ArticlePDF Available

Abstract and Figures

Body size is of fundamental importance to our understanding of extinct organisms. Physiology, ecology and life history are all strongly influenced by body size and shape, which ultimately determine how a species interacts with its environment. Reconstruction of body size and form in extinct animals provides insight into the dynamics underlying community composition and faunal turnover in past ecosystems and broad macroevolutionary trends. Many extinct animals are known only from incomplete remains, necessitating the use of anatomical proxies to reconstruct body size and form. Numerous limitations affecting the appropriateness of these proxies are often overlooked, leading to controversy and downstream inaccuracies in studies for which reconstructions represent key input data. In this perspective, we discuss four prominent case studies (Dunkleosteus, Helicoprion, Megalodon and Perucetus) in which proxy taxa have been used to estimate body size and shape from fragmentary remains. We synthesise the results of these and other studies to discuss nuances affecting the validity of taxon selection when reconstructing extinct organisms, as well as mitigation measures that can ensure the selection of the most appropriate proxy. We argue that these precautionary measures are necessary to maximise the robustness of reconstructions in extinct taxa for better evolutionary and ecological inferences.
Examples of reconstructions of extinct megafauna, showing early estimates of body size/form now thought to be inaccurate (grey silhouettes), and more recent estimates, the validity of which remain uncertain (black silhouettes). Original work and sources of these reconstructions are listed in the Data S1, and we do not necessarily endorse any particular reconstruction over others. Credit for the original silhouettes used to produce this figure are as follows: Guillame Dera, CC0 1.0 (Enchoteuthis before), Tyler Greenfield with input from Dirk Fuchs, CC‐BY 3.0 (Enchoteuthis after), Scott Hartman, CC‐BY 3.0 (Seismosaurus), JF Studios, CC0 (Pliosauridae), T. K. Robinson CC‐BY 3.0 (Mosasaurus), Nobu Tamura (Josephoartigasia body), Gustavo Lecuona (Josephoartigasia head), both CC‐BY 3.0, Andrews (1985) (Rhizodus), Pimiento et al. (2024) (Glyptapsis), Nobu Tamura (modified by T. Michael Keesey; Beelzebufo), Granger et al. (1936) (Paraceratherium before), Larramendi (2015) (Paraceratherium after), Russell Engelman, modified from Hodnett et al., 2021, CC‐BY 4.0 (Ctenacanthus), Scott Hartman, CC‐BY 3.0 (Machimosaurus), Mark P. Witton and Darren Naish, CC‐BY 3.0 (Quetzalcoatlus), Dal Sasso et al. (2005) (Spinosaurus before), Tasman Dixson, CC0 (Spinosaurus after), Dan Niel, CC0 (Argentavis), T. Michael Keesey, CC0 (Gigantopithecus), Anton et al. (2004) (Megalictis). Jagged Fang Designs, CC0 (Ekrixinatosaurus), Ferran Sayol, CC0 (Mourasuchus, body) and Langston (1965, Mourasuchus, head).
… 
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e70218. 
|
1 of 16
https://doi.org/10.1002/ece3.70218
www.ecolevol.org
Received:8May2024 
|
Revised:3August2024 
|
Accepted:12August2024
DOI: 10.1002/ece 3.70 218
VIEWPOINT
Cautionary tales on the use of proxies to estimate body size
and form of extinct animals
Joel H. Gayford1,2,3 | Russell K. Engelman4| Phillip C. Sternes3,5 |
Wayne M. Itano6| Mohamad Bazzi7| Alberto Collareta8,9|
Rodolfo Salas- Gismondi10,11| Kenshu Shimada12,13,14
1DepartmentofLifeSciences,SilwoodParkCampus,ImperialCollegeLondon,London,UK
2Depar tmentofMarineBiologyandAquaculture,JamesCookUniversity,Douglas,Queensland,Australia
3SharkMeasurements,London,UK
4Depar tmentofBiolog y,CaseWesternReserveUniversity,Cleveland,Ohio,USA
5Depar tmentofEvolution,Ecolog yandOrganismalBiology,UniversityofCalifornia,Riverside,California,USA
6MuseumofNaturalHistor y,UniversityofColorado,Boulder,Colorado,USA
7Depar tmentofEarthandPlanetar ySciences,StanfordUniversity,Stanford,California,USA
8DipartimentodiScienzeDellaTerra,UniversitàdiPisa,Pisa,Italy
9MuseodiStoriaNaturale,UniversitàdiPisa,Pisa,Italy
10LaboratoriosdeInvestigaciónyDesarrollo,FacultaddeCienciasyFilosofía/CentrodeInvestigaciónParaelDesarrolloIntegralySostenible,Universit ad
PeruanaCayetanoHerediaLima,Lima,Peru
11Depar tamentodePaleontologíadeVertebrados,MuseodeHistoriaNatural-UniversidadNacionalMayordesanMarcos,Lima,Peru
12DepartmentofEnvironmentalScienceandStudies,DePaulUniversit y,Chicago,Illinois,USA
13Depar tmentofBiologicalSciences,DePaulUniver sity,Chicago,Illinois,USA
14SternbergMuseumofNaturalHistory,For tHaysStateUniversity,Hays,Kansas,USA
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
provide d the original wor k is properly cited.
©2024TheAuthor(s).Eco logy an d EvolutionpublishedbyJohnWiley&SonsLtd.
Correspondence
JoelH.Gayford,DepartmentofLife
Sciences,SilwoodParkCampus,Imperial
CollegeLondon,6NewRoadLewes,BN7
1YW,UK.
Email: jhg19@ic.ac.uk
Funding information
ItalianMinisterodell'Universitàe
dellaRicerca,Grant/AwardNumber:
2022MAM9ZB
Abstract
Bodysizeisoffundamental importancetoourunderstandingofextinct organisms.
Physiology, ecology and life history are all strongly influenced by body size and
shape, which ultimately determine how a species interacts with its environment.
Reconstructionofbodysizeandforminextinctanimalsprovidesinsightintothedy-
namics underlyingcommunity composition and faunal turnover in past ecosystems
andbroadmacroevolutionarytrends.Manyextinctanimalsareknownonlyfromin-
complete remains, necessitating theuse of anatomicalproxiesto reconstruct body
sizeandform.Numerous limitationsaffecting theappropriateness of theseproxies
areoftenoverlooked,leadingtocontroversyanddownstreaminaccuraciesinstudies
forwhich reconstructionsrepresentkey inputdata.In thisperspective,we discuss
fourprominent casestudies(Dunkleosteus, Helicoprion, Megalodon and Perucetus)in
which proxy taxa have been used toestimate body sizeand shape from fragmen-
taryremains.Wesynthesisetheresultsoftheseandotherstudiestodiscussnuances
affecting thevalidity of taxon selection when reconstructing extinct organisms, as
2 of 16 
|
   GAYFO RD et al .
1 | INTRODUC TION
AswrittenbyBartholomew(1981),‘itisonlyaslightoverstatement
tosay thatthe most importantattribute of an animal, bothphysi-
callyandecologically,isitssize’.Thisisbecausebodysize(measured
either as lengthorasmass) and form (i.e.,body shape)fundamen-
tally define the r ange of ecological niches an animal can occupy
(Blanckenhorn,2000; Dalponti et al., 2018;Schmidt-Nielsen,1984).
Reconstructingthebody size andformofextinctanimalscanthus
helpusunderstandtheirpalaeobiologyandpalaeoecology(O'Keefe
et al., 2011; Sander et al., 2021; Sternes et al., 2024).This can in-
cludebasic biologicalinformationlikephysiology,dietary,locomo-
tor,spatialand reproductivebiology(Ferrónetal.,2018; Finnegan
&Droser,20 08; Grogan & Lund, 2011; Pyenson & Vermeij, 2016)
orbroaderevolutionaryand ecologicalpatternslikepredator–prey
relationships,pastecosystemdynamicsandmass extinctionselec-
tivit y (Farlow & Planka, 2002; F innegan & Droser, 2008; G rogan
&Lund,2011; Monarrez et al., 2021; Morgan et al., 19 95; Payne&
Heim,2020; Pyenson & Vermeij,2016; Sallan&Galimberti,2015).
However, estimating the body size and form in extinct species
isoften challenging. Many taxa of interest areknownonly from a
handful of anatomically incomplete specimens, which may exhibit
highlyidiosyncraticbodyplans (Bianuccietal.,2023)or leave little
directevidence(pertainingfromthefossilrecord)ofhowmorphol-
ogyshouldscalewithbodysize.
Thebody sizeand shapeof variousiconic,large-bodied extinct
taxa have b een estimated by combining fossil data with physic al
measurements taken from extant or extinctproxies (Table 1)pre-
sumedtobecloselyrelatedtothetaxoninquestion(Millien,2008;
Millien & Bov y, 2010) and/or to displ ay significant e cological and
morphological similarities (Ferrón et al., 2017). This ‘extant scal-
ing’ approach typically relies on regression equations generated
from modern species or well-preserved fossil taxa, creating allo-
metric scaling relationships that are then applied to homologous
(or superficially similar) features on the extinct study species.
Many studies do not even use regression equations at all, instead
selec ting a single prox y taxon (either a si ngle specimen o r a rep-
resent ative reconst ruction of a sin gle taxon) and th en scaling th e
proxyupordowntothesizeoftheincompletefossilmaterialusing
the proportional size of an anatomical measurement assumed
to scale isometrically (Lingham-Soliar, 1995; Lomax et al., 2024;
Molnar, 2004; Savage, 1973).Importantly,thetermproxy refersto
both taxo n or taxa, and th e specific anato mical or morph ometric
characterthatistypically assumedtobehomologousbetween the
proxytaxonandthetaxonofinterest.Nomethodofreconstructing
bodyformorsizeinextincttaxaisflawless(Nelsonetal.,2023),and
many recent s tudies have proven highly controversial, prompting
thepublicationofrebuttalsandrevisions(Engelman,2022b, 2023a;
Grillo&Delcourt,2017; Millien, 2008;Millien&Bovy,2010; Motani
&Pyenson, 2024; Romano & Manucci, 2021; Sternes et al., 2023,
2024).Differencesinestimated bodysizeacross these studies are
notminor(Figure 1),with revisedsizeestimatesoftenbeinghalfor
lessthantheiroriginallyproposedvalue(e.g.,Cidadeetal.,2019; see
Table S2).These situations feed into a broader problem regarding
scepticismandmistrusttowardsscientists–the‘deathofexpertise’
(Nichols,2017 ).Thefrequencyandmagnitudewithwhichsizeesti-
matesformegafaunaneedtoberevisitedposesdifficultyforscien-
tistsinmaintainingpublictrustandconfidence,potentiallybleeding
intopublicopiniononothermattersofimportanceincludingclimate
changeandconservationissues.
Despite this, palaeobiologists generally agree that some infor-
mationfromextantorextinctproxiesisnecessarytoestimatebody
form and/orsize in extinct animals. Even multivariate or volumet-
ricmodels,whichsome authors regardasmoreaccuratethan sim-
plelinear regressions (Bateset al.,2015; Brassey, 2016;Romano&
Manucci,2021),stillrely ondata andunderlyingassumptionsfrom
modern taxa such as soft-tissue distribution and density (Bates
et al., 2009;Bianuccietal.,2023;Campione&Evans,2020;Motani&
Pyenson, 2024).Volumetricmodelsalsorequiresilhouettesorskele-
talreconstructionsasinputdata(Brassey,2016;Henderson,2010;
Motani, 20 01)–outsideofrarecasesinwhich theentire skeleton
isknown–relyingonpre-existingestimatesofbodysize(e.g.,total
length)andform.Optimisationofbodysizeandformestimatesthus
dependsontheselection of appropriate proxies and mathematical
models while acknowledging the intrinsic limitations of estimations
basedondatafromextantspecies.
Inthisreview, weconsiderfourprominentcase studies ofbody
sizeestimationinextinctorganisms,focusingonmarinemegafauna
(Figure 2).Thesecasestudieswerechosenastheyrepresentarange
of body sizes, ecomorphological niches and geological time inter vals.
well as mitigation measures that can ensure the selection of the most appropriate
proxy.Wearguethat theseprecautionary measuresare necessarytomaximisethe
robustnessofreconstructionsin extincttaxafor betterevolutionary and ecological
inferences.
KEY WORDS
allometricscaling,bodyshape,evolution,fossil,morphology,palaeobiology
TAXONOMY CLASSIFICATION
Paleoecology,Phylogenetics,Taxonomy
   
|
3 of 16
GAY FO RD et al .
TAB LE 1  Taxaofunusuallylargesize(1)whichhavebeenthesubjectofattemptstoestimatetheirbodysizeand/orformfrom
fragmentarymaterial,(2)whichhavereceivedasignificantamountofresearchorpopularattentionduetotheirunusualsize,or(3)forwhich
previousestimatesofsize/shapehavebeencontroversial(denotedwithanasterisk).
Higher taxa Example taxa
Cephalopoda:Nautiloidea Endoceras/Cameroceras*, Rayonnoceras
Cephalopoda: Belemnitida Megateuthis
Cephalopoda: Coleoidea Enchoteuthis(‘Tusoteuthis’)*
Arthropoda:Radiodonta Anomalocaris*
Arthropoda:Eurypterida Jaekelopterus*, Pterygotus
Arthropoda:Myriapoda Arthropleura
Arthropoda:Insecta Meganeura*, Meganeuropsis*
Placodermi:Arthrodira Dunkleosteus*, Titanichthys*, Glyptaspis*
Chondrichthyes:Eugeneodontiformes Helicoprion, Edestus, Parahelicoprion*
Chondrichthyes: Orodontiformes Orodus*
Chondrichthyes: Ctenacanthiformes Ctenacanthus*, Saivodus,the‘TexasSupershark’
Chondrichthyes: Lamniformes Megalodon(Otodus megalodon)*
Osteichthyes: Pachycormiformes Leedsichthys*
Osteichthyes: Salmoniformes Oncorhynchus rastrosus
Sarcopterygii Rhizodus*, Hyneria, Mawsonia*
Temnospondyli Prionosuchus*, Eryops,Mastodonsauridae,the‘PreciousofLesotho’
Anura Beelze bufo*
Squamata:terrestrialtaxa megalania(Varanus priscus)*,Barbaturex
Squamata:Serpentes Titanoboa, Vasuki
Squamata:Mosasauridae Mosasaurus*, Tylosaurus
Testudines Stupendemys, Caninemys, Peltocephalus maturin,Meolaniidae,gianttortoises(Megalochelys atlas*)
Crocodyliformes:Thallatosuchia Machimosaurus*, Metriorhynchidae*
Crocodyliformes:Notosuchia Barinasuchus, Kaprosuchus*
Crocodyliformes:stemNeosuchia Aegisuchus*, Sarcosuchus*
Crocodyliformes: Crocodylia Deinosuchus*, Purussaurus*, Mourasuchus*
Ichthyopterygia Cymbospondylus, Shonisaurus*,‘Shastasaurussikanniensis*,Ichthyotitan*,the‘AustColossus’
Sauropterygia Liopleurodon*, Kronosaurus* Pliosaurus*
Pterosauria Pteranodon, Quetzalcoatlus*, Arambourgiana*Hatzegopteryx*
Dinosauria:flightlessAvialae Dinornithidae*,Aepyornithidae,Dromornithidae*,Gastornithidae*,Phorusrhacidae
Dinosauria:volantAvialae Pelagornithidae*,Argentavis*
Dinosauria:Sphenisciformes Anthropornis*,Pachydyptes*,Kairuku
Dinosauria:non-avianTheropoda Many, e.g., Tyrannosaurus, Spinosaurus*,severalAbelisauridae( Abelisaurus*,Ekrixinatosaurus*)
Dinosauria:Sauropoda Many, e.g., Dreadnoughtus*,‘Seismosaurus’*,Futalognkosaurus*,Bruhathkayosaurus*,Maraapunisaurus*
Dinosauria:Ornithischia Many, e.g., Triceratops, Stegosaurus
Synapsida: Dicynodontia Lisowicia*
Mammalia:Dasyuromorphia Thylacinus cynocephalus*,T. p otens*
Mammalia: Diprotodontia Diprotodon, Thylacoleo*, Procoptodon*
Mammalia: Proboscidea Palaeoloxodon*, Mammuthus
Mammalia: Rhinoceratoidea Paraceratherium*, Elasmotherium*
Mammalia: Cetacea Perucetus*, Livyatan*
Mammalia:Hyaenodonta Megistotherium*, Hyainailouros*, Simbakubwa
Mammalia: Carnivora Arctotherium, Arctodus, Smilodon, Megalictis*
Mammalia: Rodentia Josephoartigasia*, Phoberomys*, Telic o my s*,Casteroides
Mammalia: Primates Gigantopithecus*
Note:KeyreferencesforeachtaxonarelistedinTa b le S1 ,wherefurtherdetailsregardingbodysizeestimatesinthesetaxaarealsoprovided.
Asterisks(*)denotetaxainwhichestimatesofbodysize/formhaveprovencontroversial.
4 of 16 
|
   GAYFO RD et al .
Moreover,thequalityandextentofthefossilrecordofeachofthese
taxa d i f f ermar k e dly,asdo t h eappro a c h e susedt oestima t etheir b o d y
size and form. Otodus megalodon is largely known only from isolated
teethandanincompletevertebralcolumn,anddespitetheexistence
ofmodernrelatives(lamniformsharks),there isdebatesurrounding
thevalidityoftheserelativesasproxies(Sterneset al., 2023, 2024).
Perucetus colossusalsohasmodernrelatives(whales)butisknown
only from vertebrae, ribs and the incomplete pelvis of a single in-
dividual(Bianucci et al.,2023).Bycontrast, Dunkleosteus terrelli is a
Palaeozoicfishthatisalmostexclusivelyknownfromdermalarmour
thatcoveredtheheada ndanteriort runkandhasn omoder nrelative s
(Engelman, 2023b, 2024), and Helicoprion spp., another Palaeozoic
fish,isevenmorechallengingtoreconstruct;notonlydoesithaveno
modern relatives whatsoever but is knownonlyfromisolatedtooth
whorlsofcontentiouspositionandfunction(Karpinsky,1899).Thus,
eachofthesetaxarepresentsaunique‘enigma’inthepalaeontolog-
icalliterature,wherebodysizehasbeenestimatedusingnecessarily
different approaches based on the available data. It is important to
notewhileallofthesecase studies are marinemegafauna,thecon-
cepts and principleswediscuss throughoutthe perspectiveare ap-
plicabletoallextinctanimals(Figure 1; Table 1; Data S1).Weexplore
howandonwhat datathese size estimates were produced andthe
resultingcontroversy in the literature. Subsequently,weusethese
case studies to synthesise broadthematiclimitations in palaeobiol-
ogy and theuse of extant andextinct proxy taxatoestimatebody
size and form i n extinct ani mals, including m athematical , phyloge-
neticandsocialissues.
2 | CASE STUDIES
2.1  |Dunkleosteus terrelli (Placodermi: Arthrodira)
Dunkleosteus terrelli is a large late Devonian arthrodire placoderm,
knownforitsbonyarmourandguillotine-likejaws.However,out-
side of its b ony head and trunk a rmour (Figure 2a), the rest of
its body was composed of perichondrally ossified cartilage. This
material rarely preserves, complicating estimates of body size
and morphology (Carr, 2010; Ferrón et al., 2017). Additionally,
Dunkleosteushasnocloselivingrelativesthatcanbeusedtoin-
terpret its anatomy. Complete remains are known for some smaller
arthrodires(Jobbinsetal.,2022;Miles&Westoll,1968),butthese
FIGURE 1 Examplesofreconstructionsofextinctmegafauna,showingearlyestimatesofbodysize/formnowthoughttobeinaccurate
(greysilhouettes),andmorerecentestimates,thevalidityofwhichremainuncertain(blacksilhouettes).Originalworkandsourcesof
thesereconstructionsarelistedintheDataS1,andwedonotnecessarilyendorseanyparticularreconstructionoverothers.Creditforthe
originalsilhouettesusedtoproducethisfigureareasfollows:GuillameDera,CC01.0(Enchoteuthisbefore),TylerGreenfieldwithinputfrom
DirkFuchs,CC-BY3.0(Enchoteuthisafter),ScottHartman,CC-BY3.0(Seismosaurus),JFStudios,CC0(Pliosauridae),T.K.RobinsonCC-BY
3.0(Mosasaurus),NobuTamura(Josephoartigasiabody),GustavoLecuona(Josephoartigasiahead),bothCC-BY3.0,Andrews(198 5)(Rhizodus),
Pimientoetal.(2024)(Glyptapsis),NobuTamura(modifiedbyT.MichaelKeesey;Beelzebufo),Grangeretal.(1936)(Paraceratheriumbefore),
Larramendi(2015)(Paraceratheriumafter),RussellEngelman,modifiedfromHodnettetal.,2021,CC-BY4.0(Ctenacanthus),ScottHartman,
CC-BY3.0(Machimosaurus),MarkP.WittonandDarrenNaish,CC-BY3.0(Quetzalcoatlus),DalSassoetal.(2005)(Spinosaurusbefore),
TasmanDixson,CC0(Spinosaurusafter),DanNiel,CC0(Argentavis),T.MichaelKeesey,CC0(Gigantopithecus),Antonetal.(20 04)(Megalictis).
JaggedFangDesigns,CC0(Ekrixinatosaurus),FerranSayol,CC0(Mourasuchus,body)andLangston(1965, Mourasuchus,head).
   
|
5 of 16
GAY FO RD et al .
taxa like ly differed fro m D. terrelli in ecological niche and body
shape(Ferrónetal.,2 017).
Dunkleosteus has been tr aditional ly cited as reach ing 5–10 m
in total length (TL). However, these are generally speculative
estimates that omit key methodological details as to how they
were produced, including what taxa or anatomical elements
were used as proxies, what specimensof Dunkleosteuswereex-
aminedand the measurementsusedtoproduce theseestimates
(see Engelman, 2023b; Ferrón et al., 2017 for details), making
these estimates non-reproducible and highlyquestionable. One
exception was Ferrónetal.(2 017),whichcalculatedtheTLofD.
terrelliusingtheupperjawperimeterofselectlarge,nektonicex-
tant sharks to estimateits caudal fin shape, as their method re-
quiredbodysizeasanindependentpredictorvariable.Thisstudy
assumed m outh and bod y size likely correl ate in fishes be cause
predatorsizeiscorrelatedwithpreysize,whichinturncorrelated
with gap e, meaning mo uth size and bod y size may be indire ctly
linked (Ferr ón et al., 2017). However, this st udy did not test if
sharksandarthrodiresshowedcomparablemouthproportionsor
cross-examinetheaccuracyoftheresultingbodylengthestimates
(Engelman, 2023b; Ferrón et al., 2017). Testing this me thod on
complete arthrodires finds arthrodires have proportionally larger
mouths t han sharks , producing over estimates of T L 2–2. 5 times
the actual value (Engelman, 2023a, 2023b). Traditionally cited
lengths for Dunkleosteusalsorequireahyper-elongatetrunk,with
a head of only ~8%TL(seeFigure 1),andhead–bodyproportions
thataremoreextremethaneveneels.Notonlyarethesepropor-
tionsimplausible,buttheyarealsounlikecompletearthrodiresor
non-anguilliformfishes(inwhichheadlengthisgenerally~17–3 0 %
TL; Engelman, 2023b).
Becauseoftheinabilityofmouthdimensionstoreliablyestimate
thesizeofarthrodires,Engelman(2023a)attemptedtoestimatethe
size of Dunkleosteusbasedonthecombinedlengthoftheneuro-
cranial a nd branchial reg ions of the head (i.e ., head length m inus
preorbital length; Engelman, 2023a), reas oning that the s caling of
these ar eas with body si ze was likely stro ngly constr ained due to
their function. This study (Engelman, 2023a) selected a variable
basedonhomologouslandmarksbetweenDunkleosteus and a wide
range of extant proxies. It also tested the initial assumption of
correlat ion to ensure that sca ling patter ns were consiste nt across
taxa. Fur thermore, it used complete arthrodires as case studies
to ensure th at the method accu rately predict ed body size in this
FIGURE 2 Fossil(orcast)materialforeachofthefourcasestudies(skullandtrunkarmourfromacastofDunkleosteus terrelli,(a);
tooth whorl from Helicoprionspp,(b);toothfromOtodus megalodon,(c);andvertebrafromPerucetus colossus,(d);respectively),along
withsilhouettesrepresentingreconstructionsofbodysizeandform,wheregreysilhouettesarepastreconstructionsnowthoughtto
beinaccurateandblacksilhouettesarerecentreconstructions,thevalidityofwhichremainsuncertain.Scalebars = 5 cmforfossil/cast
materialand2 mforsilhouettes.Imagecreditsforfossil/castmaterialareasfollows:ArchivalPhotographGEO82014ofcastCMNH5768,
FieldMuseumofNaturalHistory,Chicago,Illinois,USA(a),Helicoprion bessonowiKarpinsky,1899,holotypespecimen,F.N.Chernyshev
CentralScientificResearchGeologicalProspectingMuseum,St.Petersburg,Russia,1/1865(b),Otodus megalodontoothMUSM2093,
Sacaco,MuseodeHistoriaNatural(UNMSM)Peru(c),Perucetus colossusholotypeMUSM3248,MuseodeHistoriaNatural(UNMSM)Peru.
SilhouetteimagesweremodifiedfromimageusedwithpermissionbyYangSong(grey,a)createdbyRussellEngelman(black,a),usedwith
permissionfromWilliamSnyderunderaCCBY-SA4.0licence(b),ormodifiedfromSternesetal.(2024)(c)andBianuccietal.(2023)(d).
6 of 16 
|
   GAYFO RD et al .
group,suggestingthatthismethodshouldproducereliablesizesfor
Dunkleosteusintheabsenceofcompletespecimens.Thisresultedin
lengthsofonly 3.4–4.1 mfor largeD. terrelli individuals, with even
the upperends of the marginof errorbarely overlapping with the
smallestlengthsinpreviousstudies(Engelman,2023a).Independent
testsbyscalingfromotherarthrodiresproducedsimilarresults,and
thereconstructedbodyshapeforDunkleosteus better agrees with
thecomparativeanatomy of otherarthrodires(e.g., in fin location/
sizerelative toTLandtrunk armourdimensions;Engelman,2023a,
2024).Arthrodires, actinopterygians and chondrichthyansshowed
significant, clade-specific differences in overall body form, with
complete arthrodires exhibiting a much stockier body plan com-
paredtochondrichthyans(Engelman,2023a).
2.2  |Helicoprion spp.: (Chondrichthyes:
Eugeneodontidiformes)
Helicoprion,foundgloballyinPermiandeposits,isarguablythemost
widely recognised Palaeozoic chondrichthyan. Its notoriety stems
from theunique nature ofits spiraliform toothwhorls(Figure 2b),
which constitutepractically the only known remains of thetaxon.
The lack of any r easonable ex tant or ex tinct proxi es to the tooth
whorls of Helicoprion has presented significant difficultiesininfer-
ring its body size and form. For some time af ter the description of
HelicoprionbyKarpinsky(1899),therewas no agreement as to the
position of the tooth whorl on the body of the animal or even its
nature (e.g., dermal spine or oral teeth), making inference of body
sizeorformimpossibl e.AlthoughKarpinsk y(1899)consideredother
interpre tations, he f avoured a locati on of the tooth whor l mostly
externalto the mouthandextendedfromtheupperjaw.However,
basedonexaminationof IMNH (IdahoMuseumofNaturalHistory)
37899,auniquespecimenofH. davisii from the Permian Phosphoria
FormationofIdaho,USA,withremainsofcranialcartilagepreserved,
Bendix-Almgreen(1966)concludedthe toothwhorl was located at
thesymphysisofthelowerjaw,internaltothebuccalcavity,andthat
nosimilartoothwhorlwasintheupperjaw.
Subsequently,Lebedev(2009)madethefirstqua ntitativerecon-
structionofthe bodysizeandshapeofHelicoprion,using(1)extant
odontocetes(toothedwhales)and(2)extincteugeneodontsknown
from nearly completeremains (Caseodus, Romerodus, and Fadenia)
as proxies . The first p roxy was base d on a presumed si milarity in
size, diet (fish and cephalopods)and habitat (pelagic) andthe sec-
ond on phylogenetic proximity.Lebedev's reconstruction featured
an elongated lower jaw, with the tooth whorl placed near the distal
end,andconventionalfusiformfishbodyproportions.Basedonthe
eugeneo dont proxies, Leb edev inferred a hea d length of 2.5–4 .0
times the toothwhorldiameter.An assumption ofa ratio of body
lengt h to head lengt h of 5.0 (conventional f ish body propo rtions)
yieldsabodylength(TL)of12.5–20timesthetooth-whorldiameter.
Foratoothwhorlwithadiameterof 0.56 m(the largestone listed
inTapanila&Pruitt,2013),thiscorrespondstoarangeof7.0–11.2 m
TL. Later examination by Tapanilaetal. (2013) of IMNH 37899by
X-CT(X-raycomputedtomography)showedthatHelicoprion's lower
jaw was shor ter than Lebedev envisioned and that the ratio of the
head length to the tooth-whorl diameter was approximately 2.5
(Tapanilaetal.,2020, figure3), resultinginaninferredbody length
ofapproximately7.0 mTL.
2.3  |Otodus megalodon (Chondrichthyes:
Lamniformes)
The megatooth shark, Otodus megalodon,isani conicextinctel asmo-
branchrepresentedprimarilybygiganticteeth(Figure 2c)commonly
foundfromthemid-MiocenetotheEarlyPliocenenearlyworldwide
(Boessenecker et al.,2 019; Cappetta, 2012; Cooper et al., 2020,
2022; Gott fried et al., 1996; Sternes et al., 2023). The biolog y of
O. megalodon has remained difficult to decipher. Although some
vertebral remains, placoid scales, and fragments of tessellated car-
tilage of O. megalodonhavebeenreported(Bendix-Almgreen,1983;
Leriche, 1926; Shimada et al., 2023), the li mited fossil recor d has
hampered attempts to estimate its true size and to reconstruct
body form.When such attemptsaremade,theextantwhite shark
(Carcharodon carcharias)hasbeenassumedtobealogicalecological
proxyduetoitssimilartoothformandtrophicecologytoO. megalo-
don(Collaretaetal.,2017;Gottfriedetal.,1996).
The most common size estimation method for O. megalodon has
beenextrapolationfromscalingrelationshipsbetweendentalmea-
surementsandtotalbodylengthsinC. carcharias(Perezetal.,2021;
Randall, 1973; Shimada, 2002, 2019).These studiesgenerallysug-
gestamaximum lengthof15–20 mforO. megalodon.Alternatively,
theallometricrelationshipofvertebraldiametersinextantC. carch-
arias(Gottfriedetal.,19 96)hasbeenusedtoextrapolatebodysize
based on incremental growth bands preser ved in a set of vertebral
specimens of O. megalodon,producingalength estimateatbirth of
2 m(Shimadaetal.,2021).
Likewise, the body form of O. megalodon has traditionally been
modelledafterextantC. carcharias(Bendix-Almgreen,1982; Cooper
et al., 2020, 2022;G ottfrie d et al., 1996). This see med logica l es-
peciallyinearlierstudies(Applegate&Espinosa-Arrubarrena,1996;
Gottfriedetal.,1996),duetothesimilarlyserrateddentalmorphol-
ogy,thefossilsharkwasplacedinthegenusCarcharodon(Lamnidae)
with the interpretation thatC.’ megalodon was the direct ancestor
ofextantC. carcharias.Asofnow,thefossilspeciesisconsideredto
belong to Otodus(Otodontidae)ratherthanCarcharodon (Shimada
et al., 20 17). DespiteC. carcharias and O. megalodon likely not hav-
inganydirectphylogeneticlinkwithinLamniformes(Shimada,2022;
Shimada et al., 2017; Sternes et al., 2023, 2024),theuseofC. carcha-
riasasaproxyhascontinuedbasedontheassumptionthatO. mega-
lodonwasanactive,regionallyendothermic(Ferrón,2017)predator
liketheextantlamnids(Cooperetal.,2020, 2022).
Geochemical evidence has subsequently confirmed that O.
megalodon was a ‘warm-blooded’ shark (Griffiths et al., 2023)
occupyin g a high trophic p osition (Kas t et al., 2022; McCormack
et al., 2022). However, the assumption that O. megalodon must
   
|
7 of 16
GAY FO RD et al .
haveresembledextantC. carchariashasbeencalledintoquestion.
Supportfortherelationshipbetweenbodyformandthermophysi-
ologyinsharkshasweakened(Dolton,Jackson,etal.,2023; Dolton,
Snelling, et al., 2023; Sternes et al., 2023),andtheabsenceofkeels
onitsscalessuggeststhatO. megalodon was likely not a fast swim-
mer like ex tant lamnids. Add itionally, the total com bined length
of a parti al vertebra l column of O. megalodon from the Miocene
ofBelgium, previously estimated tobefrom a9.2-m-TLindividual
based on comparisonsof vertebral diameters in extant C. carch-
arias(Gottfried etal., 19 96), was measured to be11.1 m(Cooper
et al., 2022).Thisdiscrepancy–thatis,theactualmeasuredlength
ofthe incomplete vertebral column (not considering the head or
caudal fin)beingsubstantiallylongerthantheTLestimateforthis
specimenbasedontheextantC. carcharias(9.2 mTL)–stronglyin-
dicates that O. megalodonwasnotmerelyalargerversionofextant
C. carchariasbutratheraproportionatelyslender,more elongate
shark(Sternesetal.,2024).Theexact bodymorphologyandmax-
imum TL of O. megalodon remain uncer tain, but the implications
aresignificant.NotonlymaytheuseofextantC. carcharias not be
appropriate for deciphering the body form and body size of O. meg-
alodon,buttheobservationalsostronglyindicatesthatallprevious
TLestimatesbased ondental proportions of extant C. carcharias,
which conc luded a maximu m TL of at least 15 m for th e species
(Shimada,2019),maybeunderestimates.
2.4  |Perucetus colossus (Mammalia: Artiodactyla)
Perucetus colossus is a recently described, large-bodied archae-
ocete(stemcetacean)fromthelatemiddleEoceneofPeru(Bianucci
et al., 2023). Thistaxon is only represented by the holotype, con-
sistingof13vertebrae(Figure 2d),4ribs,and therightinnominate.
Perucetus is considered a member of Basilosauridae, the derived
group of ful ly aquatic archa eocetes that may re present the sis ter
group of crow n Cetacea. Perucetus exhibits extreme pachyostosis
and osteosclerosis, traits generally associated with shallow diving in
modernaquaticmammals(Buffréniletal.,2010).
Despite belonging to a clade with modern representatives
(crownCetacea),therearenoclose extantanaloguesforthe large,
serpen tiform body pla n of basilosaurid s. Thus, to recon struct the
body size of Perucetus,Bianuccietal.(2023)utilisedmultipleproxies
includingsirenians and neocetes.Bianuccietal. (2023) firstscaled
upanddilatedadigital3Dmodeloftheskeletonofthebasilosaurid
Cynthiacetus peruvianussuchthatthe volumeof itsbones equalled
that of the corresponding skeletal elements of P. colossus(produc-
ingmultiplemodelstoaccountfortheuncertainpositionofthelat-
ter's ver tebrae and var iable verteb ral count among b asilosaurids),
yieldin g estimates of s keletal leng th and volum e ranging bet ween
~17–20 mand2.9–4.1 m3,respectively.Bodymassvalueswerethen
calculatedfortheP. colossus holotype based on the range of skele-
talfraction(SF)observedinextantmarinemammals,yieldingmini-
mumandmaximumestimatesof85 t(assumingthemeanSFoflarge
Trichechus manatus and the minimum skeletal volume) and 340 t
(assumingtheSFofMesoplodon europaeusandt hemaximumskel eta l
volume),respectively(Bianuccietal.,2023).
Subsequently,Motani and Pyenson (2024) raised severa l criti-
cisms of Bianucci et al. (2023)'s analysis. Forexample, Motaniand
Pyenson(2024)suggested that itwould be impossible to fit 180–
340 t of bio mass (correspon ding to the upper p ortion of Bia nucci
etal. (2023)'srange ofbody mass estimates)into thevolume of a
20 mwhale, withtheir volumetricmethods instead producing esti-
matesof60–114 tusing volumetricmethods.Theyalsoquestioned
Bianuccietal.(2023)'suseofasimpleSFratioasopposedtoanal-
lometricregressionequation,arguingthatacrossmarineandterres-
trialmammals(includingbothneocetesandsirenians),SFappearsto
scalewithpositiveallometryratherthanisometry.Usingregression
equations,MotaniandPyenson(2024)producedestimatesof135–
193 tassuming aneocete-likeSF and 40.0–54.6 t using a sirenian-
likeSF (Motani & Pyenson, 2024).Nevertheless,thisrevisedbody
mass estimate is not free of limitations either, namely, reliance on a
modelcreatedfroma2Dpalaeoartisticreconstructionthatwasnot
depicted in direc t lateral view. This method is by no means intrin-
sically flawedbut is heavilydependent on approximationofthree-
dimensionalbodyproportions.Alternatively,asilhouettecouldhave
beenproducedfromthemodifiedCynthiacetus model presented by
Bianuccietal.(2023),whichcouldhaveyieldedadifferentresult.
3 | WHY ESTIMATING THE BODY
SIZE AND FORM OF EXTINCT ANIMALS
MAT TER S
The body size and form estimates presented in each of the case
studiesdiscussedherehavesignificantconsequencesforourunder-
standing of vertebrate macroevolution, beyond thepalaeoecology
ofthe individualtaxa themselves. Inthe case of Dunkleosteus, the
Devonianwaslongthoughttobeaperiodofexplosivebodysizeex-
pansioninver tebrates,inpart,becauseoftheabruptappearanceof
largeplacoderms(includingDunkleosteus; Dahl et al., 2010 ;Sallan&
Galimberti,2015).However,thesamemethodologythatdownsized
thisiconictaxon (Engelman,2023a)also produceslengths<5 m for
other large Devonian placoderms like Gorgonichthys and Titanichthys.
Other Devonian and early Carboniferous vertebrates like ctena-
canthsandsarcopterygiansappeartohavereachedsimilarmaximal
sizes (Engelm an, 2023a; Jeffer y, 1998 ; Young et al., 2013), imply-
ing that ver tebrates likely did not reach the size of modern marine
megafauna(i.e.,whitesharks,baskingsharks,whalesharksandce-
taceans)until wellintotheCarboniferous(Engelman,2023a),much
laterthan traditionallythought.This is ofgreat importanceforour
understandingofgigantism and bodysizeevolution invertebrates,
aswellasthestructureandfunctionofPalaeozoicecosystems.
Similar insights into macroevolutionary trends can be de-
ciphered from Perucetus, which indicates at least two distinct
periods of cetacean gigantism (Bianucci et al., 2023). Despite
the controve rsy over its we ight, both Bi anucci et al. (2023) a nd
Motani andPyenson(2024)agree that Perucetus was ver y large,
8 of 16 
|
   GAYFO RD et al .
comparableinsizetomodernphyseteridsandrorqualsandatleast
anorder ofmagnitudeheavierthanthe next largestPalaeogene
whale(Basilosaurus;seeMotani&Pyenson,2024:p.18).Crucially,
Eocenebasilosauridsevolved giant bodysizesincoastalsettings
with high seafloor productivityand globalcoolingratherthan in
thepelagic,open-marinerealmliketheirmodernmysticeterela-
tives(Bianucciet al., 2019).Similarly,alongwiththeriseof apo-
tentialecologicalcompetitor(whiteshark,Carcharodon carcharias:
Boessenecker et al., 2019; McCormack et al., 2022),lateNeogene
global cooling and restructuring of ocean circulation coincides
with the demise of O. megalodon, w hich may have been e xacer-
batedbyitslargesize(Condamineetal.,20 19).
Body size es timates of ext inct tax a also contribu te to our un-
derstanding of trophic dynamics within past ecosystems, as body
size and form are critic al in determining the range of predator and
preyspecieswith whicha species caninteract.DuringthePermo-
Carboniferous,mostlargemarinevertebrateswerechondrichthyans
(Schnetzetal.,2024),manyofwhich(e.g.,Petalodontiformes)can-
not easily be compared to modern chondrichthyans in terms of their
dental a natomy or body sha pe (Ginter et al., 2010). T his included
variouswhorl-toothedeugeneodonts,includingHelicoprion, Edestus
giganteus (Newberry, 1889) and Karpinskiprion ivanovi (Lebedev
et al., 2022), which were among the largestorganismsintheir re-
spective ecosystems. Without reliable estimates of body size in
Helicoprionand related eugeneodonts,it is difficult to reconstruct
thestructureofPermo-Carboniferousmarinefoodwebsordeter-
mineifpatternsofbodysizeevolutioncorrelate withother events
such as the Carboniferous Rainforest Collapse (McGhee, 2018;
Schnetz et al., 2024)orgigantismproposedformarineinvertebrates
(McGhee,2018).
Several s tudies identif ying likely spurious size estim ates have
alsodiscussedtheirimmediatedownstreamconsequenceson our
understanding of evolutionary history (Engelman, 2023a, 2023b;
Forteli us & Kappelman , 1993; G rilo & Delcour t, 2017; Roma no &
Manucci,2021; Rovinsk y et al., 2020).Inparticular,because many
ofthesetaxaexistattheextremes ofthe variationseen in nature,
spurioussizeestimateshavethepotentialtobiasdiscussionsabout
biomechanical and physiological limits of animal size (Witton &
Habib,2010)orpatternsofbodysizeevolutioninevolutionaryhis-
tory (Engelman,2023a, 2023b;Grillo&Delcourt, 2017;Romano&
Manucci,2021). One exampl e of this is estim ating the bod y mass
of large Late Cretaceous azdarchid pterosaurs such as Pterodon
longiceps and Quetzalcoatlus northropi. These are some of the larg-
est known flying organisms and thus provide key information to
discussions of possible biomechanical limits in powered flight. As
notedbyWittonandHabib (2010: p.2)‘[a]ccuratelymodellingthe
size of giant forms is essential to appreciating their flight abilit y as
evenrelativelysmallover-predictionsofwingspansmaytranslateto
consider able over-estima tes of mass and subseq uently inaccur ate
appreci ation of flight pe rformance’. Sever al biomecha nical studi es
concludedthese taxa wereincapable of powered flight, at leastin
part onthe basis of estimatedbody mass (Henderson, 2010; Sato
et al., 2008).However,subsequent research hasshown thatthese
values arelikelyoverestimates and/ortheresult of incorrectmod-
ellingofbodyforminavolumetricmodel (Witton,2008;Witton&
Habib,2010). Alter natively, work into th e launch mecha nics of Q.
northropiassumedflightcapabilityunderabipedal,bird-likelaunch-
ingmodel(Chatterjee&Templin,2004), resultinginanuppermass
estimateof75 kg, thatwould require theanimaltobe nearly 80%
airbyvolume(Witton,2008).Hadextremesizeestimatesforthese
taxa been upheld bysubsequent studies, it would have enormous
consequences for our understanding of flight biomechanics and
macroevolutionarytransitionsinflightcapabilityinallvolanttaxa.
Theissueinsuchcasesisnotthatsizeestimatessometimeshave
to be revise d. This is genera lly a natural con sequence of work ing
with fra gmentar y taxa often m uch larger than p otential compl ete
anatomicalproxies(seebelow).Theissueisthatvariationinsizees-
timatesbet weenstudiesismassive,withestimatesinonestudyfre-
quently half (ortwice) thosepresented inothers(seeDataS1),and
these differences seem to be driven by methodological problems
and data p ractices r ather than tr ue unknowns in es timating bo dy
size and/or form. This results in a potentiallymajor and pervasive
source of error in palaeoecological and evolutionary studies given
that many relyto someextent onbody size/form estimates of ex-
tincttaxa.Furthermore,becausethebodysizeofextinctorganisms
isa quality oftenimmediatelyvisible to the public, extremely large
swings in size estimates reduce public confidence in the ability of
pal ae ontologist stosp eakauthoritati velyaboutextinctlife.Apoten-
tialriskorconsequenceisthatthisphenomenonmayleadtopublic
disillusionmentwithpalaeontologyandanerroneousorunfounded
beliefthatpalaeontologistsdeliberatelyexaggeratethesizeoftheir
subjectsforprestigeinresponsetohigh-profilestudiesrevisingsize
estimates.
4 | LIMITATI ON S
4.1  | Modelling and extrapolation
Themostfundamentalrequirementforpredictingbodysizeand/or
formofanextinctspeciesisthattheproxyaccuratelypredictsbody
size in the fi rst place (Bate s et al., 2009). This mi ght seem trivia l,
butdifferentphysicalfeatures exhibit diverse scaling relationships
acrosstaxa,and theselectionofspecificanatomicalunits tomodel
bodysizerequirescarefulexaminationandabundantdata(e.g.,Field
et al., 2013). Nelso n eta l .(2023)foundthatlimbbonecross-sectional
dimensions (diameters and circumferences), long considered the
strongest predictors of body size among terrestrial vertebrates
(Anderson et al., 1985; Campione& Evans, 2012;Ruff,19 90 ), had
significant,non-randombiasindependent of phylogenybutseem-
ingly correlated withbodyrobustness – a factor that is difficultto
controlformathematicallywithoutcircularlogic.Unfortunately,ex-
istingstudiesoftendonotexplorepossiblesourcesofallometricbias
oruncertainty whenselectingsizeproxies, butassumeacloseand
consistentrelationship withbody sizebetweentheproxyandfocal
taxaapriori(Cooperetal.,2020, 2022; Ferrón et al., 2017;Gottfried
   
|
9 of 16
GAY FO RD et al .
et al., 1996).This issueis exemplifiedbyinitial bodysizeestimates
for Dunkleosteus, which were based on scaling relationships of the
upperjawinextantsharks(Ferrónetal.,2 017)despitealackofevi-
dence for similar jaw proportions between ar throdires and sharks
(Engelman, 2023b). While post hoc analysis of arthrodire cranial
scaling improved size estimates for Dunkleosteus(Engelman,2023a,
2023b),itisextremelychallengingifnotimpossibletoverifytheva-
lidity ofproposedscalingtrendsin othertaxawithfewor noliving
(or well-p reserved fos sil) relatives, s uch as Helicoprion. Whenever
possible,proposedscalingrelationshipsshouldbetestedempirically
using close relatives of the focal taxon to ensure model reliability
(Engelman,2023b) orcross-testingsize/form estimates usingmul-
tiple proxiesand/orscalingmethods(Bianuccietal., 2023; Motani
&Pyenson,2024).Wherethisisnotpossible,weurgescepticismof
resultingbodysizeandformestimates.
Ano t h erco m m o niss u eise x t r a p o latio n error.Wh e n using r egres -
sionequationstoestimatebodysize,imprecisiontypicallyincreases
asthesizeofanatomicalelementsfromthefocaltaxonextendsbe-
yondthatofthetrainingdata(Batesetal.,2009; Engelman, 2023a;
Schmidt-Nielsen,198 4).Thisisaparticularproblemiftaxaofinter-
est to palaeontologists are significantly larger or smaller than their
nearestextant proxies or occupy sizeranges where only a limited
number ofsimilar-sizedmodern proxiesexist(i.e.,megafauna).This
can be mitigated if taxa in the training data span a wide range of
bodysizes(Campione,2017 ) butsuch widesamples are often not
available . Perhaps, the best examp le of the effect s of extrapola-
tion erro r on body mass es timates can b e seen in the ex tinct ro-
dent Josephoartigasia(Engelman,2023a; Millien, 2008),althoughit
alsoappliestoothertaxa,includingPerucetus(Bianuccietal.,2023;
Motani&Pyenson,2024).
Manysizeestimates run intoproblemswiththe ever-present
spectreofpositiveornegativeallometry(Schmidt-Nielsen,1984),
eitherassuming theiranatomicalproxiesscaleisometricallywith
body size or c alculating t heir estim ates via simple s caling rati os
withaproxytaxon(whichimplicitlyassumesisometry).However,
isometr yistypicallytheexception,nottherule,amongscalingre-
lationships(Raup&Stanley,1978:p.61).Regressionmodelstend
tobe more robustto this kindofbiasduetotheirvariableslope,
whereas simple scaling ratios can be biased by even slight devi-
ations from isometryor if the size proxy chosen does not show
astrong correlation with body size (Grillo & Delcourt, 2017).As
withextrapolati oner ror,samplingawidearr ayofbodysizesinthe
training dataset is one of the best ways to detect positive or neg-
ativeallometry.Bodysizeestimatesshouldalwaysbemadebased
onregressionequationsorvolumetricmodelswheneverpossible.
Estimating body size via simple scaling ratios from one or a few
proxy specimensortaxashould beconsidered as a lastresort if
appropriateregressionmodelsarenotavailable,andtheresulting
sizeand/or form estimates considered verytentative until more
robustestimatesofsizecanbeproduced.
Other issues arise fromthe fact thatmost variables in allome-
tric scaling relationships are logarithmically distributed and thus
log-transformedbefore analyses.Itisoften assumed thatrelation-
ships between variables are completely linearised by log transforma-
tion(Engelman,2022b;Schmidt-Nielsen,1984).However,thisisnot
alwaysthe case,andfurtherinspection has shownsomebiological
relationships previously thought to be log-linearmay,in fact, scale
log-curvilinearly (Bertram & Biewener, 1990 ; Engelman, 2022a;
Knell, 2009; Venditti et al., 2024) with their curvature implying
treating these variables log-linearly may overestimate body size.
This is problematic as the biological significance of log-curvilinear
relationshipsisnotwellunderstood,nordotheirmathematicalcon-
stantshave a ready explanation (Knell, 2009; Manger et al., 1999)
incontrasttolog-linearmodelswhichfollowapowerlaw(Schmidt-
Nielsen,19 84 ). Until we have an improved understanding of non-
linear allometry, the validity of linear approximations to these
allometricrelationships cannot be known.Forthis reason, we sug-
gest future studies at least consider the possibility of non-linear
allometryintheirdatasetsandreportsuspectedlog-curvilinearre-
lationshipsiffound.
Log-transformationcreatesotherissuesinmodelevaluationand
predic tion. Most regre ssion models meas ure the streng th of cor-
relationsbetweenvariables using the coefficientofdetermination
(r2), but for log-trans formed models (e specially ones i ntended for
prediction), r2 is actua lly a poor measu re of relationshi p strengt h.
Coefficientsof determination tendto unilaterally increase asdata
spreadincreases,andlog-transformationexacerbatesthis problem
becaus e it compresses the scatter of data points around the re-
gression line (Smith,1984;VanValkenburgh,199 0),inflatingr2 val-
ues. Thi s means that even lo g-scaled m odels with r2 greater than
0.9 can have poor prediction accuracy in practice (Smith, 198 4;
VanValkenburgh, 1990). For this re ason, percen t error (%PE) and
percent standarderror ofthe estimate (%SEE) are of ten preferred
asmeasures ofpredictive accuracy becausethey directlymeasure
the accuracy of the predicted values (Campione & Evans, 2020;
Engelman, 2022a, 2023a;VanValkenburgh,19 90 ).
Log-transformedregressionequationsalsotendtoproduce un-
reasonably large prediction inter vals, often on the scale of orders of
magnitude.Thisisbecauseantilogtransformationturnsthenormally
distributed residualsof a log-scaled regression equation into non-
normallydistributed(leptokurtotic)residualsonanarithmeticscale
(Bates et al ., 2009; Bert ram & Biewener, 199 0; Engelman, 2023a)
with extremely long ‘tails’ to the resulting distribution. This in
turn results in largeerror barsand substantialuncertaintyin body
size estimates, often beyond what is morphologically plausible.
Phylogeneticcomparativeleastsquaresandvolumetricestimation
methods provide possible mitigation measures, although in both
cases reducederror rangecomesata trade-offwith predictionac-
curacy(Campione,2017; Campione & Evans,2012).Whilethis un-
certa inty is unavoid able, it shoul d be accounted fo r when making
biologicalinferencesaboutpalaeoecology.Allmathematicalmodels
haveassumptionsandlimitations,thevalidityofwhichshouldideally
becarefullyconsideredwhenselectingproxiesfromwhich toesti-
matebodysizeand/orforminextincttaxa.
10 of 16 
|
   GAYFO RD et al .
4.2  | Incomplete specimens
In most c ases, the bod y size and/or form of ext inct animal s must
beestimatedfromextantproxiesduetothelackofcompletefossil
specimens. At a basic level, it is impossible to confidently and ac-
curatelypredictthebody sizeorformofanextinctorganismwith-
outcompletespecimensasresearchershavenowayofknowingthe
sizeorshapeofmissingelementswithoutrelyingoninferencefrom
proxytaxa.Thisissueaffectseachofthefourcasestudiesdiscussed
here, noneof whichareknownfromcompletespecimens(Bendix-
Almgreen, 1966 ; Bianu cci et al., 2023; Engelman, 2022b; Sternes
et al., 2024; Figure 2). In deed, the fr agmentar y nature of rem ains
used to reco nstruct t he body size and for m of many extinc t taxa
cansubstantiallyincreaseerror.Fragmentaryremainsareoftenfirst
used to estimate the size of some larger or complete morphologi-
calstructure (e.g.,skull),which isinturnused toapproximatetotal
lengt h. These casc ading assumpti ons result in the pr opagation of
errorateachstageofreconstruction(Molnar&Vasconcellos,2016),
furthercomplicatingdownstreamecological,evolutionaryand bio-
mechanical interpretations.
A lack of anato mically comple te specimens also i ncreases the
likelihoodofexistingremainsbeing misinterpretedasbelongingto
different species and/or parts of the body. Errors in body size and
formestimationresultingfromanatomicalmisinterpretationormis-
diagnosis c an be seen in Helicoprion,wheretheconsensusposition
ofthetoothwhorl on thebodyhaschanged on multiple occasions
(Bendix-Almgreen,196 6; Karpinsky,1899).Similarly,extrememod-
ifications in the available vertebrae of Perucetus relative to other
basilosauridspreventapreciseidentificationoftheirpositionwithin
thevertebralcolumn,whichaddsconsiderableuncertaintytobody
size estimations. For Dunkleosteus,lengthsof5–10 mwereat least
partlybasedonaprioriassumptionsofthistaxonexhibitingagreatly
shortenedtrunkarmourcomparedtootherarthrodires,whichwere
nevervalidatedandindeedsubsequentobservationsshoweditwas
likelyincorrect(Engelman,2024).Unfortunately,thelimitationsas-
sociatedwithincompletefossilspecimensaredifficulttoovercome
without new palaeontological evidence. Yet, this issue highlights
that bod y size and/or form estimat es are intrinsic ally uncert ain if
lacking adequatefossil material.Whereverpossible,studies should
take this into consideration and acknowledge the potential for new
palaeontologicalinterpretationsofthefossilspecimensuponwhich
estimations are based.
4.3  | Intraspecific variation
Another important consideration whenselec tingproxies for esti-
mating bodysizeandforminextincttaxais intraspecificvariation.
Ontogeny and sexual dimorphism exert substantial influence on
bothbodysizeandshape (Honeet al., 2016; Mallon, 2017; Motani
et al., 2018; Paiva et al., 2022; Sanchez-Villagra, 2010), and this
needs to be t aken into account w hen reconstr ucting ext inct spe-
cies.Somestudiesuseregressionequationsderivedfromallometric
patternswithinasinglespeciestoproducetheirsizeestimates(e.g.,
Crocodylus porosus and Gavialis gangeticus in Sereno et al., 2001;
Physeter macrocephalus in Lambert et al., 2010; and Carcharodon
carchariasinGottfried etal., 1996), and thisraisesconcerns about
conflating intraspecific patterns of allometry across the growth
curve ofasinglespecieswith true patternsof interspecific allom-
etry in mature individuals (Paiva et al., 2022). Several s tudies on
extinctmegafaunahavenotedthatevenverylargeindividuals‘still
appear to be growingat thetimeofdeath’based on suturalfusion
and bone microstr ucture (Buchy et al., 2003; Evans et al., 2014;
Honeetal.,2016;Lomaxetal.,2024),yetinmanycasesstillappear
tobesexuallymature(Ericksonetal.,2007;Lee&Werning,2008).
This has sometimes led to speculation thattheseorganisms could
reach stilllarger sizesunsampledbythe fossilrecord, butanalter-
nateneeds to beconsideredthat thispatternisaresult of paedo-
morpho sis or peramor phic hypermo rphosis – i.e., de laying sutura l
closure and prolonging features allowing rapid growth well into
adulthood,withgrowthslowingbutnotceasinguponsexualmatu-
rity (Le e & Werning, 2008) a nd cessation on ly occurring wi th se-
nescence –which has been proposed as the mechanism bywhich
theseanimalsachievedsuchspectacularsizesinthefirstplace(Lee
&Werning, 20 08; Lomaxet al., 2018). A goodexampleofthis are
Pliosauridae,whichrarelyexhibitneurocentralfusionevenasadults
(Araújo & Smith, 2023;Knutsen et al., 2012; McHenry,2009) – a
feature ot herwise commo nly used as an indic ator of osteologic al
maturit y in reptiles . This suggest s that some of th ese supposed ly
somaticallyimmatureindividualscouldbeclosetotypicaladultsize
andthattraditionalmarkersofsomaticmaturitymaybelessinform-
ativeformegafauna(Honeetal.,2016).
Where shape estimates come from a small number of re-
mains (e.g., Helicoprion, O. megalodon and Perucetus), life stage
and sex ca nnot be include d as confounding va riables in regr es-
sion and volu metric mod els. It is prac tically im possible to kn ow
the full size r ange of an extin ct species (Ma llon & Hone, 2024;
Sanchez-Villagra, 2010), and we rarelyhave an adequate under-
standingof sexualdimorphisminthesetaxa. Thus,thefewfossil
samplesthatdoexistaresimplytreatedasstandardfortheirspe-
cies or population. Even in therare cases that isolated fossilre-
mainscanbedistinguishedaseitheradultorjuvenile,phenomena
such as pathologic gigantism (e.g., Carboniferous cephalopods,
Manger et al., 1999)andinsulardwarfism(e.g.,Palaeoloxodon and
Europasaurus,Herridge&Lister,2012; Sander et al., 2006) make
this assumption questionable. Similarly, it must be questioned
whether treating the maximum sizes reached by presumably
exceptional individuals as representative of the species in pa-
laeoeco logical stu dies is as inform ative as using the m ore mod-
est averageadult size (Mallon & Hone,2024:p. 8). For example,
MallonandHone(2024)speculatedthatahypothetical15-mand
15-t‘worldrecord’Tyrannosaurus rexwoul db esoslowandrequire
somuchfoodthatitwouldhavetorelyonscavengingorshiftprey
focustosympatrictitanosaurs–neitherofwhichwouldberealis-
ticbehaviourforthespecies.Issuesofontogenyandintraspecific
variationwillcontinuetobeanissueregardlessoftheproxytaxon
   
|
11 of 16
GAY FO RD et al .
usedbutshouldaccountedforwhenconsideringwhichindividuals
ofthisproxyaretobeusedforsizeandformreconstructions,par-
ticularly where volumetric approaches are used. Ideally, studies
shouldconductroutinesensitivitytestsconsideringmultiplemod-
elsthat accountfor variation in bothontogeneticstageandsex.
Mostimporta nt ly,re searcherssh ouldnotassum et hatsizeorform
reconstructions made froma handful of incomplete remains are
representative of the fullrangeofmorphology seenin an extant
species,orthattheseremainsrepresentthe‘average’morphology.
4.4  | Phylogenetic placement
Whenselecting proxiesforestimating bodysize in extincttaxa,
consideration of the phylogenetic placementof both proxy and
extin ct focal taxo n is vital. Wher e proxies are sele cted on the
basis of phylogenetic similarit y, it is imperative that the phyloge-
neticplacementofbothtaxaiswellresolved,whichisfrequently
notthecase.Issues ofphylogenetic uncertainty are systemic in
palaeobiology(Marjanović&Laurin, 20 07; Reeder et al., 2015).
ThisisexemplifiedbyO. megalodon, where C. carcharias has gen-
erallybeenconsideredthebestmodernproxydespitetheuncer-
tain placement of O. megalodonwithinlamniformsharks(Sternes
et al., 2023, 2024).Atbest, thisphylogeneticuncertaintyraises
doubts aboutthevalidityofspecific proxytaxa and may distort
theresultsofphylogeneticcomparativeanalyseswhicharethem-
selves us ed to estimate bod y size in some studies ( Diniz-Filho
&Nabout, 2009; Paiva et al., 2022;Symonds &Elgar,2013). In
extremecases,phylogeneticuncertaintycouldcloudourunder-
st andin gofhom ologybet wee nt heanato micalun itsth atareused
to predict body size and form, making it impossible to clarif y the
validity of proposed proxies. Of course, proxies are not always
selectedonthebasisofphylogeny.Studiesmayalternativelyseek
tousetaxaassumedtobeconvergentinecologicalhabitsorbody
form(Engelman,2023b; Ferrón et al., 2 017).However,thistoois
problem atic given that th ere is no guarant ee that phylogene ti-
callydisparategroupsshoulddisplaysimilarscalingrelationships
betweenanatomicalfeatures,regardlessoftheperceiveddegree
of morphological convergence. For this reason, we favour the
consideration of phylogeny when selecting appropriate proxy
ta xab uts t res sth atforsuc han app roac ht obe val idrequ ire swe ll-
resolvedphylogeneticplacementofboththeproxyandthestudy
taxon. Ultimately,estimatesofbody sizeand form made in this
way must alw ays be treated wit h caution given t hat perceived
phylogenetic relationships between these taxa are intrinsically
hypotheticalinnatureandsubjecttorevisionupontheinclusion
of new data.
4.5  | Social pressures
While most spurious size/form estimates are likely driven by
some combinationof the factors outlined above (and a general
unawareness of biostatistical best practices), social pressures
and the nature ofresearch academia also have the potential to
influen ce reconstru ctions of body s ize/form in extin ct animals.
Studiesreportingspectacularsizesfororganismsareoftenwidely
readand publicised,which can significantly elevatethework of
early-career researchers and translatetosignificant opportuni-
ties for fu nding and pub lic interest . Some exti nct specie s have
gainedconsiderablemediaattentionasadirectresultoftheirun-
usualsizerelativetomodernanimals(Ferreiraetal.,2024;Head
et al., 2009, 2013; Molnar, 2004; Rinderknecht&Blanco, 2008;
Wroe et al., 2004)andmightotherwise have failedtoappear in
hi g h impactjou r n a l s orrece i v ewidesp r e a d p u blica t t e n t i o nift h e y
weresmaller.Atthesametime,whilejournalsareofteneagerto
publish on studies suggesting spectacular sizes, more modest,
revised estimates arelesslikely to be considered publishableas
theyareunlikelytogarnerbroaderinterest.Therealsoseemsto
beatendencyofhumannaturetooverestimatethesizeofmega-
faunaunless quantitativelymeasured.This iswell-demonstrated
byseveral studieson extant megafaunanoting that even expe-
rienced field biologists tend to overestimate the size of their
subjects(Greer,1974; Molnar, 2004; Randall, 1973; Wood, 1976 ;
Woodward et al., 1995 ).Otherpalaeontologistshavemadesimi-
larobservations.AsnotedbyGrilloandDelcourt(2017:p.83)in
th eirstu dyofa belisau ridthe rop ods,‘th efa c tth atmostpub lished
BL[bodylength;=totallengths]areoverestimatesreinforcesa
statementmadebyTherrienandHenderson(2007)thatthelack
ofcompleteskeletalremainsinlargetheropodsgivesfreecourse
to imagination, that allow researchers to present new specimens
as‘thelargest’,‘theheaviest’,orotherkindofsimilaradjectives’.
Similarly,Fuchsetal.(2020: p. 42) noted previous estimates of
sizeandformintheirstudyorganism(Enchoteuthis)seemedtobe
basedonthe‘hope’(wordingtheirs)ofamorespectacularanimal
ratherthananyfossilevidence.Whileitisunlikelythatthesefac-
tors are ac ting in all or even most cases of controversial size/form
estimates, the current landscape of academia does potentially
encourageoverlygeneroussizeestimates.Consequently,inour
attempt tocoverallpotential influencesonbodysize/formesti-
mates,wewouldberemisstonotmentionthesesocialpressures
as a potential bias.
Several factorsmayalso make researchers reluctanttopublish
modestsizeestimatesofextincttaxa.Researchersmaybereluctant
todownsizespectacularcharismaticmegafaunaforfear thatit will
reduce publicinterestintheir research areaor burn bridges in the
academiccommunity,whichcouldhavedownstreamconsequences
forcollaborations,fundingacquisition oreventheoutcomeofpeer
review. They may a lso fear museu ms may restri ct access to spe c-
imens or otherwise respond poorly to research downsizing their
flagshiptaxon. Furthermore, onemust be aware of backlash from
theever-growingfancommunitiesofprehistoricorganisms(suchas
Dunkleosteus, O. megalodonandtheropoddinosaurs)ontheinter net,
whomayfeelstronglyabout the perceivedappearance oftheir fa-
vourite organisms. None of these concernsare hypotheticals, and
all have happened at one point or another to many palaeobiologists
12 of 16 
|
   GAYFO RD et al .
who study well-known, iconic fossil taxa, including some of those
mentionedinthepresentstudy.Allstudiesshouldbejudgedontheir
scientificmerit throughdebateanddiscourse, through whichpro-
gressiveimprovementstoourunderstandingofextinctanimalscan
be gained.
5 | CONCLUSIONS
All body size and shape estimates of extinct species rely to some
extentonextinctorextantproxies.Theseestimatescanprovideim-
portant ecological and evolutionaryinformationand will continue
todosointhefuture.However,severalimportantlimitationsmust
beconsideredwhenusingsuchanapproach.Theutilityandvalidity
ofa given proxy depends notonly on perceived morphologicalor
phylogen etic relation ships but also o n the qualit y and quantit y of
thefossilrecord, palaeontologists' interpretationoftheirexamined
material, our understanding of ontogeny and sexual dimorphism,
and the degree of phylogenetic uncertainty involved. At a more
fundamental level,thechosenproxyspecies may influencetheva-
lidityofthemathematicalmodellingapproacheschosen.Weargue
that tak ing precaut ionary me asures to addr ess these fa ctors is of
paramo unt importa nce when determi ning which prox y taxa upon
which size and form reconstructions of extinct taxa will be based
andshouldbetreatedasnecessar y.Manyoftheseuncertaintiesare
unavoidablewhendealingwithfragmentaryextincttaxa.However,
whereverpossible,studiesshouldexplicitlyreferencetheselimita-
tions, improving therobustness of theecological and evolutionary
inferences that can be drawn.
AUTHOR CONTRIBUTIONS
Joel H. Gayford: C onceptualizat ion (lead); writi ng – original draf t
(lead); writing – review and editing (lead). Russell K. Engelman:
Conceptualization (supporting); writing – original draft (support-
ing); wri ting – review and edi ting (support ing). Phillip C. Sternes:
Conceptualization(supporting);writing–originaldraft(supporting);
writing–reviewandediting(supporting).Wayne M. Itano:Wr iting–
originaldraft(supporting);writing–reviewandediting(supporting).
Mohamad Bazzi:Writing–originaldraft(supporting);writing–re-
viewandediting(supporting).Alberto Collareta:Writing– original
draft(supporting);writing–reviewandediting(supporting).Rodolfo
Salas- Gismondi:Writing–originaldraft(supporting);writing–re-
view and editing (supporting). Kenshu Shimada:Conceptualization
(supporting);writing– original draft (supporting); writing – review
andediting(supporting).
ACKNOWLEDGEMENTS
Theauthors wish to thank the following people for discussionson
thebody size inextinct vertebrates:RKE:J.Cisneros,H.G. Ferrón,
N.Gardner,M.Greif,M.B.Habib,R.Hawley,C.Hays,A.L.S.Paiva,J.
PardoandR.Shell;AC:E.Amson,O.LambertandG.Bianucci.The
authorsalsowish to thankthetwo anonymous reviewers for their
commentsthatgreatlyimprovedthequalityofthismanuscript.
FUNDING INFORMATION
TheresearchofACissupportedbyagrantfromtheItalianMinistero
dell'UniversitàedellaRicerca(PRINProject2022MAM9ZB).
CONFLICT OF INTEREST STATEMENT
Theauthorsdeclarethattheresearchwasconductedintheabsence
ofanycommercialorfinancialrelationshipsthatcouldbeconstrued
as a potential conflict of interest.
DATA AVA ILAB ILITY STATE MEN T
Nodatasetsweregeneratedorusedinthisstudy.
ORCID
Joel H. Gay ford https://orcid.org/0000-0002-0839-3940
Russell K. Engelman https://orcid.org/0000-0002-9988-7427
Phillip C. Sternes https://orcid.org/0000-0001-7223-3725
Wayne M. Itano https://orcid.org/0000-0002-9709-2436
Mohamad Bazzi https://orcid.org/0000-0002-9495-0781
Kenshu Shimada https://orcid.org/0000-0001-7836-809X
REFERENCES
Anderson, J. F., Hall-Martin,A., &Russell,D.A. (1985). Long-bone cir-
cumference and weight inmammals, birds and dinosaurs. Journal
of Zoology, 207,53–61. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 4 6 9 - 7 9 9 8 . 1 9 8 5 .
t b 0 4 9 1 5 . x
Andrews, S. M. (1985). Rhizodont crossopter ygian fish from the
DinantianofFoulden,Berwickshire,Scotland,withare-evaluation
ofthisgroup. Earth and Environmental Science Transactions, 76(1),
67–9 5.
Anton, M., Salesa, M. J., Morales, J., & Turner, A. (2004). First
knowncompleteskullsofthescimitar-toothedcatMachairodus
aphanistus(Felidae,Carnivora)from theSpanishlateMiocene
site of Batallones-1. Journal of Vertebrate Paleontology, 24 (4),
957–969.
Appleg ate, S. P., & Espinosa-Ar rubarrena , L. (1996).T he fossil histo ry
ofCarcharodon andits possible ancestor,Cretolamna:Astudy in
tooth ide ntificatio n. In A. P. Klimley & D. G. A inley (Eds.), Great
white sharks: The biology of Carcharodon carcharias (pp. 19–36).
AcademicPress.
Araújo,R.,&Smith,A.S.(2023).Recognisingandquantifyingtheevolu-
tionofskeletalpaedomorphosisinPlesiosauria.Fossil Record, 26(1),
85–101.https:// doi. org / 10. 3897/ fr. 26. 97686
Bartholomew,G. A.(1981).A matter ofsize: Anexamination of endo-
thermy in insects and terrestrial vertebrates. In B. Heinrich (Ed.),
Insect thermoregulation(pp.45–78).Wiley.
Bates, K. T., Falkingham, P.L., Breithaupt, B. H., Hodgetts, D., Sellers,
W.I.,& Manning,P.L. (2009).Howbig was “bigAl”? Quantifying
theef fectsof softtissueandosteologicalunknownsonmasspre-
dictions for Allosaurus (Dinosauria: Theropoda). Palaeontologia
Electronica, 12(3),1–33.
Bates,K.T.,Falkingham,P.L.,Macaulay,S.,Brassey,C.,&Maidment,S.
C.R.(2015).Downsizingagiant:re-evaluatingDreadnoughtus body
mass. Biology Letters, 11, 20150215. https:// doi. org/ 10. 1098/ rsbl.
2015. 0215
Bendix-Almg reen, S. E. (1966). New inve stigation s of Helicoprion from
the Phosphoria formation of south-east Idaho, U.S. A. Biologiske
Skrifter, 14,1–54.
Bendix-Almgreen,S.E.(1982).Stor,større,−Carcharodon megalodon, —
enganske særlig hajtand fraGram-leret. Nordslesvigske Museer, 9,
15 37.
   
|
13 of 16
GAY FO RD et al .
Bendix-Almgreen, S. E. (1983).Carcharodon megalodonfrom the upper
Miocene of D enmark, with comments on elasmobranch tooth
enameloid: coronoïn. Bulletin Geological Society of Denmark, 32,
1–32.
Bert ram, J. E. A ., & Biewener, A . A. (1990). Diff erential sc aling of the
long bones in the terrestrial carnivora and other mammals. Journal
of Morphology, 204, 157–169.https:// doi. or g/ 10. 1002/ jmor. 10520
40205
Bianucci,G.,Lambert,O.,Urbina,M.,Merella,M.,Collareta,A.,Bennion,
R., Salas-Gismondi, R.,Benites-Palomino, A.,Post, K., de Muizon,
C., & Bosio, G. (2023). A heavyweight early whale pushes the
boundariesofvertebratemorphology.Nature, 620 (7975),824–829.
h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 8 6 - 0 2 3 - 0 6 3 8 1 - 1
Bianucci,G.,Marx,F.G.,Collareta,A.,DiStefano,A.,Landini,W.,Morigi,
C.,&Varola,A .(2019).Riseofthetitans:Baleenwhalesbecamegi-
antsearlierthanthought.Biology Letters, 15(5),20190175.ht tp s://
doi. org/ 10. 1098/ rsbl. 2019. 0175
Blanckenhorn, W. U. (2000). The evolution of body size: What
keepsorganismssmall? The Quarterly Review of Biology, 75(4),
385 4 0 7.
Boessenecker, R.W.,Ehret,D.J., Long, D. J., Churchill, M.,Martin, E.,
&Boessenecker,S. J. (2019).The earlyPlioceneextinctionofthe
mega-toothe d shark Otodus megalodon: A v iew from the ea stern
NorthPacific.Pe erJ , 7, e6088.
Brassey,C.A. (2016). Body-mass estimationin paleontolog y: A review
of volumetric techniques. The Paleontological Society Papers, 22,
13 3 –1 5 6 . ht tps:// doi. or g/ 10 . 1017/ scs. 2017. 12
Buchy,M.C.,Frey,E.,Stinnesbeck,W.,&López-Oliva,J.G.(2003).First
occurre nce of a gigant ic pliosaur id plesios aur in the lat e Jurassic
(Kimmeridgian) of Mexico. Bulletin de la Societe Geologique de
France , 174 (3),271–278.
Buffrénil, V.d., Canoville,A ., D'Anastasio, R ., & Domning, D. P.(2010).
Evolution of sirenian pachyosteosclerosis, a model-case for
the study of bone structure in aquatic tetrapods. Journal of
Mammalian Evolution, 17,101–120. ht tps:// doi. o rg/ 10. 1007/ s1091
4 - 0 1 0 - 9 1 3 0 - 1
Campi one, N. E. (2017 ). Extr apolating b ody masse s in large ter restrial
vertebrates. Paleobiology, 43, 693–699. htt ps: // doi. o rg / 10. 10 17/
pab. 2017. 9
Campione,N. E., &Evans, D. C. (2012).A universal scaling relationship
betweenbodymassandproximallimbbonedimensionsinquadru-
pedal terrestrial tetrapods. BMC Biology, 10, 60. https:// doi. org/ 10.
1 1 8 6 / 1 7 4 1 - 7 0 0 7 - 1 0 - 6 0
Campione, N. E., & Evans,D.C. (2020). The accuracy and precisionof
bodymassestimationinnon-aviandinosaurs.Biologica l Reviews, 95,
1759–1797.htt ps:// doi. or g/ 10 . 1111/ br v. 12638
Cappetta,H.(2012).InH.P.Schultze(Ed.),Handbook of Paleoichthyology
(Vol.3E,pp.1–512).VerlagDr.FriedrichPfeil.
Carr, R. K . (2010). Paleoe cology of Dunkleosteus terrelli. Kirtlandia, 57,
36–45.
Chatterjee, S., & Templin, R. J. (200 4). Posture, locomotion and
Palaeoecology of pterosaurs.Geological Society of America Special
Publication, 376 ,1–64.
Cidade,G.M., Riff,D., & Hsiou,A. S. (2019). The feeding habits ofthe
strange crocodylian Mourasuchus (Alligatoroidea, Caimaninae):
A review, new hy potheses an d perspec tives. Revista Brasileira de
Paleontologia, 22(2),106–119.
Collareta,A.,Lambert,O.,Landini,W.,DiCelma,C.,Malinverno,E.,Varas-
Malca,R.,Urbina,M.,& Bianucci, G. (2017). Did theextinctshark
Carcharocles megalodontarget smallerprey?Bitemarks onmarine
mammal remainsfrom the lateMiocene ofPeru.Palaeogeography,
Palaeoclimatology, Palaeoecology, 469, 84–91. https:// doi. org/ 10.
1016/j. palaeo. 2017. 01. 001
Condamine, F. L., Romieu,J., & Guinot,G. (2019).Climate cooling and
clade competition likely drove the decline of lamniform sharks .
Proceedings of the National Academy of Sciences of the United States
of America, 116 (41), 20584–20590. ht tp s:// doi. org / 10. 1073/ p nas .
19026 93116
Cooper, J. A ., Hutchinson , J. R., Bernvi , D. C., Cliff, G., W ilson, R. P.,
Dicken, M. L., Menzel,J.,Wroe,S.,Pirlo, J.,&Pimiento, C. (2022).
The extinct shark Otodus megalodonwasatransoceanicsuper-
predator: Inferences from 3D modelling. Science Advances, 8(33),
eabm9424. https:// doi. org/ 10. 1126/ sciadv. abm9424
Coo pe r,J.A.,Pimiento,C.,Ferrón ,H.G.,&Bento n,M.J.(202 0).Bo dydi-
mensionsoftheextinctgiantsharkOtodus megalodon:A2Drecon-
struction. Scientific Reports, 10, 14596. htt ps:// doi. or g/ 10. 10 38/
s 4 1 5 9 8 - 0 2 0 - 7 1 3 8 7 - y
Dahl, T. W., Hammar lund, E. U., Anba r, A. D., Bon d, D. P. G ., Gill, B.
C., Gordon, G.W.,Knoll, A.H., Nielsen, A .T.,Schovsbo,N.H., &
Canfi eld, D. E. (2010). Dev onian rise in at mospheric o xygen cor-
related to the radiations of terrestrial plants and large predatory
fish. Proceedings of the National Academy of Science s of the United
States of Ame rica, 107,17911–17915.ht tps:// doi. org / 10. 1073/ pnas .
10112 87107
DalSasso,C.,Maganuco,S.,Buffetaut,E.,&Mendez,M.A.(2005).New
informationontheskulloftheenigmatictheropodSpinosaurus, with
remarks on its size and aff inities. Journal of Verterbrate Paleontology,
25(4),888–896.
Dalponti,G.,Guariento,R.D.,&Caliman,A.(2018).Huntinghighorlow:
Body size drives trophic position among and within marine preda-
tors. Marine Ecology Progress Series, 597,39–46.
Diniz-Filho,J.A. F., & Nabout, J.C. (2009). Modelingbody sizeevolu-
tioninFelidaeunderalternativephylogenetichypotheses.Genetics
and Molecular Biology, 32,170–176.https:// doi. org/ 10. 1590/ S1415
-47572009005000004
Dolton , H. R., Jack son, A. L. , Deaville, R ., Hall, J., Hal l, G., McManu s,
G., Perkins, M. R.,Rolfe, R. A., Snelling, E. P.,Houghton, J. D. R.,
Sims,D.W.,&Payne,N.L.(2023).Regionallyendothermictraitsin
theplanktivorousbasking sharksCetorhinus maximus. Endangered
Species Research, 51,227–232.https:// doi. org/ 10. 3354/ esr01257
Dolton,H. R.,Snelling, E. P.,Deaville,R.,Jackson,A.L., Perkins,M.W.,
Bortoluzzi, J.R., Purves,K., Curnick,D.J., Pimiento, C., &Payne,
N. L. (20 23). Centralize d red muscle in Odontaspis ferox and the
prevalence of regional endothermy in sharks. Biology Letters, 19,
20230331. https:// doi. org/ 10. 1098/ rsbl. 2023. 0331
Engelman,R.K.(2022a).Occipitalcondylewidth(OCW)isahighlyaccu-
rate predictor of body mass in therian mammals. BMC Biology, 20,
37. h t t p s : / / d o i . o r g / 1 0 . 1 1 8 6 / s 1 2 9 1 5 - 0 2 1 - 0 1 2 2 4 - 9
Engelman , R. K. (2022b). Resizing the largest known extinct rodents
(Caviomorpha:Dinomyidae,Neoepiblemidae)usingoccipital con-
dyle width. Royal Society Open Science, 9(6),2 20370. ht tps:// d o i .
org / 10. 1098/ rso s. 220 370
Engelman,R. K. (2023a). ADevonianfish tale: A newmethodof body
lengthestimationsuggestsmuchsmallersizesforDunkleos teus ter-
relli(Placodermi:Arthrodira).Diversity, 15, 318. https:// doi. org/ 10.
3390/ d1503 0318
Engelman,R. K . (2023b).Giant,swimming mouths: Oral dimensions of
extantsharksdonotaccurately predict bodysizeinDunkleosteus
terrelli(Placodermi:Arthrodira).Pe erJ, 11, e15131. https:// doi. org/
10. 7717/ peerj. 15131
Engelman,R.K.(2024).ReconstructingDunkleosteus terrelli(Placodermi:
Arthrodira): A new look for an iconic Devonian predator.
Palaeontologia Electronica, 27(3), a44. https:// doi. org/ 10. 26879/
1343
Erickson,G.M.,CurryRogers,K .,Varricchio,D.J.,Norell,M.A.,&Xu,X.
(2007).Growthpatternsinbrooding dinosaurs reveals the timing
ofsexualmaturityinnon-aviandinosaursandgenesisoftheavian
condition. Biology Letters, 3(5),558–561.
Evans,S.E.,Groenke,J.R.,Jones, M. E., Turner,A.H.,&Krause,D. W.
(2014).NewmaterialofBeelzebufo,ahyperossifiedfrog(Amphibia:
Anura) from the late cretaceous of Madagasc ar. PLoS One, 9(1),
e87236. h t t p s : / / d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 0 8 7 2 3
14 of 16 
|
   GAYFO RD et al .
Farlow,J.O.,&Planka,E.R.(2002).Bodysizeoverlap,habitatpartition-
ingandlivingspacerequirementsof terrestrialvertebratepreda-
tors:Implicationsforthepaleoecologyoflargetheropoddinosaurs.
Historical Biology, 16(1), 21–40. https:// doi. org/ 10. 1080/ 08912
96031 00015 4687
Ferreira,G.S.,Nascimento, E.R., Cadena, E. A.,Cozzuol,M.A.,Farina,
B.M.,Pacheco,M.L.A.F.,Rizzutto,M.A.,&Langer,M.C.(2024).
The latest freshwater giants: A new Peltocephalus (Pleurodira:
Podocnemididae)turtle from the late Pleistocene of the Brazilian
Amazon . Biology Letters, 20, 20240010. https:// doi. org/ 10. 10 98/
rsbl. 2024. 0010
Ferrón,H.(2017).Regionalendothermyasatriggerforgigantisminsome
extinct macropredatorysharks. PLoS One, 12, e0185185. ht tp s://
d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 8 5 1 8 5
Ferrón,H.G .,Holgado, B.,Liston,J.J.,Martínez-Pérez,C.,&Botella,H.
(2018).Assessingmetabolicconstraintsonthemaximumbodysize
of actinopterygians: Locomotion energetics of Leedsichthys prob-
lematicus(Actinopterygii,Pachycormiformes).Palaeontology, 61(5),
775–783.https: // doi. org/ 10. 1111/ pala . 12369
Ferrón,H.G.,Martinez-Perez,C.,&Botella,H.(2017).Ecomorphological
inferences inearly vertebrates: Reconstructing Dunk leosteus ter-
relli(Arthrodira,Placodermi)caudalfinfrompalaeoecologicaldata.
Pee rJ, 5, e4081. https:// doi. org/ 10. 7717/ peerj. 4081
Field, D. J., Lynner,C., Brown,C.,&Darroch,S.A.(2013). Skeletalcor-
relates for body mass estimation in modern and fossil flying birds.
PLoS One, 8(11),e82000.
Finnegan, S., & Droser, M. L. (2008). Body size, energetics, and the
Ordovicianrestructuringofmarineecosystems.Paleobiology, 34(3),
34 2–359.https:// doi. org/ 10. 1666/ 07074. 1
Fortel ius, M., & Kappe lman, J. (1993). The larges t land mammal ever
imagined. Zoological Journal of the Linnean Society, 108(1),85–101.
Fuchs, D., Iba, Y., Heyng, A ., Iijima, M., Klug, C., Larson, N. L ., &
Schweiger t,G.(2020).TheMuensterelloidea:Phylogenyandchar-
acterevolutionofMesozoicstemoctopods.Papers in Palaeontology,
6,31–92.ht tps :// doi. o rg/ 10. 1002/ spp2. 1 254
Ginter, M., Ha mpe, O., & Duffi n, C. J. (2010). Chon drichthyes. In H .-
P. Schultze (Ed.), Paleozoic Elasmobranchii: Teeth in handbook of
Paleoichthyology(Vol.3D,pp.1–168).VerlagDr.FriedrichPfeil.
Gottfried,M.D.,Compagno,L. J.V.,& Bowman, S. C. (1996).Sizeand
skeletalanatomyofthegiant“megatooth”sharkCarcharodon meg-
alodon.InA.P.Klimley&D.G.Ainley(Eds.),Great white sharks: The
biology of Carcharodon carcharias(pp.55–66).AcademicPress.
Granger,W.,Gregory,W.K.,&Osborn,H.F.(1936).Furthernotesonthe
giganticextinctrhinoceros,Baluchitherium, from the Oligocene of
Mongolia. Bulletin of the A merican Museum of Natural History, 72, 1.
Greer,A .E.(1974).Onthemaxim umtotalle ngthofthesalt-watercroco-
dile(Crocodylus porosus).Journal of Herpetology, 8(4),381–384.
Griffiths,L.M.,Eagle,R.A.,Kim,S.L.,Flores,R.,Becker,M.A.,Maisch,
H. M., IV, Trayler, R. B. , Chan, R. L ., McCormac k, J., Akhta ra, A.
A., Tripatib, A. K., & Shimada, K . (2023).Endothermic physiology
ofextinct megatooth sharks.Proceedings of the National Academy
of Sciences of the United States of America, 120(27 ), e2218153120.
https:// doi. org/ 10. 1073/ pnas. 22181 53120
Grillo,O. N.,&Delcourt, R.(2017).Allometryandbody length of abe-
lisauroid theropods: Pycnonemosaurus nevesi is the new king.
Cretaceous Research, 69,71–89.
Grogan,E.D.,& Lund, R. (2011). Superfoetative viviparity inacarbon-
iferous c hondrichthy an and reprod uction in ear ly gnathosto mes.
Zoological Journal of the Linnean Society, 161(3), 587–594.ht tp s://
d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 6 - 3 6 4 2 . 2 0 1 0 . 0 0 6 5 3 . x
Head,J.J.,Bl oc h,J.I.,Ha st in gs ,A .K.,Bourque,J.R. ,C ad en a,E.A.,H er re ra,
F.A.,Polly,P.D.,&Jaramillo,C.A .(2009).Giantboidsnakefromthe
Palaeoceneneotropicsrevealshotter pastequatorialtemperatures.
Nature, 457,715–717.h t t p s : / /d o i . o r g / 1 0 . 1 0 3 8 / n a t u r e 0 7 6 7 1
Head,J.J.,Gunnell,G.F.,Holroyd,P.A.,Hutchison,J.H.,&Ciochon,R.
L.(2013).Giantlizardsoccupiedherbivorousmammalianecospace
duringthePaleogenegreenhouseinSoutheastAsia.Proceedings of
the Royal Society B, 280, 20130665. https:// doi. org/ 10. 1098/ rspb.
2013. 0665
Hender son, D. M. (2010). P terosau r body mass es timates fro m three-
dimensional mathematical slicing. Journal of Vertebrate Paleontology,
30(3),768–785.
Herridge,V.L.,&Lister,A.M.(2012).Extremeinsulardwarfismevolved
in a mammoth. Proceedings of the Royal Society B, 279(1741),3193–
3200. https:// doi. org/ 10. 1098/ rspb. 2012. 0671
Hodnett,J.P.M.,Grogan, E. D.,Lund, R.,Lucas,S.G.,Suazo, T.,Elliott,
D. K., & Pru itt, J. (2021). Ctenac anthiform shar ks from the late
Pennsylvanian(Missourian)TinajasmemberoftheAtrasadoforma-
tion,centralNewMexico.Bulletin - New Mexico Museum of Natural
History and Science, 84,391–424.
Hone,D.W.,Farke,A.A.,&Wedel,M.J.(2016).Ontogenyandthefos-
silrecord:What, ifanything, is anadult dinosaur?Biology Letters,
12(2),20150947.https:// doi. org/ 10. 1098/ rsbl. 2015. 0947
Jeffery,J.(1998).The morphology and phylogeny of the European members
of order Rhizodontida (Pisces: Sarcopterygii).Un i v ersi t y ofC a m b ridg e .
Jobbins, M., Rücklin,M., Ferrón, H. G.,& Klug, C. (2022). A new sele-
nosteidplacodermfromthelateDevonianoftheeasternanti-atlas
(Morocco) with preserved body outline and its ecomorphology.
Frontiers in Ecology and Evolution, 10, 969158 . https:// doi. org/ 10.
3389/ fevo. 2 022 . 969158
Karpinsky, A. P. (1899). Über die Reste von Edes tiden und die neue
Gattung Helicoprion. Verhandlungen der Russisch- Kaiserlichen
Mineralogischen Gesellschaft, 36,361–475.
Kast,E.R.,Griffiths,M.L.,Kim,S.L.,Rao,Z.C.,Shimada,K.,Becker,M.
A.,Maisch,H.M.,Eagle,R.A.,Clark,C.A.,Neumann,A.N.,Lüdecke,
T.,Leichliter,J.N.,Martínez-García,A .,Akhtar,A.A .,Wang, X. T.,
Haug, G.H., & Sigman, D. M. (2022). Cenozoicmegatooth sharks
occupiedextremelyhightrophicpositions.Science Advances, 8(25),
ea bl6 52 9. https:// doi. org/ 10. 1126/ sciadv. abl6529
Knell, R. J. (2009). On the analysis of non-linear allometries. Ecological
Entomology, 34, 1–11. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 3 1 1 . 2 0 0 8 .
0 1 0 2 2 . x
Knutsen,E.M.,Druckenmiller,P.S., &Hurum,J. H. (2012). Anewspecies
of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian
of central Spitsbergen, Norway. Norwegian Journal of Geolog y, 92,
235–258.
Lambert, O., Bianucci, G., Post, K ., De Muizon, C.,Salas-Gismondi, R.,
Urbina,M., & Reumer,J. (2010).The giantbite of a new raptorial
sperm whalefromtheMioceneepoch ofPeru.Nature, 466 (7302),
105–108.
Langston,W.(1965).FossilcrocodiliansfromColombiaandtheCenozoic
historyoftheCrocodilia in SouthAmerica. University of California
Publications in Geological Sciences, 52,1–168.
Larramendi, A. (2015). Shoulder height, body mass, and shape of pro-
boscideans. Acta Palaeontologica Polonica, 61,537–574.ht t p s : // doi.
org/ 10. 4202/ app. 00136. 2014
Lebedev,O. A.(2009). A new specimen of Helicoprion Karpinsky,1899
fromKazakhstanianCisuralsandanewreconstructionofitstooth
whorlpositionand function.Acta Zoologica, 90,171–182. h t tps://
d o i . o r g / 1 0 . 1 1 1 1 / j . 1 4 6 3 - 6 3 9 5 . 2 0 0 8 . 0 0 3 5 3 . x
Lebedev,O.A.,Itano,W.M.,Johanson,Z.,Alekseev,A.S.,Smith,M.M.,
Ivanov,A.V.,&Novikov,I.V.(2022).Toothwhorlstructure,growth
andfunctioninahelicoprionidchondrichthyanKarpinskiprion(nom .
Nov.)(Eugeneodontiformes) with a revision ofthe family compo-
sition. Transactions of the Royal Society of Edinburgh, Earth Science,
113,337–360.ht tps:// doi. o rg/ 10. 1017/ S1755 69102 20002 51
Lee, A.H., & Werning, S.(2008). Sexual maturity ingrowingdinosaurs
does not fit reptilian grow th models. Proceedings of the National
Academy of Sciences of the United States of America, 105(2),582–587.
Leriche,M.(1926).Lespoissonster tiairesdelaBelgique.IV.Les Poissons
néogènes. moires du Musée royal d'Histoire naturelle de Belgique,
32,367–472.
   
|
15 of 16
GAY FO RD et al .
Lingham -Soliar, T. (1995). Anatomy and fun ctional mor phology of the
largest marine reptile k nown, Mosasaurus hoffmanni(Mosasauridae,
Reptilia) f rom the upper c retaceous , upper Maas trichtian of Th e
Netherlands.Proc. R. Soc. B, 3 47(1320),155–180.
Lomax,D.R., DelaSalle, P.,Massare,J.A .,&Gallois,R.(2018). Agiant
lateTriassicichthyosaurfromtheUKandareinterpretationofthe
AustCliff‘dinosaurian'bones. PLoS One, 13(4), e0194742. h tt p s : //
d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 9 4 7 4 2
Lomax , D.R ., de la Salle, P., Peril lo, M., Reynolds , J., Reynolds, R ., &
Waldron, J. F.(2024).Thelast giants: New evidence for giant late
Triassic (Rhaetian) ichthyosaurs from the UK. PLoS One, 19(4),
e0 30 02 89. h t t p s : / /d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 3 0 0 2 8 9
Mallon,J.C.(2017).Recognizingsexualdimorphisminthefossilrecord:
Lessons from nonavian dinosaurs. Paleobiology, 43(3), 495–507.
https:// doi. org/ 10. 1017/ pab. 2016. 51
Mallon,J.C.,&Hone,D.W.E.(2024).Estimationofmaximumbodysize
infossilspecies:Acasestudyusingtyrannosaurusrex.Ecology and
Evolution, 14, e11658. https:// doi. org / 10. 10 02/ ece3. 11658
Manger,W.L., Meeks,L.K.,&Stephen, D.A.(1999).InF.Olóriz&F.J.
Rodríguez-Tovar(Eds.),Advancing research on living and fossil ceph-
alopods: Development and evolution form, construction, and function
Taphonomy, Palaeoecology, Palaeobiogeography, biostratigraphy, and
basin analysis(pp.77–89).SpringerUS.
Marjanović,D.,&Laurin,M.(2007).Fossils,molecules,divergencetimes,
and the origin of lissamphibians. Systematic Biology, 56(3),369–388.
htt ps:// doi. org/ 10. 10 80/ 10 635 15 070 1397635
McCormack, J., Griffiths, M. L., Kim, S. L., Shimada, K., Karnes, M.,
Maisch, H., Pederzani, S., Bourgon, N., Jaouen,K., Becker, M. A .,
Jöns,N.,Sisma-Ventura,G.,Straube,N.,Pollerspöck,J.,Hublin,J.J.,
Eagle,R.A.,&Tütken,T.(2022).TrophicpositionofOtodus megal-
odonandgre atwhi tesha rks thr ought imere ve ale db yz incis otope s .
Nature Communications, 13, 2980.
McGhee, G. (2018). Carboniferous giants and mass extinction: The late
Paleozoic ice age world.ColumbiaUniversityPress.
McHenry, C. R. (2009). Devourer of gods: The palaeoecology of the
Cretaceous pliosaur Kronosaurus queenslandicus.[Doctoraldisserta-
tion].UniversityofNewcastle,Newcastle.
Miles, R.S.,&Westoll, T.S.(1968).The placoderm fishCoccosteus cus-
pidatus miller ex A gassiz from the middle old red sandstone of
Scotland. Part I. Descriptive morphology. Transactions of the Royal
Society of Edinburgh, 67,