Fully describing light propagation in a rotating, anisotropic medium with thermal nonlinearity requires modeling the interplay between nonlinear refraction, birefringence, and the nonlinear group index. Incorporating these factors into a generalized coupled nonlinear Schrödinger equation and fitting them to recent experimental results reveals two key relationships: the photon drag effect can have a nonlinear component that is dependent on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create distorted figure-eight-like transverse trajectories at the output. The beam trajectory can be accurately modeled with a full understanding of the propagation effects. Efficiently modeling these effects and accurately predicting the beam's output position has implications for optimizing applications in velocimetry and beam steering. Understanding the roles of competitive nonlinearities gives insight into the creation or suppression of nonlinear phenomena like self-action effects.