid
3',5,6,7-tetrahydroxy-4´-
methoxyflavone
66
Terpenoid
Dehydrokerlin
235
Terpenoid
Linearolactone
33
Terpenoid
Oleanolic acid
236-
243
Terpenoid
Polystachines A-H
149
Terpenoid
Salvifaricin
244-
247
Terpenoid
Salvifilines A–E
42
Terpenoid
Ursolic acid
S. reflexa
Leaves
Acetone
248
Terpenoid
15,16-epoxy-8α-
hydroxyneocleroda-
2,13(16),14-triene-
17,12R:18,19-diolide
[127]
249
Terpenoid
6β-hydroxysalviarin
250
Terpenoid
8α-hydroxysalviarin
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
815
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. reflexa
Leaves
Acetone
33
Oleanolic acid
[127]
251
Terpenoid
Salviarin
48
Terpenoid
β-sitosterol
S. reptans
Aerial
parts
Roots
Acetone
n-hexane
252
Terpenoid
1α,2α-epoxy-3,4α-
dihydrolinearolactone
[23,
19,
93,
108,
128]
253
Terpenoid
8α,9α-epoxy-7-ketoroyleanone
254
Terpenoid
Diosmetin
89
Terpenoid
Horminone
235
Terpenoid
Linearolactone
33
Flavonoid
Oleanolic acid
255
Terpenoid
Salvireptanolide
42
Terpenoid
Ursolic acid
48
Terpenoid
β-sitosterol
S. tiliifolia
Aerial
parts
Roots
Acetone
104
Terpenoid
6,7-dehydrodugesin A
[76,
101,
23,
108,
129,
130]
256-
257
Terpenoid
Dugesins A, B
258
Phenol
Ferruginol
136
Terpenoid
Isosalvipuberulin
(Isopuberulin)
259
Terpenoid
Puberulin
94
Terpenoid
Salvianduline E
149
Terpenoid
Salvifaricin
260
Terpenoid
Salvifolin
261
Terpenoid
Salyunnanins I
262
Terpenoid
Tilifolidione
S. verbenacea
Fruits
Leaves
Roots
Seeds
Steams
Essential oils
Methanol
Petroleum ether
263
Aldehyde
(E)-2-hexenal
[23]
264
Terpenoid
(E)-caryophyllene
265
Terpenoid
(E)-β-caryophyllene
266
Terpenoid
(E)-β-farnesene
267
Terpenoid
(E)-β-ionone
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
816
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. verbenacea
Fruits
Leaves
Roots
Seeds
Steams
Essential oils
Methanol
Petroleum ether
268
Terpenoid
(E)-β-ocimene
[23]
269
Carboxylic acid
(Z)-9-octadecenoic acid
270
Terpenoid
(Z)-β-ocimene
95
Terpenoid
1,10-di-epi-cubenol
96
Terpenoid
1,8-cineole
271
Terpenoid
13-epi-manool
272
Terpenoid
2,3-dihydro-1,4-cineol
273
Terpenoid
4-terpeniol
274
Flavonoid
5-hydroxy-3,4’,7-
trimethoxyflavone
275
Flavonoid
5-hydroxy-7,4'-
dimethoxyflavone
276
Terpenoid
6-13-hydroxy-7a-
acetoxyroyleanone
277
Aldehyde
9,12,15-Octadecatrienal
26
Flavonoid
Apigenin
278
Aromatic
Benzaldehyde
110
Terpenoid
Bicyclogermacrene
28
Polyphenol
Caffeic acid
113
Terpenoid
Camphene
279
Terpenoid
Camphor
280
Terpenoid
Carnosic acid
281
Terpenoid
Caryophyllene oxide
282
Flavonoid
Cirsilineol
283
Flavonoid
Cirsiliol
116
Terpenoid
cis-muurola-3,5-diene
184
Terpenoid
cis-muurola-4(14),5-diene
164
Terpenoid
E-Caryophyllene
181
Terpenoid
epi-13-manool
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
817
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. verbenacea
Fruits
Leaves
Roots
Seeds
Steams
Essential oils
Methanol
Petroleum ether
185
Terpenoid
epi-α-cadinol
[23]
186
Acetate
Ethyl hexadecanoate
30
Terpenoid
Ferulic acid
31
Flavonoid
Germacrene D
287
Flavonoid
Hesperidin
288
Fatty acid
Hexadecanoic acid
89
Terpenoid
Horminone
289
Terpenoid
Limonene
55
Terpenoid
Linalool
56
Fatty acid
Linoleic acid
290
Flavonoid
Luteolin
291
Terpenoid
Manool
292
Terpenoid
Methyl carbonate
293
Fatty acid
Methyl ester of 6-octadecenoic
acid
294
Terpenoid
Methyl eugenol
295
Flavonoid
Naringenin
296
Alkane
Nonane
297
Alkane
Octane
298
Fatty acid
Oleic acid
147
Terpenoid
p-cymene
299
Aromatic
Phenyl acetaldehyde
300
Aromatic
p-hydroxybenzoic acid
301
Terpenoid
Phytol
302
Flavonoid
Retusin
38
Phenylpropanoid
Rosmarinic acid
303
Terpenoid
Sabinene
304
Flavonoid
Salvigenin
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
818
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Scientific name
Parts
used
Extract(s) used
No.
Classification
Compounds
Ref..
S. verbenacea
Fruits
Leaves
Roots
Seeds
Steams
Essential oils
Methanol
Petroleum ether
305
Terpenoid
Salvinine
[23]
40
Terpenoid
Spathulenol
80
Terpenoid
Taxodione
161
Terpenoid
Terpinolene
306
Terpenoid
trans-sabinene hydrate
307
Alkane
Tricosane
308
Terpenoid
Tricyclene
309
Terpenoid
Verbenacine
310
Flavonoid
Verbenacoside
167
Terpenoid
Viridiflorol
171
Terpenoid
α-copaene
173
Terpenoid
α-humulene
175
Terpenoid
α-pinene
311
Terpenoid
α-terpinyl acetate
312
Terpenoid
α-thujene
46
Terpenoid
β-caryophyllene
231
Terpenoid
β-eudesmol
193
Terpenoid
β-phellandrene
313
Terpenoid
γ-amorphene
186
Terpenoid
γ-cadinene
188
Terpenoid
δ-cadinene
314
Terpenoid
δ-selinene
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
819
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
820
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
821
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
822
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
823
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
824
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
825
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
826
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Fig. 4. Chemical components from Salvia spp. from Valle de México.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
827
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
Conclusions
The several Salvia species in the Valle de México represent a vast plant resource with metabolites of
pharmacological interest that play a significant role in Mexican Traditional Medicine. Salvia species represent
a vast therapeutic use and have great potential for developing new bioactive compounds for treating diverse
diseases due to the great variety of metabolites generated under diverse conditions, even in different populations
of the same species. The data presented seek to promote research into these species through bio-assay-guided
chemical studies that support their empirical use and the development of new herbal treatments. Enlarging the
identification of new metabolites present in these plant species, taking into consideration that the variations of
metabolites structures, the wide variety of Salvias and the poor study with some of them, could also generate
new research opportunities in diverse areas of study. Finally, expanding the chemical, biological and
pharmacological information might serve to develop methods of production of these plants, preserve them and
improve their production and economic impact.
References
1. Tjitraresmi, A.; Moektiwardoyo, M.; Susilawati Y.; Shiono, Y. Sys. Rev. Pharm. 2020, 11, 324-333.
2. Manjarréz, R.; Frontana-Uribe, B. A.; Cárdenas, J. Rev. Soc. Quím. Méx. 2003, 47, 207–209.
3. Pérez, S.; De La, R.; Canavaciolo, G.; Victor, L.; Delange, M.; Rodríguez-Leyes, E. A. Rev. Cub.
Plant. Med. 2011, 16, 54–59.
4. Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M. A. Food Chem. 2008, 107, 656–663. DOI:
https://doi.org/10.1016/j.foodchem.2007.08.062.
5. Mendoza, E. I. O.; García, B. Y. B.; Cabrera, S. I. L. Acta Bot. Méx. 2017, 118, 7–40.
6. Sierra-Pérez, R.; González-Canavaciolo, V. L.; Marrero-Delange, D.; Rodríguez-Leyes, E. A. Revista
CENIC: Ciencias Biológicas. 2013, 44, 124-127.
7. Kumar, P. M.; Sasmal, D.; Mazumder, P. M. Pharmacogn. Res. 2010, 2, 190–194. DOI:
http://dx.doi.org/10.4103/0974-8490.65520.
8. Angerhofer, C. K. J. Nat. Prod. 2001, 64, 1258 DOI: 10.1021/np000756b
9. Ramamoorthy, T. P. in: Flora Fanerogámica del Valle de México, Rzedowski, G. C. de, Ed., Instituto
de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro,
2001, 632-644.
10. Cornejo-Tenorio, G.; Ibarra-Manríquez, G. Rev. Mex. Biodiv. 2011, 82, 1279-1296. DOI:
http://dx.doi.org/10.22201/ib.20078706e.2011.4.668.
11. Villaseñor, J. L. Bot. Sci. 2004, 75, 105–135. DOI: http://dx.doi.org/10.17129/botsci.1694.
12. Martínez-Gordillo, M.; Lozada-Pérez, L. Brittonia. 2011, 63, 211–214. DOI:
http://dx.doi.org/10.1007/s12228-010-9152-2.
13. Valdés, L.J.; Díaz, J.; Paul, A.G. J. Ethnopharmacol. 1983. 7, 287-312. DOI:10.1016/0378-
8741(83)90004-1.
14. Tavera-Hernández, R.; Jiménez-Estrada, M.; Alvarado-Sansininea, J. J.; Huerta-Reyes, M. Molecules.
2023, 28, 8069. DOI: https://doi.org/10.3390/molecules28248069.
15. OECD. OECD Territorial Reviews: Valle de México, Mexico. OECD: 2015.
16. Castro, J. C. J.; Villa, R. N.; Ramírez G. S. A.; González, C. Rev. Cub. Plantas Med. 2014, 19, 101–
120.
17. Ortega, A.; Bautista, E.; Maldonado, E. Chem. Pharm. Bull. 2006, 54, 1338–1339. DOI:
http://dx.doi.org/10.1248/cpb.54.1338.
18. Salinas-Arellano, E.; Pérez-Vásquez, A.; Rivero-Cruz, I.; Torres-Colin, R.; González-Andrade, M.;
Rangel-Grimaldo, M.; Mata, R. Molecules. 2020, 25, 3530. DOI:
http://dx.doi.org/10.3390/molecules25153530.
19. Wu, Y. B.; Ni, Z. Y.; Shi, Q. W.; Dong, M.; Kiyota, H.; Gu, Y. C.; Cong, B. Chem. Rev. 2012, 112,
5967–6026. DOI: http://dx.doi.org/10.1021/cr200058f.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
828
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
20. Khouchlaa, A.; Et-Touys, A.; Lakhdar, F.; Laasri, F. E.; El-Idrissi, A. E. Y.; Zaakour, F. Biointerface
Res. Appl. Chem. 2021, 12, 1437–1469
21. Li, L. W.; Qi, Y. Y.; Liu, S. X.; Wu, X. D.; Zhao, Q. S. Fitoterapia. 2018, 127, 367–374. DOI:
http://dx.doi.org/10.1016/j.fitote.2018.03.007.
22. Bisio, A.; De Mieri, M.; Milella, L.; Schito, A. M.; Parricchi, A.; Russo, D.; Alfei, S.; Lapillo, M.;
Tuccinardi, T.; Hamburger, M.; et al. J. Nat. Prod. 2017, 80, 503–514. DOI:
http://dx.doi.org/10.1021/acs.jnatprod.6b01053.
23. Kabouche, A.; Kabouche, Z. Bioactive Nat. Prod. 2008, 753–833, DOI:
https://doi.org/10.1016/S1572-5995(08)80017-8.
24. Narukawa, Y.; Fukui, M.; Hatano, K.; Takeda, T. J. Nat. Med. 2006, 60, 58–63. DOI:
http://dx.doi.org/10.1007/s11418-005-0007-1.
25. Aydoğmuş, Z.; Yeşİlyurt, V.; Topcu, G. Nat. Prod. Res. 2006, 20, 775–781. DOI:
http://dx.doi.org/10.1080/14786410500462843.
26. Bennett, B. C.; Balick, M. J. J. Ethnopharmacol. 2014, 152, 387–392. DOI:
http://dx.doi.org/10.1016/j.jep.2013.11.042.
27. Rao, M. V. Curr. Sci. 2004, 87, 602–606.
28. Solares-Pascasio, J. I.; Ceballos, G.; Calzada, F.; Barbosa, E.; Velazquez, C. Molecules. 2021, 26, 947.
DOI: http://dx.doi.org/10.3390/molecules26040947.
29. Flores-Bocanegra, L.; González-Andrade, M.; Bye, R.; Linares, E.; Mata, R. J. Nat. Prod. 2017, 80,
1584-1593. DOI: http://dx.doi.org/10.1021/acs.jnatprod.7b00155.
30. Sepúlveda-Cuellar, L.; Duque-Ortiz, A.; Yáñez-Espinosa, L.; Calzada, F.; Bautista, E.; Pastor-
Palacios, G.; García, B. Y. B.; Flores-Rivas, J.; Badano, E. I.; Douterlungne, D. Rev. Bras. Farmacogn.
2021, 31, 676–688. DOI: http://dx.doi.org/10.1007/s43450-021-00168-z.
31. Rouhan, G.; Gaudeul, M. Methods. Mol. Biol. 2014, 1115, 1-37. DOI: http://dx.doi.org/10.1007/978-
1-62703-767-9_1.
32. Lara-Cabrera, S. I.; Bedolla-García, B. Y.; Zamudio, S.; Domínguez-Vázquez, G. Acta Bot. Mex. 2016,
116, 107-149. DOI: http://dx.doi.org/10.21829/abm116.2016.1120.
33. Ionescu, I. A.; Møller, B. L.; Sánchez-Pérez, R. J. Exp. Bot. 2016, 68, 369-382. DOI:
http://dx.doi.org/10.1093/jxb/erw427.
34. Chailakhyan, M. K. Ann. Rev. Plant. Physiol. 1968, 19, 1–37. DOI:
http://dx.doi.org/10.1146/annurev.pp.19.060168.000245.
35. Kessler, A. Curr. Opin. Insect. Sci. 2015, 8, 47–53. DOI: http://dx.doi.org/10.1016/j.cois.2015.02.002.
36. Figueiredo, A. C.; Barroso, J. G.; Pedro, L. G.; Scheffer, J. J. C. Flavour Fragr. J. 2008, 23, 213–226.
DOI: http://dx.doi.org/10.1002/ffj.1875.
37. Cruz-Pérez, A.L.; Barrera-Ramos, J.; Bernal-Ramírez, L. A.; Bravo-Avilez. D.; Rendón-Aguilar B. J.
Ethnobiol. Ethnomed. 2021, 17, 7. DOI: http://dx.doi.org/10.1186/s13002-020-00431-y.
38. Mata, R.; Figueroa, M.; Navarrete, A.; Rivero-Cruz, I. Prog. Chem. Org. Nat. Prod. 2019, 108, 1–142.
DOI: http://dx.doi.org/10.1007/978-3-030-01099-7_1.
39. Zolla, C.; Argueta, A. Biblioteca digital de la medicina tradicional mexicana; Landsteiner Scientific,
Comisión Nacional para el Desarrollo de los Pueblos Indígenas, Programa Universitario México
Nación Multicultural, Universidad Nacional Autónoma de México: México. 2009.
http://www.medicinatradicionalmexicana.unam.mx/index.php.
40. Calzada, F.; Bautista, E. J. Ethnopharmacol. 2020, 253, 112676. DOI:
http://dx.doi.org/10.1016/j.jep.2020.112676.
41. Sousa, A. C.; Pádua, I.; Gonçalves, V. M. F.; Ribeiro, C.; Leal, S. Heliyon. 2024, 10, e28779. DOI:
http://dx.doi.org/10.1016/j.heliyon.2024.e28779.
42. Ortega, R.; Valdés, M.; Alarcón-Aguilar, F. J.; Fortis-Barrera, Á.; Barbosa, E.; Velazquez, C.;
Calzada, F. Plants. 2022, 11, 575. DOI: http://dx.doi.org/10.3390/plants11050575.
43. Harikrishnan, R.; Balasundaram, C., in: The Role of Phytoconstitutents in Health Care, Megh, R. G.,
Ed., Apple Academic Press: Canada, 2020. 3-158. DOI: https://doi.org/10.1201/9780429284267.
44. Yazaki, K.; Arimura, G. I.; Ohnishi, T. Plant Cell Physiol. 2017, 58, 1615–1621. DOI:
http://dx.doi.org/10.1093/pcp/pcx123.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
829
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
45. Jash, S. K.; Gorai, D.; Roy, R. Intern. J. Pharm. Sci. Res. 2016, 7, 4710.
46. Topçu, G. J. Nat. Prod. 2006, 69, 482–487. DOI: http://dx.doi.org/10.1021/np0600402.
47. Theis, N.; Lerdau, M. Int. J. Plant Sci. 2003, 164, S93–S102. DOI: http://dx.doi.org/10.1086/374190.
48. Wagner, K. H.; Elmadfa, I. Ann. Nutr. Metab. 2003, 47, 95–106. DOI:
http://dx.doi.org/10.1159/000070030.
49. Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Cell Mol. Life Sci. 2008,
65(19), 2979–2999.
50. Chinou, I. Curr. Med. Chem. 2005, 12, 1295–1317. DOI:
http://dx.doi.org/10.2174/0929867054020990.
51. Alves, A. L.V.; Da Silva, L. S.; Faleiros, C. A.; Silva, V. A.; Reis, R. M. Nat. Prod. Comm. 2022, 17.
DOI: https://doi.org/10.1177/1934578X2211056.
52. Nagegowda, D. A.; Gupta, P. Plant Sci. 2020, 294, 110457. DOI:
http://dx.doi.org/10.1016/j.plantsci.2020.110457.
53. Gurado, O. A. A.; Cuéllar, A. C. Rev. Cub. Plantas Med. 2008, 13.
54. Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Arch. Immunol. Ther. Exp. 2007, 55,
315–327. DOI: http://dx.doi.org/10.1007/s00005-007-0039-1.
55. Bueno-Sánchez, J. G.; Martínez-Morales, J. R.; Stashenko, E. Rev. Univ. Ind. Sant. Salud. 2009, 41,
231–235.
56. Vaillant, F. D.; Romeu, C. C.; Ramos, R. E.; González, G. M.; Ramírez, O. R.; González, P. J.
Fitosanidad. 2009, 13, 197–200.
57. Ruiz-Reyes, E.; Suarez, M. Rev. CENIC Ciencias Biológicas. 2015, 46, 9–24.
58. Seo, D. Y.; Lee, S.R.; Heo, J. W.; No, M. H.; Rhee, B. D.; Ko, K. S.; Han, J. Korean J. Physiol.
Pharmacol. 2018, 22, 235-248.
59. Kashyap, D.; Tuli, H. S.; Sharma, A. K. Life Sci. 2016, 146, 201–213. DOI:
http://dx.doi.org/10.1016/j.lfs.2016.01.017.
60. Liu, J. J. Ethnopharmacol. 2005, 100, 92–94. DOI: http://dx.doi.org/10.1016/j.jep.2005.05.024.
61. Pollier, J.; Goossens, A. Phytochemistry. 2012, 77, 10–15. DOI:
http://dx.doi.org/10.1016/j.phytochem.2011.12.022.
62. Babu, S.; Jayaraman, S. Biomed. Pharmacother. 2020, 133, 193-200. DOI:
http://dx.doi.org/10.1016/j.biopha.2020.110702.
63. Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M. Eur. J. Med. Plants. 2014, 4, 590-609.
64. López, J. G. E. Curr. Med. Chem. 2019, 26, 6972–6975. DOI:
http://dx.doi.org/10.2174/092986732639191213095405.
65. Samanta, A.; Das, G.; Das, S. K. Int. J. Pharm. Sci. Tech. 2011, 100, 12-35.
66. Panche, A. N.; Diwan, A. D.; Chandra, S. R. J. Nutr. Sci. 2016, 5, 1-15. DOI:
http://dx.doi.org/10.1017/jns.2016.41.
67. Janicijevic, J.; Tosic, S.; Mitrovic, T. Proceeding of 9th symposium on flora of Southeastern Serbia
and neighbouring regions. 2007, 153–156.
68. Tiwari, S.C.; Husain, N. Indian J. Sci. Res. 2017, 12, 193–196.
69. Janicsák, G.; Veres, K.; Zoltán, K. A., Máthé, I. Biochem. Syst. Ecol. 2006, 34, 392–396. DOI:
http://dx.doi.org/10.1016/j.bse.2005.12.004.
70. Noriega, J. M. Curso de Historia de Drogas, Ed., Oficina Tipográfica de la Secretaría de Fomento,
México, 1902, 372-373.
71. Pérez, E. B. E. Lista de las plantas útiles del estado de Hidalgo. Ed., UAEH, Hidalgo, 2003.
72. Aguilar, A.; Camacho, J. R.; Chino, S.; Jácquez, P.; López, M. E. Herbario Medicinal del Instituto
Mexicano del Seguro Social. Información Etnobotánica; Instituto Mexicano del Seguro Social,
México, 1994.
73. Fragoso-Serrano, M.; Ortiz-Pastrana, N.; Luna-Cruz, N.; Toscano, R. A.; Alpuche-Solís, A. G.;
Ortega, A.; Bautista, E. J. Nat. Prod. 2019, 82, 631–635. DOI:
http://dx.doi.org/10.1021/acs.jnatprod.8b00565.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
830
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
74. Moreno-Pérez, G. F.; González-Trujano, M. E.; Martínez-Gordillo, M. J.; San Miguel-Chávez, R.;
Basurto-Peña, F. A.; Dorazco-González, A.; Aguirre-Hernández, E. Bot. Sci. 2019, 97, 355–365. DOI:
http://dx.doi.org/10.17129/botsci.2187.
75. Moreno, U.V. Herbolaria y tradición en la región de Xico, Veracruz. Ed., Gobierno del Estado de
Veracruz, Secretara de Educación y Cultura, Consejo Veracruzano de Arte Popular, Universidad
Veracruzana, Xalapa, Veracruz, 2004, 1-202.
76. Guzmán, G.O. Evaluación de la actividad antiinflamatoria y estudios quimiométricos de especies de
Salvia de Xalapa, Veracruz y municipios aledaños [master’s thesis]. Universidad Veracruzana:
México, 2014.
77. Molina, M. J. L.; Villanueva, R.; Fernández, N. R.; Siciliano, A. Polibotánica. 2012, 34, 259–291.
78. Jiménez-Ferrer, E.; Hernández-Badillo, F.; González-Cortazar, M.; Tortoriello, J.; Herrera-Ruiz, M.
J. Ethnopharmacol. 2010, 130, 340–346. DOI: http://dx.doi.org/10.1016/j.jep.2010.05.013.
79. Bello, G. M. Á.; Salgado, G. R. Biológicas. 2007, 9, 126–138.
80. Herrera-Ruiz, M.; García-Beltrán, Y.; Mora, S.; Díaz-Véliz, G.; Viana, G. S. B.; Tortoriello, J.;
Ramírez, G. J. Ethnopharmacol. 2006, 107, 53–58. DOI: http://dx.doi.org/10.1016/j.jep.2006.02.003.
81. Moreno, M.; Alvarado, F.D.; Mendoza C.R.; Basurto, P.M. Bot. Sci. 2006, 79, 79–87.
82. Mora, S.; Millán, R.; Lungenstrass, H.; Díaz-Véliz, G.; Morán, J.A.; Herrera-Ruiz, M.; Tortoriello, J.
J. Ethnopharmacol. 2006, 106, 76–81. DOI: http://dx.doi.org/10.1016/j.jep.2005.12.004.
83. Hurtado-Rico, N. E.; Rodríguez-Jiménez, C.; Aguilar-Contreras, A. Polibotánica. 2006, 22, 21-50.
84. Calzada, F.; Bautista, E.; Yépez-Mulia, L.; García-Hernandez, N.; Ortega, A. Phytother. Res. 2015,
29, 1600–1604. DOI: http://dx.doi.org/10.1002/ptr.5421.
85. Gómez-Rivera, A.; González-Cortazar, M.; Gallegos-García, A. J.; Escobar-Ramos, A.; Flores-
Franco, G.; Lobato-García, C. E. Afr. J. Trad. Compl. Altern. Med. 2018, 15, 72–82.
86. Navarro, P. L. D. C.; Avedaño, R. S. Polibotánica. 2002, 14, 67-84.
87. Aoyagi, Y.; Yamazaki, A.; Nakatsugawa, C.; Fukaya, H.; Takeya, K.; Kawauchi, S.; Izumi, H.;
Salvileucalin, B. Org Lett. 2008, 10, 4429–4432. DOI: http://dx.doi.org/10.1021/ol801620u.
88. Jiang, Y. J.; Su, J.; Shi, X.; Wu, X. D.; Chen, X. Q.; He, J.; Shao, L. D.; Li, X. N.; Peng, L. Y.; Li, R.
T. et al. Tetrahedron. 2016, 72, 5507–5514. DOI: http://dx.doi.org/10.1016/j.tet.2016.07.037.
89. Rajamanickam, M.; Kalaivanan, P.; Sivagnanam, I. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 264–268.
90. González-Elizondo, M.; López-Enríquez, I. L.; González-Elizondo, M. S.; Tena-Flores, J. A. Plantas
medicinales del estado de Durango y zonas aledañas. Ed., IPN, México, 2004.
91. Domínguez-Vázquez, G.; Castro-Ramírez, A. E. Etnobiología. 2015, 2, 19–31.
92. Argumedo Delira, R.; Parra-Delgado, H.; Ramírez-Apan, M. T.; Nieto, C. A.; Martínez-Vázquez, M.
Rev. Soc.Quím. Méx. 2003, 47, 167–172.
93. Molina, M. J. L.; Villanueva, R.; Fernández, N. R.; Siciliano, A. Polibotánica. 2012, 34, 259–291.
94. Martínez-Vázquez, M.; Miranda, P.; Valencia, N. A.; Torres, M. L.; Miranda, R.; Cárdenas, J.;
Salmón, M. Pharm. Biol. 1998, 36, 77–80. DOI: http://dx.doi.org/10.1076/phbi.36.2.77.4611.
95. Hersch, M. Estado del desarrollo económico y social de los pueblos indígenas de Guerrero, Volumen
2; Universidad Nacional Autónoma de México PUMC: México, 2009.
96. Cavin, A.; Dyatmyko, W.; Hostettmann, K. Pharm. Biol. 1999, 37, 260–268. DOI:
http://dx.doi.org/10.1076/phbi.37.4.260.5800.
97. Pineda-Ramírez, N.; Calzada, F.; Alquisiras-Burgos, I.; Medina-Campos, O. N.; Pedraza-Chaverri, J.;
Ortiz-Plata, A.; Pinzón, E. E.; Torres, I.; Aguilera, P. Antioxidants. 2020, 9, 253. DOI:
http://dx.doi.org/10.3390/antiox9030253.
98. Bautista, E.; Ortiz-Pastrana, N.; Pastor-Palacios, G.; Montoya-Contreras, A.; Toscano, R. A.;
Morales-Jiménez, J.; Salazar-Olivo, L. A.; Ortega, A. J. Nat. Prod. 2017, 80, 3003–3009. DOI:
http://dx.doi.org/10.1021/acs.jnatprod.7b00591.
99. Ramírez-Zea, G.; Chávez-Servia, J.L.; Archundia-Garduño, E.; López-Hernández, V. Salvias del
Estado de México, una perspectiva general. Ed., Instituto de Investigación y Capacitación
Agropecuaria, Acuícola y Forestal del Estado de México (ICAMEX), Secretaría de Desarrollo
Agropecuario del Estado de México. Metepec, México, 2016.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
831
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
100. Calzada, F.; Yepez-Mulia, L.; Tapia-Contreras, A.; Bautista, E.; Maldonado, E.; Ortega, A.
Phytother. Res. 2010, 24, 662–665. DOI: http://dx.doi.org/10.1002/ptr.2938.
101. Fan, M.; Bao, Y.; Zhang, Z. J.; Zhang, H. B.; Zhao, Q. S. Fitoterapia. 2017, 123, 44–50. DOI:
http://dx.doi.org/10.1016/j.fitote.2017.09.013.
102. Esquivel, B.; Calderón, J.; Flores, E.; Sánchez, A. A.; Rosas, R. R. Phytochemistry. 1997, 46,
531–534. DOI: http://dx.doi.org/10.1016/s0031-9422(97)00310-5.
103. Bautista, E.; Fragoso-Serrano, M.; Ortiz-Pastrana, N.; Toscano, R. A.; Ortega, A. Fitoterapia.
2016, 114, 1–6. DOI: http://dx.doi.org/10.1016/j.fitote.2016.08.007.
104. Bautista, E.; Fragoso-Serrano, M.; Toscano, R. A.; García-Peña, M. del R.; Ortega, A. Org.
Lett. 2015, 17, 3280–3282. DOI: http://dx.doi.org/10.1021/acs.orglett.5b01320.
105. Maldonado, E.; Cárdenas, J.; Bojórquez, H.; Escamilla, E. M.; Ortega, A. Phytochemistry.
1996, 42, 1105–1108. DOI: http://dx.doi.org/10.1016/0031-9422(96)00147-1.
106. Marquina, S.; García, Y.; Alvarez, L.; Tortoriello, J. Nat. Prod. Commun. 2008, 3, 185-188.
DOI: http://dx.doi.org/10.1177/1934578x0800300215.
107. Esquivel, B. Nat. Prod. Commun. 2008, 3, 989-1002. DOI:
http://dx.doi.org/10.1177/1934578x0800300628.
108. Arnason, J. T.; Mata, R. Phytochemistry of Medicinal Plants, Ed., Springer, New York, NY,
1995. DOI: https://doi.org/10.1007/978-1-4899-1778-2.
109. Esquivel, B.; Cardenas, J.; Rodriguez-Hahn, L.; Ramamoorthy, T. P. J. Nat. Prod. 1987, 50,
738–740. DOI: http://dx.doi.org/10.1021/np50052a029.
110. Esquivel, B.; Cardenas, J.; Toscano, A.; Soriano-Garcia, M.; Rodriguez-Hahn, L.
Tetrahedron. 1985, 41, 3213–3217. DOI: http://dx.doi.org/10.1016/s0040-4020(01)96672-4.
111. Mendoza-Espinoza, J. A.; Pena-Miranda, I.; Aarland, R. C.; Peralta-Gómez, S.; Sierra-
Palacios, E.; García-Ocón, B. Indian J. Tradit. Knowle. 2016, 15, 62–67.
112. Hueso-Rodriguez, J.; Jimeno, M.; Rodriguez, B.; Savona, G.; Bruno, M. Phytochemistry.
1983, 22, 2005–2009. DOI: http://dx.doi.org/10.1016/0031-9422(83)80033-8.
113. Martínez-Cruz, O.; Paredes-López, O. J. Chromatogr. A. 2014, 1346, 43–48. DOI:
http://dx.doi.org/10.1016/j.chroma.2014.04.007.
114. Sandoval-Oliveros, M. R.; Paredes-López, O. J. Agric, Food Chem. 2013, 61, 193–201. DOI:
http://dx.doi.org/10.1021/jf3034978.
115. Rodríguez-Hahn, L.; García, A.; Esquivel, B.; Cárdenas, J. Can. J. Chem. 1987, 65, 2687–
2690. DOI: http://dx.doi.org/10.1139/v87-445.
116. Maldonado, E.; Ángeles-Flores, M. de los.; Salazar, B.; Ortega, A. Phytochemistry. 1994, 37,
1480–1482. DOI: http://dx.doi.org/10.1016/s0031-9422(00)90438-2.
117. Maldonado, E.; Cardenas, J.; Salazar, B.; Toscano, R. A.; Ortega, A.; Jankowski, C. K.;
Aumelas, A.; Van-Calsteren, M. R. Phytochemistry. 1992, 31, 217–220. DOI:
http://dx.doi.org/10.1016/0031-9422(91)83039-n.
118. Ortega, A.; Cárdenas, J.; Toscano, A.; Maldonado, E.; Aumelas, A.; Van Calsteren, M. R.;
Jankowski, C. Phytochemistry. 1991, 30, 3357–3360. DOI: http://dx.doi.org/10.1016/0031-
9422(91)83209-4.
119. Aoyagi, Y.; Yamazaki, A.; Kato, R.; Tobe, F.; Fukaya, H.; Nishikawa, T.; Nakahashi, A.;
Miura, N.; Monde, K.; Takeya, K. Tetrahedron Lett. 2011, 52, 1851–1853. DOI:
http://dx.doi.org/10.1016/j.tetlet.2011.02.003.
120. Rojas, L. B.; Visbal, T.; Morillo, M.; de Rojas, Y. C.; Arzola, J. C.; Usubillaga, A. Nat. Prod.
Commun. 2010, 5, 937–938.DOI: http://dx.doi.org/10.1177/1934578x1000500627.
121. Negi, A.; Javed, M. S.; Melkani, A. B.; Dev, V.; Beauchamp, P. S. J. Essent. Oil Res. 2007,
19, 463–465. DOI: http://dx.doi.org/10.1080/10412905.2007.9699953.
122. Esquivel, B.; Hernández, L. M.; Cárdenas, J.; Ramamoorthy, T. P.; Rodríguez-Hahn, L.
Phytochemistry. 1989, 28, 561–566. DOI: http://dx.doi.org/10.1016/0031-9422(89)80051-2.
123. Esquivel, B.; Vallejo, A.; Gaviño, R.; Cárdenas, J.; Sánchez, A. A.; Ramamoorthy, T. P.;
Rodriguez-Hahn, L. Phytochemistry. 1988, 27, 2903–2905. DOI: http://dx.doi.org/10.1016/0031-
9422(88)80685-x.
Review J. Mex. Chem. Soc. 2024, 68(4)
Special Issue
©2024, Sociedad Química de México
ISSN-e 2594-0317
832
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana
124. Bautista, E.; Toscano, R. A.; Ortega, A. J. Nat. Prod. 2014, 77, 1088–1092. DOI:
http://dx.doi.org/10.1021/np4009893.
125. Bautista, E.; Toscano, R. A.; Ortega, A. Org Lett. 2013, 15, 3210–3213. DOI:
http://dx.doi.org/10.1021/ol401022c.
126. Takeda, K.; Yanagisawa, M.; Kifune, T.; Kinoshita, T.; Timberlake, C. F. Phytochemistry.
1994, 35, 1167–1169. DOI: http://dx.doi.org/10.1016/s0031-9422(00)94815-5.
127. Nieto, M.; Gallardo, O. V.; Rossomando, P. C.; Tonn, C. E. J. Nat. Prod. 1996, 59(9), 880–
882. DOI: http://dx.doi.org/10.1021/np960515x.
128. Esquivel, B.; Esquivel, O.; Cárdenas, J.; Sánchez, A.; Ramamoorthy, T. P.; Toscano, R. A.;
Rodríguez-Hahn, L. Phytochemistry. 1991, 30, 2335–2338. DOI: http://dx.doi.org/10.1016/0031-
9422(91)83644-z.
129. Luis, J. G.; Quiñones, W.; Echeverri, F. Phytochemistry. 1994, 36, 115–117. DOI:
http://dx.doi.org/10.1016/s0031-9422(00)97023-7.
130. Rodriguez-Hahn, L.; O’Reilly, R.; Esquivel, B.; Maldonado, E.; Ortega, A.; Cardenas, J.;
Toscano, R. A.; Chan, T. M.; J. Org. Chem. 1990, 55, 3522–3525. DOI:
http://dx.doi.org/10.1021/jo00298a026.