Access to this full-text is provided by Wiley.
Content available from Ecology and Evolution
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e70218.
|
1 of 16
https://doi.org/10.1002/ece3.70218
www.ecolevol.org
Received:8May2024
|
Revised:3August2024
|
Accepted:12August2024
DOI: 10.1002/ece 3.70 218
VIEWPOINT
Cautionary tales on the use of proxies to estimate body size
and form of extinct animals
Joel H. Gayford1,2,3 | Russell K. Engelman4 | Phillip C. Sternes3,5 |
Wayne M. Itano6 | Mohamad Bazzi7 | Alberto Collareta8,9 |
Rodolfo Salas- Gismondi10,11 | Kenshu Shimada12,13,14
1DepartmentofLifeSciences,SilwoodParkCampus,ImperialCollegeLondon,London,UK
2Depar tmentofMarineBiologyandAquaculture,JamesCookUniversity,Douglas,Queensland,Australia
3SharkMeasurements,London,UK
4Depar tmentofBiolog y,CaseWesternReserveUniversity,Cleveland,Ohio,USA
5Depar tmentofEvolution,Ecolog yandOrganismalBiology,UniversityofCalifornia,Riverside,California,USA
6MuseumofNaturalHistor y,UniversityofColorado,Boulder,Colorado,USA
7Depar tmentofEarthandPlanetar ySciences,StanfordUniversity,Stanford,California,USA
8DipartimentodiScienzeDellaTerra,UniversitàdiPisa,Pisa,Italy
9MuseodiStoriaNaturale,UniversitàdiPisa,Pisa,Italy
10LaboratoriosdeInvestigaciónyDesarrollo,FacultaddeCienciasyFilosofía/CentrodeInvestigaciónParaelDesarrolloIntegralySostenible,Universit ad
PeruanaCayetanoHerediaLima,Lima,Peru
11Depar tamentodePaleontologíadeVertebrados,MuseodeHistoriaNatural-UniversidadNacionalMayordesanMarcos,Lima,Peru
12DepartmentofEnvironmentalScienceandStudies,DePaulUniversit y,Chicago,Illinois,USA
13Depar tmentofBiologicalSciences,DePaulUniver sity,Chicago,Illinois,USA
14SternbergMuseumofNaturalHistory,For tHaysStateUniversity,Hays,Kansas,USA
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
provide d the original wor k is properly cited.
©2024TheAuthor(s).Eco logy an d EvolutionpublishedbyJohnWiley&SonsLtd.
Correspondence
JoelH.Gayford,DepartmentofLife
Sciences,SilwoodParkCampus,Imperial
CollegeLondon,6NewRoadLewes,BN7
1YW,UK.
Email: jhg19@ic.ac.uk
Funding information
ItalianMinisterodell'Universitàe
dellaRicerca,Grant/AwardNumber:
2022MAM9ZB
Abstract
Bodysizeisoffundamental importancetoourunderstandingofextinct organisms.
Physiology, ecology and life history are all strongly influenced by body size and
shape, which ultimately determine how a species interacts with its environment.
Reconstructionofbodysizeandforminextinctanimalsprovidesinsightintothedy-
namics underlyingcommunity composition and faunal turnover in past ecosystems
andbroadmacroevolutionarytrends.Manyextinctanimalsareknownonlyfromin-
complete remains, necessitating theuse of anatomicalproxiesto reconstruct body
sizeandform.Numerous limitationsaffecting theappropriateness of theseproxies
areoftenoverlooked,leadingtocontroversyanddownstreaminaccuraciesinstudies
forwhich reconstructionsrepresentkey inputdata.In thisperspective,we discuss
fourprominent casestudies(Dunkleosteus, Helicoprion, Megalodon and Perucetus)in
which proxy taxa have been used toestimate body sizeand shape from fragmen-
taryremains.Wesynthesisetheresultsoftheseandotherstudiestodiscussnuances
affecting thevalidity of taxon selection when reconstructing extinct organisms, as
2 of 16
|
GAYFO RD et al .
1 | INTRODUC TION
AswrittenbyBartholomew(1981),‘itisonlyaslightoverstatement
tosay thatthe most importantattribute of an animal, bothphysi-
callyandecologically,isitssize’.Thisisbecausebodysize(measured
either as lengthorasmass) and form (i.e.,body shape)fundamen-
tally define the r ange of ecological niches an animal can occupy
(Blanckenhorn,2000; Dalponti et al., 2018;Schmidt-Nielsen,1984).
Reconstructingthebody size andformofextinctanimalscanthus
helpusunderstandtheirpalaeobiologyandpalaeoecology(O'Keefe
et al., 2011; Sander et al., 2021; Sternes et al., 2024).This can in-
cludebasic biologicalinformationlikephysiology,dietary,locomo-
tor,spatialand reproductivebiology(Ferrónetal.,2018; Finnegan
&Droser,20 08; Grogan & Lund, 2011; Pyenson & Vermeij, 2016)
orbroaderevolutionaryand ecologicalpatternslikepredator–prey
relationships,pastecosystemdynamicsandmass extinctionselec-
tivit y (Farlow & Planka, 2002; F innegan & Droser, 2008; G rogan
&Lund,2011; Monarrez et al., 2021; Morgan et al., 19 95; Payne&
Heim,2020; Pyenson & Vermeij,2016; Sallan&Galimberti,2015).
However, estimating the body size and form in extinct species
isoften challenging. Many taxa of interest areknownonly from a
handful of anatomically incomplete specimens, which may exhibit
highlyidiosyncraticbodyplans (Bianuccietal.,2023)or leave little
directevidence(pertainingfromthefossilrecord)ofhowmorphol-
ogyshouldscalewithbodysize.
Thebody sizeand shapeof variousiconic,large-bodied extinct
taxa have b een estimated by combining fossil data with physic al
measurements taken from extant or extinctproxies (Table 1)pre-
sumedtobecloselyrelatedtothetaxoninquestion(Millien,2008;
Millien & Bov y, 2010) and/or to displ ay significant e cological and
morphological similarities (Ferrón et al., 2017). This ‘extant scal-
ing’ approach typically relies on regression equations generated
from modern species or well-preserved fossil taxa, creating allo-
metric scaling relationships that are then applied to homologous
(or superficially similar) features on the extinct study species.
Many studies do not even use regression equations at all, instead
selec ting a single prox y taxon (either a si ngle specimen o r a rep-
resent ative reconst ruction of a sin gle taxon) and th en scaling th e
proxyupordowntothesizeoftheincompletefossilmaterialusing
the proportional size of an anatomical measurement assumed
to scale isometrically (Lingham-Soliar, 1995; Lomax et al., 2024;
Molnar, 2004; Savage, 1973).Importantly,thetermproxy refersto
both taxo n or taxa, and th e specific anato mical or morph ometric
characterthatistypically assumedtobehomologousbetween the
proxytaxonandthetaxonofinterest.Nomethodofreconstructing
bodyformorsizeinextincttaxaisflawless(Nelsonetal.,2023),and
many recent s tudies have proven highly controversial, prompting
thepublicationofrebuttalsandrevisions(Engelman,2022b, 2023a;
Grillo&Delcourt,2017; Millien, 2008;Millien&Bovy,2010; Motani
&Pyenson, 2024; Romano & Manucci, 2021; Sternes et al., 2023,
2024).Differencesinestimated bodysizeacross these studies are
notminor(Figure 1),with revisedsizeestimatesoftenbeinghalfor
lessthantheiroriginallyproposedvalue(e.g.,Cidadeetal.,2019; see
Table S2).These situations feed into a broader problem regarding
scepticismandmistrusttowardsscientists–the‘deathofexpertise’
(Nichols,2017 ).Thefrequencyandmagnitudewithwhichsizeesti-
matesformegafaunaneedtoberevisitedposesdifficultyforscien-
tistsinmaintainingpublictrustandconfidence,potentiallybleeding
intopublicopiniononothermattersofimportanceincludingclimate
changeandconservationissues.
Despite this, palaeobiologists generally agree that some infor-
mationfromextantorextinctproxiesisnecessarytoestimatebody
form and/orsize in extinct animals. Even multivariate or volumet-
ricmodels,whichsome authors regardasmoreaccuratethan sim-
plelinear regressions (Bateset al.,2015; Brassey, 2016;Romano&
Manucci,2021),stillrely ondata andunderlyingassumptionsfrom
modern taxa such as soft-tissue distribution and density (Bates
et al., 2009;Bianuccietal.,2023;Campione&Evans,2020;Motani&
Pyenson, 2024).Volumetricmodelsalsorequiresilhouettesorskele-
talreconstructionsasinputdata(Brassey,2016;Henderson,2010;
Motani, 20 01)–outsideofrarecasesinwhich theentire skeleton
isknown–relyingonpre-existingestimatesofbodysize(e.g.,total
length)andform.Optimisationofbodysizeandformestimatesthus
dependsontheselection of appropriate proxies and mathematical
models while acknowledging the intrinsic limitations of estimations
basedondatafromextantspecies.
Inthisreview, weconsiderfourprominentcase studies ofbody
sizeestimationinextinctorganisms,focusingonmarinemegafauna
(Figure 2).Thesecasestudieswerechosenastheyrepresentarange
of body sizes, ecomorphological niches and geological time inter vals.
well as mitigation measures that can ensure the selection of the most appropriate
proxy.Wearguethat theseprecautionary measuresare necessarytomaximisethe
robustnessofreconstructionsin extincttaxafor betterevolutionary and ecological
inferences.
KEY WORDS
allometricscaling,bodyshape,evolution,fossil,morphology,palaeobiology
TAXONOMY CLASSIFICATION
Paleoecology,Phylogenetics,Taxonomy
|
3 of 16
GAY FO RD et al .
TAB LE 1 Taxaofunusuallylargesize(1)whichhavebeenthesubjectofattemptstoestimatetheirbodysizeand/orformfrom
fragmentarymaterial,(2)whichhavereceivedasignificantamountofresearchorpopularattentionduetotheirunusualsize,or(3)forwhich
previousestimatesofsize/shapehavebeencontroversial(denotedwithanasterisk).
Higher taxa Example taxa
Cephalopoda:Nautiloidea Endoceras/Cameroceras*, Rayonnoceras
Cephalopoda: Belemnitida Megateuthis
Cephalopoda: Coleoidea Enchoteuthis(‘Tusoteuthis’)*
Arthropoda:Radiodonta Anomalocaris*
Arthropoda:Eurypterida Jaekelopterus*, Pterygotus
Arthropoda:Myriapoda Arthropleura
Arthropoda:Insecta Meganeura*, Meganeuropsis*
Placodermi:Arthrodira Dunkleosteus*, Titanichthys*, Glyptaspis*
Chondrichthyes:Eugeneodontiformes Helicoprion, Edestus, Parahelicoprion*
Chondrichthyes: Orodontiformes Orodus*
Chondrichthyes: Ctenacanthiformes Ctenacanthus*, Saivodus,the‘TexasSupershark’
Chondrichthyes: Lamniformes Megalodon(Otodus megalodon)*
Osteichthyes: Pachycormiformes Leedsichthys*
Osteichthyes: Salmoniformes Oncorhynchus rastrosus
Sarcopterygii Rhizodus*, Hyneria, Mawsonia*
Temnospondyli Prionosuchus*, Eryops,Mastodonsauridae,the‘PreciousofLesotho’
Anura Beelze bufo*
Squamata:terrestrialtaxa megalania(Varanus priscus)*,Barbaturex
Squamata:Serpentes Titanoboa, Vasuki
Squamata:Mosasauridae Mosasaurus*, Tylosaurus
Testudines Stupendemys, Caninemys, Peltocephalus maturin,Meolaniidae,gianttortoises(Megalochelys atlas*)
Crocodyliformes:Thallatosuchia Machimosaurus*, Metriorhynchidae*
Crocodyliformes:Notosuchia Barinasuchus, Kaprosuchus*
Crocodyliformes:stemNeosuchia Aegisuchus*, Sarcosuchus*
Crocodyliformes: Crocodylia Deinosuchus*, Purussaurus*, Mourasuchus*
Ichthyopterygia Cymbospondylus, Shonisaurus*,‘Shastasaurus’ sikanniensis*,Ichthyotitan*,the‘AustColossus’
Sauropterygia Liopleurodon*, Kronosaurus* Pliosaurus*
Pterosauria Pteranodon, Quetzalcoatlus*, Arambourgiana*Hatzegopteryx*
Dinosauria:flightlessAvialae Dinornithidae*,Aepyornithidae,Dromornithidae*,Gastornithidae*,Phorusrhacidae
Dinosauria:volantAvialae Pelagornithidae*,Argentavis*
Dinosauria:Sphenisciformes Anthropornis*,Pachydyptes*,Kairuku
Dinosauria:non-avianTheropoda Many, e.g., Tyrannosaurus, Spinosaurus*,severalAbelisauridae( Abelisaurus*,Ekrixinatosaurus*)
Dinosauria:Sauropoda Many, e.g., Dreadnoughtus*,‘Seismosaurus’*,Futalognkosaurus*,Bruhathkayosaurus*,Maraapunisaurus*
Dinosauria:Ornithischia Many, e.g., Triceratops, Stegosaurus
Synapsida: Dicynodontia Lisowicia*
Mammalia:Dasyuromorphia Thylacinus cynocephalus*,T. p otens*
Mammalia: Diprotodontia Diprotodon, Thylacoleo*, Procoptodon*
Mammalia: Proboscidea Palaeoloxodon*, Mammuthus
Mammalia: Rhinoceratoidea Paraceratherium*, Elasmotherium*
Mammalia: Cetacea Perucetus*, Livyatan*
Mammalia:Hyaenodonta Megistotherium*, Hyainailouros*, Simbakubwa
Mammalia: Carnivora Arctotherium, Arctodus, Smilodon, Megalictis*
Mammalia: Rodentia Josephoartigasia*, Phoberomys*, Telic o my s*,Casteroides
Mammalia: Primates Gigantopithecus*
Note:KeyreferencesforeachtaxonarelistedinTa b le S1 ,wherefurtherdetailsregardingbodysizeestimatesinthesetaxaarealsoprovided.
Asterisks(*)denotetaxainwhichestimatesofbodysize/formhaveprovencontroversial.
4 of 16
|
GAYFO RD et al .
Moreover,thequalityandextentofthefossilrecordofeachofthese
taxa d i f f ermar k e dly,asdo t h eappro a c h e susedt oestima t etheir b o d y
size and form. Otodus megalodon is largely known only from isolated
teethandanincompletevertebralcolumn,anddespitetheexistence
ofmodernrelatives(lamniformsharks),there isdebatesurrounding
thevalidityoftheserelativesasproxies(Sterneset al., 2023, 2024).
Perucetus colossusalsohasmodernrelatives(whales)butisknown
only from vertebrae, ribs and the incomplete pelvis of a single in-
dividual(Bianucci et al.,2023).Bycontrast, Dunkleosteus terrelli is a
Palaeozoicfishthatisalmostexclusivelyknownfromdermalarmour
thatcoveredtheheada ndanteriort runkandhasn omoder nrelative s
(Engelman, 2023b, 2024), and Helicoprion spp., another Palaeozoic
fish,isevenmorechallengingtoreconstruct;notonlydoesithaveno
modern relatives whatsoever but is knownonlyfromisolatedtooth
whorlsofcontentiouspositionandfunction(Karpinsky,1899).Thus,
eachofthesetaxarepresentsaunique‘enigma’inthepalaeontolog-
icalliterature,wherebodysizehasbeenestimatedusingnecessarily
different approaches based on the available data. It is important to
notewhileallofthesecase studies are marinemegafauna,thecon-
cepts and principleswediscuss throughoutthe perspectiveare ap-
plicabletoallextinctanimals(Figure 1; Table 1; Data S1).Weexplore
howandonwhat datathese size estimates were produced andthe
resultingcontroversy in the literature. Subsequently,weusethese
case studies to synthesise broadthematiclimitations in palaeobiol-
ogy and theuse of extant andextinct proxy taxatoestimatebody
size and form i n extinct ani mals, including m athematical , phyloge-
neticandsocialissues.
2 | CASE STUDIES
2.1 | Dunkleosteus terrelli (Placodermi: Arthrodira)
Dunkleosteus terrelli is a large late Devonian arthrodire placoderm,
knownforitsbonyarmourandguillotine-likejaws.However,out-
side of its b ony head and trunk a rmour (Figure 2a), the rest of
its body was composed of perichondrally ossified cartilage. This
material rarely preserves, complicating estimates of body size
and morphology (Carr, 2010; Ferrón et al., 2017). Additionally,
Dunkleosteushasnocloselivingrelativesthatcanbeusedtoin-
terpret its anatomy. Complete remains are known for some smaller
arthrodires(Jobbinsetal.,2022;Miles&Westoll,1968),butthese
FIGURE 1 Examplesofreconstructionsofextinctmegafauna,showingearlyestimatesofbodysize/formnowthoughttobeinaccurate
(greysilhouettes),andmorerecentestimates,thevalidityofwhichremainuncertain(blacksilhouettes).Originalworkandsourcesof
thesereconstructionsarelistedintheDataS1,andwedonotnecessarilyendorseanyparticularreconstructionoverothers.Creditforthe
originalsilhouettesusedtoproducethisfigureareasfollows:GuillameDera,CC01.0(Enchoteuthisbefore),TylerGreenfieldwithinputfrom
DirkFuchs,CC-BY3.0(Enchoteuthisafter),ScottHartman,CC-BY3.0(Seismosaurus),JFStudios,CC0(Pliosauridae),T.K.RobinsonCC-BY
3.0(Mosasaurus),NobuTamura(Josephoartigasiabody),GustavoLecuona(Josephoartigasiahead),bothCC-BY3.0,Andrews(198 5)(Rhizodus),
Pimientoetal.(2024)(Glyptapsis),NobuTamura(modifiedbyT.MichaelKeesey;Beelzebufo),Grangeretal.(1936)(Paraceratheriumbefore),
Larramendi(2015)(Paraceratheriumafter),RussellEngelman,modifiedfromHodnettetal.,2021,CC-BY4.0(Ctenacanthus),ScottHartman,
CC-BY3.0(Machimosaurus),MarkP.WittonandDarrenNaish,CC-BY3.0(Quetzalcoatlus),DalSassoetal.(2005)(Spinosaurusbefore),
TasmanDixson,CC0(Spinosaurusafter),DanNiel,CC0(Argentavis),T.MichaelKeesey,CC0(Gigantopithecus),Antonetal.(20 04)(Megalictis).
JaggedFangDesigns,CC0(Ekrixinatosaurus),FerranSayol,CC0(Mourasuchus,body)andLangston(1965, Mourasuchus,head).
|
5 of 16
GAY FO RD et al .
taxa like ly differed fro m D. terrelli in ecological niche and body
shape(Ferrónetal.,2 017).
Dunkleosteus has been tr aditional ly cited as reach ing 5–10 m
in total length (TL). However, these are generally speculative
estimates that omit key methodological details as to how they
were produced, including what taxa or anatomical elements
were used as proxies, what specimensof Dunkleosteuswereex-
aminedand the measurementsusedtoproduce theseestimates
(see Engelman, 2023b; Ferrón et al., 2017 for details), making
these estimates non-reproducible and highlyquestionable. One
exception was Ferrónetal.(2 017),whichcalculatedtheTLofD.
terrelliusingtheupperjawperimeterofselectlarge,nektonicex-
tant sharks to estimateits caudal fin shape, as their method re-
quiredbodysizeasanindependentpredictorvariable.Thisstudy
assumed m outh and bod y size likely correl ate in fishes be cause
predatorsizeiscorrelatedwithpreysize,whichinturncorrelated
with gap e, meaning mo uth size and bod y size may be indire ctly
linked (Ferr ón et al., 2017). However, this st udy did not test if
sharksandarthrodiresshowedcomparablemouthproportionsor
cross-examinetheaccuracyoftheresultingbodylengthestimates
(Engelman, 2023b; Ferrón et al., 2017). Testing this me thod on
complete arthrodires finds arthrodires have proportionally larger
mouths t han sharks , producing over estimates of T L 2–2. 5 times
the actual value (Engelman, 2023a, 2023b). Traditionally cited
lengths for Dunkleosteusalsorequireahyper-elongatetrunk,with
a head of only ~8%TL(seeFigure 1),andhead–bodyproportions
thataremoreextremethaneveneels.Notonlyarethesepropor-
tionsimplausible,buttheyarealsounlikecompletearthrodiresor
non-anguilliformfishes(inwhichheadlengthisgenerally~17–3 0 %
TL; Engelman, 2023b).
Becauseoftheinabilityofmouthdimensionstoreliablyestimate
thesizeofarthrodires,Engelman(2023a)attemptedtoestimatethe
size of Dunkleosteusbasedonthecombinedlengthoftheneuro-
cranial a nd branchial reg ions of the head (i.e ., head length m inus
preorbital length; Engelman, 2023a), reas oning that the s caling of
these ar eas with body si ze was likely stro ngly constr ained due to
their function. This study (Engelman, 2023a) selected a variable
basedonhomologouslandmarksbetweenDunkleosteus and a wide
range of extant proxies. It also tested the initial assumption of
correlat ion to ensure that sca ling patter ns were consiste nt across
taxa. Fur thermore, it used complete arthrodires as case studies
to ensure th at the method accu rately predict ed body size in this
FIGURE 2 Fossil(orcast)materialforeachofthefourcasestudies(skullandtrunkarmourfromacastofDunkleosteus terrelli,(a);
tooth whorl from Helicoprionspp,(b);toothfromOtodus megalodon,(c);andvertebrafromPerucetus colossus,(d);respectively),along
withsilhouettesrepresentingreconstructionsofbodysizeandform,wheregreysilhouettesarepastreconstructionsnowthoughtto
beinaccurateandblacksilhouettesarerecentreconstructions,thevalidityofwhichremainsuncertain.Scalebars = 5 cmforfossil/cast
materialand2 mforsilhouettes.Imagecreditsforfossil/castmaterialareasfollows:ArchivalPhotographGEO82014ofcastCMNH5768,
FieldMuseumofNaturalHistory,Chicago,Illinois,USA(a),Helicoprion bessonowiKarpinsky,1899,holotypespecimen,F.N.Chernyshev
CentralScientificResearchGeologicalProspectingMuseum,St.Petersburg,Russia,1/1865(b),Otodus megalodontoothMUSM2093,
Sacaco,MuseodeHistoriaNatural(UNMSM)Peru(c),Perucetus colossusholotypeMUSM3248,MuseodeHistoriaNatural(UNMSM)Peru.
SilhouetteimagesweremodifiedfromimageusedwithpermissionbyYangSong(grey,a)createdbyRussellEngelman(black,a),usedwith
permissionfromWilliamSnyderunderaCCBY-SA4.0licence(b),ormodifiedfromSternesetal.(2024)(c)andBianuccietal.(2023)(d).
6 of 16
|
GAYFO RD et al .
group,suggestingthatthismethodshouldproducereliablesizesfor
Dunkleosteusintheabsenceofcompletespecimens.Thisresultedin
lengthsofonly 3.4–4.1 mfor largeD. terrelli individuals, with even
the upperends of the marginof errorbarely overlapping with the
smallestlengthsinpreviousstudies(Engelman,2023a).Independent
testsbyscalingfromotherarthrodiresproducedsimilarresults,and
thereconstructedbodyshapeforDunkleosteus better agrees with
thecomparativeanatomy of otherarthrodires(e.g., in fin location/
sizerelative toTLandtrunk armourdimensions;Engelman,2023a,
2024).Arthrodires, actinopterygians and chondrichthyansshowed
significant, clade-specific differences in overall body form, with
complete arthrodires exhibiting a much stockier body plan com-
paredtochondrichthyans(Engelman,2023a).
2.2 | Helicoprion spp.: (Chondrichthyes:
Eugeneodontidiformes)
Helicoprion,foundgloballyinPermiandeposits,isarguablythemost
widely recognised Palaeozoic chondrichthyan. Its notoriety stems
from theunique nature ofits spiraliform toothwhorls(Figure 2b),
which constitutepractically the only known remains of thetaxon.
The lack of any r easonable ex tant or ex tinct proxi es to the tooth
whorls of Helicoprion has presented significant difficultiesininfer-
ring its body size and form. For some time af ter the description of
HelicoprionbyKarpinsky(1899),therewas no agreement as to the
position of the tooth whorl on the body of the animal or even its
nature (e.g., dermal spine or oral teeth), making inference of body
sizeorformimpossibl e.AlthoughKarpinsk y(1899)consideredother
interpre tations, he f avoured a locati on of the tooth whor l mostly
externalto the mouthandextendedfromtheupperjaw.However,
basedonexaminationof IMNH (IdahoMuseumofNaturalHistory)
37899,auniquespecimenofH. davisii from the Permian Phosphoria
FormationofIdaho,USA,withremainsofcranialcartilagepreserved,
Bendix-Almgreen(1966)concludedthe toothwhorl was located at
thesymphysisofthelowerjaw,internaltothebuccalcavity,andthat
nosimilartoothwhorlwasintheupperjaw.
Subsequently,Lebedev(2009)madethefirstqua ntitativerecon-
structionofthe bodysizeandshapeofHelicoprion,using(1)extant
odontocetes(toothedwhales)and(2)extincteugeneodontsknown
from nearly completeremains (Caseodus, Romerodus, and Fadenia)
as proxies . The first p roxy was base d on a presumed si milarity in
size, diet (fish and cephalopods)and habitat (pelagic) andthe sec-
ond on phylogenetic proximity.Lebedev's reconstruction featured
an elongated lower jaw, with the tooth whorl placed near the distal
end,andconventionalfusiformfishbodyproportions.Basedonthe
eugeneo dont proxies, Leb edev inferred a hea d length of 2.5–4 .0
times the toothwhorldiameter.An assumption ofa ratio of body
lengt h to head lengt h of 5.0 (conventional f ish body propo rtions)
yieldsabodylength(TL)of12.5–20timesthetooth-whorldiameter.
Foratoothwhorlwithadiameterof 0.56 m(the largestone listed
inTapanila&Pruitt,2013),thiscorrespondstoarangeof7.0–11.2 m
TL. Later examination by Tapanilaetal. (2013) of IMNH 37899by
X-CT(X-raycomputedtomography)showedthatHelicoprion's lower
jaw was shor ter than Lebedev envisioned and that the ratio of the
head length to the tooth-whorl diameter was approximately 2.5
(Tapanilaetal.,2020, figure3), resultinginaninferredbody length
ofapproximately7.0 mTL.
2.3 | Otodus megalodon (Chondrichthyes:
Lamniformes)
The megatooth shark, Otodus megalodon,isani conicextinctel asmo-
branchrepresentedprimarilybygiganticteeth(Figure 2c)commonly
foundfromthemid-MiocenetotheEarlyPliocenenearlyworldwide
(Boessenecker et al.,2 019; Cappetta, 2012; Cooper et al., 2020,
2022; Gott fried et al., 1996; Sternes et al., 2023). The biolog y of
O. megalodon has remained difficult to decipher. Although some
vertebral remains, placoid scales, and fragments of tessellated car-
tilage of O. megalodonhavebeenreported(Bendix-Almgreen,1983;
Leriche, 1926; Shimada et al., 2023), the li mited fossil recor d has
hampered attempts to estimate its true size and to reconstruct
body form.When such attemptsaremade,theextantwhite shark
(Carcharodon carcharias)hasbeenassumedtobealogicalecological
proxyduetoitssimilartoothformandtrophicecologytoO. megalo-
don(Collaretaetal.,2017;Gottfriedetal.,1996).
The most common size estimation method for O. megalodon has
beenextrapolationfromscalingrelationshipsbetweendentalmea-
surementsandtotalbodylengthsinC. carcharias(Perezetal.,2021;
Randall, 1973; Shimada, 2002, 2019).These studiesgenerallysug-
gestamaximum lengthof15–20 mforO. megalodon.Alternatively,
theallometricrelationshipofvertebraldiametersinextantC. carch-
arias(Gottfriedetal.,19 96)hasbeenusedtoextrapolatebodysize
based on incremental growth bands preser ved in a set of vertebral
specimens of O. megalodon,producingalength estimateatbirth of
2 m(Shimadaetal.,2021).
Likewise, the body form of O. megalodon has traditionally been
modelledafterextantC. carcharias(Bendix-Almgreen,1982; Cooper
et al., 2020, 2022;G ottfrie d et al., 1996). This see med logica l es-
peciallyinearlierstudies(Applegate&Espinosa-Arrubarrena,1996;
Gottfriedetal.,1996),duetothesimilarlyserrateddentalmorphol-
ogy,thefossilsharkwasplacedinthegenusCarcharodon(Lamnidae)
with the interpretation that‘C.’ megalodon was the direct ancestor
ofextantC. carcharias.Asofnow,thefossilspeciesisconsideredto
belong to Otodus(Otodontidae)ratherthanCarcharodon (Shimada
et al., 20 17). DespiteC. carcharias and O. megalodon likely not hav-
inganydirectphylogeneticlinkwithinLamniformes(Shimada,2022;
Shimada et al., 2017; Sternes et al., 2023, 2024),theuseofC. carcha-
riasasaproxyhascontinuedbasedontheassumptionthatO. mega-
lodonwasanactive,regionallyendothermic(Ferrón,2017)predator
liketheextantlamnids(Cooperetal.,2020, 2022).
Geochemical evidence has subsequently confirmed that O.
megalodon was a ‘warm-blooded’ shark (Griffiths et al., 2023)
occupyin g a high trophic p osition (Kas t et al., 2022; McCormack
et al., 2022). However, the assumption that O. megalodon must
|
7 of 16
GAY FO RD et al .
haveresembledextantC. carchariashasbeencalledintoquestion.
Supportfortherelationshipbetweenbodyformandthermophysi-
ologyinsharkshasweakened(Dolton,Jackson,etal.,2023; Dolton,
Snelling, et al., 2023; Sternes et al., 2023),andtheabsenceofkeels
onitsscalessuggeststhatO. megalodon was likely not a fast swim-
mer like ex tant lamnids. Add itionally, the total com bined length
of a parti al vertebra l column of O. megalodon from the Miocene
ofBelgium, previously estimated tobefrom a9.2-m-TLindividual
based on comparisonsof vertebral diameters in extant C. carch-
arias(Gottfried etal., 19 96), was measured to be11.1 m(Cooper
et al., 2022).Thisdiscrepancy–thatis,theactualmeasuredlength
ofthe incomplete vertebral column (not considering the head or
caudal fin)beingsubstantiallylongerthantheTLestimateforthis
specimenbasedontheextantC. carcharias(9.2 mTL)–stronglyin-
dicates that O. megalodonwasnotmerelyalargerversionofextant
C. carchariasbutratheraproportionatelyslender,more elongate
shark(Sternesetal.,2024).Theexact bodymorphologyandmax-
imum TL of O. megalodon remain uncer tain, but the implications
aresignificant.NotonlymaytheuseofextantC. carcharias not be
appropriate for deciphering the body form and body size of O. meg-
alodon,buttheobservationalsostronglyindicatesthatallprevious
TLestimatesbased ondental proportions of extant C. carcharias,
which conc luded a maximu m TL of at least 15 m for th e species
(Shimada,2019),maybeunderestimates.
2.4 | Perucetus colossus (Mammalia: Artiodactyla)
Perucetus colossus is a recently described, large-bodied archae-
ocete(stemcetacean)fromthelatemiddleEoceneofPeru(Bianucci
et al., 2023). Thistaxon is only represented by the holotype, con-
sistingof13vertebrae(Figure 2d),4ribs,and therightinnominate.
Perucetus is considered a member of Basilosauridae, the derived
group of ful ly aquatic archa eocetes that may re present the sis ter
group of crow n Cetacea. Perucetus exhibits extreme pachyostosis
and osteosclerosis, traits generally associated with shallow diving in
modernaquaticmammals(Buffréniletal.,2010).
Despite belonging to a clade with modern representatives
(crownCetacea),therearenoclose extantanaloguesforthe large,
serpen tiform body pla n of basilosaurid s. Thus, to recon struct the
body size of Perucetus,Bianuccietal.(2023)utilisedmultipleproxies
includingsirenians and neocetes.Bianuccietal. (2023) firstscaled
upanddilatedadigital3Dmodeloftheskeletonofthebasilosaurid
Cynthiacetus peruvianussuchthatthe volumeof itsbones equalled
that of the corresponding skeletal elements of P. colossus(produc-
ingmultiplemodelstoaccountfortheuncertainpositionofthelat-
ter's ver tebrae and var iable verteb ral count among b asilosaurids),
yieldin g estimates of s keletal leng th and volum e ranging bet ween
~17–20 mand2.9–4.1 m3,respectively.Bodymassvalueswerethen
calculatedfortheP. colossus holotype based on the range of skele-
talfraction(SF)observedinextantmarinemammals,yieldingmini-
mumandmaximumestimatesof85 t(assumingthemeanSFoflarge
Trichechus manatus and the minimum skeletal volume) and 340 t
(assumingtheSFofMesoplodon europaeusandt hemaximumskel eta l
volume),respectively(Bianuccietal.,2023).
Subsequently,Motani and Pyenson (2024) raised severa l criti-
cisms of Bianucci et al. (2023)'s analysis. Forexample, Motaniand
Pyenson(2024)suggested that itwould be impossible to fit 180–
340 t of bio mass (correspon ding to the upper p ortion of Bia nucci
etal. (2023)'srange ofbody mass estimates)into thevolume of a
20 mwhale, withtheir volumetricmethods instead producing esti-
matesof60–114 tusing volumetricmethods.Theyalsoquestioned
Bianuccietal.(2023)'suseofasimpleSFratioasopposedtoanal-
lometricregressionequation,arguingthatacrossmarineandterres-
trialmammals(includingbothneocetesandsirenians),SFappearsto
scalewithpositiveallometryratherthanisometry.Usingregression
equations,MotaniandPyenson(2024)producedestimatesof135–
193 tassuming aneocete-likeSF and 40.0–54.6 t using a sirenian-
likeSF (Motani & Pyenson, 2024).Nevertheless,thisrevisedbody
mass estimate is not free of limitations either, namely, reliance on a
modelcreatedfroma2Dpalaeoartisticreconstructionthatwasnot
depicted in direc t lateral view. This method is by no means intrin-
sically flawedbut is heavilydependent on approximationofthree-
dimensionalbodyproportions.Alternatively,asilhouettecouldhave
beenproducedfromthemodifiedCynthiacetus model presented by
Bianuccietal.(2023),whichcouldhaveyieldedadifferentresult.
3 | WHY ESTIMATING THE BODY
SIZE AND FORM OF EXTINCT ANIMALS
MAT TER S
The body size and form estimates presented in each of the case
studiesdiscussedherehavesignificantconsequencesforourunder-
standing of vertebrate macroevolution, beyond thepalaeoecology
ofthe individualtaxa themselves. Inthe case of Dunkleosteus, the
Devonianwaslongthoughttobeaperiodofexplosivebodysizeex-
pansioninver tebrates,inpart,becauseoftheabruptappearanceof
largeplacoderms(includingDunkleosteus; Dahl et al., 2010 ;Sallan&
Galimberti,2015).However,thesamemethodologythatdownsized
thisiconictaxon (Engelman,2023a)also produceslengths<5 m for
other large Devonian placoderms like Gorgonichthys and Titanichthys.
Other Devonian and early Carboniferous vertebrates like ctena-
canthsandsarcopterygiansappeartohavereachedsimilarmaximal
sizes (Engelm an, 2023a; Jeffer y, 1998 ; Young et al., 2013), imply-
ing that ver tebrates likely did not reach the size of modern marine
megafauna(i.e.,whitesharks,baskingsharks,whalesharksandce-
taceans)until wellintotheCarboniferous(Engelman,2023a),much
laterthan traditionallythought.This is ofgreat importanceforour
understandingofgigantism and bodysizeevolution invertebrates,
aswellasthestructureandfunctionofPalaeozoicecosystems.
Similar insights into macroevolutionary trends can be de-
ciphered from Perucetus, which indicates at least two distinct
periods of cetacean gigantism (Bianucci et al., 2023). Despite
the controve rsy over its we ight, both Bi anucci et al. (2023) a nd
Motani andPyenson(2024)agree that Perucetus was ver y large,
8 of 16
|
GAYFO RD et al .
comparableinsizetomodernphyseteridsandrorqualsandatleast
anorder ofmagnitudeheavierthanthe next largestPalaeogene
whale(Basilosaurus;seeMotani&Pyenson,2024:p.18).Crucially,
Eocenebasilosauridsevolved giant bodysizesincoastalsettings
with high seafloor productivityand globalcoolingratherthan in
thepelagic,open-marinerealmliketheirmodernmysticeterela-
tives(Bianucciet al., 2019).Similarly,alongwiththeriseof apo-
tentialecologicalcompetitor(whiteshark,Carcharodon carcharias:
Boessenecker et al., 2019; McCormack et al., 2022),lateNeogene
global cooling and restructuring of ocean circulation coincides
with the demise of O. megalodon, w hich may have been e xacer-
batedbyitslargesize(Condamineetal.,20 19).
Body size es timates of ext inct tax a also contribu te to our un-
derstanding of trophic dynamics within past ecosystems, as body
size and form are critic al in determining the range of predator and
preyspecieswith whicha species caninteract.DuringthePermo-
Carboniferous,mostlargemarinevertebrateswerechondrichthyans
(Schnetzetal.,2024),manyofwhich(e.g.,Petalodontiformes)can-
not easily be compared to modern chondrichthyans in terms of their
dental a natomy or body sha pe (Ginter et al., 2010). T his included
variouswhorl-toothedeugeneodonts,includingHelicoprion, Edestus
giganteus (Newberry, 1889) and Karpinskiprion ivanovi (Lebedev
et al., 2022), which were among the largestorganismsintheir re-
spective ecosystems. Without reliable estimates of body size in
Helicoprionand related eugeneodonts,it is difficult to reconstruct
thestructureofPermo-Carboniferousmarinefoodwebsordeter-
mineifpatternsofbodysizeevolutioncorrelate withother events
such as the Carboniferous Rainforest Collapse (McGhee, 2018;
Schnetz et al., 2024)orgigantismproposedformarineinvertebrates
(McGhee,2018).
Several s tudies identif ying likely spurious size estim ates have
alsodiscussedtheirimmediatedownstreamconsequenceson our
understanding of evolutionary history (Engelman, 2023a, 2023b;
Forteli us & Kappelman , 1993; G rilo & Delcour t, 2017; Roma no &
Manucci,2021; Rovinsk y et al., 2020).Inparticular,because many
ofthesetaxaexistattheextremes ofthe variationseen in nature,
spurioussizeestimateshavethepotentialtobiasdiscussionsabout
biomechanical and physiological limits of animal size (Witton &
Habib,2010)orpatternsofbodysizeevolutioninevolutionaryhis-
tory (Engelman,2023a, 2023b;Grillo&Delcourt, 2017;Romano&
Manucci,2021). One exampl e of this is estim ating the bod y mass
of large Late Cretaceous azdarchid pterosaurs such as Pterodon
longiceps and Quetzalcoatlus northropi. These are some of the larg-
est known flying organisms and thus provide key information to
discussions of possible biomechanical limits in powered flight. As
notedbyWittonandHabib (2010: p.2)‘[a]ccuratelymodellingthe
size of giant forms is essential to appreciating their flight abilit y as
evenrelativelysmallover-predictionsofwingspansmaytranslateto
consider able over-estima tes of mass and subseq uently inaccur ate
appreci ation of flight pe rformance’. Sever al biomecha nical studi es
concludedthese taxa wereincapable of powered flight, at leastin
part onthe basis of estimatedbody mass (Henderson, 2010; Sato
et al., 2008).However,subsequent research hasshown thatthese
values arelikelyoverestimates and/ortheresult of incorrectmod-
ellingofbodyforminavolumetricmodel (Witton,2008;Witton&
Habib,2010). Alter natively, work into th e launch mecha nics of Q.
northropiassumedflightcapabilityunderabipedal,bird-likelaunch-
ingmodel(Chatterjee&Templin,2004), resultinginanuppermass
estimateof75 kg, thatwould require theanimaltobe nearly 80%
airbyvolume(Witton,2008).Hadextremesizeestimatesforthese
taxa been upheld bysubsequent studies, it would have enormous
consequences for our understanding of flight biomechanics and
macroevolutionarytransitionsinflightcapabilityinallvolanttaxa.
Theissueinsuchcasesisnotthatsizeestimatessometimeshave
to be revise d. This is genera lly a natural con sequence of work ing
with fra gmentar y taxa often m uch larger than p otential compl ete
anatomicalproxies(seebelow).Theissueisthatvariationinsizees-
timatesbet weenstudiesismassive,withestimatesinonestudyfre-
quently half (ortwice) thosepresented inothers(seeDataS1),and
these differences seem to be driven by methodological problems
and data p ractices r ather than tr ue unknowns in es timating bo dy
size and/or form. This results in a potentiallymajor and pervasive
source of error in palaeoecological and evolutionary studies given
that many relyto someextent onbody size/form estimates of ex-
tincttaxa.Furthermore,becausethebodysizeofextinctorganisms
isa quality oftenimmediatelyvisible to the public, extremely large
swings in size estimates reduce public confidence in the ability of
pal ae ontologist stosp eakauthoritati velyaboutextinctlife.Apoten-
tialriskorconsequenceisthatthisphenomenonmayleadtopublic
disillusionmentwithpalaeontologyandanerroneousorunfounded
beliefthatpalaeontologistsdeliberatelyexaggeratethesizeoftheir
subjectsforprestigeinresponsetohigh-profilestudiesrevisingsize
estimates.
4 | LIMITATI ON S
4.1 | Modelling and extrapolation
Themostfundamentalrequirementforpredictingbodysizeand/or
formofanextinctspeciesisthattheproxyaccuratelypredictsbody
size in the fi rst place (Bate s et al., 2009). This mi ght seem trivia l,
butdifferentphysicalfeatures exhibit diverse scaling relationships
acrosstaxa,and theselectionofspecificanatomicalunits tomodel
bodysizerequirescarefulexaminationandabundantdata(e.g.,Field
et al., 2013). Nelso n eta l .(2023)foundthatlimbbonecross-sectional
dimensions (diameters and circumferences), long considered the
strongest predictors of body size among terrestrial vertebrates
(Anderson et al., 1985; Campione& Evans, 2012;Ruff,19 90 ), had
significant,non-randombiasindependent of phylogenybutseem-
ingly correlated withbodyrobustness – a factor that is difficultto
controlformathematicallywithoutcircularlogic.Unfortunately,ex-
istingstudiesoftendonotexplorepossiblesourcesofallometricbias
oruncertainty whenselectingsizeproxies, butassumeacloseand
consistentrelationship withbody sizebetweentheproxyandfocal
taxaapriori(Cooperetal.,2020, 2022; Ferrón et al., 2017;Gottfried
|
9 of 16
GAY FO RD et al .
et al., 1996).This issueis exemplifiedbyinitial bodysizeestimates
for Dunkleosteus, which were based on scaling relationships of the
upperjawinextantsharks(Ferrónetal.,2 017)despitealackofevi-
dence for similar jaw proportions between ar throdires and sharks
(Engelman, 2023b). While post hoc analysis of arthrodire cranial
scaling improved size estimates for Dunkleosteus(Engelman,2023a,
2023b),itisextremelychallengingifnotimpossibletoverifytheva-
lidity ofproposedscalingtrendsin othertaxawithfewor noliving
(or well-p reserved fos sil) relatives, s uch as Helicoprion. Whenever
possible,proposedscalingrelationshipsshouldbetestedempirically
using close relatives of the focal taxon to ensure model reliability
(Engelman,2023b) orcross-testingsize/form estimates usingmul-
tiple proxiesand/orscalingmethods(Bianuccietal., 2023; Motani
&Pyenson,2024).Wherethisisnotpossible,weurgescepticismof
resultingbodysizeandformestimates.
Ano t h erco m m o niss u eise x t r a p o latio n error.Wh e n using r egres -
sionequationstoestimatebodysize,imprecisiontypicallyincreases
asthesizeofanatomicalelementsfromthefocaltaxonextendsbe-
yondthatofthetrainingdata(Batesetal.,2009; Engelman, 2023a;
Schmidt-Nielsen,198 4).Thisisaparticularproblemiftaxaofinter-
est to palaeontologists are significantly larger or smaller than their
nearestextant proxies or occupy sizeranges where only a limited
number ofsimilar-sizedmodern proxiesexist(i.e.,megafauna).This
can be mitigated if taxa in the training data span a wide range of
bodysizes(Campione,2017 ) butsuch widesamples are often not
available . Perhaps, the best examp le of the effect s of extrapola-
tion erro r on body mass es timates can b e seen in the ex tinct ro-
dent Josephoartigasia(Engelman,2023a; Millien, 2008),althoughit
alsoappliestoothertaxa,includingPerucetus(Bianuccietal.,2023;
Motani&Pyenson,2024).
Manysizeestimates run intoproblemswiththe ever-present
spectreofpositiveornegativeallometry(Schmidt-Nielsen,1984),
eitherassuming theiranatomicalproxiesscaleisometricallywith
body size or c alculating t heir estim ates via simple s caling rati os
withaproxytaxon(whichimplicitlyassumesisometry).However,
isometr yistypicallytheexception,nottherule,amongscalingre-
lationships(Raup&Stanley,1978:p.61).Regressionmodelstend
tobe more robustto this kindofbiasduetotheirvariableslope,
whereas simple scaling ratios can be biased by even slight devi-
ations from isometryor if the size proxy chosen does not show
astrong correlation with body size (Grillo & Delcourt, 2017).As
withextrapolati oner ror,samplingawidearr ayofbodysizesinthe
training dataset is one of the best ways to detect positive or neg-
ativeallometry.Bodysizeestimatesshouldalwaysbemadebased
onregressionequationsorvolumetricmodelswheneverpossible.
Estimating body size via simple scaling ratios from one or a few
proxy specimensortaxashould beconsidered as a lastresort if
appropriateregressionmodelsarenotavailable,andtheresulting
sizeand/or form estimates considered verytentative until more
robustestimatesofsizecanbeproduced.
Other issues arise fromthe fact thatmost variables in allome-
tric scaling relationships are logarithmically distributed and thus
log-transformedbefore analyses.Itisoften assumed thatrelation-
ships between variables are completely linearised by log transforma-
tion(Engelman,2022b;Schmidt-Nielsen,1984).However,thisisnot
alwaysthe case,andfurtherinspection has shownsomebiological
relationships previously thought to be log-linearmay,in fact, scale
log-curvilinearly (Bertram & Biewener, 1990 ; Engelman, 2022a;
Knell, 2009; Venditti et al., 2024) with their curvature implying
treating these variables log-linearly may overestimate body size.
This is problematic as the biological significance of log-curvilinear
relationshipsisnotwellunderstood,nordotheirmathematicalcon-
stantshave a ready explanation (Knell, 2009; Manger et al., 1999)
incontrasttolog-linearmodelswhichfollowapowerlaw(Schmidt-
Nielsen,19 84 ). Until we have an improved understanding of non-
linear allometry, the validity of linear approximations to these
allometricrelationships cannot be known.Forthis reason, we sug-
gest future studies at least consider the possibility of non-linear
allometryintheirdatasetsandreportsuspectedlog-curvilinearre-
lationshipsiffound.
Log-transformationcreatesotherissuesinmodelevaluationand
predic tion. Most regre ssion models meas ure the streng th of cor-
relationsbetweenvariables using the coefficientofdetermination
(r2), but for log-trans formed models (e specially ones i ntended for
prediction), r2 is actua lly a poor measu re of relationshi p strengt h.
Coefficientsof determination tendto unilaterally increase asdata
spreadincreases,andlog-transformationexacerbatesthis problem
becaus e it compresses the scatter of data points around the re-
gression line (Smith,1984;VanValkenburgh,199 0),inflatingr2 val-
ues. Thi s means that even lo g-scaled m odels with r2 greater than
0.9 can have poor prediction accuracy in practice (Smith, 198 4;
VanValkenburgh, 1990). For this re ason, percen t error (%PE) and
percent standarderror ofthe estimate (%SEE) are of ten preferred
asmeasures ofpredictive accuracy becausethey directlymeasure
the accuracy of the predicted values (Campione & Evans, 2020;
Engelman, 2022a, 2023a;VanValkenburgh,19 90 ).
Log-transformedregressionequationsalsotendtoproduce un-
reasonably large prediction inter vals, often on the scale of orders of
magnitude.Thisisbecauseantilogtransformationturnsthenormally
distributed residualsof a log-scaled regression equation into non-
normallydistributed(leptokurtotic)residualsonanarithmeticscale
(Bates et al ., 2009; Bert ram & Biewener, 199 0; Engelman, 2023a)
with extremely long ‘tails’ to the resulting distribution. This in
turn results in largeerror barsand substantialuncertaintyin body
size estimates, often beyond what is morphologically plausible.
Phylogeneticcomparativeleastsquaresandvolumetricestimation
methods provide possible mitigation measures, although in both
cases reducederror rangecomesata trade-offwith predictionac-
curacy(Campione,2017; Campione & Evans,2012).Whilethis un-
certa inty is unavoid able, it shoul d be accounted fo r when making
biologicalinferencesaboutpalaeoecology.Allmathematicalmodels
haveassumptionsandlimitations,thevalidityofwhichshouldideally
becarefullyconsideredwhenselectingproxiesfromwhich toesti-
matebodysizeand/orforminextincttaxa.
10 of 16
|
GAYFO RD et al .
4.2 | Incomplete specimens
In most c ases, the bod y size and/or form of ext inct animal s must
beestimatedfromextantproxiesduetothelackofcompletefossil
specimens. At a basic level, it is impossible to confidently and ac-
curatelypredictthebody sizeorformofanextinctorganismwith-
outcompletespecimensasresearchershavenowayofknowingthe
sizeorshapeofmissingelementswithoutrelyingoninferencefrom
proxytaxa.Thisissueaffectseachofthefourcasestudiesdiscussed
here, noneof whichareknownfromcompletespecimens(Bendix-
Almgreen, 1966 ; Bianu cci et al., 2023; Engelman, 2022b; Sternes
et al., 2024; Figure 2). In deed, the fr agmentar y nature of rem ains
used to reco nstruct t he body size and for m of many extinc t taxa
cansubstantiallyincreaseerror.Fragmentaryremainsareoftenfirst
used to estimate the size of some larger or complete morphologi-
calstructure (e.g.,skull),which isinturnused toapproximatetotal
lengt h. These casc ading assumpti ons result in the pr opagation of
errorateachstageofreconstruction(Molnar&Vasconcellos,2016),
furthercomplicatingdownstreamecological,evolutionaryand bio-
mechanical interpretations.
A lack of anato mically comple te specimens also i ncreases the
likelihoodofexistingremainsbeing misinterpretedasbelongingto
different species and/or parts of the body. Errors in body size and
formestimationresultingfromanatomicalmisinterpretationormis-
diagnosis c an be seen in Helicoprion,wheretheconsensusposition
ofthetoothwhorl on thebodyhaschanged on multiple occasions
(Bendix-Almgreen,196 6; Karpinsky,1899).Similarly,extrememod-
ifications in the available vertebrae of Perucetus relative to other
basilosauridspreventapreciseidentificationoftheirpositionwithin
thevertebralcolumn,whichaddsconsiderableuncertaintytobody
size estimations. For Dunkleosteus,lengthsof5–10 mwereat least
partlybasedonaprioriassumptionsofthistaxonexhibitingagreatly
shortenedtrunkarmourcomparedtootherarthrodires,whichwere
nevervalidatedandindeedsubsequentobservationsshoweditwas
likelyincorrect(Engelman,2024).Unfortunately,thelimitationsas-
sociatedwithincompletefossilspecimensaredifficulttoovercome
without new palaeontological evidence. Yet, this issue highlights
that bod y size and/or form estimat es are intrinsic ally uncert ain if
lacking adequatefossil material.Whereverpossible,studies should
take this into consideration and acknowledge the potential for new
palaeontologicalinterpretationsofthefossilspecimensuponwhich
estimations are based.
4.3 | Intraspecific variation
Another important consideration whenselec tingproxies for esti-
mating bodysizeandforminextincttaxais intraspecificvariation.
Ontogeny and sexual dimorphism exert substantial influence on
bothbodysizeandshape (Honeet al., 2016; Mallon, 2017; Motani
et al., 2018; Paiva et al., 2022; Sanchez-Villagra, 2010), and this
needs to be t aken into account w hen reconstr ucting ext inct spe-
cies.Somestudiesuseregressionequationsderivedfromallometric
patternswithinasinglespeciestoproducetheirsizeestimates(e.g.,
Crocodylus porosus and Gavialis gangeticus in Sereno et al., 2001;
Physeter macrocephalus in Lambert et al., 2010; and Carcharodon
carchariasinGottfried etal., 1996), and thisraisesconcerns about
conflating intraspecific patterns of allometry across the growth
curve ofasinglespecieswith true patternsof interspecific allom-
etry in mature individuals (Paiva et al., 2022). Several s tudies on
extinctmegafaunahavenotedthatevenverylargeindividuals‘still
appear to be growingat thetimeofdeath’based on suturalfusion
and bone microstr ucture (Buchy et al., 2003; Evans et al., 2014;
Honeetal.,2016;Lomaxetal.,2024),yetinmanycasesstillappear
tobesexuallymature(Ericksonetal.,2007;Lee&Werning,2008).
This has sometimes led to speculation thattheseorganisms could
reach stilllarger sizesunsampledbythe fossilrecord, butanalter-
nateneeds to beconsideredthat thispatternisaresult of paedo-
morpho sis or peramor phic hypermo rphosis – i.e., de laying sutura l
closure and prolonging features allowing rapid growth well into
adulthood,withgrowthslowingbutnotceasinguponsexualmatu-
rity (Le e & Werning, 2008) a nd cessation on ly occurring wi th se-
nescence –which has been proposed as the mechanism bywhich
theseanimalsachievedsuchspectacularsizesinthefirstplace(Lee
&Werning, 20 08; Lomaxet al., 2018). A goodexampleofthis are
Pliosauridae,whichrarelyexhibitneurocentralfusionevenasadults
(Araújo & Smith, 2023;Knutsen et al., 2012; McHenry,2009) – a
feature ot herwise commo nly used as an indic ator of osteologic al
maturit y in reptiles . This suggest s that some of th ese supposed ly
somaticallyimmatureindividualscouldbeclosetotypicaladultsize
andthattraditionalmarkersofsomaticmaturitymaybelessinform-
ativeformegafauna(Honeetal.,2016).
Where shape estimates come from a small number of re-
mains (e.g., Helicoprion, O. megalodon and Perucetus), life stage
and sex ca nnot be include d as confounding va riables in regr es-
sion and volu metric mod els. It is prac tically im possible to kn ow
the full size r ange of an extin ct species (Ma llon & Hone, 2024;
Sanchez-Villagra, 2010), and we rarelyhave an adequate under-
standingof sexualdimorphisminthesetaxa. Thus,thefewfossil
samplesthatdoexistaresimplytreatedasstandardfortheirspe-
cies or population. Even in therare cases that isolated fossilre-
mainscanbedistinguishedaseitheradultorjuvenile,phenomena
such as pathologic gigantism (e.g., Carboniferous cephalopods,
Manger et al., 1999)andinsulardwarfism(e.g.,Palaeoloxodon and
Europasaurus,Herridge&Lister,2012; Sander et al., 2006) make
this assumption questionable. Similarly, it must be questioned
whether treating the maximum sizes reached by presumably
exceptional individuals as representative of the species in pa-
laeoeco logical stu dies is as inform ative as using the m ore mod-
est averageadult size (Mallon & Hone,2024:p. 8). For example,
MallonandHone(2024)speculatedthatahypothetical15-mand
15-t‘worldrecord’Tyrannosaurus rexwoul db esoslowandrequire
somuchfoodthatitwouldhavetorelyonscavengingorshiftprey
focustosympatrictitanosaurs–neitherofwhichwouldberealis-
ticbehaviourforthespecies.Issuesofontogenyandintraspecific
variationwillcontinuetobeanissueregardlessoftheproxytaxon
|
11 of 16
GAY FO RD et al .
usedbutshouldaccountedforwhenconsideringwhichindividuals
ofthisproxyaretobeusedforsizeandformreconstructions,par-
ticularly where volumetric approaches are used. Ideally, studies
shouldconductroutinesensitivitytestsconsideringmultiplemod-
elsthat accountfor variation in bothontogeneticstageandsex.
Mostimporta nt ly,re searcherssh ouldnotassum et hatsizeorform
reconstructions made froma handful of incomplete remains are
representative of the fullrangeofmorphology seenin an extant
species,orthattheseremainsrepresentthe‘average’morphology.
4.4 | Phylogenetic placement
Whenselecting proxiesforestimating bodysize in extincttaxa,
consideration of the phylogenetic placementof both proxy and
extin ct focal taxo n is vital. Wher e proxies are sele cted on the
basis of phylogenetic similarit y, it is imperative that the phyloge-
neticplacementofbothtaxaiswellresolved,whichisfrequently
notthecase.Issues ofphylogenetic uncertainty are systemic in
palaeobiology(Marjanović&Laurin, 20 07; Reeder et al., 2015).
ThisisexemplifiedbyO. megalodon, where C. carcharias has gen-
erallybeenconsideredthebestmodernproxydespitetheuncer-
tain placement of O. megalodonwithinlamniformsharks(Sternes
et al., 2023, 2024).Atbest, thisphylogeneticuncertaintyraises
doubts aboutthevalidityofspecific proxytaxa and may distort
theresultsofphylogeneticcomparativeanalyseswhicharethem-
selves us ed to estimate bod y size in some studies ( Diniz-Filho
&Nabout, 2009; Paiva et al., 2022;Symonds &Elgar,2013). In
extremecases,phylogeneticuncertaintycouldcloudourunder-
st andin gofhom ologybet wee nt heanato micalun itsth atareused
to predict body size and form, making it impossible to clarif y the
validity of proposed proxies. Of course, proxies are not always
selectedonthebasisofphylogeny.Studiesmayalternativelyseek
tousetaxaassumedtobeconvergentinecologicalhabitsorbody
form(Engelman,2023b; Ferrón et al., 2 017).However,thistoois
problem atic given that th ere is no guarant ee that phylogene ti-
callydisparategroupsshoulddisplaysimilarscalingrelationships
betweenanatomicalfeatures,regardlessoftheperceiveddegree
of morphological convergence. For this reason, we favour the
consideration of phylogeny when selecting appropriate proxy
ta xab uts t res sth atforsuc han app roac ht obe val idrequ ire swe ll-
resolvedphylogeneticplacementofboththeproxyandthestudy
taxon. Ultimately,estimatesofbody sizeand form made in this
way must alw ays be treated wit h caution given t hat perceived
phylogenetic relationships between these taxa are intrinsically
hypotheticalinnatureandsubjecttorevisionupontheinclusion
of new data.
4.5 | Social pressures
While most spurious size/form estimates are likely driven by
some combinationof the factors outlined above (and a general
unawareness of biostatistical best practices), social pressures
and the nature ofresearch academia also have the potential to
influen ce reconstru ctions of body s ize/form in extin ct animals.
Studiesreportingspectacularsizesfororganismsareoftenwidely
readand publicised,which can significantly elevatethework of
early-career researchers and translatetosignificant opportuni-
ties for fu nding and pub lic interest . Some exti nct specie s have
gainedconsiderablemediaattentionasadirectresultoftheirun-
usualsizerelativetomodernanimals(Ferreiraetal.,2024;Head
et al., 2009, 2013; Molnar, 2004; Rinderknecht&Blanco, 2008;
Wroe et al., 2004)andmightotherwise have failedtoappear in
hi g h impactjou r n a l s orrece i v ewidesp r e a d p u blica t t e n t i o nift h e y
weresmaller.Atthesametime,whilejournalsareofteneagerto
publish on studies suggesting spectacular sizes, more modest,
revised estimates arelesslikely to be considered publishableas
theyareunlikelytogarnerbroaderinterest.Therealsoseemsto
beatendencyofhumannaturetooverestimatethesizeofmega-
faunaunless quantitativelymeasured.This iswell-demonstrated
byseveral studieson extant megafaunanoting that even expe-
rienced field biologists tend to overestimate the size of their
subjects(Greer,1974; Molnar, 2004; Randall, 1973; Wood, 1976 ;
Woodward et al., 1995 ).Otherpalaeontologistshavemadesimi-
larobservations.AsnotedbyGrilloandDelcourt(2017:p.83)in
th eirstu dyofa belisau ridthe rop ods,‘th efa c tth atmostpub lished
BL[bodylength;=totallengths]areoverestimatesreinforcesa
statementmadebyTherrienandHenderson(2007)thatthelack
ofcompleteskeletalremainsinlargetheropodsgivesfreecourse
to imagination, that allow researchers to present new specimens
as‘thelargest’,‘theheaviest’,orotherkindofsimilaradjectives’.
Similarly,Fuchsetal.(2020: p. 42) noted previous estimates of
sizeandformintheirstudyorganism(Enchoteuthis)seemedtobe
basedonthe‘hope’(wordingtheirs)ofamorespectacularanimal
ratherthananyfossilevidence.Whileitisunlikelythatthesefac-
tors are ac ting in all or even most cases of controversial size/form
estimates, the current landscape of academia does potentially
encourageoverlygeneroussizeestimates.Consequently,inour
attempt tocoverallpotential influencesonbodysize/formesti-
mates,wewouldberemisstonotmentionthesesocialpressures
as a potential bias.
Several factorsmayalso make researchers reluctanttopublish
modestsizeestimatesofextincttaxa.Researchersmaybereluctant
todownsizespectacularcharismaticmegafaunaforfear thatit will
reduce publicinterestintheir research areaor burn bridges in the
academiccommunity,whichcouldhavedownstreamconsequences
forcollaborations,fundingacquisition oreventheoutcomeofpeer
review. They may a lso fear museu ms may restri ct access to spe c-
imens or otherwise respond poorly to research downsizing their
flagshiptaxon. Furthermore, onemust be aware of backlash from
theever-growingfancommunitiesofprehistoricorganisms(suchas
Dunkleosteus, O. megalodonandtheropoddinosaurs)ontheinter net,
whomayfeelstronglyabout the perceivedappearance oftheir fa-
vourite organisms. None of these concernsare hypotheticals, and
all have happened at one point or another to many palaeobiologists
12 of 16
|
GAYFO RD et al .
who study well-known, iconic fossil taxa, including some of those
mentionedinthepresentstudy.Allstudiesshouldbejudgedontheir
scientificmerit throughdebateanddiscourse, through whichpro-
gressiveimprovementstoourunderstandingofextinctanimalscan
be gained.
5 | CONCLUSIONS
All body size and shape estimates of extinct species rely to some
extentonextinctorextantproxies.Theseestimatescanprovideim-
portant ecological and evolutionaryinformationand will continue
todosointhefuture.However,severalimportantlimitationsmust
beconsideredwhenusingsuchanapproach.Theutilityandvalidity
ofa given proxy depends notonly on perceived morphologicalor
phylogen etic relation ships but also o n the qualit y and quantit y of
thefossilrecord, palaeontologists' interpretationoftheirexamined
material, our understanding of ontogeny and sexual dimorphism,
and the degree of phylogenetic uncertainty involved. At a more
fundamental level,thechosenproxyspecies may influencetheva-
lidityofthemathematicalmodellingapproacheschosen.Weargue
that tak ing precaut ionary me asures to addr ess these fa ctors is of
paramo unt importa nce when determi ning which prox y taxa upon
which size and form reconstructions of extinct taxa will be based
andshouldbetreatedasnecessar y.Manyoftheseuncertaintiesare
unavoidablewhendealingwithfragmentaryextincttaxa.However,
whereverpossible,studiesshouldexplicitlyreferencetheselimita-
tions, improving therobustness of theecological and evolutionary
inferences that can be drawn.
AUTHOR CONTRIBUTIONS
Joel H. Gayford: C onceptualizat ion (lead); writi ng – original draf t
(lead); writing – review and editing (lead). Russell K. Engelman:
Conceptualization (supporting); writing – original draft (support-
ing); wri ting – review and edi ting (support ing). Phillip C. Sternes:
Conceptualization(supporting);writing–originaldraft(supporting);
writing–reviewandediting(supporting).Wayne M. Itano:Wr iting–
originaldraft(supporting);writing–reviewandediting(supporting).
Mohamad Bazzi:Writing–originaldraft(supporting);writing–re-
viewandediting(supporting).Alberto Collareta:Writing– original
draft(supporting);writing–reviewandediting(supporting).Rodolfo
Salas- Gismondi:Writing–originaldraft(supporting);writing–re-
view and editing (supporting). Kenshu Shimada:Conceptualization
(supporting);writing– original draft (supporting); writing – review
andediting(supporting).
ACKNOWLEDGEMENTS
Theauthors wish to thank the following people for discussionson
thebody size inextinct vertebrates:RKE:J.Cisneros,H.G. Ferrón,
N.Gardner,M.Greif,M.B.Habib,R.Hawley,C.Hays,A.L.S.Paiva,J.
PardoandR.Shell;AC:E.Amson,O.LambertandG.Bianucci.The
authorsalsowish to thankthetwo anonymous reviewers for their
commentsthatgreatlyimprovedthequalityofthismanuscript.
FUNDING INFORMATION
TheresearchofACissupportedbyagrantfromtheItalianMinistero
dell'UniversitàedellaRicerca(PRINProject2022MAM9ZB).
CONFLICT OF INTEREST STATEMENT
Theauthorsdeclarethattheresearchwasconductedintheabsence
ofanycommercialorfinancialrelationshipsthatcouldbeconstrued
as a potential conflict of interest.
DATA AVA ILAB ILITY STATE MEN T
Nodatasetsweregeneratedorusedinthisstudy.
ORCID
Joel H. Gay ford https://orcid.org/0000-0002-0839-3940
Russell K. Engelman https://orcid.org/0000-0002-9988-7427
Phillip C. Sternes https://orcid.org/0000-0001-7223-3725
Wayne M. Itano https://orcid.org/0000-0002-9709-2436
Mohamad Bazzi https://orcid.org/0000-0002-9495-0781
Kenshu Shimada https://orcid.org/0000-0001-7836-809X
REFERENCES
Anderson, J. F., Hall-Martin,A., &Russell,D.A. (1985). Long-bone cir-
cumference and weight inmammals, birds and dinosaurs. Journal
of Zoology, 207,53–61. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 4 6 9 - 7 9 9 8 . 1 9 8 5 .
t b 0 4 9 1 5 . x
Andrews, S. M. (1985). Rhizodont crossopter ygian fish from the
DinantianofFoulden,Berwickshire,Scotland,withare-evaluation
ofthisgroup. Earth and Environmental Science Transactions, 76(1),
67–9 5.
Anton, M., Salesa, M. J., Morales, J., & Turner, A. (2004). First
knowncompleteskullsofthescimitar-toothedcatMachairodus
aphanistus(Felidae,Carnivora)from theSpanishlateMiocene
site of Batallones-1. Journal of Vertebrate Paleontology, 24 (4),
957–969.
Appleg ate, S. P., & Espinosa-Ar rubarrena , L. (1996).T he fossil histo ry
ofCarcharodon andits possible ancestor,Cretolamna:Astudy in
tooth ide ntificatio n. In A. P. Klimley & D. G. A inley (Eds.), Great
white sharks: The biology of Carcharodon carcharias (pp. 19–36).
AcademicPress.
Araújo,R.,&Smith,A.S.(2023).Recognisingandquantifyingtheevolu-
tionofskeletalpaedomorphosisinPlesiosauria.Fossil Record, 26(1),
85–101.https:// doi. org / 10. 3897/ fr. 26. 97686
Bartholomew,G. A.(1981).A matter ofsize: Anexamination of endo-
thermy in insects and terrestrial vertebrates. In B. Heinrich (Ed.),
Insect thermoregulation(pp.45–78).Wiley.
Bates, K. T., Falkingham, P.L., Breithaupt, B. H., Hodgetts, D., Sellers,
W.I.,& Manning,P.L. (2009).Howbig was “bigAl”? Quantifying
theef fectsof softtissueandosteologicalunknownsonmasspre-
dictions for Allosaurus (Dinosauria: Theropoda). Palaeontologia
Electronica, 12(3),1–33.
Bates,K.T.,Falkingham,P.L.,Macaulay,S.,Brassey,C.,&Maidment,S.
C.R.(2015).Downsizingagiant:re-evaluatingDreadnoughtus body
mass. Biology Letters, 11, 20150215. https:// doi. org/ 10. 1098/ rsbl.
2015. 0215
Bendix-Almg reen, S. E. (1966). New inve stigation s of Helicoprion from
the Phosphoria formation of south-east Idaho, U.S. A. Biologiske
Skrifter, 14,1–54.
Bendix-Almgreen,S.E.(1982).Stor,større,−Carcharodon megalodon, —
enganske særlig hajtand fraGram-leret. Nordslesvigske Museer, 9,
15 –37.
|
13 of 16
GAY FO RD et al .
Bendix-Almgreen, S. E. (1983).Carcharodon megalodonfrom the upper
Miocene of D enmark, with comments on elasmobranch tooth
enameloid: coronoïn. Bulletin Geological Society of Denmark, 32,
1–32.
Bert ram, J. E. A ., & Biewener, A . A. (1990). Diff erential sc aling of the
long bones in the terrestrial carnivora and other mammals. Journal
of Morphology, 204, 157–169.https:// doi. or g/ 10. 1002/ jmor. 10520
40205
Bianucci,G.,Lambert,O.,Urbina,M.,Merella,M.,Collareta,A.,Bennion,
R., Salas-Gismondi, R.,Benites-Palomino, A.,Post, K., de Muizon,
C., & Bosio, G. (2023). A heavyweight early whale pushes the
boundariesofvertebratemorphology.Nature, 620 (7975),824–829.
h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 8 6 - 0 2 3 - 0 6 3 8 1 - 1
Bianucci,G.,Marx,F.G.,Collareta,A.,DiStefano,A.,Landini,W.,Morigi,
C.,&Varola,A .(2019).Riseofthetitans:Baleenwhalesbecamegi-
antsearlierthanthought.Biology Letters, 15(5),20190175.ht tp s://
doi. org/ 10. 1098/ rsbl. 2019. 0175
Blanckenhorn, W. U. (2000). The evolution of body size: What
keepsorganismssmall? The Quarterly Review of Biology, 75(4),
385 – 4 0 7.
Boessenecker, R.W.,Ehret,D.J., Long, D. J., Churchill, M.,Martin, E.,
&Boessenecker,S. J. (2019).The earlyPlioceneextinctionofthe
mega-toothe d shark Otodus megalodon: A v iew from the ea stern
NorthPacific.Pe erJ , 7, e6088.
Brassey,C.A. (2016). Body-mass estimationin paleontolog y: A review
of volumetric techniques. The Paleontological Society Papers, 22,
13 3 –1 5 6 . ht tps:// doi. or g/ 10 . 1017/ scs. 2017. 12
Buchy,M.C.,Frey,E.,Stinnesbeck,W.,&López-Oliva,J.G.(2003).First
occurre nce of a gigant ic pliosaur id plesios aur in the lat e Jurassic
(Kimmeridgian) of Mexico. Bulletin de la Societe Geologique de
France , 174 (3),271–278.
Buffrénil, V.d., Canoville,A ., D'Anastasio, R ., & Domning, D. P.(2010).
Evolution of sirenian pachyosteosclerosis, a model-case for
the study of bone structure in aquatic tetrapods. Journal of
Mammalian Evolution, 17,101–120. ht tps:// doi. o rg/ 10. 1007/ s1091
4 - 0 1 0 - 9 1 3 0 - 1
Campi one, N. E. (2017 ). Extr apolating b ody masse s in large ter restrial
vertebrates. Paleobiology, 43, 693–699. htt ps: // doi. o rg / 10. 10 17/
pab. 2017. 9
Campione,N. E., &Evans, D. C. (2012).A universal scaling relationship
betweenbodymassandproximallimbbonedimensionsinquadru-
pedal terrestrial tetrapods. BMC Biology, 10, 60. https:// doi. org/ 10.
1 1 8 6 / 1 7 4 1 - 7 0 0 7 - 1 0 - 6 0
Campione, N. E., & Evans,D.C. (2020). The accuracy and precisionof
bodymassestimationinnon-aviandinosaurs.Biologica l Reviews, 95,
1759–1797.htt ps:// doi. or g/ 10 . 1111/ br v. 12638
Cappetta,H.(2012).InH.P.Schultze(Ed.),Handbook of Paleoichthyology
(Vol.3E,pp.1–512).VerlagDr.FriedrichPfeil.
Carr, R. K . (2010). Paleoe cology of Dunkleosteus terrelli. Kirtlandia, 57,
36–45.
Chatterjee, S., & Templin, R. J. (200 4). Posture, locomotion and
Palaeoecology of pterosaurs.Geological Society of America Special
Publication, 376 ,1–64.
Cidade,G.M., Riff,D., & Hsiou,A. S. (2019). The feeding habits ofthe
strange crocodylian Mourasuchus (Alligatoroidea, Caimaninae):
A review, new hy potheses an d perspec tives. Revista Brasileira de
Paleontologia, 22(2),106–119.
Collareta,A.,Lambert,O.,Landini,W.,DiCelma,C.,Malinverno,E.,Varas-
Malca,R.,Urbina,M.,& Bianucci, G. (2017). Did theextinctshark
Carcharocles megalodontarget smallerprey?Bitemarks onmarine
mammal remainsfrom the lateMiocene ofPeru.Palaeogeography,
Palaeoclimatology, Palaeoecology, 469, 84–91. https:// doi. org/ 10.
1016/j. palaeo. 2017. 01. 001
Condamine, F. L., Romieu,J., & Guinot,G. (2019).Climate cooling and
clade competition likely drove the decline of lamniform sharks .
Proceedings of the National Academy of Sciences of the United States
of America, 116 (41), 20584–20590. ht tp s:// doi. org / 10. 1073/ p nas .
19026 93116
Cooper, J. A ., Hutchinson , J. R., Bernvi , D. C., Cliff, G., W ilson, R. P.,
Dicken, M. L., Menzel,J.,Wroe,S.,Pirlo, J.,&Pimiento, C. (2022).
The extinct shark Otodus megalodonwasatransoceanicsuper-
predator: Inferences from 3D modelling. Science Advances, 8(33),
eabm9424. https:// doi. org/ 10. 1126/ sciadv. abm9424
Coo pe r,J.A.,Pimiento,C.,Ferrón ,H.G.,&Bento n,M.J.(202 0).Bo dydi-
mensionsoftheextinctgiantsharkOtodus megalodon:A2Drecon-
struction. Scientific Reports, 10, 14596. htt ps:// doi. or g/ 10. 10 38/
s 4 1 5 9 8 - 0 2 0 - 7 1 3 8 7 - y
Dahl, T. W., Hammar lund, E. U., Anba r, A. D., Bon d, D. P. G ., Gill, B.
C., Gordon, G.W.,Knoll, A.H., Nielsen, A .T.,Schovsbo,N.H., &
Canfi eld, D. E. (2010). Dev onian rise in at mospheric o xygen cor-
related to the radiations of terrestrial plants and large predatory
fish. Proceedings of the National Academy of Science s of the United
States of Ame rica, 107,17911–17915.ht tps:// doi. org / 10. 1073/ pnas .
10112 87107
DalSasso,C.,Maganuco,S.,Buffetaut,E.,&Mendez,M.A.(2005).New
informationontheskulloftheenigmatictheropodSpinosaurus, with
remarks on its size and aff inities. Journal of Verterbrate Paleontology,
25(4),888–896.
Dalponti,G.,Guariento,R.D.,&Caliman,A.(2018).Huntinghighorlow:
Body size drives trophic position among and within marine preda-
tors. Marine Ecology Progress Series, 597,39–46.
Diniz-Filho,J.A. F., & Nabout, J.C. (2009). Modelingbody sizeevolu-
tioninFelidaeunderalternativephylogenetichypotheses.Genetics
and Molecular Biology, 32,170–176.https:// doi. org/ 10. 1590/ S1415
-47572009005000004
Dolton , H. R., Jack son, A. L. , Deaville, R ., Hall, J., Hal l, G., McManu s,
G., Perkins, M. R.,Rolfe, R. A., Snelling, E. P.,Houghton, J. D. R.,
Sims,D.W.,&Payne,N.L.(2023).Regionallyendothermictraitsin
theplanktivorousbasking sharksCetorhinus maximus. Endangered
Species Research, 51,227–232.https:// doi. org/ 10. 3354/ esr01257
Dolton,H. R.,Snelling, E. P.,Deaville,R.,Jackson,A.L., Perkins,M.W.,
Bortoluzzi, J.R., Purves,K., Curnick,D.J., Pimiento, C., &Payne,
N. L. (20 23). Centralize d red muscle in Odontaspis ferox and the
prevalence of regional endothermy in sharks. Biology Letters, 19,
20230331. https:// doi. org/ 10. 1098/ rsbl. 2023. 0331
Engelman,R.K.(2022a).Occipitalcondylewidth(OCW)isahighlyaccu-
rate predictor of body mass in therian mammals. BMC Biology, 20,
37. h t t p s : / / d o i . o r g / 1 0 . 1 1 8 6 / s 1 2 9 1 5 - 0 2 1 - 0 1 2 2 4 - 9
Engelman , R. K. (2022b). Resizing the largest known extinct rodents
(Caviomorpha:Dinomyidae,Neoepiblemidae)usingoccipital con-
dyle width. Royal Society Open Science, 9(6),2 20370. ht tps:// d o i .
org / 10. 1098/ rso s. 220 370
Engelman,R. K. (2023a). ADevonianfish tale: A newmethodof body
lengthestimationsuggestsmuchsmallersizesforDunkleos teus ter-
relli(Placodermi:Arthrodira).Diversity, 15, 318. https:// doi. org/ 10.
3390/ d1503 0318
Engelman,R. K . (2023b).Giant,swimming mouths: Oral dimensions of
extantsharksdonotaccurately predict bodysizeinDunkleosteus
terrelli(Placodermi:Arthrodira).Pe erJ, 11, e15131. https:// doi. org/
10. 7717/ peerj. 15131
Engelman,R.K.(2024).ReconstructingDunkleosteus terrelli(Placodermi:
Arthrodira): A new look for an iconic Devonian predator.
Palaeontologia Electronica, 27(3), a44. https:// doi. org/ 10. 26879/
1343
Erickson,G.M.,CurryRogers,K .,Varricchio,D.J.,Norell,M.A.,&Xu,X.
(2007).Growthpatternsinbrooding dinosaurs reveals the timing
ofsexualmaturityinnon-aviandinosaursandgenesisoftheavian
condition. Biology Letters, 3(5),558–561.
Evans,S.E.,Groenke,J.R.,Jones, M. E., Turner,A.H.,&Krause,D. W.
(2014).NewmaterialofBeelzebufo,ahyperossifiedfrog(Amphibia:
Anura) from the late cretaceous of Madagasc ar. PLoS One, 9(1),
e87236. h t t p s : / / d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 0 8 7 2 3
14 of 16
|
GAYFO RD et al .
Farlow,J.O.,&Planka,E.R.(2002).Bodysizeoverlap,habitatpartition-
ingandlivingspacerequirementsof terrestrialvertebratepreda-
tors:Implicationsforthepaleoecologyoflargetheropoddinosaurs.
Historical Biology, 16(1), 21–40. https:// doi. org/ 10. 1080/ 08912
96031 00015 4687
Ferreira,G.S.,Nascimento, E.R., Cadena, E. A.,Cozzuol,M.A.,Farina,
B.M.,Pacheco,M.L.A.F.,Rizzutto,M.A.,&Langer,M.C.(2024).
The latest freshwater giants: A new Peltocephalus (Pleurodira:
Podocnemididae)turtle from the late Pleistocene of the Brazilian
Amazon . Biology Letters, 20, 20240010. https:// doi. org/ 10. 10 98/
rsbl. 2024. 0010
Ferrón,H.(2017).Regionalendothermyasatriggerforgigantisminsome
extinct macropredatorysharks. PLoS One, 12, e0185185. ht tp s://
d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 8 5 1 8 5
Ferrón,H.G .,Holgado, B.,Liston,J.J.,Martínez-Pérez,C.,&Botella,H.
(2018).Assessingmetabolicconstraintsonthemaximumbodysize
of actinopterygians: Locomotion energetics of Leedsichthys prob-
lematicus(Actinopterygii,Pachycormiformes).Palaeontology, 61(5),
775–783.https: // doi. org/ 10. 1111/ pala . 12369
Ferrón,H.G.,Martinez-Perez,C.,&Botella,H.(2017).Ecomorphological
inferences inearly vertebrates: Reconstructing Dunk leosteus ter-
relli(Arthrodira,Placodermi)caudalfinfrompalaeoecologicaldata.
Pee rJ, 5, e4081. https:// doi. org/ 10. 7717/ peerj. 4081
Field, D. J., Lynner,C., Brown,C.,&Darroch,S.A.(2013). Skeletalcor-
relates for body mass estimation in modern and fossil flying birds.
PLoS One, 8(11),e82000.
Finnegan, S., & Droser, M. L. (2008). Body size, energetics, and the
Ordovicianrestructuringofmarineecosystems.Paleobiology, 34(3),
34 2–359.https:// doi. org/ 10. 1666/ 07074. 1
Fortel ius, M., & Kappe lman, J. (1993). The larges t land mammal ever
imagined. Zoological Journal of the Linnean Society, 108(1),85–101.
Fuchs, D., Iba, Y., Heyng, A ., Iijima, M., Klug, C., Larson, N. L ., &
Schweiger t,G.(2020).TheMuensterelloidea:Phylogenyandchar-
acterevolutionofMesozoicstemoctopods.Papers in Palaeontology,
6,31–92.ht tps :// doi. o rg/ 10. 1002/ spp2. 1 254
Ginter, M., Ha mpe, O., & Duffi n, C. J. (2010). Chon drichthyes. In H .-
P. Schultze (Ed.), Paleozoic Elasmobranchii: Teeth in handbook of
Paleoichthyology(Vol.3D,pp.1–168).VerlagDr.FriedrichPfeil.
Gottfried,M.D.,Compagno,L. J.V.,& Bowman, S. C. (1996).Sizeand
skeletalanatomyofthegiant“megatooth”sharkCarcharodon meg-
alodon.InA.P.Klimley&D.G.Ainley(Eds.),Great white sharks: The
biology of Carcharodon carcharias(pp.55–66).AcademicPress.
Granger,W.,Gregory,W.K.,&Osborn,H.F.(1936).Furthernotesonthe
giganticextinctrhinoceros,Baluchitherium, from the Oligocene of
Mongolia. Bulletin of the A merican Museum of Natural History, 72, 1.
Greer,A .E.(1974).Onthemaxim umtotalle ngthofthesalt-watercroco-
dile(Crocodylus porosus).Journal of Herpetology, 8(4),381–384.
Griffiths,L.M.,Eagle,R.A.,Kim,S.L.,Flores,R.,Becker,M.A.,Maisch,
H. M., IV, Trayler, R. B. , Chan, R. L ., McCormac k, J., Akhta ra, A.
A., Tripatib, A. K., & Shimada, K . (2023).Endothermic physiology
ofextinct megatooth sharks.Proceedings of the National Academy
of Sciences of the United States of America, 120(27 ), e2218153120.
https:// doi. org/ 10. 1073/ pnas. 22181 53120
Grillo,O. N.,&Delcourt, R.(2017).Allometryandbody length of abe-
lisauroid theropods: Pycnonemosaurus nevesi is the new king.
Cretaceous Research, 69,71–89.
Grogan,E.D.,& Lund, R. (2011). Superfoetative viviparity inacarbon-
iferous c hondrichthy an and reprod uction in ear ly gnathosto mes.
Zoological Journal of the Linnean Society, 161(3), 587–594.ht tp s://
d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 6 - 3 6 4 2 . 2 0 1 0 . 0 0 6 5 3 . x
Head,J.J.,Bl oc h,J.I.,Ha st in gs ,A .K.,Bourque,J.R. ,C ad en a,E.A.,H er re ra,
F.A.,Polly,P.D.,&Jaramillo,C.A .(2009).Giantboidsnakefromthe
Palaeoceneneotropicsrevealshotter pastequatorialtemperatures.
Nature, 457,715–717.h t t p s : / /d o i . o r g / 1 0 . 1 0 3 8 / n a t u r e 0 7 6 7 1
Head,J.J.,Gunnell,G.F.,Holroyd,P.A.,Hutchison,J.H.,&Ciochon,R.
L.(2013).Giantlizardsoccupiedherbivorousmammalianecospace
duringthePaleogenegreenhouseinSoutheastAsia.Proceedings of
the Royal Society B, 280, 20130665. https:// doi. org/ 10. 1098/ rspb.
2013. 0665
Hender son, D. M. (2010). P terosau r body mass es timates fro m three-
dimensional mathematical slicing. Journal of Vertebrate Paleontology,
30(3),768–785.
Herridge,V.L.,&Lister,A.M.(2012).Extremeinsulardwarfismevolved
in a mammoth. Proceedings of the Royal Society B, 279(1741),3193–
3200. https:// doi. org/ 10. 1098/ rspb. 2012. 0671
Hodnett,J.P.M.,Grogan, E. D.,Lund, R.,Lucas,S.G.,Suazo, T.,Elliott,
D. K., & Pru itt, J. (2021). Ctenac anthiform shar ks from the late
Pennsylvanian(Missourian)TinajasmemberoftheAtrasadoforma-
tion,centralNewMexico.Bulletin - New Mexico Museum of Natural
History and Science, 84,391–424.
Hone,D.W.,Farke,A.A.,&Wedel,M.J.(2016).Ontogenyandthefos-
silrecord:What, ifanything, is anadult dinosaur?Biology Letters,
12(2),20150947.https:// doi. org/ 10. 1098/ rsbl. 2015. 0947
Jeffery,J.(1998).The morphology and phylogeny of the European members
of order Rhizodontida (Pisces: Sarcopterygii).Un i v ersi t y ofC a m b ridg e .
Jobbins, M., Rücklin,M., Ferrón, H. G.,& Klug, C. (2022). A new sele-
nosteidplacodermfromthelateDevonianoftheeasternanti-atlas
(Morocco) with preserved body outline and its ecomorphology.
Frontiers in Ecology and Evolution, 10, 969158 . https:// doi. org/ 10.
3389/ fevo. 2 022 . 969158
Karpinsky, A. P. (1899). Über die Reste von Edes tiden und die neue
Gattung Helicoprion. Verhandlungen der Russisch- Kaiserlichen
Mineralogischen Gesellschaft, 36,361–475.
Kast,E.R.,Griffiths,M.L.,Kim,S.L.,Rao,Z.C.,Shimada,K.,Becker,M.
A.,Maisch,H.M.,Eagle,R.A.,Clark,C.A.,Neumann,A.N.,Lüdecke,
T.,Leichliter,J.N.,Martínez-García,A .,Akhtar,A.A .,Wang, X. T.,
Haug, G.H., & Sigman, D. M. (2022). Cenozoicmegatooth sharks
occupiedextremelyhightrophicpositions.Science Advances, 8(25),
ea bl6 52 9. https:// doi. org/ 10. 1126/ sciadv. abl6529
Knell, R. J. (2009). On the analysis of non-linear allometries. Ecological
Entomology, 34, 1–11. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 3 1 1 . 2 0 0 8 .
0 1 0 2 2 . x
Knutsen,E.M.,Druckenmiller,P.S., &Hurum,J. H. (2012). Anewspecies
of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian
of central Spitsbergen, Norway. Norwegian Journal of Geolog y, 92,
235–258.
Lambert, O., Bianucci, G., Post, K ., De Muizon, C.,Salas-Gismondi, R.,
Urbina,M., & Reumer,J. (2010).The giantbite of a new raptorial
sperm whalefromtheMioceneepoch ofPeru.Nature, 466 (7302),
105–108.
Langston,W.(1965).FossilcrocodiliansfromColombiaandtheCenozoic
historyoftheCrocodilia in SouthAmerica. University of California
Publications in Geological Sciences, 52,1–168.
Larramendi, A. (2015). Shoulder height, body mass, and shape of pro-
boscideans. Acta Palaeontologica Polonica, 61,537–574.ht t p s : // doi.
org/ 10. 4202/ app. 00136. 2014
Lebedev,O. A.(2009). A new specimen of Helicoprion Karpinsky,1899
fromKazakhstanianCisuralsandanewreconstructionofitstooth
whorlpositionand function.Acta Zoologica, 90,171–182. h t tps://
d o i . o r g / 1 0 . 1 1 1 1 / j . 1 4 6 3 - 6 3 9 5 . 2 0 0 8 . 0 0 3 5 3 . x
Lebedev,O.A.,Itano,W.M.,Johanson,Z.,Alekseev,A.S.,Smith,M.M.,
Ivanov,A.V.,&Novikov,I.V.(2022).Toothwhorlstructure,growth
andfunctioninahelicoprionidchondrichthyanKarpinskiprion(nom .
Nov.)(Eugeneodontiformes) with a revision ofthe family compo-
sition. Transactions of the Royal Society of Edinburgh, Earth Science,
113,337–360.ht tps:// doi. o rg/ 10. 1017/ S1755 69102 20002 51
Lee, A.H., & Werning, S.(2008). Sexual maturity ingrowingdinosaurs
does not fit reptilian grow th models. Proceedings of the National
Academy of Sciences of the United States of America, 105(2),582–587.
Leriche,M.(1926).Lespoissonster tiairesdelaBelgique.IV.Les Poissons
néogènes. Mémoires du Musée royal d'Histoire naturelle de Belgique,
32,367–472.
|
15 of 16
GAY FO RD et al .
Lingham -Soliar, T. (1995). Anatomy and fun ctional mor phology of the
largest marine reptile k nown, Mosasaurus hoffmanni(Mosasauridae,
Reptilia) f rom the upper c retaceous , upper Maas trichtian of Th e
Netherlands.Proc. R. Soc. B, 3 47(1320),155–180.
Lomax,D.R., DelaSalle, P.,Massare,J.A .,&Gallois,R.(2018). Agiant
lateTriassicichthyosaurfromtheUKandareinterpretationofthe
AustCliff‘dinosaurian'bones. PLoS One, 13(4), e0194742. h tt p s : //
d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 9 4 7 4 2
Lomax , D.R ., de la Salle, P., Peril lo, M., Reynolds , J., Reynolds, R ., &
Waldron, J. F.(2024).Thelast giants: New evidence for giant late
Triassic (Rhaetian) ichthyosaurs from the UK. PLoS One, 19(4),
e0 30 02 89. h t t p s : / /d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 3 0 0 2 8 9
Mallon,J.C.(2017).Recognizingsexualdimorphisminthefossilrecord:
Lessons from nonavian dinosaurs. Paleobiology, 43(3), 495–507.
https:// doi. org/ 10. 1017/ pab. 2016. 51
Mallon,J.C.,&Hone,D.W.E.(2024).Estimationofmaximumbodysize
infossilspecies:Acasestudyusingtyrannosaurusrex.Ecology and
Evolution, 14, e11658. https:// doi. org / 10. 10 02/ ece3. 11658
Manger,W.L., Meeks,L.K.,&Stephen, D.A.(1999).InF.Olóriz&F.J.
Rodríguez-Tovar(Eds.),Advancing research on living and fossil ceph-
alopods: Development and evolution form, construction, and function
Taphonomy, Palaeoecology, Palaeobiogeography, biostratigraphy, and
basin analysis(pp.77–89).SpringerUS.
Marjanović,D.,&Laurin,M.(2007).Fossils,molecules,divergencetimes,
and the origin of lissamphibians. Systematic Biology, 56(3),369–388.
htt ps:// doi. org/ 10. 10 80/ 10 635 15 070 1397635
McCormack, J., Griffiths, M. L., Kim, S. L., Shimada, K., Karnes, M.,
Maisch, H., Pederzani, S., Bourgon, N., Jaouen,K., Becker, M. A .,
Jöns,N.,Sisma-Ventura,G.,Straube,N.,Pollerspöck,J.,Hublin,J.J.,
Eagle,R.A.,&Tütken,T.(2022).TrophicpositionofOtodus megal-
odonandgre atwhi tesha rks thr ought imere ve ale db yz incis otope s .
Nature Communications, 13, 2980.
McGhee, G. (2018). Carboniferous giants and mass extinction: The late
Paleozoic ice age world.ColumbiaUniversityPress.
McHenry, C. R. (2009). Devourer of gods: The palaeoecology of the
Cretaceous pliosaur Kronosaurus queenslandicus.[Doctoraldisserta-
tion].UniversityofNewcastle,Newcastle.
Miles, R.S.,&Westoll, T.S.(1968).The placoderm fishCoccosteus cus-
pidatus miller ex A gassiz from the middle old red sandstone of
Scotland. Part I. Descriptive morphology. Transactions of the Royal
Society of Edinburgh, 67,