ArticlePublisher preview availableLiterature Review

Exploring the interplay of natural products and long non-coding RNAs in colorectal cancer: pathogenesis, diagnosis, and overcoming drug resistance

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortality rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors, including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs (ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337, HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effectiveness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their role in the disease’s progression, and their potential applications in its management. Graphical Abstract
This content is subject to copyright. Terms and conditions apply.
Vol.:(0123456789)
Naunyn-Schmiedeberg's Archives of Pharmacology (2025) 398:1243–1263
https://doi.org/10.1007/s00210-024-03425-9
REVIEW
Exploring theinterplay ofnatural products andlong non‑coding RNAs
incolorectal cancer: pathogenesis, diagnosis, andovercoming drug
resistance
HananElimam1 · MahmoudGomaaEldeib2,3· EsmaZ.Kizilaslan4· NoraA.A.Alhamshry1· AbdelkaderE.Ashour5·
NourhanElfar6,7· MaieM.Abdel‑Wahab3· MohamedBakrZaki1· OsamaA.Mohammed8· AbdullahF.Radwan9·
MustafaAhmedAbdel‑Reheim10,11 · RewanMoussa12· AhmedS.Doghish13,14
Received: 8 August 2024 / Accepted: 30 August 2024 / Published online: 17 September 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024
Abstract
Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortal-
ity rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors,
including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds
such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown
great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs
(ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found
to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angio-
genesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337,
HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel
biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug
resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and
radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effective-
ness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their
role in the disease’s progression, and their potential applications in its management.
Keywords LncRNA· Colorectal cancer· Drug resistance· Diagnosis· Prognosis
Abbreviations
CRC Colorectal cancer
ncRNA Non-coding RNA
lncRNA Long non-coding RNA
mRNA Messenger RNA
Pol Polymerase
NEAT1 Nuclear enriched abundant transcript 1
MALAT1 Metastasis-associated lung adenocarci-
noma transcript 1
circRNA Circular RNA
ATG12 Autophagy associated 12
HOTAIR HOX transcript antisense RNA
HOTTIP HOXA transcript at the distal tip
HIF-1 α Hypoxia-inducible factor 1 α
PI3K/AKT Phosphoinositide 3-kinase/serine-thio-
nine-protein kinase
STAT3 Signal transducers and activators of tran-
script 3
NF-κβ Nuclear factor-κβ
GOT2 Glutamate-oxaloacetate transaminase 2
INF1 Interferon 1
CSCs Colon cancer stem cells
BCAR4 Breast cancer anti-estrogen resistance 4
Wnt/β-catenin Wingless-related integration site/
beta-catenin
IBD Inflammatory bowel disease
UC Ulcerative colitis
CD Crohn’s disease
MLCK Myosin light chain kinase
PMN-MDSC Polymorphonuclear-myeloid-derived
suppressor cells
ETBF Enterotoxigenic Bacteroides fragilis
Extended author information available on the last page of the article
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
... For example, resveratrol, one of the critical polyphenols contained in red wine, inhibits HCC growth by inhibiting the HGF-c-Met path [226]. Quercetin, a flavonol, has anti-tumor properties and reduces the growth of several tumor cells [227], particularly liver cancer. It inhibits HGFand TGF-α-induced HCC progression by blocking the AKT signaling path [228]. ...
Article
Full-text available
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Article
Full-text available
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Article
Full-text available
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling. Certain lncRNAs, including HOTAIR and PCA3, are associated with PC progression, with potential as diagnostic markers. Natural compounds, such as curcumin and resveratrol, demonstrate anticancer effects by targeting these pathways, reducing tumor growth, and modulating lncRNA expression. For instance, curcumin suppresses HOTAIR levels, hindering PC cell proliferation and invasion. The interaction between lncRNAs and natural compounds may open new avenues for therapy, as these substances can simultaneously impact multiple signaling pathways. These complex interactions offer promising directions for developing innovative PC treatments, enhancing diagnostics, and identifying new biomarkers for improved prevention and targeted therapy. This review aims to map the multifaceted relationship among natural products, lncRNAs, and signaling pathways in PC pathogenesis, focusing on key pathways such as AR, PI3K/AKT/mTOR, WNT/β-catenin, and MAPK, which are crucial in PC progression and therapy resistance. Regulation of these pathways by natural products and lncRNAs could lead to new insights into biomarker identification, preventive measures, and targeted PC therapies.
Article
Full-text available
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Article
Full-text available
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Article
Full-text available
Gallbladder cancer (GBC) is an aggressive and lethal malignancy with a poor prognosis. Long noncoding RNAs (lncRNAs) and natural products have emerged as key orchestrators of cancer pathogenesis through widespread dysregulation across GBC transcriptomes. Functional studies have revealed that lncRNAs interact with oncoproteins and tumor suppressors to control proliferation, invasion, metastasis, angiogenesis, stemness, and drug resistance. Curcumin, baicalein, oleanolic acid, shikonin, oxymatrine, arctigenin, liensinine, fangchinoline, and dioscin are a few examples of natural compounds that have demonstrated promising anticancer activities against GBC through the regulation of important signaling pathways. The lncRNAs, i.e., SNHG6, Linc00261, GALM, OIP5-AS1, FOXD2-AS1, MINCR, DGCR5, MEG3, GATA6-AS, TUG1, and DILC, are key players in regulating the aforementioned processes. For example, the lncRNAs FOXD2-AS1, DILC, and HOTAIR activate oncogenes such as DNMT1, Wnt/β-catenin, BMI1, and c-Myc, whereas MEG3 and GATA6-AS suppress the tumor proteins NF-κB, EZH2, and miR-421. Clinically, specific lncRNAs can serve as diagnostic or prognostic biomarkers based on overexpression correlating with advanced TNM stage, metastasis, chemoresistance, and poor survival. Therapeutically, targeting aberrant lncRNAs with siRNA or antisense oligos disrupts their oncogenic signaling and inhibits GBC progression. Overall, dysfunctional lncRNA regulatory circuits offer multiple avenues for precision medicine approaches to improve early GBC detection and overcome this deadly cancer. They have the potential to serve as novel biomarkers as they are detectable in bodily fluids and tissues. These findings enhance gallbladder treatments, mitigating resistance to chemo- and radiotherapy.
Article
Full-text available
The identification of novel screening tools is imperative to empower the early detection of colorectal cancer (CRC). The influence of the long non-coding RNA maternally expressed gene 3 (MEG3) rs941576 single nucleotide polymorphism on CRC susceptibility remains uninvestigated. This research appraised MEG3 rs941576 association with the risk and clinical features of CRC and obesity-related CRC and its impact on serum MEG3 expression and its targets miR-27a/insulin-like growth factor 1 (IGF1)/IGF binding protein 3 (IGFBP3) and miR-181a/sirtuin 1 (SIRT1), along with the potential of these markers in obesity-related CRC diagnosis. 130 CRC patients (60 non-obese and 70 obese) and 120 cancer-free controls (64 non-obese and 56 obese) were enrolled. MEG3 targets were selected using bioinformatics analysis. MEG3 rs941576 was associated with magnified CRC risk in overall (OR (95% CI) 4.69(1.51–14.57), P = 0.0018) and stratified age and gender groups, but not with obesity-related CRC risk or MEG3/downstream targets’ expression. Escalated miR-27a and IGFBP3 and reduced IGF1 serum levels were concomitant with MEG3 downregulation in overall CRC patients versus controls and obese versus non-obese CRC patients. Serum miR-181a and SIRT1 were upregulated in CRC patients versus controls but weren’t altered in the obese versus non-obese comparison. Serum miR-181a and miR-27a were superior in overall and obesity-related CRC diagnosis, respectively; meanwhile, IGF1 was superior in distinguishing obese from non-obese CRC patients. Only serum miR-27a was associated with obesity-related CRC risk in multivariate logistic analysis. Among overall CRC patients, MEG3 rs941576 was associated with lymph node (LN) metastasis and tumor stage, serum MEG3 was negatively correlated with tumor stage, while SIRT1 was correlated with the anatomical site. Significant correlations were recorded between MEG3 and anatomical site, SIRT1 and tumor stage, and miR-27a/IGFBP3 and LN metastasis among obese CRC patients, while IGF1 was correlated with tumor stage and LN metastasis among non-obese CRC patients. Conclusively, this study advocates MEG3 rs941576 as a novel genetic marker of CRC susceptibility and prognosis. Our findings accentuate circulating MEG3/miR-27a/IGF1/IGFBP3, especially miR-27a as valuable markers for the early detection of obesity-related CRC. This axis along with SIRT1 could benefit obesity-related CRC prognosis.
Article
Full-text available
Background Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer. Methods For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques. Results MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors. Conclusions This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.
Article
Full-text available
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Article
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Article
Colorectal cancer (CRC) is one of the most frequent cancers in incidence and mortality. Despite advances in cancer biology, molecular genetics, and targeted treatments, CRC prognosis and survival have not kept pace. This is usually due to advanced staging and metastases at diagnosis. Thus, great importance has been placed upon understanding the molecular pathophysiology behind the development of CRC, which has highlighted the significance of non-coding RNA’s role and associated intracellular signaling pathways in the pathogenesis of the disease. According to recent studies, long non-coding RNAs (lncRNA), a subtype of ncRNAs whose length exceeds 200 nucleotides, have been found to have regulatory functions on multiple levels. Their actions at the transcription, post-transcriptional, translational levels, and epigenetic regulation have made them prime modulators of gene expression. Due to their role in cellular cancer hallmarks, their dysregulation has been linked to several illnesses, including cancer. Furthermore, their clinical relevance has expanded due to their possible detection in blood which has cemented them as potential future biomarkers and thus, potential targets for new therapy. This review will highlight the importance of lncRNAs and related signaling pathways in the development of CRC and their subsequent clinical applications.