Article

Cafeteria diet compromises natural adaptations of islet cell transdifferentiation and turnover in pregnancy

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background Pancreatic islet β‐cell mass expands during pregnancy, but underlying mechanisms are not fully understood. This study examines the impact of pregnancy and cafeteria diet on islet morphology, associated cellular proliferation/apoptosis rates as well as β‐cell lineage. Methods Non‐pregnant and pregnant Ins 1 Cre/+ ; Rosa26‐eYFP transgenic mice were maintained on either normal or high‐fat cafeteria diet, with pancreatic tissue obtained at 18 days gestation. Immunohistochemical changes in islet morphology, β‐/α‐cell proliferation and apoptosis, as well as islet cell identity, neogenesis and ductal cell transdifferentiation were assessed. Results Pregnant normal diet mice displayed an increase in body weight and glycaemia. Cafeteria feeding attenuated this weight gain while causing overt hyperglycaemia. Pregnant mice maintained on a normal diet exhibited typical expansion in islet and β‐cell area, owing to increased β‐cell proliferation and survival as well as ductal to β‐cell transdifferentiation and β‐cell neogenesis, alongside decreased β‐cell dedifferentiation. Such pregnancy‐induced islet adaptations were severely restricted by cafeteria diet. Accordingly, islets from these mice displayed high levels of β‐cell apoptosis and dedifferentiation, together with diminished β‐cell proliferation and lack of pregnancy‐induced β‐cell neogenesis and transdifferentiation, entirely opposing islet cell modifications observed in pregnant mice maintained on a normal diet. Conclusion Augmentation of β‐cell mass during gestation arises through various mechanisms that include proliferation and survival of existing β‐cells, transdifferentiation of ductal cells as well as β‐cell neogenesis. Remarkably, cafeteria feeding almost entirely annuls pregnancy‐induced islet adaptations, which may contribute to the development of gestational diabetes in the setting of dietary provoked metabolic stress.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The present study examines differences in metabolic and pancreatic islet adaptative responses following streptozotocin (STZ) and hydrocortisone (HC) administration in male and female transgenic GluCreERT2/Rosa26-eYFP mice. Mice received 5 daily doses of STZ (50 mg/kg, i.p) or 10 daily doses of HC (70 mg/kg, i.p), with parameters assessed on day 11. STZ-induced hyperglycaemia was evident in both sexes, alongside impaired glucose tolerance and reduced insulin concentrations. HC also had similar metabolic effects in male and female mice resulting in classical increases of circulating insulin indicative of insulin resistance. Control male mice had larger pancreatic islets than females and displayed a greater reduction of islet and beta-cell area in response to STZ insult. In addition, female STZ mice had lower levels of beta-cell apoptosis than male counterparts. Following HC administration, female mouse islets contained a greater proportion of alpha-cells when compared to males. All HC mice presented with relatively comparable increases in beta- and alpha-cell turnover rates, with female mice being slightly more susceptible to HC-induced beta-cell apoptosis. Interestingly, healthy control female mice had inherently increased alpha- to beta-cell transdifferentiation rates, which was decreased by HC treatment. The number of glucagon-positive alpha-cells altering their lineage to insulin-positive beta-cells was increased in male, but not female, STZ mice. Taken together, although there was no obvious sex-specific alteration of metabolic profile in STZ or HC mice, subtle differences in pancreatic islet morphology emphasises the impact of sex hormones on islets and importance of taking care when interpreting observations between males and females.
Article
Full-text available
Introduction The modern food environment facilitates excessive calorie intake, a major driver of obesity. Glucagon-like peptide 1 (GLP1) is a neuroendocrine peptide that has been the basis for developing new pharmacotherapies against obesity. The GLP1 receptor (GLP1R) is expressed in central and peripheral tissues, and activation of GLP1R reduces food intake, increases the expression of thermogenic proteins in brown adipose tissue (BAT), and enhances lipolysis in white adipose tissue (WAT). Obesity decreases the efficiency of GLP1R agonists in reducing food intake and body weight. Still, whether palatable food intake before or during the early development of obesity reduces the effects of GLP1R agonists on food intake and adipose tissue metabolism remains undetermined. Further, whether GLP1R expressed in WAT contributes to these effects is unclear. Methods Food intake, expression of thermogenic BAT proteins, and WAT lipolysis were measured after central or peripheral administration of Exendin-4 (EX4), a GLP1R agonist, to mice under intermittent-short exposure to CAF diet (3 h/d for 8 days) or a longer-continuous exposure to CAF diet (24 h/d for 15 days). Ex-vivo lipolysis was measured after EX4 exposure to WAT samples from mice fed CAF or control diet for 12 weeks. . Results During intermittent-short exposure to CAF diet (3 h/d for 8 days), third ventricle injection (ICV) and intra-peritoneal administration of EX4 reduced palatable food intake. Yet, during a longer-continuous exposure to CAF diet (24 h/d for 15 days), only ICV EX4 administration reduced food intake and body weight. However, this exposure to CAF diet blocked the increase in uncoupling protein 1 (UCP1) caused by ICV EX4 administration in mice fed control diet. Finally, GLP1R expression in WAT was minimal, and EX4 failed to increase lipolysis ex-vivo in WAT tissue samples from mice fed CAF or control diet for 12 weeks. . Discussion Exposure to a CAF diet during the early stages of obesity reduces the effects of peripheral and central GLP1R agonists, and WAT does not express a functional GLP1 receptor. These data support that exposure to the obesogenic food environment, without the development or manifestation of obesity, can alter the response to GLP1R agonists. .
Article
Full-text available
Substantial evidence suggests crosstalk between reproductive and gut-axis but mechanisms linking metabolism and reproduction are still unclear. The present study evaluated the possible role of glucose-dependent-insulinotropic-polypeptide (GIP) and glucagon-like-peptide-1 (GLP-1) in reproductive function by examining receptor distribution and the effects of global GIPR and GLP-1R deletion on estrous cycling and reproductive outcomes in mice. GIPR and GLP-1R gene expression were readily detected by PCR in female reproductive tissues including pituitary, ovaries and uterine horn. Protein expression was confirmed with histological visualisation of incretin receptors using GIPR-Cre and GLP1R-Cre mice in which the incretin receptor expressing cells were fluorescently tagged. Functional studies revealed that female GIPR−/− and GLP-1R−/− null mice exhibited significantly (p < 0.05 and p < 0.01) deranged estrous cycling compared to wild-type controls, indicative of reduced fertility. Furthermore, only 50% and 16% of female GIPR−/− and GLP-1R−/− mice, respectively produced litters with wild-type males across three breeding cycles. Consistent with a physiological role of incretin receptors in pregnancy outcome, litter size was significantly (p < 0.001–p < 0.05) decreased in GIPR−/− and GLP-1R−/− mice. Treatment with oral metformin (300 mg/kg body-weight), an agent used clinically for treatment of PCOS, for a further two breeding periods showed no amelioration of pregnancy outcome except that litter size in the GIPR−/− group was approximately 2 times greater in the second breeding cycle. These data highlight the significance of incretin receptors in modulation of female reproductive function which may provide future targets for pharmacological intervention in reproductive disorders.
Article
Full-text available
In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in patients with diabetes, and if so, can they be used for therapeutic purposes? In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5- or glucagon-expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem-cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in Lgr5EGFP-IRES-CreERT2 ;R26 Tomato mice allowed us to show that these Lgr5-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous lineage conversion of α- to β-cells specifically after parturition. The contribution of Lgr5 progeny to the β-cell compartment through an α-cell intermediate phase early after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive β-cell mass reduction during β-cell involution.
Article
Full-text available
The incretin effect – the amplification of insulin secretion after oral versus intravenous administration of glucose as a mean to improve glucose tolerance – was suspected even before insulin was discovered, and today we know that the effect is due to the secretion of two insulinotropic peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). But how important is it? Physiological experiments have shown that, because of the incretin effect, we can ingest increasing amounts of amounts of glucose (carbohydrates) without increasing postprandial glucose excursions, which otherwise might have severe consequences. The mechanism behind this is incretin-stimulated insulin secretion. The availability of antagonists for GLP-1 and most recently also for GIP has made it possible to directly estimate the individual contributions to postprandial insulin secretion of a) glucose itself: 26%; b) GIP: 45%; and c) GLP-1: 29%. Thus, in healthy individuals, GIP is the champion. When the action of both incretins is prevented, glucose tolerance is pathologically impaired. Thus, after 100 years of research, we now know that insulinotropic hormones from the gut are indispensable for normal glucose tolerance. The loss of the incretin effect in type 2 diabetes, therefore, contributes greatly to the impaired postprandial glucose control.
Article
Full-text available
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Article
Full-text available
Rates of gestational diabetes mellitus (GDM) are on the rise worldwide, and the number of pregnancies impacted by GDM and resulting complications are also increasing. Pregnancy is a period of unique metabolic plasticity, during which mild insulin resistance is a physiological adaptation to prioritize fetal growth. To compensate for this, the pancreatic β-cell utilizes a variety of adaptive mechanisms, including increasing mass, number and insulin-secretory capacity to maintain glucose homeostasis. When insufficient insulin production does not overcome insulin resistance, hyperglycemia can occur. Changes in the maternal system that occur in GDM such as lipotoxicity, inflammation and oxidative stress, as well as impairments in adipokine and placental signalling, are associated with impaired β-cell adaptation. Understanding these pathways, as well as mechanisms of β-cell dysfunction in pregnancy, can identify novel therapeutic targets beyond diet and lifestyle interventions, insulin and antihyperglycemic agents currently used for treating GDM.
Article
Full-text available
Rising rates of gestational diabetes mellitus (GDM) and related complications have prompted calls to identify potentially modifiable risk factors that are associated with gestational diabetes mellitus (GDM). We systematically reviewed the scientific literature for observational studies examining specific dietary and/or physical activity (PA) factors and risk of GDM. Our search included PubMed, Medline, CINAHL/EBSCO, Science Direct and EMBASE, and identified 1167 articles, of which 40 met our inclusion criteria (e.g., singleton pregnancy, reported diet or PA data during pre-pregnancy/early pregnancy and GDM as an outcome measure). Studies were assessed for quality using a modified Quality Criteria Checklist from American Dietetic Association. Of the final 40 studies, 72% obtained a positive quality rating and 28% were rated neutral. The final analysis incorporated data on 30,871 pregnant women. Dietary studies were categorised into either caffeine, carbohydrate, fat, protein, calcium, fast food and recognized dietary patterns. Diets such as Mediterranean Diet (MedDiet), Dietary Approaches to Stop Hypertension (DASH) diet and Alternate Healthy Eating Index diet (AHEI) were associated with 15–38% reduced relative risk of GDM. In contrast, frequent consumption of potato, meat/processed meats, and protein (% energy) derived from animal sources was associated with an increased risk of GDM. Compared to no PA, any pre-pregnancy or early pregnancy PA was associated with 30% and 21% reduced odds of GDM, respectively. Engaging in >90 min/week of leisure time PA before pregnancy was associated with 46% decreased odds of GDM. We conclude that diets resembling MedDiet/DASH diet as well as higher PA levels before or in early pregnancy were associated with lower risks or odds of GDM respectively. The systematic review was registered at PROSPERO (www.crd.york.ac.uk/PROSPERO) as CRD42016027795.
Article
Full-text available
A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins⁺Glut2LO) progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins⁺Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD) 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point) and compared to control (non-pregnant) animals. Beta cell mass, location, proliferation (Ki67⁺), and proportion of Ins⁺Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells) and small β-cell clusters (1–5 β-cells). The proportion and fraction of Ins⁺Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins⁺Glut2LO and Ins⁺Glut2HI cells within clusters. These results indicate that Ins⁺Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.
Article
Full-text available
Background: Although the insulin-producing pancreatic β-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of ‘resting’ the β-cell as a means of preserving functional β-cell mass. Scope of Review: We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic β-cell alongside some clinical evidence that supports leveraging this unique ability to preserve β-cell function. Major conclusions: Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered β-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.
Article
Full-text available
This study is aimed at evaluating the effects of a cafeteria diet (obesity) mouse model on early multi-organ functional, structural, endocrine and biochemical alterations. Multi-organ damage is assessed using clinical, biochemical, pathological, and inflammatory parameters in 30 mice fed one of the three diets for 15 weeks: standard chow diet (SC), high fat (HF), or "Cafeteria diet" (CAF) (standard SC and a choice of highly palatable human cafeteria foods: chocolate, biscuits, and peanut butter). CAF diet was associated with an increase in body weight, energy intake, and serum cholesterol levels compared to the other diets, as well as higher insulin levels and lower glucose tolerance. Additionally, consumption of the CAF diet was associated with significantly higher weight gain, abdominal fat, and serum IL-6 levels, as well as more damage in the heart (coronary perivascular fibrosis and steatosis), kidney (chronic interstitial inflammation and glomerular sclerosis), and liver (liver weight, portal fibrosis, apoptosis, and steatosis) compared to the HF diet. Functional and structural damage in CAF were higher than HF of similar macronutrient composition. This study provides a novel dietary model in mice that mimics multi-organ physiologic alterations in humans secondary to obesity.
Article
Full-text available
A previous diagnosis of gestational diabetes (GDM) carries a lifetime risk of progression to type 2 diabetes of up to 60%. Identification of those women at higher risk of progression to diabetes allows the timely introduction of measures to delay or prevent diabetes onset. However, there is a large degree of variability in the literature with regard to the proportion of women with a history of GDM who go on to develop diabetes. Heterogeneity between cohorts with regard to diagnostic criteria used, duration of follow-up, and the characteristics of the study population limit the ability to make meaningful comparisons across studies. As the new International Association for Diabetes in Pregnancy Study Group criteria are increasingly adopted worldwide, the prevalence of GDM is set to increase by two-to three-fold. Here, we review the literature to examine the evolution of diagnostic criteria for GDM, the implications of changing criteria on the proportion of women with previous GDM progressing to diabetes, and how the use of different diagnostic criteria may influence the development of appropriate follow-up strategies.
Article
Full-text available
Both short- (one week) and long-term (2-12 months) high fat diet (HFD) studies reveal enhanced beta cell mass due to increased beta cell proliferation. Beta cell proliferation following HFD has been postulated to occur in response to insulin resistance, however whether HFD can induce beta cell proliferation independent of insulin resistance has been controversial. To examine the kinetics of HFD-induced beta cell proliferation and its correlation with insulin resistance, we placed 8-week-old male C57Bl/6J mice on HFD for different lengths of time and assayed the following: glucose tolerance, insulin secretion in response to glucose, insulin tolerance, beta cell mass, and beta cell proliferation. We found that beta cell proliferation was significantly increased after only three days of HFD-feeding, weeks before an increase in beta cell mass or peripheral insulin resistance was detected. These results were confirmed by hyperinsulinemic-euglycemic clamps and measurements of alpha-hydroxybutyrate, a plasma biomarker of insulin resistance in humans. An increase in expression of key islet proliferative genes was found in isolated islets from one week HFD-fed mice when compared to chow diet (CD)-fed mice. These data indicate that short-term HFD-feeding enhances beta cell proliferation before insulin resistance becomes apparent.
Article
Full-text available
Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure.
Article
Full-text available
Aims/hypothesis: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. Methods: We describe the generation of Ins1(Cre) and Ins1(CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. Results: We show that Ins1(Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1(CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. Conclusions/interpretation: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.
Article
Full-text available
Total or near-total loss of insulin-producing β-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which β-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-β-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on β-cell reconstitution from heterologous islet cells after near-total β-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after β-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although β-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-β-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy.
Article
Full-text available
Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1.
Article
Full-text available
Pancreatic β-cell mass adapts to changing insulin demands in the body. One of the most amazing reversible β-cell adaptations occurs during pregnancy and postpartum conditions. During pregnancy, the increase in maternal insulin resistance is compensated by maternal β-cell hyperplasia and hyperfunctionality to maintain normal blood glucose. Although the cellular mechanisms involved in maternal β-cell expansion have been studied in detail in rodents, human studies are very sparse. A summary of these studies in rodents and humans is described below. Since β-cell mass expands during pregnancy, unraveling the endocrine/paracrine/autocrine molecular mechanisms responsible for these effects can be of great importance for predicting and treating gestational diabetes and for finding new cues that induce β-cell regeneration in diabetes. In addition to the well known implication of lactogens during maternal β-cell expansion, additional participants are being discovered such as serotonin and HGF. Transcription factors, such as hepatocyte nuclear factor-4α and the forkhead box protein-M1, and cell cycle regulators, such as menin, p27 and p18, are important intracellular signals responsible for these effects. In this article, we summarize and discuss novel studies uncovering molecular mechanisms involved in the maternal β-cell adaptive expansion during pregnancy.
Article
Full-text available
Gestational diabetes mellitus (GDM) predisposes women to future development of Type 2 diabetes mellitus (DM2) and the two conditions share similar metabolic alterations. Recent observations suggest that a defective glucose stimulated insulin secretion by glucagon-like peptide-1 (GLP- 1) plays a role in the pathogenesis of DM2. Whether such a defect is impaired in GDM remains to be ascertained. We have determined GLP-1 secretion in response to oral glucose tolerance test (OGTT) in GDM and normal glucose tolerance (NGT) during and after pregnancy. 100-g-3h OGTT was performed in 12 GDM and 16 NGT women at 27.3 ± 4.1 weeks of gestation, for determination of plasma GLP-1, glucose, insulin, and C-peptide. Insulin sensitivity (ISI) and insulin secretion (first and second phase); as well as ISI-secretion index (ISSI) were also derived. NGT and GDM women were comparable for age pre-pregnancy body mass index (BMI) and weight gain. GDM had higher glucose area under the curve (AUC): 27,575.5 ± 3448 vs 20,685.88 ± 2715 mg/dl min (p<0.01), but lower first-phase insulin secretion (993.12±367 vs 1376.61 ± 423, p<0.05) and ISSI compared to controls (3873.23 ± 1185 vs 6232.13 ± 1734, p<0.001). When we examined GLP-1 mean levels in relation to mean glycemic values, GLP-1 secretion was inappropriately low with respect to mean glycemic values in GDM compared to NGT. At follow-up, AUCGLP-1 was significantly lower in post-partum GDM compared to post-partum NGT women (2542 ± 273 vs 10,092 ± 7367 pmol·l-1·min-1, p<0.05, respectively). Our study suggests that GLP-1 secretion in GDM women is inadequate for the prevailing glycemic levels both in pregnancy and post partum. Moreover, we cannot exclude that other important aspects of the incretin effect may be involved in GDM development.
Article
Full-text available
Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.
Article
Full-text available
We sought to establish the extent and basis for adaptive changes in beta cell numbers in human pregnancy. Pancreas was obtained at autopsy from women who had died while pregnant (n = 18), post-partum (n = 6) or were not pregnant at or shortly before death (controls; n = 20). Pancreases were evaluated for fractional pancreatic beta cell area, islet size and islet fraction of beta cells, beta cell replication (Ki67) and apoptosis (TUNEL), and indirect markers of beta cell neogenesis (insulin-positive cells in ducts and scattered beta cells in pancreas). The pancreatic fractional beta cell area was increased by approximately 1.4-fold in human pregnancy, with no change in mean beta cell size. In pregnancy there were more small islets rather than an increase in islet size or beta cells per islet. No increase in beta cell replication or change in beta cell apoptosis was detected, but duct cells positive for insulin and scattered beta cells were increased with pregnancy. The adaptive increase in beta cell numbers in human pregnancy is not as great as in most reports in rodents. This increase in humans is achieved by increased numbers of beta cells in apparently new small islets, rather than duplication of beta cells in existing islets, which is characteristic of pregnancy in rodents.
Article
Full-text available
The inability of the ss-cell to meet the demand for insulin brought about by insulin resistance leads to type 2 diabetes. In adults, ss-cell replication is one of the mechanisms thought to cause the expansion of ss-cell mass. Efforts to treat diabetes require knowledge of the pathways that drive facultative ss-cell proliferation in vivo. A robust physiological stimulus of ss-cell expansion is pregnancy and identifying the mechanisms underlying this stimulus may provide therapeutic leads for the treatment of type 2 diabetes. The peak in ss-cell proliferation during pregnancy occurs on d 14.5 of gestation in mice. Using advanced genomic approaches, we globally characterize the gene expression signature of pancreatic islets on d 14.5 of gestation during pregnancy. We identify a total of 1907 genes as differentially expressed in the islet during pregnancy. The islet's ability to compensate for relative insulin deficiency during metabolic stress is associated with the induction of both proliferative and survival pathways. A comparison of the genes induced in three different models of islet expansion suggests that diverse mechanisms can be recruited to expand islet mass. The identification of many novel genes involved in islet expansion during pregnancy provides an important resource for diabetes researchers to further investigate how these factors contribute to the maintenance of not only islet mass, but ultimately ss-cell mass.
Article
Full-text available
To elucidate the temporal profile of adaptive changes of the islets of Langerhans to the increased insulin demands of pregnancy, we have studied islet cell proliferation and insulin secretion during gestation in the rat. 5-Bromo-2'-deoxyuridine incorporation into dividing islet cells was significantly (P less than 0.05) increased over age-matched controls by day 10, rose continuously to a peak at day 14, and then returned to control levels by day 18. By day 20, cell division was significantly inhibited (P less than 0.05). The pattern of changes in insulin secretory profiles observed with perfused pancreata of pregnant animals was similar to that obtained for islet cell proliferation. Both the threshold of glucose-stimulated insulin secretion and the amount of above threshold insulin secretion began to diverge from controls by day 10. By day 12, the glucose-stimulation threshold was significantly decreased from 5.7 mM glucose to 3.3 mM (P less than 0.05), remained at this low level through day 15, and returned toward normal by day 20. Concomitant with the increased sensitivity of B cells to glucose, the above threshold insulin secretion was significantly increased by day 12 (P less than 0.05), peaked at day 15, and returned to control levels by day 20. This insulin secretory data demonstrates that the increased sensitivity of B cells to glucose is an important component of the adaptation of islets during pregnancy to the increased demand for insulin at physiological concentrations of plasma glucose. To correlate the above changes in islet cell proliferation and insulin secretion with levels of placental lactogen (PL), serum lactogenic hormone activity was measured by Nb2 lymphoma cell replication assays. This analysis revealed the expected biphasic pattern: a midpregnancy peak at day 12, followed by a nadir at day 14, and then continuously elevated levels until term. The bioassay data agreed with the known secretory profiles of rat (r) PL-I (midpregnancy) and rPL-II (late pregnancy). Our results provide the first systematic evaluation of changes in islet function during pregnancy in the rat. In addition, they provide evidence that rPL-I may be the critical hormonal signal which triggers the primary adaptive changes in islet function characteristic of pregnancy. The return to normal values of insulin secretion and inhibition of cell division observed at day 20 in the presence of high concentrations of rPL-II suggests that other inhibitory influences become dominant in the later stages of rat pregnancy.(ABSTRACT TRUNCATED AT 400 WORDS)
Article
Full-text available
Type 2 diabetes is characterized by impaired insulin secretion. Some but not all studies suggest that a decrease in beta-cell mass contributes to this. We examined pancreatic tissue from 124 autopsies: 91 obese cases (BMI >27 kg/m(2); 41 with type 2 diabetes, 15 with impaired fasting glucose [IFG], and 35 nondiabetic subjects) and 33 lean cases (BMI <25 kg/m(2); 16 type 2 diabetic and 17 nondiabetic subjects). We measured relative beta-cell volume, frequency of beta-cell apoptosis and replication, and new islet formation from exocrine ducts (neogenesis). Relative beta-cell volume was increased in obese versus lean nondiabetic cases (P = 0.05) through the mechanism of increased neogenesis (P < 0.05). Obese humans with IFG and type 2 diabetes had a 40% (P < 0.05) and 63% (P < 0.01) deficit and lean cases of type 2 diabetes had a 41% deficit (P < 0.05) in relative beta-cell volume compared with nondiabetic obese and lean cases, respectively. The frequency of beta-cell replication was very low in all cases and no different among groups. Neogenesis, while increased with obesity, was comparable in obese type 2 diabetic, IFG, or nondiabetic subjects and in lean type 2 diabetic or nondiabetic subjects. However, the frequency of beta-cell apoptosis was increased 10-fold in lean and 3-fold in obese cases of type 2 diabetes compared with their respective nondiabetic control group (P < 0.05). We conclude that beta-cell mass is decreased in type 2 diabetes and that the mechanism underlying this is increased beta-cell apoptosis. Since the major defect leading to a decrease in beta-cell mass in type 2 diabetes is increased apoptosis, while new islet formation and beta-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 diabetes, because this approach might actually reverse the disease to a degree rather than just palliate glycemia.
Article
Full-text available
Prolactin (PRL) exerts its biological effects mainly by activating the Janus kinase/signal transducer and activator of transcription 5 (JAK/STAT5) signaling pathway. We have recently demonstrated that PRL also stimulates the insulin receptor substrates/phosphatidylinositol 3-kinase (IRSs/PI3K) and SH2-plekstrin homology domain (SHC)/ERK pathways in islets of neonatal rats. In the present study, we investigated the involvement of the PI3K and MAP kinase (MAPK) cascades in islet development and growth in pregnant rats. The protein expression of AKT1, p70S6K and SHC was higher in islets from pregnant compared with control rats. Higher basal levels of tyrosine phosphorylation were found in classic transducers of insulin cell signaling (IRS1, IRS2 and SHC). Increased levels of threonine/tyrosine phosphorylation of ERK1/2 and serine phosphorylation of AKT and p70S6K were also detected. To assess the participation of PRL in these phenomena, pregnant and control rats were treated with an antisense oligonucleotide to reduce the expression of the PRL receptor (PRLR). Phosphorylation of AKT was reduced in islets from pregnant and control rats, whereas p70S6K protein levels were reduced only in islets from treated pregnant rats. Finally, glucose-induced insulin secretion was reduced in islets from pregnant but not from control rats treated with the PRLR antisense oligonucleotide. In conclusion, downstream proteins of the PI3K (AKT and p70S6K) and MAPK (SHC and ERK1/2) cascades are regulated by PRL signaling in islets from pregnant rats. These findings indicate that these pathways participate in the increase in islet mass and the sensitivity to glucose during pregnancy.
Article
Full-text available
Gastric inhibitory polypeptide (GIP) receptor antagonism with (Pro(3))GIP improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure/function in ob/ob mice. This study examined the ability of (Pro(3))GIP to counter the development of obesity, insulin resistance and diabetes in mice fed high-fat and cafeteria diets. Young Swiss TO mice on standard chow or high-fat, cafeteria or high-carbohydrate diets received daily injections of either saline or (Pro(3))GIP (25 nmol kg(-1)day(-1)) over 16 weeks. Food intake, body weight, and circulating glucose and insulin were measured frequently. At 16 weeks, glucose tolerance, insulin sensitivity, HbA(1c), circulating hormones and plasma lipids were assessed. Adipose tissue, liver and muscle were excised and weighed, and their histology and triacylglycerol content were further examined. (Pro(3))GIP significantly reduced body weight, enhanced locomotor activity, and improved HbA(1c), glucose tolerance, beta cell responsiveness and insulin sensitivity in mice fed high-fat and cafeteria diets (p < 0.05 to p < 0.01). Similarly, (Pro(3))GIP significantly reduced plasma corticosterone and triacylglycerols (p < 0.05 to p < 0.001), while glucagon, resistin and adiponectin were unchanged. (Pro(3))GIP decreased adipose tissue mass (p < 0.01) and the triacylglycerol content of liver, muscle and adipose tissue (p < 0.01 to p < 0.001). Adipocyte size and liver morphology were partially normalised. (Pro(3))GIP did not significantly affect any of these parameters in mice fed a high-carbohydrate diet. (Pro(3))GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets. This highlights chemical GIP receptor antagonism as a new possibility for the treatment of obesity and associated metabolic disturbances.
Article
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin‐secreting β‐cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β‐cell identity through de‐ or transdifferentiation. Importantly, the glucose‐lowering effects of approved and experimental antidiabetic agents, including glucagon‐like peptide‐1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β‐cell dedifferentiation or promoting the transdifferentiation of non‐β‐cells towards an insulin‐positive β‐cell‐like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β‐cell loss or generating new β‐cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β‐cell decline in diabetes.
Article
Maternal pancreatic beta-cell mass (BCM) increases during pregnancy to compensate for relative insulin resistance. If BCM expansion is suboptimal, gestational diabetes mellitus can develop. Alpha-cell mass (ACM) also changes during pregnancy, but there is a lack of information about α-cell plasticity in pregnancy and whether α- to β-cell transdifferentiation can occur. To investigate this, we used a mouse model of gestational glucose intolerance induced by feeding low-protein (LP) diet from conception until weaning and compared pregnant female offspring to control diet-fed animals. Control and LP pancreata were collected for immunohistochemical analysis and serum glucagon levels were measured. In order to lineage trace α- to β-cell conversion, we utilized transgenic mice expressing yellow fluorescent protein behind the proglucagon gene promoter (Gcg-Cre/YFP) and collected pancreata for histology at various gestational timepoints. Alpha-cell proliferation increased significantly at gestational day (GD) 9.5 in control pregnancies resulting in an increased ACM at GD18.5, and this was significantly reduced in LP animals. Despite these changes, serum glucagon was higher in LP mice at GD18.5. Pregnant Gcg-Cre/YFP mice showed no increase in the abundance of insulin+YFP+glucagon– cells (phenotypic β-cells). A second population of insulin+YFP+glucagon+ cells was identified which also did not alter during pregnancy. However, there was an altered anatomical distribution within islets with fewer insulin+YFP+glucagon– cells but more insulin+YFP+glucagon+ cells being present in the islet mantle at GD18.5. These findings demonstrate that dynamic changes in ACM occur during normal pregnancy and were altered in glucose-intolerant pregnancies.
Article
Loss of beta cell identity and subsequent transdifferentiation of beta-to-alpha cells is implicated in the pathogenesis of diabetes. In addition, sodium-glucose transport protein 2 (SGLT2) inhibition has been linked to altered alpha-cell function. To investigate these phenomenon, lineage tracing of beta-cells was examined following 10-12 days dapagliflozin (1 or 5 mg/kg, once daily, as appropriate) treatment in multiple low-dose streptozotocin (STZ), high fat fed (HFF) or hydrocortisone (HC) transgenic Ins1Cre/+/Rosa26-eYFP mouse models of diabetes and insulin resistance. As anticipated, STZ, HFF and HC treated mice developed characteristic features of insulin deficiency or resistance. Dapagliflozin elicited differing beneficial effects depending on the aetiology of syndrome studied. The SGLT2 inhibitor efficiently promoted (P<0.001) weight loss in HFF and STZ mice, whilst in HC mice it reduced (P<0.001) energy intake, without an impact on body weight. Despite lacking significant effects on glycaemia, 1 mg/kg dapagliflozin consistently decreased both plasma and pancreatic glucagon. This was associated with increased pancreatic insulin in STZ and HFF mice. In STZ and HFF mice, beta cell proliferation and Pdx1 expression were enhanced by dapagliflozin, with a further increase in overall glucagon staining in HFF islets. Islet, beta- and alpha-cell areas were increased in dapagliflozin treated HC mice, which appeared to be linked to decreased alpha- and beta-cell apoptosis. Although the diabetes-like syndromes induced clear alterations in islet cell transdifferentiation, treatment with dapagliflozin (1 mg/kg) had no significant impact on this process, with 5 mg/kg marginally decreasing loss of beta-cells identity in STZ mice. These data suggest that SGLT2 inhibitors have positive effects on beta cells and decrease plasma and pancreatic glucagon, independent of changes in ambient glucose levels. Our combined data indicate that SGLT2 inhibitors do not directly induce hyperglucagonaemia.
Article
Transdifferentiation of beta- to alpha-cells has been implicated in the pathogenesis of diabetes. To investigate the impact of contrasting aetiologies of beta-cell stress, as well as clinically approved incretin therapies on this process, lineage tracing of beta-cells in transgenic Ins1Cre/+/Rosa26-eYFP mice was investigated. Diabetes-like syndromes were induced by streptozotocin (STZ), high fat feeding (HFF) or hydrocortisone (HC), and effects of treatment with liraglutide or sitagliptin investigated. Mice developed the characteristic metabolic features associated with beta-cell destruction or development of insulin resistance. Liraglutide was effective in preventing weight gain in HFF mice, with both treatments decreasing energy intake in STZ and HC mice. Treatment intervention also significantly reduced blood glucose levels in STZ and HC mice, as well as increasing either plasma or pancreatic insulin while decreasing circulating or pancreatic glucagon in all models. The recognised changes in pancreatic morphology induced by STZ, HFF or HC were partially, or fully, reversed by liraglutide and sitagliptin, and related to advantageous effects on alpha- and beta-cell growth and survival. More interestingly, induction of diabetes-like phenotype, regardless of pathogenesis, led to increased numbers of beta-cells losing their identity, as well as decreased expression of Pdx1 within beta-cells. Both treatment interventions, and especially liraglutide, countered detrimental islet cell transitioning effects in STZ and HFF mice. Only liraglutide imparted benefits on beta- to alpha-cell transdifferentiation in HC mice. These data demonstrate that beta- to alpha-cell transdifferentiation is a common consequence of beta-cell destruction or insulin resistance, and that clinically approved incretin-based drugs effectively limit this.
Article
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Article
Gestational diabetes mellitus (GDM) is a common obstetric complication. Half of women who have GDM will go on to develop type 2 diabetes. Understanding the mechanisms by which this occurs requires an animal model of GDM without ongoing diabetes at conception. C57Bl/6J mice react acutely to a high-fat, high-sucrose (HFHS) challenge. Here, we hypothesized that a periconceptional HFHS challenge will induce glucose intolerance during gestation. C57Bl/6J female mice were placed on an HFHS either 1 or 3 weeks prior to mating and throughout pregnancy. Intraperitoneal glucose tolerance tests, insulin measurements, and histological analysis of pancreatic islets were used to assess the impact of acute HFHS. C57Bl/6J females fed HFHS beginning 1 week prior to pregnancy became severely glucose intolerant, with reduced insulin response to glucose, and decreased pancreatic islet expansion during pregnancy compared to control mice. These GDM characteristics did not occur when the HFHS diet was started 3 weeks prior to mating, suggesting the importance of acute metabolic stress. Additionally, HFHS feeding resulted in only mild insulin resistance in nonpregnant females. When the diet was discontinued at parturition, symptoms resolved within 3 weeks. However, mice that experienced glucose intolerance in pregnancy became glucose intolerant more readily in response to a HFHS challenge later in life than congenic females that experienced a normal pregnancy, or that were fed the same diet outside of pregnancy. Thus, acute HFHS challenge in C57Bl/6 mice results in a novel, nonobese, animal model that recapitulates the long-term risk of developing type 2 diabetes following GDM.
Article
The relative or absolute deficiency of pancreatic β-cell mass function underlies the pathogenesis of diabetes. It is necessary to alleviate the metabolic stress and reduce the demand for insulin to decrease the effects of mutations affecting β-cell expansion. Butyrate is a natural nutrient existed in food and can also be produced physiologically through the intestinal fermentation of fiber. Pregnancy and obesity model would be helpful for understanding how β-cell adapt to insulin resistance and how butyrate alleviate the metabolic impairment and protect pancreatic β cell function in pregnant mice with obesity. C57BL/6J female mice were divided into three groups and fed with high fat food (HF group, 40% energy from fat), high fat with sodium butyrate food (HSF group, 95% HF with 5% butyrate), or control food (CF group, 14% energy from fat), respectively. The feeding would last for 14 weeks before mating and throughout the gestation period. A subset of dams were sacrificed at gestational day (GD) 14.5 to evaluate the changes of metabolism and β-cell function, mass, proliferation and apoptosis, inflammatory reaction of islet from different diet. Pancreases were double immuno-labeled to assess the islet morphology, insulin expression, expression of proliferation gene PCNA and anti-apoptosis gene bcl-2. Moreover, we detected the expression of NF-κB, phosphorylated NF-κB (pNF-κB) to evaluate the islet inflammatory response with immunohistochemistry. Mice fed with HSF showed obviously changes including the decreased values of weight gain, glucose, insulin, triglyceride and total cholesterol level of blood compared with high fat diet group, and the reduced circulating maternal pro-inflammation factors at GD14.5. Mice fed with HF displayed β-cell hyperplasia with a greater β-cell size and β-cell area in pancreas. Furthermore, the higher ratio of apoptosis and inflammatory response were found in HF group compared with HSF and CF group, while the proliferation rates of β-cell increased in HF group, but not in HSF or CF. Butyrate shows an obvious function of anti-obesity, and can alleviate the metabolic stress, maintain the β-cell function and protect them from inflammatory response in pregnant obese mouse without obvious fetus toxicity.
Article
Inadequate beta-cell mass can lead to insulin insufficiency and diabetes. During times of prolonged metabolic demand for insulin, the endocrine pancreas can respond by increasing beta-cell mass, both by increasing cell size and by changing the balance between beta-cell proliferation and apoptosis. In this paper, we review recent advances in our understanding of the mechanisms that control the adaptive expansion of beta-cell mass, focusing on the islet's response to pregnancy, a physiological state of insulin resistance. Functional characterization of factors controlling both beta-cell proliferation and survival might not only lead to the development of successful therapeutic strategies to enhance the response of the beta-cell to increased metabolic loads, but also improve islet transplantation regimens.
Article
MANY reports have indicated that insulin secretion is increased in pregnant women1,2 although blood sugar levels may be unchanged, indicating an increased demand for insulin in human pregnancy. Similar findings have been reported for the effects of pregnancy on insulin secretion in pregnant rats3,4 which begin to respond with a significantly increased insulin secretion at a lower glucose level than those found in the normal female5. In addition, the secretory response is considerably greater in islets of Langerhans from pregnant than in normal rats, indicating an overall increased sensitisation of the islets from pregnant rats to the effects of glucose5. Glucose has a major role in the metabolism of the mammalian β cell, in that at physiological concentrations it is capable of stimulating both insulin secretion and biosynthesis6,7. It is possible that increased insulin biosynthesis is necessary to support the increased secretory response to glucose in pregnancy, if the content of β cell insulin is to be maintained. We have therefore investigated whether the alterations in insulin secretion observed in vivo during pregnancy are paralleled by an enhanced insulin biosynthesis in isolated islets from pregnant rats, after exposure to increasing concentrations of glucose.
Article
The growth of both tumors and nonneoplastic tissues may be influenced by signals from the vascular endothelium. In the present investigation we show that purified proliferating endothelial cells from pancreatic islets can stimulate beta-cell proliferation through secretion of hepatocyte growth factor (HGF). This secretion could be induced by soluble signals from the islets, such as vascular endothelial growth factor-A (VEGF-A) and insulin. During pregnancy, the pancreatic beta-cells display a highly reproducible physiological proliferation. We show that islet endothelial cell proliferation precedes beta-cell proliferation in pregnant animals. Vascular growth was closely associated with endocrine cell proliferation, and prominent expression of HGF was observed in islet endothelium on d 15 of pregnancy, i.e. coinciding with the peak of beta-cell proliferation. In summary, our results suggest the existence of an endothelial-endocrine axis within adult pancreatic islets, which is of importance for adult beta-cell proliferation.