Article

Glioma nanotherapy: Unleashing the synergy of dual-loaded DIM and TMZ

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
A malignant brain tumor with a dismal prognosis and few available treatments is glioblastoma multiforme (GBM). The blood-brain barrier (BBB) poses challenges for therapeutic agents reaching the tumor site. Lipid-based nanoparticles (LBNPs) have emerged as a promising solution to get better outcomes in GBM therapy. LBNPs include liposomes, lipid nanoparticles (LNP), solid lipid nanoparticles (SLPs), lipid Nano emulsion (LNE), and nanostructured lipid carrier (NLC). The compromised BBB restricts the amount of medication that can flow through it and prevents it from reaching the tumor location. This review discusses the status of LNPs in GBM treatment, their types, and mechanisms of action, advantages and challenges, including toxicity, reproducibility and targeting ability. The review also explores the combination of LNPs with radiation therapy and immunotherapy to enhance therapy results.
Article
Full-text available
Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in improving long-term survival. Despite the emergence of new therapies, monotherapy approaches have not shown significant improvements, highlighting the need for innovative therapeutic strategies. Combination therapies appear to be the most promising solution, as they target multiple molecular pathways involved in GBM progression. One area of growing interest is the incorporation of phytotherapy and micotherapy as complementary treatments, which offer potential benefits due to their anti-tumor, anti-inflammatory, and immunomodulatory properties. This review examines the current challenges in GBM treatment, discusses the potential of combination therapies, and highlights the promising role of phytotherapy and micotherapy as integrative therapeutic options for GBM management.
Article
Full-text available
Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well established in cancer containing wild type p53, which operates through the ‘USP7-Mdm2-p53’ axis. However, in cancers without functional p53, USP7-dependent apoptosis is induced through many other alternative pathways. Here, we have identified another critical p53 independent path active under USP7 to regulate apoptosis. Proteomics analysis identifies XIAP as a potential target of USP7-dependent deubiquitination. GSEA analysis revealed up-regulation of apoptosis signalling upon USP7 inhibition associated with XIAP down-regulation. Modulation of USP7 expression and activity in multiple cancer cell lines showed that USP7 deubiquitinates XIAP to inhibit apoptosis in a caspase-dependent pathway, and the combinatorial inhibition of USP7 and XIAP induces apoptosis in vitro and in vivo. Immunohistochemical staining revealed that grade-wise accumulation of USP7 correlated with an elevated level of XIAP in glioma tissue. This is the first report on the identification and validation of XIAP as a novel substrate of USP7 and together, they involve in the empowerment of the tumorigenic potential of cancer cells by inhibiting apoptosis.
Article
Full-text available
Maintaining the balance between eliciting immune responses against foreign proteins and tolerating self-proteins is crucial for maintenance of homeostasis. The functions of programmed death protein 1 (PD-1) and its ligand programmed death ligand 1 (PD-L1) are to inhibit immune responses so that over-reacting immune cells does not cause any damage to its own body cells. However, cancer cells hijack this mechanism to attenuate immune cells functions and create an immunosuppressive environment that fuel their continuous growth and proliferation. Over the past few years’ rapid development in cancer immunotherapy has opened a new avenue in cancer treatment. Blockade of PD-1 and PD-L1 has become a potential strategy that rescue the functions of immune cells to fight against cancer with high efficacy. Initially, immune checkpoint monotherapies were not very successful, making breast cancer less immunogenic. Although, recent reports support the presence of tumor infiltrating lymphocytes (TILs) in breast cancer that make it favorable for PD-1/PD-L1 mediated immunotherapy, which is effective in PD-L1 positive patients. Recently, anti-PD-1 (pembrolizumab) and anti-PD-L1 (atezolizumab) gets FDA approval for breast cancer treatment and make PD-1/PD-L1 immunotherapy is meaningful for further research. Likewise, this article gathered understanding of PD-1 and PD-L1 in recent years, their signaling networks, interaction with other molecules, regulations of their expressions and functions in both normal and tumor tissue microenvironments are crucial to find and design therapeutic agents that block this pathway and improve the treatment efficacy. Additionally, authors collected and highlighted most of the important clinical trial reports on monotherapy and combination therapy.
Article
Full-text available
Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo. Reactive oxygen species (ROS) have important roles in health and disease, but are chemically complex and difficult to measure accurately. This consensus statement proposes guidelines and best practices on the nomenclature and assessment of ROS, oxidative reactions and oxidative damage in cells, tissues and in vivo.
Article
Full-text available
Brain cancer is the most aggressive one among various cancers. It has a drastic impact on people's lives because of the failure in treatment efficacy of the currently employed strategies. Various strategies used to relieve pain in brain cancer patients and to prolong survival time include radiotherapy, chemotherapy, and surgery. Nevertheless, several inevitable limitations are accompanied by such treatments due to unsatisfactory curative effects. Generally, the treatment of cancers is very challenging due to many reasons including drugs’ intrinsic factors and physiological barriers. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are the two additional hurdles in the way of therapeutic agents to brain tumors delivery. Combinatorial and targeted therapies specifically in cancer show a very promising role where nanocarriers’ based formulations are designed primarily to achieve tumor-specific drug release. A dual-targeting strategy is a versatile way of chemotherapeutics delivery to brain tumors that gets the aid of combined ligands and mediators that cross the BBB and reaches the target site efficiently. In contrast to single targeting where one receptor or mediator is targeted, the dual-targeting strategy is expected to produce a multiple-fold increase in therapeutic efficacy for cancer therapy, especially in brain tumors. In a nutshell, a dual-targeting strategy for brain tumors enhances the delivery efficiency of chemotherapeutic agents via penetration across the blood-brain barrier and enhances the targeting of tumor cells. This review article highlights the ongoing status of the brain tumor therapy enhanced by nanoparticle based delivery with the aid of dual-targeting strategies. The future perspectives in this regard have also been highlighted.
Article
Full-text available
Glioblastoma (GBM) is a central nervous system tumor with poor prognosis due to the rapid development of resistance to mono chemotherapy and poor brain targeted delivery. Chemoimmunotherapy (CIT) combines chemotherapy drugs with activators of innate immunity that hold great promise for GBM synergistic therapy. Herein, we chose temozolomide, TMZ, and the epigenetic bromodomain inhibitor, OTX015, and further co‐encapsulated them within our well‐established erythrocyte membrane camouflaged nanoparticle to yield ApoE peptide decorated biomimetic nanomedicine (ABNM@TMZ/OTX). Our nanoplatform successfully addressed the limitations in brain‐targeted drug co‐delivery, and simultaneously achieved multidimensional enhanced GBM synergistic CIT. In mice bearing orthotopic GL261 GBM, treatment with ABNM@TMZ/OTX resulted in marked tumor inhibition and greatly extended survival time with little side effects. The pronounced GBM treatment efficacy can be ascribed to three key factors: (i) improved nanoparticle‐mediated GBM targeting delivery of therapeutic agents by greatly enhanced blood circulation time and blood–brain barrier penetration; (ii) inhibited cellular DNA repair and enhanced TMZ sensitivity to tumor cells; (iii) enhanced anti‐tumor immune responses by inducing immunogenic cell death and inhibiting PD‐1/PD‐L1 conjugation leading to enhanced expression of CD4+ and CD8+ T cells. The study validated a biomimetic nanomedicine to yield a potential new treatment for GBM. We developed temozolomide and epigenetic bromodomain inhibitor co‐encapsulated biomimetic nanomedicine (ABNM@TMZ/OTX) achieved multidimensional enhanced glioblastoma synergistic chemoimmunotherapy in both primary and recurrent orthotopic mice models with significant extended survival rate and little side effects.
Article
Full-text available
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acts as a quality control system. CHIP contains charged domain in between N-terminal TPR and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acts as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Article
Full-text available
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Article
Full-text available
Chemoresistance has been a significant problem affecting the efficacy of drugs targeting tumors for decades. MGMT, known as O6-methylguanine-DNA methyltransferase, is a DNA repair enzyme that plays an important role in chemoresistance to alkylating agents. Hence, MGMT is considered a promising target for tumor treatment. Several methods are employed to detect MGMT, each with its own advantages and disadvantages. Some of the detection methods are; immunohistochemistry, methylation-specific PCR (MSP), pyrophosphate sequencing, MGMT activity test, and real-time quantitative PCR. Methylation of MGMT promoter is a key predictor of whether alkylating agents can effectively control glioma cells. The prognostic value of MGMT in glioma is currently being explored. The expression of MGMT gene mainly depends on epigenetic modification–methylation of CpG island of MGMT promoter. CpG island covers a length of 762 bp, with 98 CpG sites located at the 5' end of the gene, ranging from 480 to 1,480 nucleotides. The methylation sites and frequencies of CpG islands vary in MGMT-deficient tumor cell lines, xenografts of glioblastoma and in situ glioblastoma. Methylation in some regions of promoter CpG islands is particularly associated with gene expression. The change in the methylation status of the MGMT promoter after chemotherapy, radiotherapy or both is not completely understood, and results from previous studies have been controversial. Several studies have revealed that chemotherapy may enhance MGMT expression in gliomas. This could be through gene induction or selection of high MGMT-expressing cells during chemotherapy. Selective survival of glioma cells with high MGMT expression during alkylating agent therapy may change MGMT status in case of recurrence. Several strategies have been pursued to improve the anti-tumor effects of temozolomide. These include the synthesis of analogs of O6-meG such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl) guanine (O6-BTG), RNAi, and viral proteins. This review describes the regulation of MGMT expression and its role in chemotherapy, especially in glioma. Targeting MGMT seems to be a promising approach to overcome chemoresistance. Further studies exploring new agents targeting MGMT with better curative effect and less toxicity are advocated. We anticipate that these developments will improve the current poor prognosis of glioma patients.
Article
Full-text available
Dysregulation of PML, a significant tumor suppressor is linked with cancers of different histological origins, with a decreased expression observed with a higher tumor grade. This necessitates studying the mechanisms to maintain a stable expression of PML. However much less is known about the transcriptional regulation of PML, more so in the context of breast carcinoma. ERβ has emerged as a critical factor in understanding breast cancer, especially since a huge proportion of breast cancers are ERα− and thus insensitive to tamoxifen therapy. This study aims to uncover an unidentified mechanism of PML gene regulation and its stabilization in breast cancer via ERβ signalling and the impact on cellular apoptosis. We found that clinical expression of PML positively correlates with that of ERβ both in normal and breast carcinoma samples and inversely correlates with markers of cellular proliferation, hinting towards a possible mechanistic interdependence. Both mRNA and protein expression of PML were increased in response to ERβ overexpression on multiple human breast cancer cell lines. Mechanistically, luciferase reporter assays and chromatin-immunoprecipitation assays demonstrated that ERβ can interact with the PML promoter via ERE and AP1 sites to enhance its transcription. ERβ induced stable PML expression causes a decline of its target protein Survivin and simultaneously provides a stable docking platform leading to stabilisation of its target Foxo3a, further causing transcriptional upregulation of pro-apoptotic factors p21 and p27. Immunohistochemical analyses of cancer and normal breast tissues and functional assays conducted corroborated the findings. Collectively, our study identifies ERβ signalling as a novel mechanism for PML gene regulation in ERα− breast cancer. It also reveals bi-directional downstream effect in which ‘ERβ-PML-(Foxo3a/Survivin)’ network acts as a therapeutic axis by suppressing cellular survival and promoting cellular apoptosis in breast carcinoma.
Article
Full-text available
Background: RelA/p65 a crucial member of NF-κB signaling pathway plays diverse role in mediating oncogenesis. Limited knowledge prevails on the mechanistic insights of RelA gene regulation. RNA helicase p68 apart from being a vital player of RNA metabolism acts as a transcriptional coactivator of several oncogenic transcription factors including β-catenin and is highly implicated in cancer progression. In this study, we aim to discern the molecular mechanism of how an RNA helicase, p68 deploys a major oncogenic signaling pathway, Wnt/ β-catenin to regulate the expression of RelA, an indispensable component of NF-κB signaling pathway towards driving colon carcinogenesis. Methods: Immunoblotting and quantitative RT-PCR was performed for determining the protein and mRNA expressions of the concerned genes respectively. Luciferase assay was employed for studying the promoter activity of RelA. Chromatin immunoprecipitation was used to evaluate the occupancy of transcription factors on the RelA promoter. Immunohistochemical analysis was conducted using FFPE sections derived from normal human colon and colon cancer patient samples. Finally, a syngeneic colorectal allograft mouse model was used to assess physiological significance of the in vitro findings. Results: p68, β-catenin and RelA proteins were found to bear strong positive correlation in normal and colon carcinoma patient samples. Both p68 and β-catenin increased RelA mRNA and protein expression. p68, β-catenin and Wnt3a elevated RelA promoter activity. Conversely, p68 and β-catenin knockdown diminished RelA promoter activity and led to reduced RelA mRNA and protein expression. p68 was perceived to occupy RelA promoter with β-catenin at the TCF4/LEF (TBE) sites thereby potentiating RelA transcription. p68 and β-catenin alliance positively modulated the expression of signature NF-κB target genes. Enhanced NF-κB target gene expression by p68 was corroborated by findings in clinical samples. Tumors generated in mice colorectal allograft model, stably expressing p68 further reinforced our in vitro findings. Conclusions: We report for the first time a novel mechanism of alliance between p68 and β-catenin in regulating the expression of RelA and stimulating the NF-κB signaling axis towards driving colon carcinogenesis. This study unravels novel modes of p68-mediated colon carcinogenesis, marking it a potential target for therapy.
Article
Full-text available
Compound 27 [1, 12‐bis(4‐(4‐amino‐6,7‐dimethoxyquinazolin‐2‐yl)piperazin‐1‐yl)dodecane‐1,12‐dione ] is a novel small molecule agonist of EphA2 receptor Tyrosine Kinase. It showed much improved activity for the activation of EphA2 receptor compared to the parental compound Doxazosin. To support further pharmacological and toxicological studies of the compound, a method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC‐ MS/MS) has been developed for the quantification of this compound. Liquid‐liquid extraction was used to extract the compound from mouse plasma and brain tissue homogenate. Reverse phase chromatograph with gradient elution was performed to separate compound 27 from the endogenous molecules in the matrix, followed by MS detection using positive ion multiple reaction monitoring (MRM) mode. MRM Transitions m/z 387.3→290.1 and m/z 384.1→247.1 were selected for monitoring compound 27 and internal standard Prazosin, respectively. The linear calibration range was 2‐200 ng/ml with the intra‐ and inter‐day precision and accuracy within the acceptable range. This method was successfully applied in the quantitative analysis of compound 27 in mouse plasma and brain tissue with different drug administration routes.
Article
Full-text available
Nanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy. Strategies are emphasized to target PLGA NPs to the tumor site passively and actively. Furthermore, combination therapies are introduced that enhance the accumulation of NPs and, thereby, their therapeutic efficacy. In this context, the huge number of reports on PLGA NPs used as drug delivery systems in cancer treatment highlight the potential of PLGA NPs as drug carriers for cancer therapeutics and encourage further translational research.
Article
Full-text available
Glioblastoma multiforme (GBM), a grade IV astrocytoma as defined by the World Health Organization (WHO) criteria, is the most common primary central nervous system tumor in adults. After treatment with the current standard of care consisting of surgical resection, concurrent temozolomide (TMZ), and radiation, the median survival is only 15 months. The limited and less-effective treatment options for these highly aggressive GBMs call for the development of new techniques and the improvement of existing technologies. Nanotechnology has shown promise in treating this disease, and some nanomaterials have demonstrated the ability to cross the blood–brain barrier (BBB) and remain in GBM tissues. Although the retention of nanoparticles (NPs) in GBM tissue is necessary to elicit an antitumor response, the delivery of the NP needs to be enhanced. Current research in nanotechnology is directed at increasing the active targeting of GBM tissue not only for the aid of chemotherapeutic drug delivery but also for imaging studies. This review is aimed at describing advancements in increasing nanotechnology specificity to GBM tissue.
Article
Full-text available
Glioblastoma (GBM) is a highly malignant type of primary brain tumor with a high mortality rate. Although the current standard therapy consists of surgery followed by radiation and temozolomide (TMZ), chemotherapy can extend patient’s post-operative survival but most cases eventually demonstrate resistance to TMZ. O⁶-methylguanine-DNA methyltransferase (MGMT) repairs the main cytotoxic lesion, as O⁶-methylguanine, generated by TMZ, can be the main mechanism of the drug resistance. In addition, mismatch repair and BER also contribute to TMZ resistance. TMZ treatment can induce self-protective autophagy, a mechanism by which tumor cells resist TMZ treatment. Emerging evidence also demonstrated that a small population of cells expressing stem cell markers, also identified as GBM stem cells (GSCs), contributes to drug resistance and tumor recurrence owing to their ability for self-renewal and invasion into neighboring tissue. Some molecules maintain stem cell properties. Other molecules or signaling pathways regulate stemness and influence MGMT activity, making these GCSs attractive therapeutic targets. Treatments targeting these molecules and pathways result in suppression of GSCs stemness and, in highly resistant cases, a decrease in MGMT activity. Recently, some novel therapeutic strategies, targeted molecules, immunotherapies, and microRNAs have provided new potential treatments for highly resistant GBM cases. In this review, we summarize the current knowledge of different resistance mechanisms, novel strategies for enhancing the effect of TMZ, and emerging therapeutic approaches to eliminate GSCs, all with the aim to produce a successful GBM treatment and discuss future directions for basic and clinical research to achieve this end.
Article
Full-text available
Introduction: Temozolomide (TMZ) is the preferred chemotherapeutic drug approved for the Glioblastoma multiforme (GBM) treatment. However, resistance to TMZ is the most intractable challenge for treatment of GBM. Screening of miRNAs is becoming a novel strategy to reveal underlying mechanism of drug-resistance of human tumors. Materials and methods: We conducted RNA sequencing (RNA-seq) for GBM cells treated continuously with TMZ 1 or 2 week or not. Bioinformatic analysis was used to predict targets of these altered miRNAs. Subsequently, we studied the potential role of miR-1268a in TMZ-resistance of GBM cells. Results: Expression levels of 55 miRNAs were identified altering both after 1 and 2 weeks TMZ treatment. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to illuminate the biological implication and related pathways of predicted target genes. We showed that miR-1268a was downregulated after TMZ treatment and targeted ABCC1/MRP1, a membrane transporter contributing to drug resistance, using dual-luciferase assay. Furthermore, we confirmed overexpression of miR-1268a inhibited protein translation of ABCC1 and restored upregulated expression of ABCC1 due to TMZ. Inversely, knockdown of miR-1268a increased ABCC1 at protein level and enhanced upregulation of ABCC1 with TMZ treatment. In addition, our data indicated that miR-1268a enhanced TMZ sensitivity in GBM cells. Conclusion: Through RNA-seq analysis, we discovered miR-1268a and elucidated its role in modulating TMZ-resistance of GBM cells by targeting ABCC1.
Article
Full-text available
Combination therapy, a treatment modality that combines two or more therapeutic agents, is a cornerstone of cancer therapy. The amalgamation of anti-cancer drugs enhances efficacy compared to the monotherapy approach because it characteristically targets key pathways with a synergistic or an additive effect. This approach potentially reduces drug-resistance, while simultaneously producing therapeutic anti-cancer benefits, such as reducing tumor growth and metastatic potential, arresting cells in cell cycle, reducing cancer stem cell populations, and inducing apoptosis. The 5-year survival rates for most metastatic cancer diseases are still quite low, and the process of developing a new anti-cancer drug is costly and extremely time consuming. Therefore, new strategies that target the survival pathways while providing efficient and effective results, as well as affordability, are being considered. One such approach incorporates repurposing therapeutic agents initially used for the treatment of different diseases other than cancer. This approach is effective primarily when the FDA-approved agent targets similar pathways found in cancer. Because one of the drugs used in combination therapy is already FDA approved, overall costs of combination therapy research are reduced. This increases cost efficiency of therapy thereby benefiting the “medically underserved”. In addition, an approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumor burden. In this systematic review, we discuss important pathways commonly targeted in cancer therapy. Further, we also review important and common therapeutic agents, either repurposed or primary anti-cancer agents that have gained popularity in clinical trials and research since 2012.
Article
Full-text available
To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
Article
Full-text available
Background The prognostic value of the status of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation measured by pyrosequencing assay (PSQ) among glioblastoma (GBM) patients was examined in meta-analysis. Methods Eligible studies that reported the association between the status of MGMT promoter methylation by PSQ and prognostic value of GBM patients from three electronic databases, like PubMed, EMBASE, and Cochrane library were involved in meta-analysis. Using Stata 11.0, the summarized hazard ratios (HRs) for overall survival (OS) and the progression-free survival (PFS) with 95 % confidence interval (CI) were calculated. ResultsEleven studies were included to evaluate the relationship between the status of MGMT promoter methylation and GBM patients’ survival. Overall, regardless of the cut-off value of methylation status of MGMT promoter by PSQ, methylated-positive patients were evidently associated with an improved HRs for OS (HRs = 0.50, 95 % CI = 0.35–0.66). For summary, progression-free survival (PFS) from four studies, the prognostic effect was also found (HRs = 0.56, 95 % CI = 0.32–0.80). Conclusion Methylation positivity of MGMT promoter by PSQ was related to an increased survival in GBM patients. Thus, the status of MGMT promoter methylation by PSQ might be used to be a prognostic biomarker, and GBM patients might have a vested interest in clinical application of standardized PSQ.
Chapter
Full-text available
Mitochondrial function, a key indicator of cell health, can be assessed by monitoring changes in mitochondrial membrane potential (MMP). Cationic fluorescent dyes are commonly used tools to assess MMP. We used a water-soluble mitochondrial membrane potential indicator (m-MPI) to detect changes in MMP in HepG2 cells. A homogenous cell-based MMP assay was optimized and performed in a 1536-well plate format to screen several compound libraries for mitochondrial toxicity by evaluating the effects of chemical compounds on MMP.
Article
Full-text available
Temozolomide (TMZ) is an oral alkylating agent used to treat glioblastoma multiforme (GBM) and astrocytomas. However, at least 50% of TMZ treated patients do not respond to TMZ. This is due primarily to the over-expression of O6-methylguanine methyltransferase (MGMT) and/or lack of a DNA repair pathway in GBM cells. Multiple GBM cell lines are known to contain TMZ resistant cells and several acquired TMZ resistant GBM cell lines have been developed for use in experiments designed to define the mechanism of TMZ resistance and the testing of potential therapeutics. However, the characteristics of intrinsic and adaptive TMZ resistant GBM cells have not been systemically compared. This article reviews the characteristics and mechanisms of TMZ resistance in natural and adapted TMZ resistant GBM cell lines. It also summarizes potential treatment options for TMZ resistant GBMs.
Article
Full-text available
This brief article focuses on two aims: i) To investigate the in vitro pharmaco-dynamic interactions of combining synthetic potent microtubule targeting anticancer agent, Fludelone (FD) with cyto-protective agent, Panaxytriol (PXT) derived from Panax ginseng, and ii) To illustrate step-by-step operation for conducting two-drug combination in vitro using the combination index method, in terms of experimental design, data acquisition, computerized simulation and data interpretation. The Chou-Talalay method for drug combination is based on the median-effect equation, which provides the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI<1, =1, and >1 indicates synergism, additive effect and antagonism, respectively. Based on these algorithms, computer software, CompySyn, is used for determining synergism and antagonism at all doses or effect levels simulated automatically. The use of Chou-Talalay's CI method in quantifying synergism or antagonism is increasing steadily during the past two decades, however, confusing questions and pitfalls were still frequently raised by insufficient understanding of the theory, especially reflected when researchers trying to use the computerized software to design and conduct experiments. In order to specifically address the confusions and to illustrate the practical features of this method, in this paper, a selected example is given based on our unpublished data regarding the combinational pharmacologic interactions of FD and PXT against the growth of breast cancer cell line MX-1. The step-by-step operation from experimental design to the real data analysis is illustrated. The results indicated that FD and PXT combination in vitro exerted synergistic effect when cell growth inhibition was greater than 45%, with CI ranged 0.836-0.609 for the fractional inhibition of Fa=0.50~0.90, as shown by the Fa-CI plot and by the isobologram. Thus, quantitative conclusion of synergism is obtained using the Chou-Talalay CI method, under the well-defined simple conditions for the FD and PXT combinations in vitro.
Article
Full-text available
Increased abundance of proto-oncogene AKT and reduced expression of tumor suppressor FOXO3a; the downstream target of AKT, is frequent in carcinogenesis. Mechanistic insights of AKT gene regulation are limited. DEAD box RNA helicase p68 is overexpressed in various cancers and acts as a transcriptional co-activator of several transcription factors, including β-catenin. Here, we report a novel mechanism of p68 mediated transcriptional activation of AKT, and its ensuing effect on FOXO3a, in colon carcinogenesis. Interestingly, we found that the expression of p68 and AKT exhibits strong positive correlation in normal and colon carcinoma patient samples. Additionally, p68 increased both AKT mRNA and protein; enhanced AKT promoter activity in multiple colon cancer cell lines. Conversely, p68 knockdown led to reduced AKT mRNA and protein; diminished AKT promoter activity. Here, we demonstrated that p68 occupies AKT promoter with β-catenin as well as NF-κB and cooperates with these in potentiating AKT transcription. Furthermore, p68 and FOXO3a expression followed inverse correlation in the same set of colon carcinoma samples. We observed that p68 significantly reduced FOXO3a protein level in an AKT dependent manner. Studies in primary tumors and metastatic lung nodules generated in mice colorectal allograft model, using syngeneic cells stably expressing p68, corroborated our in vitro findings. Hence, a new mechanism of oncogenesis is attributed to p68 by upregulation of AKT and consequent nuclear exclusion and degradation of tumor suppressor FOXO3a.
Article
Full-text available
Glioblastoma (GBM) is the most common and aggressive primary CNS malignancy with a median survival of 15 months. The average incidence rate (IR) of GBM is 3.19/100,000 population and the median age of diagnosis is 64 years. Incidence is higher in men and individuals of white race and non-Hispanic ethnicity. Many genetic and environmental factors have been studied in GBM but the majority are sporadic and no risk factor accounting for a large proportion of GBMs has been identified. However, several favorable clinical prognostic factors are identified including, younger age at diagnosis, cerebellar location, high performance status and maximal tumor resection. GBMs comprise of primary and secondary subtypes which evolve through different genetic pathways, affect patients at different ages and have differences in outcomes. We report the current epidemiology of GBM with new data from the Central Brain Tumor Registry of the United States (CBTRUS) 2006-2010 as well as demonstrate and discuss trends in incidence and survival. We also provide a concise review on molecular markers in GBM that have helped distinguish biologically similar subtypes of GBM and have prognostic and predictive value.
Article
Full-text available
Tumor suppressor retinoblastoma-associated protein (Rb) is an important cell cycle regulator, arresting cells in early G1. It is commonly inactivated in cancers and its level is maintained during the cell cycle. Rb is regulated by various post-translational modifications such as phosphorylation, acetylation, ubiquitination and so on. Several E3 ligases including murine double minute 2 (MDM2) promote the degradation of Rb. This study focuses on the role of HAUSP (herpes virus associated ubiquitin specific protease) on Rb. Here, we show that HAUSP colocalizes and interacts with Rb to stabilize it from proteasomal degradation by removing wild-type and K48-linked ubiquitin chains in human embryonic kidney 293 (HEK293) cells. HAUSP deubiquitinates Rb in vivo and in vitro, leading to an increased cell population in the G1 phase. Hence, HAUSP is a novel deubiquitinase for Rb. Immunohistochemistry, western blotting and cell-based assays show that HAUSP is overexpressed in glioma and contributes towards glioma progression. However, HAUSP activity on Rb is abrogated in glioma (cancer), where these two proteins show an inverse relationship. MDM2 (a known substrate of HAUSP) serves as a better target for HAUSP-mediated deubiquitination in cancer cells, facilitating degradation of Rb and oncogenic progression. This novel regulatory axis is proteasome mediated, p53 independent, and the level of MDM2 is critical. The shift in equilibrium by differential deubiquitination in regulation of Rb explains a subtle difference existing between normal and cancer cells. This leads to speculation about a new possibility for distinguishing cancer cells from normal cells at the molecular level, which may be investigated for therapeutic intervention in the future. Structured digital abstract HAUSP and Rb colocalize by fluorescence microscopy (View interaction) HAUSP binds to Rb by pull down (View interaction) HAUSP physically interacts with Rb by anti bait coip (1, 2, 3, 4, 5, 6)
Article
Full-text available
Background Standard therapy for newly diagnosed glioblastoma is radiotherapy plus temozolomide. In this phase 3 study, we evaluated the effect of the addition of bevacizumab to radiotherapy-temozolomide for the treatment of newly diagnosed glioblastoma. Methods We randomly assigned patients with supratentorial glioblastoma to receive intravenous bevacizumab (10 mg per kilogram of body weight every 2 weeks) or placebo, plus radiotherapy (2 Gy 5 days a week; maximum, 60 Gy) and oral temozolomide (75 mg per square meter of body-surface area per day) for 6 weeks. After a 28-day treatment break, maintenance bevacizumab (10 mg per kilogram intravenously every 2 weeks) or placebo, plus temozolomide (150 to 200 mg per square meter per day for 5 days), was continued for six 4-week cycles, followed by bevacizumab monotherapy (15 mg per kilogram intravenously every 3 weeks) or placebo until the disease progressed or unacceptable toxic effects developed. The coprimary end points were investigator-assessed progression-free survival and overall survival. ResultsA total of 458 patients were assigned to the bevacizumab group, and 463 patients to the placebo group. The median progression-free survival was longer in the bevacizumab group than in the placebo group (10.6 months vs. 6.2 months; stratified hazard ratio for progression or death, 0.64; 95% confidence interval [CI], 0.55 to 0.74; P<0.001). The benefit with respect to progression-free survival was observed across subgroups. Overall survival did not differ significantly between groups (stratified hazard ratio for death, 0.88; 95% CI, 0.76 to 1.02; P=0.10). The respective overall survival rates with bevacizumab and placebo were 72.4% and 66.3% at 1 year (P=0.049) and 33.9% and 30.1% at 2 years (P=0.24). Baseline health-related quality of life and performance status were maintained longer in the bevacizumab group, and the glucocorticoid requirement was lower. More patients in the bevacizumab group than in the placebo group had grade 3 or higher adverse events (66.8% vs. 51.3%) and grade 3 or higher adverse events often associated with bevacizumab (32.5% vs. 15.8%). Conclusions The addition of bevacizumab to radiotherapy-temozolomide did not improve survival in patients with glioblastoma. Improved progression-free survival and maintenance of baseline quality of life and performance status were observed with bevacizumab; however, the rate of adverse events was higher with bevacizumab than with placebo. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT00943826.)
Article
Full-text available
Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3´-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.
Article
Full-text available
The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) can cause resistance to the alkylating drug temozolomide (TMZ). The purpose of this study was to determine the relationship between the MGMT status, determined by means of several techniques and methods, and the cytotoxic response to TMZ in 11 glioblastoma multiforme (GBM) cell lines and 5 human tumour cell lines of other origins. Cell survival was analysed by clonogenic assay. The MGMT protein levels were assessed by western blot analysis. The MGMT promoter methylation levels were determined using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and quantitative real-time methylation-specific PCR (qMSP). On the basis of the results of these techniques, six GBM cell lines were selected and subjected to bisulphite sequencing. The MGMT protein was detected in all TMZ-resistant cell lines, whereas no MGMT protein could be detected in cell lines that were TMZ sensitive. The MS-MLPA results were able to predict TMZ sensitivity in 9 out of 16 cell lines (56%). The qMSP results matched well with TMZ sensitivity in 11 out of 12 (92%) glioma cell lines. In addition, methylation as detected by bisulphite sequencing seemed to be predictive of TMZ sensitivity in all six cell lines analysed (100%). The MGMT protein expression more than MGMT promoter methylation status predicts the response to TMZ in human tumour cell lines.
Article
Full-text available
Glioblastoma multiforme is the most common primary brain tumor in adults. Median survival from the time of diagnosis is 14 months, with less than 5% of patients surviving 5 years. Despite advances in deciphering the complex biology of these tumors, the overall prognosis has only slightly improved in the past three decades. The clinical failure of many therapeutic approaches can be explained by the following considerations: the location of tumors within the brain presents a special set of challenges, including ability of drugs to cross the BBB; cancer cells have unstable genetic structures, very susceptible to mutations; cancer cells have an amalgam of different genetic defects that respond in different ways to any given treatment agent; and, infiltrating and apparently normal but 'activated' cells are evident in the brain surrounding the main tumor. In this way, the biologic phenomena of the 'normal brain' adjacent to the enhanced tumor could allow us to understand the first steps of cancerogenesis and, consequently, to interfere with the pathways responsible for tumor growth and recurrence.
Article
Full-text available
This brief perspective article focuses on the most common errors and pitfalls, as well as the do's and don'ts in drug combination studies, in terms of experimental design, data acquisition, data interpretation, and computerized simulation. The Chou-Talalay method for drug combination is based on the median-effect equation, derived from the mass-action law principle, which is the unified theory that provides the common link between single entity and multiple entities, and first order and higher order dynamics. This general equation encompasses the Michaelis-Menten, Hill, Henderson-Hasselbalch, and Scatchard equations in biochemistry and biophysics. The resulting combination index (CI) theorem of Chou-Talalay offers quantitative definition for additive effect (CI = 1), synergism (CI < 1), and antagonism (CI > 1) in drug combinations. This theory also provides algorithms for automated computer simulation for synergism and/or antagonism at any effect and dose level, as shown in the CI plot and isobologram, respectively.
Article
Full-text available
Assessment of the oral use of indole-3-carbinol (I3C) as a chemoprotective compound has not sufficiently considered the chemical instability of I3C. This review addresses the question of whether I3C is directly active in its own right or only serves as a precursor, with all of the biological responses coming from reaction products arising in culture media and in the presence of stomach acid. Because of the rapid conversion of I3C into its dimer. diindolylmethane (DIM), and trimers very little circulating I3C is present following oral use to effect a biological response. Reports of toxicity associated with oral use of I3C relate to unfavorable enzyme induction, which can be attributed to non-DIM reaction products. Because DIM provides a predictable, safer response than the mélange of compounds derived from I3C DIM should be regarded as the chemoprotective compound of choice.
Article
Full-text available
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.
Article
Full-text available
To investigate whether abnormal expression of beta-catenin in conjunction with overexpression of cyclinD1, c-myc and matrix metalloproteinase-7 (MMP-7) correlated with the carcinogenesis, metastasis and prognosis of pancreatic cancer, and to analyze the relationship of beta-catenin expression with cyclinD1, c-myc and MMP-7 expression. Using immunohistochemistry, we examined the expression of beta-catenin, cyclinD1, c-myc and MMP-7 in 47 pancreatic adenocarcinoma tissues, 12 pancreatic intraepithelial neoplasia (PanIN) and 10 normal pancreases, respectively. Proliferation cell nuclear antigen was also tested as the index of proliferative activity of pancreatic cancer cells. In 10 cases of normal pancreatic tissues, epithelial cells showed equally strong membranous expression of beta-catenin protein at the cell-cell boundaries, but the expression of cyclinD1, c-myc and MMP-7 was negative. The expression of beta-catenin, cyclinD1, c-myc and MMP-7 in PanIN and pancreatic adenocarcinoma tissues had no significant difference [6/12 and 32/47 (68.1%), 6/12 and 35/47 (74.5%), 5/12 and 33/47 (70.2%), 7/12 and 30/47 (63.8%), respectively]. The abnormal expression of beta-catenin was significantly correlated to metastasis and one-year survival rate of pancreatic cancer, but had no relation with size, differentiation and cell proliferation. The expression of cyclinD1 was correlated with cell proliferation and extent of differentiation, but not with size, metastasis and one-year survival rate of the pancreatic cancer. The expression of c-myc was not correlated with size, extent of differentiation, metastasis and 1-year survival rate, but closely with cell proliferation of pancreatic cancer. The overexpression of MMP-7 was significantly associated with metastasis and 1-year survival rate of pancreatic cancer, but not with size, extent of differentiation and cell proliferation. There was a highly significant positive association between abnormal expression of beta-catenin and overexpression of cyclinD1, c-myc and MMP-7 not only in PanIN (r = 1.000, 0.845, 0.845), but also in pancreatic cancer (r = 0.437, 0.452, 0.435). The abnormal expression of beta-catenin plays a key role in the carcinogenesis and progression of human pancreatic carcinoma by up-regulating the expression of cyclinD1, c-myc and MMP-7, resulting in the degradation of extracellular matrix and uncontrolled cell proliferation and differentiation. beta-catenin abnormal expression and MMP-7 overexpression may be considered as two useful markers for determining metastasis and prognosis of human pancreatic cancer.
Article
Glioblastoma is the most invasive form of brain tumor. Although temozolomide chemotherapy has been shown to significantly improve survival in patients with GBM, this increase is only trivial. The underlying cause is that many GBMs do not respond to temozolomide, and the rest produces resistance. In the past two decades, many attempts have been made to understand resistance mechanisms and to combine other treatments with temozolomide to maximize patient benefit. Unfortunately, it seems to be a red queen game, and the speed of disease development is as fast as the progress in the field. In order to win this game, a comprehensive approach is needed to decipher the details of the resistance mechanism and to transfer the basic research to the clinic. This article reviews the following: temozolomide discovery, chemistry, and mechanism of action, and mechanisms of resistance, as well as combination therapy with other strategies.
Article
Current therapy for Glioblastoma is insufficient because of the presence of blood brain barrier. It limits the transport of essential drugs to the tumor sites. To overcome this limitation we strategized the delivery of an anticancer compound 3,3'-diindolylmethane by encapsulation in poly (lactic-co-glycolic acid) nanoparticles. These nanoparticles were tagged with a novel peptide against somatostatin receptor 2 (SSTR2), a potential target in glioma. The nanoformulation (27-87nm) had loading and encapsulation efficiency of 7.2% and 70% respectively. It was successfully internalized inside the glioma cells resulting in apoptosis. Furthermore, an in vivo bio-distribution study revealed the selective accumulation of the nanoformulation into rat brain tumor sites by crossing the blood brain barrier. This resulted in abrogation of epidermal growth factor receptor pathway activation in glioma cells. Our novel nanopreparation therefore shows great promise to serve as a template for targeted delivery of other therapeutics in treating GBM.
Article
This study was designed to discuss the effects of 3, 3'-diindolylmethane (DIM) on methionine-choline-deficient (MCD)-diet induced mouse nonalcoholic steatohepatitis (NASH) and the potential mechanisms. NASH mice were administrated with or without DIM at different concentrations for 8weeks. Both the in-vivo and in-vitro effects of DIM on Treg/Th17 imbalance during NASH progression were analyzed. The in-vivo blocking of CD25 or IL-17 was performed to respectively deplete respective function of Treg or Th17 subset. Besides, with the assistance of AhR antagonist CH223191 and anti-TLR4 neutralizing antibody, we designed the in-vitro DIM-incubation experiments to discuss the roles of aryl hydrocarbon receptor (AhR) (CYP1A1, CYP1B1) and toll-like receptor 4 (TLR4) on DIM's effects when shifting Treg/Th17 imbalance. Notably, in NASH mouse models, DIM alleviated hepatic steatosis and inflammation, and shifted the Treg/Th17 imbalance from MCD diet-induced Th17 dominance to Treg dominance. In-vitro, DIM not only significantly up-regulated the mRNAs of Foxp3 (Treg-specific) in purified spleen CD4(+) T cells, but also enhanced the immunosuppressive function of these Treg cells. Besides, DIM significantly up-regulated the proteins of CYP1A1 and CYP1B1 whereas down-regulated those of TLR4 on CD4(+) T cells from MCD-diet mice. Moreover, blocking AhR attenuated while blocking TLR4 enhanced the effects of DIM when regulating Treg/Th17 imbalance. Conclusively, DIM could be used as a potential therapeutic candidate to treat NASH based on its dramatic induction of Treg dominance to alleviate intra-hepatic inflammation, suggesting us a clue that the dietary cruciferous vegetables (containing abundant DIM) might exist as a protective factor for patients with NASH-related liver diseases.
Article
Concentration measurements are one of the most important and fundamental approaches in preclinical and clinical studies of small-molecule drugs, metabolites and biomarkers, since information about the absorption (drug), synthesis (biomarker), distribution, metabolism and elimination can be obtained by determining the concentrations of target analytes in biological fluids or tissue samples. Among all the bioanalytical techniques, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has been widely used, due to its high sensitivity, selectivity and reproducibility. Attention has been paid to the quantitation of small-molecule analytes in brain tissue samples by LC-MS/MS, because the important information about brain concentrations obtained via such studies can be used to interpret the distribution and function of target chemicals in the central nervous system (CNS). In order to be analyzed by LC-MS/MS, brain tissue samples need to be properly obtained and carefully prepared into an LC-MS/MS compatible form. The choice made here will which greatly influence the sensitivity and robustness of the method. As a result of the vital function and complex composition of brain tissue, sample collection and preparation can be very challenging. In this review, we summarize the current techniques for the collection and preparation of brain tissue samples, which can be used as a reference for future method development for quantitation of small-molecule analytes by LC-MS/MS.
Article
Assessing cell proliferation in situ is an important phenotyping component of skeletal tissues from development to adult stages and disease. Various methods exist including immunostaining for proteins and protein modifications associated with specific steps of the cell cycle, but the gold standard is to quantify the percentage of DNA-synthesizing cells. The thymidine analog 5-bromo-2'-deoxyuridine (BrdU) has been widely used in the last decades for this purpose, with the inconvenience that its detection is lengthy and requires harsh treatment of tissue sections to give access of anti-BrdU antibody to nucleosides in genomic DNA. In 2008, Salic and Mitchison developed a new method and proved it to be quicker, simpler, and highly sensitive in non-skeletal tissues. This method relies on incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into de novo DNA. This other thymidine analog is readily detected by click chemistry, i.e., covalent cross-linking of its ethynyl group with a fluorescent azide, a molecule small enough to diffuse freely through native tissues and DNA. Here, we describe and compare the BrdU and EdU approaches in skeletal tissues and conclude that in these tissues too EdU provides an easy and very sensitive alternative to BrdU.
Article
Most of the DNA in eukaryotes is packaged in tandemly arrayed nucleosomes that, together with numerous DNA- and nucleosome-associated enzymes and regulatory factors, make up chromatin. Chromatin modifying and remodeling agents help regulate access to selected DNA segments in chromatin, thereby facilitating transcription and DNA replication and repair. Studies of nucleotide excision repair (NER), single strand break repair (SSBR), and the homology-directed (HDR) and non-homologous end-joining (NHEJ) double strand break repair pathways have led to an 'access-repair-restore' paradigm, in which chromatin in the vicinity of damaged DNA is disrupted, thereby enabling efficient repair and the subsequent repackaging of DNA into nucleosomes. When damage is extensive, these repair processes are accompanied by cell cycle checkpoint activation, which provides cells with sufficient time to either complete the repair or initiate apoptosis. It is not clear, however, if base excision repair (BER) of the ∼20,000 or more oxidative DNA damages that occur daily in each nucleated human cell can be viewed through this same lens. Until recently, we did not know if BER requires or is accompanied by nucleosome disruption, and it is not yet clear that anything short of overwhelming oxidative damage (resulting in the shunting of DNA substrates into other repair pathways) results in checkpoint activation. This review highlights studies of how oxidatively damaged DNA in nucleosomes is discovered and repaired, and offers a working model of events associated with BER in chromatin that we hope will have heuristic value. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.
Article
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. P-glycoprotein is an important and the best-known membrane transporter involved in MDR. Several strategies have been used to address MDR, especially P-glycoprotein-mediated drug resistance in tumors. However, clinical success has been limited, largely due to issues regarding lack of efficacy and/or safety. Nanoparticles have shown the ability to target tumors based on their unique physical and biological properties. To date, nanoparticles have been investigated primarily to address P-glycoprotein and the observed improved anticancer efficacy suggests that nanomedicinal strategies provide a new opportunity to overcome MDR. This article focuses on nanotechnology-based formulations and current nanomedicine approaches to address MDR in tumors and discusses the proposed mechanisms of action.
Article
Temozolomide (TMZ) is a DNA alkylating agent currently used as adjuvant treatment for anaplastic astrocytomas. Its use in managing glioblastoma multiforme has been halted because of the lack of therapeutic effects due to cell resistance. Note that O6-alkylguanine-DNA alkyltranferase (AGT) is a DNA repair enzyme that limits the efficacy of TMZ. In this study the authors investigated the ability of O6-benzylguanine (BG), an AGT inhibitor, to sensitize a glioblastoma cell line resistant to TMZ. The effects of TMZ alone (100 microg) and after exposure to BG (50 microg) were assessed in two glioblastoma cell lines, U373-MG and T98G, respectively, sensitive and resistant to TMZ. Cell viability was assessed using trypan blue; cell cycle analysis by fluorescence-activated cell sorter; and apoptosis and autophagy by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and acridine orange staining, respectively. Furthermore, the involvement of an autophagy marker, microtubule-associated light chain 3 (LC3), was assessed. Temozolomide suppressed the growth of and caused cell cycle arrest in the G2-M phase of U373-MG cells but not T98G cells. Exposure to BG prior to TMZ resulted in a significant decrease in cell viability as well as cell cycle arrest in the G2-M phase in T98G cells (p < 0.05). Although apoptosis was not detected on TUNEL staining, programmed cell death Type II (autophagy) was detected after exposure to BG and TMZ in T98G cells. These results indicate that inhibition of AGT by BG can render previously resistant glioma cells sensitive to TMZ treatment. The mechanism of cell demise following BG-TMZ treatment seems to be autophagy and not apoptosis. Combination therapy involving TMZ and an AGT inhibitor may be an effective strategy to treat resistant gliomas.
Article
DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.
Astrocyte–endothelial interactions at the blood–brain barrier
  • Abbott
Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells
  • Kanzawa