ArticlePDF Available

Museum collections as untapped sources of undescribed diversity of sponge-zoantharian associations with the description of six new species of Umimayanthus (Zoantharia: Parazoanthidae) from Western Australia and eastern Indonesia

Authors:

Abstract

The zoantharian genus Umimayanthus consists largely of species that live in obligate symbioses with sponges. Although zoantharians have often been overlooked in field collecting campaigns and in research, sponges are usually well-collected, and many natural history museums harbor numerous sponge specimens. Thus, these sponge collections may also include previously overlooked zoantharian species. Such is the case in this research, in which we examined sponge specimens in museum collections from Western Australia and eastern Indonesia. Based on our morphological and molecular analyses, we herein describe six species of Umimayanthus new to science, and redescribe another species described over a century ago. These species can be distinguished by their sponge associations, gross polyp and colony morphology, and depth ranges. Based on these findings, it appears that the Central Indo-Pacific region of Western Australia and Indonesia can be considered a hotspot for sponge-associated zoantharian diversity. We provide a key for the identification of all formally described species in the genus, but caution that there are likely more Umimayanthus species awaiting discovery.
Published with license by Koninklijke Brill󰎛󰃊󰎛󰂹󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰅺󰎛󰂺󰂶󰆽󰆻󰆽󰆿󰎛󰃊󰎛󰂹󰆼󰆾󰇃󰆾󰄀󰆿󰇀󰆼󰇂󰃍print󰃎󰆼󰇃󰇂󰇀󰄀󰇄󰇃󰇁󰇁󰃍online)
This is an open access article distributed under the terms of the 󰆗󰂺󰆓󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰂺󰃈
CTOZ
Museum collections as untapped sources of undescribed
diversity of sponge-zoantharian associations with
the description of six new species of Umimayanthus
(Zoantharia: Parazoanthidae) from Western Australia
and eastern Indonesia
Javier Montenegro | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆽󰄀󰆻󰆽󰇃󰇄󰄀󰆾󰆽󰇂󰆿
Molecular Invertebrate Systematics and Ecology Laborator󰂶 Graduate School
of Engineering and Scienc󰂶 University of the Ryukyus󰂶 1 Senbar󰂶 Nishihar󰂶
󰆜󰆓󰆖󰄀󰆓21󰆖󰂶 Japan
󰄀 󰄀 Research Centr󰂶 School of Biological Sciences
and Oceans Institut󰂶 The University of Western Australia󰂶󰆖󰆘󰂶
Pert󰂶 󰆙󰆓󰆓9󰂶 Australia
jmontzalez@gmail.com
Jane Fromont | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆽󰄀󰇃󰇃󰇃󰇂󰄀󰆿󰆿󰇀󰆽
Collections and Researc󰂶 Western Australian Museum󰂶 Welshpoo󰂶
Western Australi󰂶󰆙󰆓󰆔6󰂶 Australia
Zoe Richards | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆽󰄀󰇃󰇄󰆿󰇂󰄀󰇃󰇄󰇄󰇁
Collections and Researc󰂶 Western Australian Museum󰂶 Welshpoo󰂶
Western Australi󰂶󰆙󰆓󰆔6󰂶 Australia
School of Molecular and Life Science󰂶 Curtin University󰂶 Kent S󰂺 Bently
 6󰆔󰆓2󰂶 Australia
Hiroki Kise | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆽󰄀󰆿󰆻󰇄󰇄󰄀󰇁󰆿󰇁󰇄
Molecular Invertebrate Systematics and Ecology Laborator󰂶 Graduate School
of Engineering and Science󰂶 University of the Ryukyu󰂶 1 Senbar󰂶 Nishihar󰂶
󰆜󰆓󰆖󰄀󰆓21󰆖󰂶 Japan
Geological Survey of Japa󰂶 National Institute of Advanced Industrial Science
and Technology󰂶 󰂶 󰆔󰄀󰆔󰄀󰆔󰂶 Tsukub󰂶 󰆖󰆓󰆘󰄀󰆛󰆘󰆙7󰂶 Japan
Oliver Gomez | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆽󰄀󰇄󰆼󰆻󰇁󰄀󰇁󰆽󰇁󰆼
Collections and Researc󰂶 Western Australian Museum󰂶 Welshpoo󰂶
Western Australi󰂶󰆙󰆓󰆔6󰂶 Australia
󰆽󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Bert W. Hoeksema | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆼󰄀󰇃󰆽󰇀󰇄󰄀󰆾󰇂󰇃󰆾
Marine Evolution and Ecology Grou󰂶 Naturalis Biodiversity Center󰂶 󰂺󰂺󰆜󰆘󰆔󰆚󰂶
󰆕󰆖󰆓󰆓 Leiden󰂶 The Netherlands
Groningen Institute for Evolutionary Life Science󰂶 University of Groningen󰂶
󰂺󰂺 󰆔󰆔󰆔󰆓󰆖󰂶󰆜󰆚󰆓󰆓 Groningen󰂶 The Netherlands
James Davis Reimer | 󰂹󰆻󰆻󰆻󰆻󰄀󰆻󰆻󰆻󰆾󰄀󰆻󰆿󰇀󰆾󰄀󰇃󰇃󰆻󰆿
Molecular Invertebrate Systematics and Ecology Laborator󰂶 Graduate School
of Engineering and Scienc󰂶 University of the Ryukyus󰂶 1 Senbar󰂶 Nishihar󰂶
󰆜󰆓󰆖󰄀󰆓21󰆖󰂶 Japan
Tropical Biosphere Research Cente󰂶 University of the Ryukyus󰂶 1 Senbar󰂶 Nishihar󰂶
󰆜󰆓󰆖󰄀󰆓21󰆖󰂶 Japan
󰆽󰆻󰆽󰆻󰆽󰆿; 󰆼󰇂󰆽󰆻󰆽󰆿; 󰆼󰇃󰆽󰆻󰆽󰆿;
󰆽󰇄󰆽󰆻󰆽󰆿󰂷
󰂹
Abstract
Umimayanthus consists largely of species that live in obligate symbioses
with sponge󰂺 
and in researc󰂶 sponges are usually 󰄀󰂶 and many natural history museums harbor
numerous sponge specimen󰂺 Thu󰂶 these sponge collections may also include previously over󰄀
  󰂺 Such is the case in this researc󰂶 in which we examined sponge
specimens in museum collections from Western Australia and eastern Indonesi󰂺 Based on our
morphological and molecular analyse󰂶 we herein describe six species of Umimayanthus new to
scienc󰂶 and redescribe another species described over a century ag󰂺 These species can be dis󰄀
tinguished by their sponge association󰂶 gross polyp and colony morpholog󰂶 and depth range󰂺
󰂶 it appears that the Central 󰄀 region of Western Australia and
Indonesia can be considered a hotspot for 󰄀󰂺 We provide a
󰂶 but caution that there are
likely more Umimayanthus species awaiting discover󰂺
Keywords
󰄍󰄍󰄍󰄍
󰂹 󰂹󰃈󰃈󰂺󰃈󰂹󰂹󰂺󰂹󰂹󰆔󰆜󰆗󰆚󰆖󰆚󰆛󰄀󰆓󰆔󰆘󰄀󰆗󰆓󰆔󰄀󰆓󰆔󰆔󰄀󰆗󰆛
󰆛󰆛
󰆾󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Introduction
Natural history collections play a cru󰄀
cial societal role as reservoirs of bio󰄀
logical informatio󰂶 spanning multiple
generations of researcher󰂺 The informa󰄀
tion derived from biological collections
impacts a large range of disciplines and
provides a solid baseline for evolutionary
and biodiversity studies 󰃍󰂶
󰆕󰆓󰆓4)󰂺    󰄀
ally follow the prime directive to archive
and document the diversity of species
and their distributions on Eart󰂺 In this
contex󰂶 they are an irreplaceable tool for
  󰂶 and the value
of such collections can only increase with
time 󰃍 󰂶 󰆕󰆓󰆔4; Rocha 󰂺󰂶
󰆕󰆓󰆔4; Connelly 󰂺󰂶󰆕󰆓󰆕4)󰂺
in a collection is unique and represents
a “snapshot” of the environmen󰂶 loca󰄀
tion and the taxonomy that was under󰄀
stood at the time it was collected an󰃈r
used in a description or analysis 󰃍inke󰂶
󰆕󰆓󰆓4)󰂺 󰂶 with the advances
in technology and development of scien󰄀
 󰂶 museum specimens are

of unexplored information 󰃍inke󰂶󰆕󰆓󰆓4;
Bakker  󰂺󰂶 󰆕󰆓󰆕󰆓󰂷 Nakaham󰂶 󰆕󰆓󰆕1)󰂺 
recent years museum collections have
been gaining attention as an abundan󰂶
convenien󰂶 and often unique snapshots
in tim󰂶 source of genetic data 󰃍ard 󰂺󰂶
󰆕󰆓󰆕1; Sampaio 󰂺󰂶󰆕󰆓󰆕󰆖󰃎󰂶
of undescribed diversit󰂺 They also pro󰄀
vide baselines to study changes in the
species composition of biota in areas that
undergo anthropogenic stress 󰃍oeksema
 󰂶 󰆕󰆓󰆓9; Van der Meij et a󰂺󰂶 󰆕󰆓󰆔󰆓󰂷
󰂺󰂶󰆕󰆓󰆔2; Richards 󰂺󰂶󰆕󰆓󰆔4;
Dre󰂶󰆕󰆓󰆔7)󰂺
One of the taxonomic groups that has
been demonstrated to have unknown
diversity represented in natural history
  󰄀
esqu󰂶󰆔󰆛󰆔󰆘󰃍eimer 󰂺󰂶󰆕󰆓󰆔4)󰂺󰄀
ians are benthic hexacorals most closely
related to actiniarians 󰃍ea anemones) and
include taxa from shallow waters to the
deep se󰂺
as an important components of nearshore
cnidarian communitie󰂶 and as such have
a long history of research 󰃍onat󰂶 176󰆘󰂷
Elli󰂶 176󰆛󰂷󰂶󰆕󰆓󰆔󰆖󰂷 Lo󰂶󰆕󰆓󰆔6;
Montenegro  󰂺󰂶 󰆕󰆓󰆕󰆓󰃎󰂺  
ground󰄀breaking󰄀
ian ecolog󰂶 systematics and diversity have
often stemmed from collections targeting
other organism󰂶   󰄀
tharians becoming unintended “bycatch”
of this collection 󰃍  󰂶 󰆕󰆓󰆓7;
Montenegro 󰂺󰂶󰆕󰆓󰆕󰆓󰂷 Kise 󰂺󰂶󰆕󰆓󰆕2)󰂺
This has been particularly true in Porifera
󰃍ponge) collection󰂶 with sponges often
establishing symbiotic associations with

families; Epizoanthus Gra󰂶󰆔󰆛󰆙󰆚󰄀
érouar󰂶󰆔󰆜󰆓󰆔
and Parazoanthus   󰂶
󰆔󰆛󰆜󰆔󰂶 Bergia Duchassaing de Fonbressin
 󰂶 󰆔󰆛󰆙󰆓󰂶 and Umimayanthus
Montenegr󰂶   󰂶 󰆕󰆓󰆔󰆘
     
érouar󰂶 󰆔󰆜󰆓󰆔󰂺 By targeting Porifera col󰄀
lection󰂶 scientists have discovered species
new to scienc󰂶 described emerging eco󰄀
logical and evolutionary patterns in this
symbiosi󰂶    
in the understanding of the systematics
and phylogenetics of 󰄀
associations 󰃍󰂶󰆕󰆓󰆓7; Monte󰄀
negro 󰂺󰂶󰆕󰆓󰆕󰆓󰂷 Kise 󰂺󰂶󰆕󰆓󰆕2)󰂺
󰆿󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
   󰂶 the
genus Umimayanthus has recently been
one of the most actively studied group󰂺
First erected by Montenegro 󰂺 󰃍󰆕󰆓󰆔󰆘󰃎󰂶
the genus originally consisted of four spe󰄀
cies; the type specie󰂶 U. chanpuru Monte󰄀
negr󰂶󰂶󰆕󰆓󰆔󰆘󰂶 along with
U. miyabi Montenegr󰂶󰂶
󰆕󰆓󰆔󰆘󰂶 U. nakama Montenegr󰂶  
Reime󰂶 󰆕󰆓󰆔󰆘󰂶 and U. parasiticus 󰃍uchas󰄀
    󰂶 󰆔󰆛󰆙󰆓󰃎󰂺
Subsequentl󰂶 Fujii et a󰂺 󰃍󰆕󰆓󰆕1) described
U. kanabou Fuji󰂶    󰂶
󰆕󰆓󰆕󰆔󰄀 Island in south󰄀
ern Japa󰂺 Thu󰂶 currently Umimayanthus
󰄀
cie󰂶 but it is expected that the diversity
of this genus remains largely underesti󰄀
mate󰂺 For instanc󰂶  äusser󰄀
mann 󰃍󰆕󰆓󰆓9) reported an undescribed
species of Umimayanthus from the Indian
Ocea󰂶 and Montenegro  󰂺 󰃍󰆕󰆓󰆕󰆓󰃎
reported another unknown species from
the Caribbean Se󰂺 Furthermor󰂶 con󰄀
sidering that the taxonomy of the genus
Parazoanthus󰂶 a sister group to Umimayan-
thus󰂶 has undergone extensive revisions in
recent years 󰃍  äusserman󰂶
󰆕󰆓󰆓9;   󰂶 󰆕󰆓󰆔1; Montenegro
 󰂺󰂶 󰆕󰆓󰆔󰆘󰂶 󰆕󰆓󰆔6)󰂶     
󰄀󰂶 several additional Para-
zoanthus species reported from the South
  󰄀 oceans may be
transferred into the genus Umimayanthus󰂶
such as P. lividum Cutres󰂶 1971 and P. aru-
ensis Pa󰂶 191󰆔󰂺
In this study we present the results of
a survey aiming to describe the hidden
󰄀
era collections of the Western Australia
Museum 󰃍)󰂶  
Center 󰃍)󰂶󰂶 and other
institution󰂶 which are listed belo󰂺 Speci󰄀
mens were independently analysed by
taxonomists with expertise in sponges and
   
approac󰂶 including traditional morpho󰄀
logical analyse󰂶 histological dissection󰂶
and  sequencing analyse󰂺 The results
of our survey highlight the value of bio󰄀
logical collections not only as archives of
reference biological material for compara󰄀
tive analyse󰂶 but also as a repository of

reveale󰂺 In this study we discover and for󰄀
mally describe six new species within the
genus Umimayanthus from voucher speci󰄀
mens in the Porifera collections of 
and 󰂺 We also discuss the implications
of these discoveries on the systematics
and taxonomy of the genus Umimayan-
thus󰂶      
Umimayanthus specie󰂶 and give insights
into possible future research directions on
this genu󰂺
Materials and methods
Abbreviations of museum collections
 
Museum 󰃍elbourne󰂶 Australia)
 Naturalis Biodiversity Center
󰃍eide󰂶 The Netherlands)
 
󰃍ondo󰂶 UK)
 Rijksmuseum van Natuurlijke
󰃍ow at )
 Forschungsinstitut und
󰄀 Senckenberg
 Western Australian Museum
󰃍ert󰂶 Australia)
 Zoological Museum of
Amsterdam 󰃍ow at )
󰇀󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Specimens
 specimens were collected by 
divin󰂶 by traw󰂶 or by epibenthic sled
beyond diving depth󰂶 from several locali󰄀
ties along the Western Australian coast
 󰆕󰆓󰆓󰆚󰄍󰆕󰆓󰆔󰆛   
7󰆓󰄍󰆔󰆓󰆓󰈱 ethano󰂺 Additional preserved
specimens were loaned from the  and
󰂺 Specimens were also examined
at  󰃍 and  collections) in the
Netherland󰂶 and  in German󰂺
 extraction, , and sequencing
Total  was extracted using the Qiagen
󰃍iage󰂶󰂶
Germany) following the manufacturer’s
󰂺
 
Taq  Master Mix Kit 󰃍iage󰂶󰂶
Germany) for partial sequences of cyto󰄀
chrome oxidase subunit  󰃍󰄀󰃎
using primers 󰆼󰆿󰇄󰆻󰂹 󰆘󰄘󰄀  
     󰄀󰆖󰄘 and 󰆽󰆼󰇄󰇃󰂹
󰆘󰄘󰄀       
󰄀󰆖󰄘 󰃍olmer  󰂺󰂶 󰆔󰆜󰆜4)󰂶  
󰆖󰆘 󰆔
󰆜󰆗󰎣󰉓󰂶󰆔󰆗󰆓󰎣󰉓󰂶󰆜󰆓  󰆚󰆕󰎣󰉓󰂶
     󰆚   󰆚󰆕󰎣󰉓
󰃍eimer  󰂺󰂶 󰆕󰆓󰆓󰆚a); mitochondrial 16S
ribosomal  󰃍󰆔6󰄀󰃎 with primers
16Sarm󰂹 󰆘󰄘󰄀     
󰄀󰆖󰄘 and 16SBmo󰂹 󰆘󰄘󰄀   
 󰄀󰆖󰄘 󰃍inniger 󰂺󰂶󰆕󰆓󰆓󰆘󰂷  
Reime󰂶 󰆕󰆓󰆔1)󰂶 󰄀
󰆖󰆘󰆔 󰆜󰆘󰎣󰉓󰂶 1 min
󰆘󰆕󰎣󰉓󰂶 󰆕 󰆚󰆕󰎣󰉓
󰆚 󰆚󰆕󰎣󰉓󰃍 󰂶
󰆕󰆓󰆔1); and the nuclear internal tran󰄀
scribed spacer region of ribosomal 
󰃍󰄀󰃎 using primers 󰄀󰂹 󰆘󰄘󰄀
     󰄀󰆖󰄘 and 󰄀󰂹
󰆘󰄘󰄀      󰄀󰆖󰄘󰂶
󰆖󰆘
󰆔󰆜󰆗󰎣󰉓󰂶 󰆔󰆘󰆓󰎣󰉓󰂶 and 2 min
󰆚󰆕󰎣󰉓󰂶󰆔󰆓
󰆚󰆕󰎣󰉓 󰃍eimer 󰂺󰂶󰆕󰆓󰆓󰆚b)󰂺
󰆕󰈱 aga󰄀
rose gel electrophoresi󰂶 cleaned by a mix
of ExoI and  󰃍a󰂺 󰆕󰆙󰆘󰆓  󰆕󰆙󰆙󰆓󰂶
TaKaR󰂶 Japan)󰂶    
sequencing in both directions to Fasma󰂶
Kanagaw󰂶 Japa󰂺
Phylogenetic analyses
The nucleotide sequences were initially
aligned using Geneious  󰆕󰆓󰆕󰆗󰂺󰆓4
󰃍ttp󰂹󰃈󰃈w󰂺eneiou󰂺om)󰎛󰎛
algo rithm “Global alignment with free
end gaps” and default setting󰂶 thereafter
󰄀
ing positions were trimme󰂺 127 additional
    󰄀
Bank following Montenegro  󰂺 󰃍󰆕󰆓󰆔󰆙󰂶
󰆕󰆓󰆕󰆓󰃎 and included in this study 󰃍able 1)󰂺
All sequences were then aligned using the
Geneious plugin  󰃍󰂶
󰆕󰆓󰆔󰆖󰃎 with the algorithm 󰄀󰄀󰂺 Resultant
alignments were trimme󰂶 realigned using
the plugin  󰃍dga󰂶 󰆕󰆓󰆓4) and
manually checke󰂺
Maximum likelihood 󰃍)  󰄀
ian posterior probability 󰃍) phyloge󰄀
netic hypothesis were estimated using
󰄀 v󰆓󰂺󰆜󰂺󰆓 󰃍  󰂺󰂶 󰆕󰆓󰆔9)󰂶
M󰂺 Bayes v󰆖󰂺󰆕󰂺󰆙 󰃍󰂶
󰆕󰆓󰆓󰆖󰃎󰂶󰂺 Phylogeny reconstruc󰄀
tions were performed for the concate󰄀
nated alignment of the regions 󰄀󰂶
16󰄀 and 󰄀󰂶 and with
Epizoanthus arenaceus as the outgrou󰂺
       
  
  󰂶 󰆔󰆛󰆜󰆔 󰃍inniger
󰂺󰂶󰆕󰆓󰆓󰆘󰂷 Reimer 󰂺󰂶󰆕󰆓󰆔9)󰂶
󰇁󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰆼 Newly generated and downloaded sequences used in the phylogenetic reconstruction󰂶 along
with their corresponding GenBank accession number󰂺
Fam. [#] Species ITS-rDNA 16S-rDNA COI-mtDNA
󰆞󰆝 U. c󰂺 aruensis 󰆛󰆛󰆛󰆗󰆚 󰄍 󰆾󰇂󰇂󰇁󰆿󰇃 󰆾󰇀󰇄󰆿󰇀󰆼
󰆞󰆞 U. c󰂺 aruensis 󰆛󰆛󰆛󰆗󰆔 󰆾󰇂󰇂󰇁󰇁󰇁 󰄍󰆾󰇀󰇄󰆿󰇀󰆽
󰆞󰆟 U. c󰂺 aruensis 󰆛󰆛󰆛󰆖󰆜 󰆾󰇂󰇂󰇁󰇁󰇂 󰄍󰆾󰇀󰇄󰆿󰇀󰆾
󰆞󰆠 U. c󰂺 aruensis 󰆛󰆛󰆛󰆙󰆚 󰆾󰇂󰇂󰇁󰇁󰇃 󰄍󰆾󰇀󰇄󰆿󰇀󰆿
󰆞󰆡 U. c󰂺 aruensis 󰆛󰆛󰆛󰆖󰆚 󰆾󰇂󰇂󰇁󰇁󰇄 󰄍󰆾󰇀󰇄󰆿󰇀󰇀
󰆞󰆢 U. c󰂺 aruensis 󰆛󰆛󰆛󰆚󰆓 󰆾󰇂󰇂󰇁󰇂󰆻 󰆾󰇂󰇂󰇁󰆿󰇄 󰆾󰇀󰇄󰆿󰇀󰇁
󰆞󰆣 U. c󰂺 aruensis 󰆛󰆛󰆛󰆙󰆘 󰆾󰇂󰇂󰇁󰇂󰆼 󰄍󰆾󰇀󰇄󰆿󰇀󰇂
󰆞󰆤 U. c󰂺 aruensis 󰆛󰆛󰆛󰆗󰆓 󰆾󰇂󰇂󰇁󰇂󰆽 󰄍󰆾󰇀󰇄󰆿󰇀󰇃
󰆞󰆥 U. c󰂺 aruensis 󰆛󰆛󰆛󰆕󰆓 󰆾󰇂󰇂󰇁󰇂󰆾 󰆾󰇂󰇂󰇁󰇀󰆻 󰆾󰇀󰇄󰆿󰇀󰇄
󰆞󰆦 U. c󰂺 aruensis 󰆛󰆛󰆛󰆔󰆜 󰆾󰇂󰇂󰇁󰇂󰆿 󰆾󰇂󰇂󰇁󰇀󰆼 󰆾󰇀󰇄󰆿󰇁󰆻
󰄀󰄀󰄀 U. c󰂺 aruensis 󰆛󰆛󰆛󰆙󰆔 󰄍 󰄍 󰆾󰇀󰇄󰆿󰇁󰆼
󰆟󰆝 U. mirnangga s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆗
󰆾󰇂󰇂󰇁󰇂󰇀 󰆾󰇂󰇂󰇁󰇀󰆽 󰆾󰇀󰇄󰆿󰇁󰆽
󰆟󰆞 U. mirnangga s󰂺 no󰂺 
󰆛󰆛󰆛󰆔󰆚
󰆾󰇂󰇂󰇁󰇂󰇁 󰆾󰇂󰇂󰇁󰇀󰆾 󰆾󰇀󰇄󰆿󰇁󰆾
󰆟󰆟 U. mirnangga s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆖
󰆾󰇂󰇂󰇁󰇂󰇂 󰆾󰇂󰇂󰇁󰇀󰆿 󰆾󰇀󰇄󰆿󰇁󰆿
󰆟󰆠 U. jebarra s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆘
󰆾󰇂󰇂󰇁󰇂󰇃 󰄍󰆾󰇀󰇄󰆿󰇁󰇀
󰆟󰆡 U. wunanggu s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆚
󰆾󰇂󰇂󰇁󰇂󰇄 󰆾󰇂󰇂󰇁󰇀󰇀 󰆾󰇀󰇄󰆿󰇁󰇁
󰆟󰆢 U. wunanggu s󰂺 no󰂺 
󰆛󰆛󰆛󰆔󰆛
󰆾󰇂󰇂󰇁󰇃󰆻 󰄍󰆾󰇀󰇄󰆿󰇁󰇂
󰆟󰆣 U. wunanggu s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆙
󰆾󰇂󰇂󰇁󰇃󰆼 󰆾󰇂󰇂󰇁󰇀󰇁 󰆾󰇀󰇄󰆿󰇁󰇃
󰆟󰆤 U. wunanggu s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆕
󰆾󰇂󰇂󰇁󰇃󰆽 󰆾󰇂󰇂󰇁󰇀󰇂 󰆾󰇀󰇄󰆿󰇁󰇄
󰆟󰆥 U. miyabi 󰇃󰆿󰇃󰆽󰇀󰇁 󰇀󰇄󰆼󰇁󰆻󰇁 󰇀󰇄󰆼󰇁󰆽󰇀
󰆟󰆦 U. miyabi󰆖 󰇃󰆿󰇃󰆽󰇀󰇀 󰇃󰆿󰇃󰆽󰇂󰆽 󰇃󰆿󰇃󰆽󰇂󰇂
󰆠󰆝 U. miyabi NCShallow1 󰇀󰇄󰆼󰇀󰇁󰇃 󰇀󰇄󰆼󰇁󰆻󰇂 󰇀󰇄󰆼󰇁󰆽󰇁
󰆠󰆞 U. miyabi 󰇂󰆻 󰆻󰇄󰆽󰇁󰆿󰇁 󰆻󰇄󰆽󰆿󰇀󰆿 󰆻󰇄󰆽󰇀󰇂󰆾
󰆠󰆟 U. miyabi 󰆼󰇂󰇄 󰆻󰇄󰆽󰇁󰆿󰇀 󰆻󰇄󰆽󰆿󰇀󰆾 󰆻󰇄󰆽󰇀󰇂󰆻
󰆠󰆠 U. nakama 󰆾󰇁󰆾 󰆻󰇄󰆽󰇁󰆿󰆿 󰆻󰇄󰆽󰆿󰇀󰇃 󰆻󰇄󰆽󰇀󰇂󰇂
󰆠󰆡 U. nakama󰆖 󰆻󰇄󰆽󰇁󰆿󰆾 󰆻󰇄󰆽󰆿󰇀󰇂 󰆻󰇄󰆽󰇀󰇂󰇄
󰆠󰆢 U. nakama 󰆿󰇁󰆿󰇃󰇃󰆿 󰆿󰇁󰆿󰇃󰇀󰇀 󰆽󰆿󰇂󰆾󰇀󰆽
󰆠󰆣 U. nakama Japan1 󰇀󰇄󰆼󰇀󰇁󰇂 󰇀󰇄󰆼󰇁󰆻󰇃 󰇀󰇄󰆼󰇁󰆾󰆻
󰆠󰆤 U. chanpuru 16J 󰆻󰇄󰆽󰇁󰇂󰇃 󰆻󰇄󰆽󰆿󰇁󰇄 󰆻󰇄󰆽󰇁󰆻󰇄
󰇂󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Fam. [#] Species ITS-rDNA 16S-rDNA COI-mtDNA
󰆠󰆥 U. chanpuru󰆖󰆖 󰆻󰇄󰆽󰇁󰇃󰆻 󰆻󰇄󰆽󰇀󰆻󰆿 󰆻󰇄󰆽󰇀󰇄󰆿
󰆠󰆦 U. chanpuru NCDeep2A 󰇀󰇄󰆼󰇀󰇂󰇄 󰇀󰇄󰆼󰇁󰆻󰇄 󰇀󰇄󰆼󰇁󰆽󰆿
󰆡󰆝 U. chanpuru NCDeep1 󰇀󰇄󰆼󰇀󰇂󰇃 󰇀󰇄󰆼󰇁󰆻󰇀 󰇀󰇄󰆼󰇁󰆽󰆾
󰆡󰆞 U. parasiticus 󰇃󰆿󰇃󰆽󰇁󰆾 󰇄󰇄󰇀󰇄󰆾󰇃 󰄍
󰆡󰆟 U. parasiticus 󰆿󰆼󰇃󰆾󰆻󰇁 󰇃󰆽󰇃󰇂󰇀󰇁 󰇁󰇂󰆽󰇁󰇁󰆾
󰆡󰆠 U. kanabou 󰄀o󰆔 󰆚󰆗󰆛 󰆾󰆻󰇀󰆽󰇄󰇄 󰆾󰆻󰇀󰆾󰆻󰇃 󰆽󰇄󰇃󰆼󰆾󰆼
󰆡󰆡 U. kanabou 󰄀󰆔󰆛 󰆾󰆻󰇀󰆽󰇄󰇃 󰆾󰆻󰇀󰆾󰆻󰇂 󰆽󰇄󰇃󰆼󰆾󰆻
󰆡󰆢 U. s󰂺󰆖 Madagascar 󰇀󰇄󰆼󰇀󰇂󰇁 󰇁󰇃󰇂󰇃󰆽󰇀 󰇁󰇂󰆽󰇁󰇁󰆿

󰆡󰆣 U. discolor s󰂺 no󰂺
󰄀󰆔󰆜󰆖󰆔󰂺󰆛󰂺󰆗󰂺󰆘7
󰆾󰇂󰇂󰇁󰇃󰆾 󰆾󰇂󰇂󰇁󰇀󰇃 󰆾󰇀󰇄󰆿󰇂󰆻
󰆡󰆤 U. discolor s󰂺 no󰂺
󰄀󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘
󰆾󰇂󰇂󰇁󰇃󰆿 󰆾󰇂󰇂󰇁󰇀󰇄 󰆾󰇀󰇄󰆿󰇂󰆼
󰆡󰆥 U. discolor s󰂺 no󰂺 
󰆛󰆛󰆙󰆔󰆙
󰄍󰆾󰇂󰇂󰇁󰇁󰆻 󰆾󰇀󰇄󰆿󰇂󰆽
󰆡󰆦 U. discolor s󰂺 no󰂺 
󰆛󰆛󰆙󰆕󰆙
󰄍󰆾󰇂󰇂󰇁󰇁󰆼 󰄍
󰆢󰆝 U. discolor s󰂺 no󰂺 Tasmania 󰄍󰇀󰇄󰆼󰇁󰆼󰆻 󰇀󰇄󰆼󰇁󰆽󰆻
󰆢󰆞 U. lynherensis s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆔
󰆾󰇂󰇂󰇁󰇃󰇀 󰆾󰇂󰇂󰇁󰇁󰆽 󰆾󰇀󰇄󰆿󰇂󰆾
󰆢󰆟 U. raksasa s󰂺 no󰂺 s󰂺󰆖
Sulawesi
󰇀󰇄󰆼󰇀󰇂󰇀 󰇄󰇄󰇀󰇄󰆾󰇂 󰆽󰆿󰇂󰆾󰇀󰆿
󰆢󰆠 U. raksasa s󰂺 no󰂺 󰂺
󰂺󰆗󰆙󰆘󰆕󰆓
󰆾󰇂󰇂󰇁󰇃󰇁 󰆾󰇂󰇂󰇁󰇁󰆾 󰆾󰇀󰇄󰆿󰇂󰆿
󰆢󰆡 U. raksasa s󰂺 no󰂺 󰂺
󰂺󰆗󰆙󰆘󰆕󰆔
󰆾󰇂󰇂󰇁󰇃󰇂 󰄍 󰄍
󰆢󰆢 U. raksasa s󰂺 no󰂺 
󰆛󰆛󰆛󰆔󰆘
󰆾󰇂󰇂󰇁󰇃󰇃 󰆾󰇂󰇂󰇁󰇁󰆿 󰆾󰇀󰇄󰆿󰇂󰇀
󰄀󰄀󰄀 U. raksasa s󰂺 no󰂺 
󰆛󰆛󰆛󰆕󰆛
󰄍󰆾󰇂󰇂󰇁󰇁󰇀 󰄍
󰆢󰆣 P. axinellae 󰇀󰇄󰆼󰇀󰇂󰆻 󰇄󰇄󰇀󰇄󰆾󰇀 󰆽󰆿󰇂󰆾󰇀󰇀
󰆢󰆤 P. axinellae 󰇀󰇄󰆼󰇀󰇂󰆼 󰆾󰇄󰇃󰇄󰆽󰆼 󰇁󰇂󰆽󰇁󰇀󰇄
󰆢󰆥 P. anguicomus 2 󰆿󰇁󰆿󰇃󰇃󰆻 󰆿󰇁󰆿󰇃󰇀󰆼 󰄍
󰆢󰆦 P. anguicomus 1 󰇀󰇄󰆼󰇀󰇂󰆿 󰇁󰇃󰇂󰇃󰆽󰇂 󰇁󰇂󰆽󰇁󰇁󰆻
󰆣󰆝 P. capensis 󰆽󰇁󰆽 󰆿󰇁󰆿󰇃󰇃󰆼 󰆿󰇁󰆿󰇃󰇀󰆽 󰄍
󰆣󰆞 P. swifti 󰆿󰆼󰇃󰆾󰆾󰆽 󰇃󰆽󰇃󰇂󰇀󰇀 󰆽󰆿󰇂󰆾󰇀󰆻
󰆣󰆟 P. swiftii 󰇃󰆿󰇃󰆽󰇀󰇃 󰅨󰆓󰆗󰆙󰆗󰆚󰆘
󰃍󰆜󰆖󰆜󰆗󰄍󰆜󰆜󰆛󰆛p)
󰅨󰆓󰆗󰆙󰆗󰆚󰆘
󰃍󰆔6󰆕󰄍󰆙󰆓󰆙p)
󰆣󰆠 P. darwini 󰆾󰆾󰆾󰇃󰆻󰆽 󰆾󰆾󰆾󰇂󰇀󰆼 󰆻󰆽󰇄󰆾󰆼󰆿
󰆼 Newly generated and downloaded sequences used in the phylogenetic reconstruction󰃍cont.)
󰇃󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Fam. [#] Species ITS-rDNA 16S-rDNA COI-mtDNA
󰆣󰆡 P. atlanticus
󰆔󰆚󰆓󰆙󰆔󰆖󰄀󰆔󰆓󰄀󰆙1
󰆼󰆻󰆾󰇀󰆽󰇂 󰆼󰆻󰆾󰇀󰆾󰇄 󰆼󰆻󰆽󰆽󰆽󰆽
󰆣󰆢 P. atlanticus
󰆔󰆚󰆓󰆙󰆔󰆖󰄀󰆔󰆓󰄀󰆙󰆓
󰆼󰆻󰆾󰇀󰆽󰇃 󰆼󰆻󰆾󰇀󰆾󰇃 󰆼󰆻󰆽󰆽󰆽󰆾
󰆣󰆣 P. elongatus Chile 󰇀󰇄󰆼󰇀󰇁󰇀 󰇁󰇃󰇂󰇃󰆽󰇄 󰇁󰇂󰆽󰇁󰇁󰆼
󰆣󰆤 P. elongatus  󰇀󰇄󰆼󰇀󰇁󰆿 󰇁󰇃󰇂󰇃󰆽󰇃 󰇁󰇂󰆽󰇁󰇁󰆽
󰆣󰆥 P.󰂺 juanfernandezii 󰆼󰆽󰇃 󰆿󰇁󰆿󰇃󰇂󰇂 󰆿󰇁󰆿󰇃󰆿󰇄 󰄍
󰆣󰆦 P.󰂺 juanfernandezii 󰆼 󰆿󰇁󰆿󰇃󰇂󰇃 󰆿󰇁󰆿󰇃󰆿󰇃 󰄍
󰆤󰆝 B. puertoricense 󰇀󰇄󰆼󰇀󰇃󰆿 󰇃󰆽󰇃󰇂󰇀󰇃 󰆽󰆿󰇂󰆾󰇀󰆼
󰆤󰆞 B. puertoricense 󰆿󰆼󰇃󰆾󰆼󰆽 󰇄󰇄󰇀󰇄󰆾󰆾 󰄍
󰆤󰆟 B. catenularis 󰆿󰆼󰇃󰆽󰇄󰆽 󰇃󰆽󰇃󰇂󰇀󰇂 󰄍
󰆤󰆠 B. cutressi 󰆿󰆼󰇃󰆽󰇁󰆿 󰇃󰆽󰇃󰇂󰇀󰇄 󰄍
󰆤󰆡 B. s󰂺 Senegal 󰇀󰇄󰆼󰇀󰇃󰆽 󰇁󰇃󰇂󰇃󰆽󰆻 󰇁󰇂󰆽󰇁󰇀󰇁
󰆦Parazoanthid󰆓󰆕󰄍󰆕7󰆾󰆾󰆾󰇃󰆼󰆻 󰆾󰆾󰆾󰇂󰇁󰆻 󰄍
󰆥A. macaronesicus 󰇀󰇄󰆼󰇀󰇀󰇁 󰆼󰆾󰆻󰆿󰇁󰇂 󰄍
󰆤C. tsukaharai 󰆻󰆾󰇀󰇁󰆽󰆼 󰆻󰆾󰇀󰇁󰆽󰇂 󰄍
󰆣S. savaglia 󰆾󰆿󰇁󰇃󰇃󰇃 󰇄󰇄󰇀󰇄󰆽󰇀 󰄍
󰆢M. fossii 󰇀󰇄󰆼󰇀󰆿󰇀 󰇁󰇃󰇂󰇃󰆽󰆼 󰄍
󰆡I. giganteus 󰆿󰇁󰆿󰇃󰇄󰇁 󰆿󰇁󰆿󰇃󰇁󰇂 󰄍
󰄀
thidae
󰆠E. incrustatus 󰆿󰇁󰆿󰇃󰇄󰆿 󰆿󰇁󰆿󰇃󰇁󰇀 󰄍
󰆟E. scotinus 󰆿󰇁󰆿󰇃󰇄󰇄 󰆿󰇁󰆿󰇃󰇂󰆻 󰄍
󰆞E. arenaceus 󰇀󰇄󰆼󰇀󰆾󰇃 󰇄󰇄󰇀󰇄󰆽󰇁 󰆽󰆿󰇂󰆾󰆿󰇃
󰆼 Newly generated and downloaded sequences used in the phylogenetic reconstruction󰃍cont.)
󰄀
imens’ sequences truly belong within
genus Umimayanthus󰂶
genus remains a cohesive taxonomic and
evolutionary unit 󰃍onophyly)󰂺
For each of the molecular marker󰂶
the 󰄀 model was selected using
ModelTes󰄀 v󰆓󰂺󰆕 󰃍arriba  󰂺󰂶 󰆕󰆓󰆕󰆓󰃎
for  reconstructions and MrModeltest2
󰃍ylande󰂶󰆕󰆓󰆓4) for 󰂺 In both cases the
lowest  score was used as the select󰄀
ing criteri󰂺 The 󰄀 models for
  󰆖󰈴󰈴󰆗  󰄀󰂶
󰈴󰆗󰆔󰆙󰄀󰂶󰈴 󰄀
󰂺 The 󰄀 models for 
were 󰈴󰈴  󰄀󰂶 󰈴 
16󰄀󰂶 and 󰈴󰄀󰂺
 phylogenies were estimated using
 󰆔󰆓󰆓   󰂶 󰆔󰆓󰆓󰆓 󰄀
strap󰂶 and the evolutionary models
selected by 󰄀; distinct substi󰄀
tution rates across partition󰂶 automated
    
branch lengths were allowe󰂺  trees
were estimated following the models and
parameters as indicated by MrModeltest󰆕󰂶
4  heated chains were run for
1󰆓󰂶󰆓󰆓󰆓󰂶󰆓󰆓󰆓 generations with a temperature
󰇄󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
for the heated chain of 󰆓󰂺󰆕󰂺 Chains were
  󰆕󰆓󰆓 󰂺 󰄀
length was set to 2󰆘󰈱 at which point the
average standard deviation of split fre󰄀
quency 󰃍) was steadily below 󰆓󰂺󰆓󰆔󰂺


by J󰂶󰂶 while associated sponges
from  and   JF󰂺
󰂺lvare󰂶
󰂺󰂺oogd and 󰂺󰂺󰂺 van Soest 󰃍󰂺
󰂺󰆜󰆔󰆖󰆜󰂶 󰂺 󰂺󰆕󰆓󰆚󰆓4) in previous
publications 󰃍󰂺󰂶󰆕󰆓󰆔6)󰂺
󰂺entschel
󰃍 󰆔󰆜󰆖󰆔󰂺󰆛󰂺󰆗󰂺󰆘󰆚󰃎 and 󰂺 ohn Carter
󰃍arte󰂶󰆔󰆛󰆛2) 󰃍󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘󰃎󰂶
reexamined by 󰂺 ooper and JF󰂺 Sponge
subsamples were cut at right angles to
the surface and processed using a graded
ethanol dehydration and histolene clear󰄀
ing procedur󰂶 sectioned at right angles
       
  
blad󰂶 and mounted on glass slides with
󰄀 mountant 󰃍 c)
to determine the skeletal arrangement
󰃍romont  󰂺󰂶 󰆕󰆓󰆔1)󰂺  󰄀
tions were made with nitric acid or bleac󰂶
washed in distilled wate󰂶 mounted on glass
slides and examined with an Olympus
󰇀󰆻 microscop󰂺 A calibrated microm󰄀
eter eyepiece was used to measure skeletal
    󰃍romont  󰂺󰂶
󰆕󰆓󰆔1)󰂺  󰄀
ments were examined and compared with
relevant sponge literature to identify gen󰄀
era and specie󰂺 󰃍oope󰂶 󰆔󰆜󰆛󰆗󰂶󰆔99󰆔󰂶 1996;
Van Soest 󰂺󰂶 󰆕󰆓󰆔2; 󰂺󰂶󰆕󰆓󰆔6;
de Voogd 󰂺󰂶󰆕󰆓󰆕󰆖󰃎󰂺
Zoantharian specimens were pre󰄀
liminarily grouped based on molecular
similarities across the three  marker󰂺
For all specie󰂶 where possibl󰂶 three pol󰄀
yps were randomly selected to measure
diameter and heigh󰂶 and the presence or
absence of coenenchyma connecting pol󰄀
yps was recorde󰂺 Cnidae analyses were
performed; one polyp was dissected per spe󰄀
cies group and undischarged nematocysts
from tentacle󰂶 colum󰂶 actinopharyn󰂶
    
     󰆛󰆓
stereomicroscope 󰃍iko󰂶 Toky 󰂶 Japan)󰂺

ve󰂺 󰆔󰂺󰆗󰆘 󰃍asban󰂶 󰆕󰆓󰆔2)󰂶  
according to England 󰃍󰆔991) and Ryland
  󰃍󰆕󰆓󰆓4)󰂶    
basitrichs and microbasic mastigophore󰂶
which were treated as a single type fol󰄀
lowing Kise 󰂺 󰃍󰆕󰆓󰆔9)󰂺󰂶 six cnidae
  d; spirocyst󰂶
   󰄀󰂶
󰄀󰃍󰃎󰂶󰄀󰃍󰃎󰂶󰄀
󰃍󰃎󰂶   󰄀󰂷
additionally special microbasic 󰄀masti󰄀
gophores were also counted when presen󰂺
Serial sections from preserved speci󰄀
mens were also examined for internal
morpholog󰂺 Whole polyps of the speci󰄀
mens were embedded in paraplast after
󰆗󰆛
h 󰃍󰆔󰂹󰆔 vol; 2󰆓󰈱 citric aci󰂹󰆘󰆓󰈱 formic acid)
and desilication with 2󰆓󰈱 
acid for 1󰆛󰄍󰆕4 󰂺 1󰆓󰄍󰆔󰆘󰄀
tions were made with a microtome 󰃍
󰆽󰆼󰆿󰇀; Leic󰂶 Germany) and stained with
haematoxylin and eosi󰂺
marginal muscle shapes followed Swain
󰂺 󰃍󰆕󰆓󰆔󰆘󰃎󰂺
not successful and therefore the internal
morphology of the polyps was character󰄀
   󰄀
tion stereomicroscop󰂺
󰆼󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Results
Phylogenetic analyses
In tota󰂶 󰆖󰆗   
analysed in this study; 26 from 󰂶 three
from 󰂶 two from 󰂶 two from
󰂶 and one from  󰃍able 2)󰂺 
    󰆕󰆙 󰄀
ent localities in Australia and Indonesia
󰃍able 󰆕󰂶 󰂺 1)󰂺   
alignment included data from 26 out of
󰆖󰆗󰂶 and included
191 sequence󰂶 out of which 64 were newly
generated in this stud󰂹 󰆕󰆖  
󰄀󰂶 17 sequences for 16󰄀󰂶 and
24 sequences for 󰄀󰂺 The total
     󰄀
  󰆔󰆛󰆗󰆖 p;   󰆛󰆙󰆗 
for 󰄀󰂶 󰆘󰆖󰆖   󰆔󰆙󰄀󰂶 and
446 bp of 󰄀 󰃍upplementary
data S󰆔󰄍󰆗󰃎󰂺
The genus Umimayanthus was sup󰄀
󰄀
thida󰂶 and was presented as a moderately
supported monophyly in  analyse󰂶 and
well supported in  with a >󰆓󰂺󰆜󰆛󰄀
rior probabilit󰂺 All specimens analysed
in this study were included within the
󰆼 󰂺 Numbers indicate unique location󰂺 Details in
󰆕󰃍󰃻󰃎
󰆼󰆼󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰆽 Samples and collection metadata for all samples analysed in this study
[#] Zoantharian
voucher#
Umimayan-
thus ID s
Sponge
voucher#
Sponge
Fam.
Sponge ID s Country State IslandGR Locality Date Lat(dd) Long(dd) Loc.
ID
Depth
(meters)
󰆞󰆝 󰆥󰆥󰆥󰆡󰆤 U. c󰂺
aruensis

󰆥󰆞󰆥󰆞󰆞
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
Bare
Rock
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆝󰂺󰆡󰆤󰆡󰆤 󰆞󰆞󰆣󰂺󰆠󰆝󰆤󰆟 󰆞󰆞 󰆠󰆤
󰆞󰆞 󰆥󰆥󰆥󰆡󰆞 U. c󰂺
aruensis

󰆥󰆞󰆣󰆝󰆣
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
Sultan
Reef
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆡 󰆞󰆞󰆢󰂺󰆝󰆥󰆦󰆤 󰆤 󰆞󰆥
󰆞󰆟 󰆥󰆥󰆥󰆠󰆦 U. c󰂺
aruensis

󰆣󰆢󰆠󰆞󰆦
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Onslow Wheat󰄀
stone
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆣󰆝󰆣󰆦 󰆞󰆞󰆡󰂺󰆦󰆠󰆠󰆞 󰆢 󰆞󰆟󰂺󰆟
󰆞󰆠 󰆥󰆥󰆥󰆣󰆤 U. c󰂺
aruensis

󰆥󰆞󰆥󰆞󰆝
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
West
Reef
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆠󰆞󰆟󰆟 󰆞󰆞󰆢󰂺󰆠󰆣󰆦󰆟 󰆥 󰆞󰆡
󰆞󰆡 󰆥󰆥󰆥󰆠󰆤 U. c󰂺
aruensis

󰆣󰆢󰆟󰆢󰆠
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Onslow Wheat󰄀
stone
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆢󰆦󰆣󰆞 󰆞󰆞󰆢󰂺󰆝󰆣󰆝󰆣 󰆣 󰆞󰆟󰂺󰆟
󰆞󰆢 󰆥󰆥󰆥󰆤󰆝 U. c󰂺
aruensis

󰆥󰆡󰆥󰆢󰆠
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
󰄀
bello
Islands
Ah
Chong
Island
Ap󰂺󰆡󰂺
󰆟󰆝󰆞󰆢
󰈵󰆟󰆝󰂺󰆡󰆦󰆦󰆟 󰆞󰆞󰆢󰂺󰆢󰆥󰆦󰆤 󰆞󰆝 󰆞󰆡󰂺󰆢
󰆞󰆣 󰆥󰆥󰆥󰆣󰆢 U. c󰂺
aruensis

󰆥󰆣󰆞󰆟󰆤
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
West
Reef
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆝󰂺󰆦󰆤󰆥󰆠 󰆞󰆞󰆢󰂺󰆢󰆢󰆟󰆟 󰆦 󰆞󰆡
󰆞󰆤 󰆥󰆥󰆥󰆡󰆝 U. c󰂺
aruensis

󰆥󰆞󰆣󰆝󰆟
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Onslow Wheat󰄀
stone
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆣󰆝󰆣󰆦 󰆞󰆞󰆡󰂺󰆦󰆠󰆠󰆞 󰆢 󰆞󰆟󰂺󰆟
󰆞󰆥 󰆥󰆥󰆥󰆟󰆝 U. c󰂺
aruensis

󰆥󰆥󰆠󰆝󰆞
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Onslow near
Wheat󰄀
stone
Ju󰂺󰆤󰂺
󰆟󰆝󰆞󰆢
󰈵󰆟󰆞󰂺󰆢󰆦󰆣󰆞 󰆞󰆞󰆢󰂺󰆝󰆣󰆝󰆣 󰆣 󰆞󰆟󰂺󰆠
󰆞󰆦 󰆥󰆥󰆥󰆞󰆦 U. c󰂺
aruensis

󰆥󰆥󰆝󰆣󰆝
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Camden
Sound
Camden
Sound
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆢
󰈵󰆞󰆢󰂺󰆠󰆤󰆣󰆠 󰆞󰆟󰆡󰂺󰆞󰆠󰆦󰆢 󰆞󰆣 󰆠󰆦
󰄌󰆥󰆥󰆥󰆣󰆞 U. c󰂺
aruensis

󰆥󰆟󰆢󰆠󰆦
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
The Man
in the
Boat
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆝󰂺󰆦󰆤󰆥󰆠 󰆞󰆞󰆢󰂺󰆢󰆢󰆟󰆟 󰆦 󰆞󰆥
󰆼󰆽 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
[#] Zoantharian
voucher#
Umimayan-
thus ID s
Sponge
voucher#
Sponge
Fam.
Sponge ID s Country State IslandGR Locality Date Lat(dd) Long(dd) Loc.
ID
Depth
(meters)
󰄌󰆥󰆥󰆥󰆣󰆠 U. c󰂺
aruensis

󰆥󰆣󰆞󰆟󰆣
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
Sultan
Reef
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆡 󰆞󰆞󰆢󰂺󰆝󰆥󰆦󰆤 󰆤 󰆞󰆥
󰄌󰆥󰆥󰆥󰆢󰆠 U. c󰂺
aruensis

󰆥󰆣󰆞󰆟󰆢
Raspaili󰄀
idae
Trikentrion

Australia Western
Australia
Pilbara
Shelf
Poivre
Reef
Ju󰂺󰆣󰂺
󰆟󰆝󰆞󰆠
󰈵󰆟󰆞󰂺󰆝󰆥󰆝󰆠 󰆞󰆞󰆢󰂺󰆞󰆥 󰆟󰆢 󰆟󰆞
󰆟󰆝 
󰆥󰆥󰆥󰆟󰆡󰃻
U. mir-
nangga s󰂺
no󰂺

󰆦󰆡󰆝󰆠󰆡
Raspaili󰄀
idae
Ectyoplasia
vannus
Australia Western
Australia
Maret
Islands
Maret
Islands
De󰂺󰆞󰆟󰂺
󰆟󰆝󰆞󰆢
󰈵󰆞󰆡󰂺󰆠󰆢󰆡󰆢 󰆞󰆟󰆡󰂺󰆦󰆡󰆥󰆥 󰆞󰆦 󰆣󰆞
󰆟󰆞 󰆥󰆥󰆥󰆞󰆤 U. mir-
nangga s󰂺
no󰂺

󰆥󰆤󰆟󰆝󰆝
Raspaili󰄀
idae
Endectyon
(Endectyon)
fruticosum
Australia Western
Australia
Camden
Sound
Camden
Sound
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆢
󰈵󰆞󰆢󰂺󰆡󰆡󰆣󰆡 󰆞󰆟󰆡󰂺󰆝󰆥󰆠 󰆞󰆢 󰆣󰆞
󰆟󰆟 
󰆥󰆥󰆥󰆟󰆠󰅥
U. mir-
nangga s󰂺
no󰂺

󰆦󰆡󰆝󰆠󰆠
Raspaili󰄀
idae
Ectyoplasia
vannus
Australia Western
Australia
Maret
Islands
Maret
Islands
De󰂺󰆞󰆟󰂺
󰆟󰆝󰆞󰆢
󰈵󰆞󰆡󰂺󰆡󰆟󰆡󰆡 󰆞󰆟󰆢󰂺󰆝󰆡󰆝󰆦 󰆞󰆤 󰆢󰆢
󰆟󰆠 
󰆥󰆥󰆥󰆟󰆢󰃻
U. jebarra
s󰂺 no󰂺

󰆦󰆡󰆤󰆦󰆞
Raspaili󰄀
idae
Endectyon
s󰂺
Australia Western
Australia
Eclipse
Islands
Eclipse
Islands
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆣
󰈵󰆞󰆠󰂺󰆡󰆦󰆠󰆥 󰆞󰆟󰆢󰂺󰆥󰆢󰆞󰆣 󰆟󰆞 󰆡󰆞
󰆟󰆡 󰆥󰆥󰆥󰆟󰆤 U. wun-
anggu s󰂺
no󰂺

󰆦󰆢󰆡󰆢󰆢
Raspaili󰄀
idae
Endectyon
(Endectyon)
fruticosum
Australia Western
Australia
Lynher
Bank
Lynher
Bank
Oc󰂺󰆞󰆝󰂺
󰆟󰆝󰆞󰆣
󰈵󰆞󰆢󰂺󰆣󰆟󰆠󰆠 󰆞󰆟󰆞󰂺󰆦󰆤󰆟󰆟 󰆞󰆠 󰆣󰆞
󰆟󰆢 
󰆥󰆥󰆥󰆞󰆥󰅥
U. wun-
anggu s󰂺
no󰂺

󰆥󰆤󰆦󰆢󰆥
Raspaili󰄀
idae
Endectyon
(Endectyon)
thurstoni
Australia Western
Australia
Camden
Sound
Camden
Sound
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆢
󰈵󰆞󰆢󰂺󰆡󰆡󰆣󰆡 󰆞󰆟󰆡󰂺󰆝󰆥󰆠 󰆞󰆢 󰆣󰆞
󰆟󰆣 
󰆥󰆥󰆥󰆟󰆣󰃻
U. wun-
anggu s󰂺
no󰂺

󰆦󰆡󰆦󰆦󰆞
Raspaili󰄀
idae
Endectyon
(Endectyon)
thurstoni
Australia Western
Australia
Eclipse
Islands
Eclipse
Islands
Ma󰂺󰆠󰂺
󰆟󰆝󰆞󰆣
󰈵󰆞󰆠󰂺󰆤󰆦󰆡󰆟 󰆞󰆟󰆣󰂺󰆞󰆞󰆥󰆥 󰆟󰆝 󰆢󰆦
󰆽 󰃍cont.)
󰆼󰆾󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
[#] Zoantharian
voucher#
Umimayan-
thus ID s
Sponge
voucher#
Sponge
Fam.
Sponge ID s Country State IslandGR Locality Date Lat(dd) Long(dd) Loc.
ID
Depth
(meters)
󰆟󰆤 
󰆥󰆥󰆥󰆟󰆟󰅥
U. wun-
anggu s󰂺
no󰂺

󰆦󰆡󰆝󰆞󰆠
Raspaili󰄀
idae
Endectyon
(Endectyon)
thurstoni
Australia Western
Australia
Maret
Islands
Maret
Islands
De󰂺󰆞󰆟󰂺
󰆟󰆝󰆞󰆢
󰈵󰆞󰆡󰂺󰆡󰆝󰆞󰆦 󰆞󰆟󰆡󰂺󰆦󰆡󰆡󰆞 󰆞󰆥 󰆢󰆝
󰆡󰆣 󰄀
󰆞󰆦󰆠󰆞󰂺󰆥󰂺󰆡󰂺󰆢󰆤
U. discolor
s󰂺 no󰂺
󰄀
󰆞󰆦󰆠󰆞󰂺󰆥󰂺󰆡󰂺󰆢󰆤
Raspaili󰄀
idae
Trikentrion
󰃻
Indonesia Aru
Islands
Maluku East cost
of Aru
Island
n󰂶
󰆞󰆦󰆠󰆞
󰈵󰆣󰂺󰆞󰆣󰆡󰆝󰆠 󰆞󰆠󰆡󰂺󰆦󰆡󰆡󰆤 󰆟󰆡 󰆡󰅦󰆞󰆢
󰆡󰆤 󰄀
󰆞󰆥󰆥󰆤󰂺󰆢󰂺󰆟󰆞󰂺
󰆞󰆥󰆣󰆢
U. discolor
s󰂺 no󰂺
󰄀
󰆞󰆥󰆥󰆤󰂺󰆢󰂺󰆟󰆞󰂺
󰆞󰆥󰆣󰆢
Raspaili󰄀
idae
Trikentrion
󰃻
Australia South
West
󰄌 󰄌 n󰂶
󰆞󰆥󰆣󰆢󰅦
󰆥󰆤
󰄌 󰄌 󰄌 na
󰆡󰆥 
󰆥󰆥󰆣󰆞󰆣󰃻
U. discolor
s󰂺 no󰂺

󰆥󰆥󰆡󰆤󰆠
Micro󰄀
cionidae
Clathria
(Thalysias)
cactiformis
Australia Western
Australia
Albany Murray
Road
boat
ramp
Ap󰂺󰆡󰂺
󰆟󰆝󰆞󰆥
󰈵󰆠󰆢󰂺󰆝󰆦󰆠󰆦 󰆞󰆞󰆤󰂺󰆦󰆣󰆠󰆦 󰆠 󰆣󰂺󰆡
󰆡󰆦 
󰆥󰆥󰆣󰆟󰆣󰅥
U. discolor
s󰂺 no󰂺

󰆥󰆥󰆡󰆤󰆡
Micro󰄀
cionidae
Clathria
(Thalysias)
cactiformis
Australia Western
Australia
Albany Shelter
Island
Ap󰂺󰆡󰂺
󰆟󰆝󰆞󰆥
󰈵󰆠󰆢󰂺󰆝󰆡󰆦󰆤 󰆞󰆞󰆤󰂺󰆣󰆦󰆠󰆣 󰆡 󰆥󰂺󰆢
󰄌󰄀󰆣󰆤󰆦󰆢󰆡 U. discolor
s󰂺 no󰂺
󰄌Micro󰄀
cionidae
Clathria
(Thalysias)
c󰂺
cactiformis
Australia Victoria Wilsons
󰄀
tory
South
Wal󰂶
Sealer
Cove
Ap󰂺󰆡󰂺
󰆞󰆦󰆥󰆤
󰈵󰆠󰆦󰂺󰆝󰆞󰆣󰆠 󰆞󰆡󰆣󰂺󰆡󰆡󰆟󰆦 󰆞 󰆞󰆝
󰆢󰆞 
󰆥󰆥󰆥󰆟󰆞󰃻
U. lynheren-
sis s󰂺 no󰂺

󰆦󰆝󰆣󰆠󰆟
Biemni󰄀
dae
Sigmaxinella
soelae
Australia Western
Australia
Lynher
Bank
Lynher
Bank
Oc󰂺󰆞󰆝󰂺
󰆟󰆝󰆞󰆣
󰈵󰆞󰆢󰂺󰆡󰆦󰆠󰆤 󰆞󰆟󰆞󰂺󰆣󰆠󰆣󰆟 󰆞󰆡 󰆦󰆢
󰆢󰆠 󰂺󰂺
󰆡󰆣󰆢󰆟󰆝󰃻
U. raksasa
s󰂺 no󰂺
󰄀󰄀
󰆦󰆞󰆠󰆦
Axinel󰄀
lidae
Phakelia cf.
tropicalis
Indonesia Nusa
Tenggara
NE coast
of Sumba
East of
Melolo
Se󰂺󰆦󰂺
󰆞󰆦󰆥󰆡
󰈵󰆦󰂺󰆥󰆦󰆞󰆣󰆦 󰆞󰆟󰆝󰂺󰆤󰆞󰆞󰆤 󰆟󰆟 󰆤󰆢󰄍󰆦󰆝
󰆽 󰃍cont.)
󰆼󰆿 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
[#] Zoantharian
voucher#
Umimayan-
thus ID s
Sponge
voucher#
Sponge
Fam.
Sponge ID s Country State IslandGR Locality Date Lat(dd) Long(dd) Loc.
ID
Depth
(meters)
󰆢󰆡 󰂺󰂺
󰆡󰆣󰆢󰆟󰆞󰅥
U. raksasa
s󰂺 no󰂺
󰄀󰄀
󰆟󰆝󰆤󰆝󰆡
Axinel󰄀
lidae
Phakellia
󰂺󰂺
Indonesia Nusa
Tenggara
Komodo East of
Komodo
Field
#󰆞󰆝󰆝
Se󰂺󰆦󰂺
󰆞󰆦󰆥󰆡
󰈵󰆥󰂺󰆡󰆣󰆥󰆠󰆠 󰆞󰆞󰆦󰂺󰆣󰆞󰆤󰆢 󰆟󰆠 󰆦󰆞
󰆢󰆢 󰆥󰆥󰆥󰆞󰆢 U. raksasa
s󰂺 no󰂺

󰆠󰆣󰆞󰆟󰆟
Axinel󰄀
lidae
Phakellia s󰂺
󰆟
Australia Western
Australia
Broome Broome
󰆟󰆢
Ju󰂺󰆣󰂺
󰆟󰆝󰆝󰆤
󰈵󰆞󰆣󰂺󰆤󰆢󰆟󰆢 󰆞󰆟󰆞󰂺󰆝󰆡󰆣󰆤 󰆞󰆟 󰆞󰆝󰆥󰄍󰆞󰆝󰆝
󰄌󰆥󰆥󰆥󰆟󰆥 U. raksasa
s󰂺 no󰂺

󰆦󰆢󰆡󰆣󰆣
Axinel󰄀
lidae
Phakellia s󰂺
󰆞󰂺
Australia Western
Australia
Lynher
Bank
Lynher
Bank
Oc󰂺󰆞󰆝󰂺
󰆟󰆝󰆞󰆣
󰈵󰆞󰆢󰂺󰆣󰆟󰆠󰆠 󰆞󰆟󰆞󰂺󰆦󰆤󰆟󰆟 󰆞󰆠 󰆣󰆞
󰄌 󰆡󰆟󰆣󰆞󰆞󰅨
C󰆥󰆣󰃻
U. aruensis 󰄌 󰄌 󰂺 Indonesia Aru
Islands
Aru 󰄌Ap󰂺󰆡󰂺
󰆞󰆦󰆝󰆥
󰈵󰆢󰂺󰆟󰆦󰆞󰆣󰆤 󰆞󰆠󰆢󰂺󰆞󰆢󰆥󰆣 󰆟󰆣󰈴 󰆢
󰄌󰄀󰆡󰆞󰆢󰆡󰆦󰃻 P. lividum 󰄌Clionai󰄀
dae
Spheciospon-
gia s󰂺
Australia Victoria Port
Phillip Bay
Area
󰆣󰂶 Lo󰂺
󰆣󰆢󰂶
William󰄀
stown
Ju󰂺󰆣󰂺
󰆞󰆦󰆢󰆥
󰈵󰆠󰆤󰂺󰆥󰆤󰆤 󰆞󰆡󰆡󰂺󰆦󰆞󰆥 󰆟 na
󰄌󰄀󰆡󰆞󰆢󰆢󰆝󰅥 P. lividum 󰄌Clionai󰄀
dae
Spheciospon-
gia s󰂺
Australia Victoria Port
Phillip Bay
Area
󰆣󰂶 Lo󰂺
󰆣󰆢󰂶
William󰄀
stown
Ju󰂺󰆣󰂺
󰆞󰆦󰆢󰆥
󰈵󰆠󰆤󰂺󰆥󰆤󰆤 󰆞󰆡󰆡󰂺󰆦󰆞󰆥 󰆟 na
󰃻ndicate the holotype󰂶󰅥󰂶󰈴󰂺
󰆽 󰃍cont.)
󰆼󰇀󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Umimayanthus clad󰂶 and grouped into
three major clades; designated as clades 󰂶
 and 󰂺 󰆕󰂺
Clade  was sister to all other species
in the genus Umimayanthus while the
phylogenetic positions of Clades  and
 were less certai󰂺 Nonetheles󰂶 each of
these three clades was well supported in
both  analyse󰂶 with bootstrap values of
7󰆙󰄍󰆛󰆜󰈱 for  and posterior probabilities
󰉀󰆓󰂺󰆜󰆘 for Clades  and 󰂺 The
lack of support from  analyses for
Clade  may stem from multiple individu󰄀
als having missing 󰄀 or 16󰄀
sequence dat󰂺
Clade  included three closely related
clades corresponding to Umimayanthus
discolor s󰂺 no󰂺󰂶 Umimayanthus lynher-
ensis s󰂺 no󰂺󰂶Umimayanthus raksasa
s󰂺 no󰂺 The clades of U. discolor s󰂺 no󰂺
󰆽 Phylogenetic reconstruction based on the concatenated alignments of the 󰄀󰂶
16󰄀󰂶 and 󰄀󰂺 Values at branches indicate 󰉀󰆘󰆓󰈱 and
black circles at nodes represent 󰉀󰆓󰂺󰆜󰆘󰂺 Numbers in brackets correspond to the unique
󰆔󰂺
󰆼󰇁 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
and U. lynherensis s󰂺 no󰂺 were strongly
supported as sister specie󰂶 while U. rak-
sasa s󰂺 no󰂺 was found to be basal within
Clade 󰂺 The relationships between these
three sibling species were supported by
bootstrap value of 7󰆙󰈱 for  and a
󰉀󰆓󰂺󰆜󰆘  in
phylogenetic analyse󰂺 Interestingl󰂶 U. dis-
color s󰂺 no󰂺 was found in association with
two distantly related sponge species in
families Microcionidae 󰃍pecimens 
󰆛󰆛󰆙󰆔󰆙󰆛󰆛󰆙󰆕6) and Raspiliidae
󰃍pecimens 󰄀󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘 
󰄀󰆔󰆜󰆖󰆔󰂺󰆛󰂺󰆗󰂺󰆘󰆚󰃎󰂶󰄀
ling species seems to be restricted to a sin󰄀
gle family and genus of host sponge󰂺
The monophyly formed by Clade  was
strongly supported in  analyses with a
  󰆛󰆜󰈱󰂶 
from  was lackin󰂺 While minor sub󰄀
clades were present within Clade  their
support was weak in  and not existent
in  analyse󰂺 Clade  was formed by
multiple specimens of Umimayanthus c󰂺
aruensis󰂺
In a similar fashio󰂶 Clade  was well
supported in  analyses with a bootstrap
  󰆛󰆜󰈱 and posterior probabili󰄀
󰉀󰆓󰂺󰆜󰆘  in the phylogenetic
analysi󰂺 󰂶 in contrast to Clade 󰂶
Clade  internal subclades were well sup󰄀
ported with values ranging from 6󰆘󰈱 to
󰆛󰆜󰈱󰂶    󰉀 󰆓󰂺󰆜󰆘
for  for some of these clade󰂺 Of these
subclade󰂶 the most supported mono󰄀
phyly was formed by three specimens of
Umimayanthus mirnangga s󰂺 no󰂺󰂶 󰄀
lowed by a clade formed by four specimens
of Umimayanthus wunanggu s󰂺 no󰂺󰂶
Umimayanthus
jebarra s󰂺 no󰂺 Specimens in this complex
were all hosted by sponges in the genera
Endectyon an󰃈r Ectyoplasia in the family
Raspaillida󰂶 supporting the phylogenetic
hypothesis of close evolutionary related󰄀
ness among these three specie󰂺
Systematics
󰂶󰆔󰆛󰆛󰆛
󰂶󰆔󰆛󰆖󰆔
󰂶󰆔󰆛󰆜󰆙
󰂶󰆔󰆛󰆔󰆘

érouar󰂶󰆔󰆜󰆓󰆔
Genus Umimayanthus Montenegro,
Sinniger and Reimer 2015
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆚󰆙󰆖󰆘󰆙󰄀󰆜12󰆛󰄀
41󰄀󰆔󰆓󰆛󰄀󰆕󰆚󰆔󰆚󰆓󰆛󰆕
The genus Umimayanthus was initially
diagnosed by a unique insertion of 9 bp
in length and one 14 bp deletion in the
mt 16󰄀 regio󰂺 󰂶 relying on
deletion󰂶 or alignment gap󰂶 as a diag󰄀
nostic character can be problematic when
analysing relationships between distantly
related tax󰂺 Therefor󰂶 here we revise
the generic diagnosis and propose to use
a combination of unique insertions and
substitutions across the 󰄀 and
16󰄀 molecular markers as follow󰂺
The genus Umimayanthus can be distin󰄀
guished from all other 󰄀
   
positions across the 󰄀 region in
our concatenated alignmen󰂶 as follow󰂹
two conservative and unique substitu󰄀
tions in base pair positions 2󰆕󰄍󰆕󰆖  
󰂶    
󰆼󰇂󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
of substitutions between positions 2󰆓󰄍24
bp as 󰂶 󰆘󰆕󰄍󰆘4 bp as  and
66󰆖󰄍󰆙64 bp as 󰂺󰂶 between
 󰆔󰆖󰆘󰆔󰄍󰆔󰆖󰆘󰆗    󰆔󰆙󰄀
region of our alignment a highly conser󰄀
vative insertion of four base pair󰂶󰂶
was also found to be unique to genus
Umimayanthus 󰃍󰂺 󰆖󰃎󰂺
󰆾 Summary chart for the alignments showing relevant nucleotide positions for the molecular
diagnosis of genus Umimayanthus󰂺 Positions in green are unique to genus Umimayanthus󰂺
Positions in grey indicate regions with a unique combination of nucleotides for
Umimayanthus󰂺
󰆼󰇃 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Umimayanthus cf. aruensis (Pax, 1911)
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆜󰆖󰆔󰆓󰆜󰆛󰆜󰄀76󰄀󰆗
󰆓󰆜󰆙󰄀󰆛BB󰆘󰄀󰆓󰆜󰆖󰆗󰆛󰆜󰆖󰆘󰆖󰆜󰆗
Parazoanthus aruensis
to the genus Umimayanthus based on its
general morphology and position of the
sphincter muscl󰂶 as well as corresponding
geographical locatio󰂶 and gross external
morphology of the host spong󰂺 P. aruen-
sis was originally described by Pax 󰃍󰆔911)
“that lives in sponges and
forming loose colonie󰂺 󰆛 mm hig󰂶
󰆘  󰂶 connected to each other by
  󰂺 Tissue walls incrusted
with sponge spicule󰂶 󰆔󰆛 󰂶 sphincter
 󰂶 endodermal and poorly
developed”󰂺    
P. aruensis󰂶  museu󰂶  󰈺
4261󰆔󰂶 Catalog #󰆛󰆙󰂶 had polyps of 󰆗󰂺󰆔󰆘󰈷
󰆓󰂺󰆗󰆓󰆕  󰃍󰇠 󰈺 󰆓󰂺󰆔6󰆔󰂶 ma󰂺 󰆗󰂺󰆜󰆕 󰂶
󰈺󰆔󰆓s) in diameter and 󰆗󰂺󰆚󰆕󰈷
󰆓󰂺󰆛9 mm 󰃍󰇠 󰈺 󰆓󰂺󰆚󰆛󰆚󰂶 ma󰂺 󰆙󰂺󰆙󰆚 󰂶  󰈺
󰆔󰆓 s) in heigh󰂶 with chains of pol󰄀
       
reticulate manner over the surface of the
host sponge 󰃍󰂺 4)󰂺
host sponge was arborescen󰃈ranching
󰆿 Specimens of Umimayanthus c󰂺 aruensis and holotype of
Umimayanthus aruensis; 󰃍󰃎 󰆛󰆛󰆛󰆔󰆜󰃍󰃎 󰆛󰆛󰆛󰆕󰆓
specimens of U. c󰂺 aruensis󰂺 󰃍󰃎 SeSam 42611 Ca󰂺󰆛6 picture of
U. aruensis holotype taken by Saskia Dimte󰂶 and 󰃍󰃎 in situ image of
U󰂺 c󰂺 aruensis󰂺 Scale bar󰂹󰆘
󰆼󰇄󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
in shap󰂶    
remains unknow󰂺
The specimens newly analysed in this
study that are attributable to U󰂺 c󰂺 aruensis
have polyps that are on average 󰆕󰂺󰆙󰆙󰈷
󰆓󰂺󰆛9 mm 󰃍󰇠 󰈺 󰆓󰂺󰆚󰆜󰂶 ma󰂺 󰆗󰂺󰆔󰆚 󰂶  󰈺
29 polyps) in diamete󰂶 󰆓󰂺󰆚󰆜󰈷󰆓󰂺󰆘 mm
󰃍󰇠 󰈺󰆓󰂺󰆕󰆙󰂶 ma󰂺 󰆕󰂺󰆓4 m󰂶󰈺 󰆕󰆚 s)
in heigh󰂺 The host sponge in U. c󰂺 aru-
ensis-
forme󰂶 1912 󰃍amily Raspailiidae
Nard󰂶 󰆔󰆛󰆖󰆖󰃎󰂺  󰄀
formed on voucher specimens preserved
in ethano󰂹
󰆛󰆛󰆛󰆔󰆜󰂶 󰆛󰆛󰆛󰆕󰆓󰂶 󰆛󰆛󰆛󰆗󰆓󰂶
󰆛󰆛󰆛󰆗󰆚󰂶 󰆛󰆛󰆛󰆗󰆔󰂶 󰆛󰆛󰆛󰆖󰆜󰂶
󰆛󰆛󰆛󰆙󰆚󰂶 󰆛󰆛󰆛󰆖󰆚󰂶 󰆛󰆛󰆛󰆚󰆓󰂶
and 󰆛󰆛󰆛󰆙󰆘󰂺
The U󰂺 c󰂺 aruensis colonies were found
to be primarily formed by interconnected
polyp chains extending over the surface
of the host sponge in a reticulated pat󰄀
tern; exceptionally the polyps were found
to be solitary or arranged in groups of two
or thre󰂺 The coenenchyma is clearly vis󰄀
      
connects multiple polyps by the stolo󰂺
Polyps preserved in ethanol are white or
cream in colo󰂺 Capitulary ridges not vis󰄀
ibl󰂺 Tentacles approximately up to 24 in
numbe󰂶 in two row󰂺 Preserved tentacles
light brown in coloratio󰂺 Capitulum
and scapus heavily encrusted by various
particles comprised of sand and silica
󰃍picules of host sponges)󰂺  󰄀
ter muscle located in the endoder󰂺
Mesenterial arrangement macrocnemic
󰃍    
complete)󰂺
to 24 in numbe󰂺 Ectoderm and mesoglea
of capitulum and scapus heavily encrusted
by various sand and silica particle󰂺 Single
siphonoglyp󰂺
In synthesi󰂶 U. aruensis and U. c󰂺 aru-
ensis strongly resemble each other in mul󰄀
tiple aspect󰂺 Both U. aruensis and U. c󰂺
aruensis present colonies form by chains
of polyps extending over the surface of
the host sponge in a reticulated manne󰂶
with a clearly visible coenenchym󰂺 Both
were collected from the same region of
the 󰄀 Ocean and are associated
to host sponges of arborescen󰃈branching
shape󰂺 Both have sphincter muscle
located in the endoder󰂶 and tissue walls
incrusted with sponge spicule󰂺 󰂶
   
the dimensions of the polyp󰂶 U. aruen-
sis was 󰆗󰂺󰆔󰆘󰈷󰆓󰂺󰆗󰆓󰆕  
and 󰆗󰂺󰆚󰆕 󰈷 󰆓󰂺󰆛9 mm in heigh󰂶 while
for U󰂺 c󰂺 aruensis polyps were 󰆕󰂺󰆙󰆙 󰈷
󰆓󰂺󰆛9 mm in diameter and 󰆓󰂺󰆚󰆜  󰈷
󰆓󰂺󰆘 mm in heigh󰂺 It is important to note

to the level of retraction of the specimens
in preservatio󰂺 Therefor󰂶 we consider
these fact󰂶 along with the fact that no
Parazoanthus is known from this region of
the 󰄀 Ocea󰂶   󰄀
port that U. aruensis should be transferred
into Umimayanthus󰂺 󰂶 given the
evident species diversity of Umimayanthus
in the region as illuminated by the current
wor󰂶 we feel the evidence is not strong
enough to be fully ascertain that our rele󰄀
vant specimens represent U. aruensis󰂶 and
conservatively we therefore have decided
to use the “confer” denomination 󰃍󰂺) for
these specimen’s  󰃍󰈺 U󰂺 c󰂺
aruensis)󰂺
Molecular characterization. At the
molecular leve󰂶 U. c󰂺 aruensis can be dis󰄀
tinguished from other species in Umima-
yan thus using multiple unique nucleotide
substitutions across the 󰄀rDNA region
as follow󰂹 an “A” in positions 49 b󰂶
󰆽󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰆖󰆚󰆛 󰂶 󰆖󰆛󰆚   󰆗󰆗󰆔 p; a “G” in posi󰄀
tions 97 b󰂶 󰆖󰆖󰆛 󰂶 󰆖󰆗󰆓 󰂶 󰆖󰆘󰆜  
󰆖󰆜󰆓p; a “C”󰆔󰆔󰆖󰆔󰆕󰆛󰂶“T”
 󰆖󰆚󰆖 󰂺 Additionall󰂶 unique combina󰄀
tions of nucleotides and deletions were
󰆔󰆕󰆛󰆖󰆗󰆔p;󰆗󰆓󰆛
󰆗󰆖󰆚󰃍󰂺 󰆘󰃎󰂺
Cnidae. All cnidae categories were
foun󰂶󰄀
uted across tissue󰂺 Spirocysts were numer󰄀
ous and only found in the tentacle󰂶 with
bastrichs and microbasic 󰄀
also presen󰂺 The column presented few
cnidae and exclusively 󰃍󰃎 and 󰃍L) type
holotrich󰂺 The pharynx had holotrichs
󰃍󰃎 and microbasic 󰄀󰂺
Filaments presented the largest vari󰄀
ety of cnidae with special microbasic
󰄀󰂶 bastrichs and micro󰄀
basic 󰄀󰂶 and microbasic
󰄀󰂺    󰂶
length󰂶 and widths of each cnidocyte type
󰆖󰂺 󰆙󰂺
Material examined.  󰆛󰆛󰆛󰆔󰆜󰂶 lo󰂺
󰆔󰆙 󰃍󰈵󰆔󰆘󰂺󰆖󰆚󰆙󰆖󰆓󰆙󰎣󰉓󰂶 12󰆗󰂺󰆔󰆖󰆜󰆘󰆗󰆚󰎣󰉓E)󰂶 
Soun󰂶 Western Australi󰂶 󰆖󰆜  󰂶
󰆕󰆔󰂶 󰆕󰆓󰆔󰆘󰂺󰂺󰄀
dal󰂶  󰆛󰆛󰆛󰆕󰆓󰂶 lo󰂺 󰆙 󰃍󰈵󰆕󰆔󰂺󰆘󰆜󰆙󰆔󰆔󰆔󰎣󰉓󰂶
11󰆘󰂺󰆓󰆙󰆓󰆘󰆘󰆙󰎣󰉓E)󰂶󰂶 Onslo󰂶
Western Australi󰂶 1󰆕󰂺󰆖 m dept󰂶 󰆚󰂶󰆕󰆓󰆔󰆘
by 󰂺󰂺󰂺aha󰂶 󰆛󰆛󰆛󰆗󰆓󰂶
lo󰂺󰎛󰆘󰎛󰃍󰈵󰆕󰆔󰂺󰆙󰆓󰆙󰆜󰆗󰆗󰎣󰉓󰂶󰎛󰆔󰆔󰆗󰂺󰆜󰆖󰆖󰆓󰆘󰆙󰎣󰉓E)󰂶
Wheat ston󰂶 Onslo󰂶 Western Australi󰂶
1󰆕󰂺󰆕 m dept󰂶 󰆕󰆜󰂶󰆕󰆓󰆔󰆖󰂺romont
 󰂺󰂺 choenber󰂶  󰆛󰆛󰆛󰆗󰆚󰂶 lo󰂺 11
󰃍󰈵󰆕󰆓󰂺󰆗󰆚󰆗󰆚󰆕󰆕󰎣󰉓󰂶 11󰆙󰂺󰆖󰆓󰆚󰆕󰆕󰆕󰎣󰉓E)󰂶  󰂶
Pilbara Shel󰂶 Western Australi󰂶 󰆖󰆚 
dept󰂶 󰆕󰆘󰂶󰆕󰆓󰆔󰆖󰂺orell󰂶 󰂺r󰂶
󰂺ille󰂶 󰂺󰂺earha󰂶 
󰆛󰆛󰆛󰆗󰆔󰂶 lo󰂺 󰆚 󰃍󰈵󰆕󰆔󰂺󰆗󰎣󰉓󰂶 11󰆘󰂺󰆓󰆛󰆜󰆚󰆕󰆕󰎣󰉓E)󰂶
Sultan Ree󰂶 Pilbara Shel󰂶 Western
Australi󰂶 󰆔󰆛  󰂶  󰆔󰆖󰂶 󰆕󰆓󰆔󰆖 
󰂺orell󰂶 󰂺 r󰂶 󰂺ille󰂶 󰂺 homson
 󰂺 earha󰂶  󰆛󰆛󰆛󰆖󰆜󰂶 lo󰂺 󰆘
󰃍󰈵󰆕󰆔󰂺󰆙󰆓󰆙󰆜󰆗󰆗󰎣󰉓󰂶 11󰆗󰂺󰆜󰆖󰆖󰆓󰆘󰆙󰎣󰉓E)󰂶 󰄀
ston󰂶 Onslo󰂶 Western Australi󰂶 1󰆕󰂺󰆕
m dept󰂶 March 2󰆜󰂶 󰆕󰆓󰆔󰆖  󰂺 romont
 󰂺󰂺 choenber󰂶  󰆛󰆛󰆛󰆙󰆚󰂶 lo󰂺 󰆛
󰃍󰈵󰆕󰆔󰂺󰆖󰆔󰆕󰆕󰆕󰆕󰎣󰉓󰂶 11󰆘󰂺󰆖󰆙󰆜󰆔󰆙󰆚󰎣󰉓E)󰂶  󰂶
Pilbara Shel󰂶 Western Australi󰂶 14 m
dept󰂶 󰆔󰆗󰂶󰆕󰆓󰆔󰆖 󰂺orell󰂶 󰂺r󰂶
󰂺ille󰂶 󰂺󰂺earha󰂶 
󰆛󰆛󰆛󰆖󰆚󰂶 lo󰂺󰆙󰃍󰈵󰆕󰆔󰂺󰆘󰆜󰆙󰆔󰆔󰆔󰎣󰉓󰂶 11󰆘󰂺󰆓󰆙󰆓󰆘󰆘󰆙󰎣󰉓E)󰂶
Wheatston󰂶 Onslo󰂶 Western Australi󰂶
1󰆕󰂺󰆕 m depth on  󰆕󰆙󰂶 󰆕󰆓󰆔󰆖 
󰂺   󰂺 uettne󰂶  󰆛󰆛󰆛󰆚󰆓󰂶
lo󰂺 󰆔󰆓 󰃍󰈵󰆕󰆓󰂺󰆗󰆜󰆜󰆔󰆙󰆚󰎣󰉓󰂶 11󰆘󰂺󰆘󰆛󰆜󰆚󰆕󰆕󰎣󰉓E)󰂶
Ah  󰂺󰂶  󰂺󰂶 
Australi󰂶 1󰆗󰂺󰆘 m depth on 󰆔󰆙󰂶󰆕󰆓󰆔󰆘
󰂺󰂺󰂺ar󰂶 󰆛󰆛󰆛󰆙󰆘󰂶 lo󰂺 9
󰃍󰈵󰆕󰆓󰂺󰆜󰆚󰆛󰆖󰆖󰆖󰎣󰉓󰂶 11󰆘󰂺󰆘󰆘󰆕󰆕󰆕󰆕󰎣󰉓E)󰂶  
󰂶  󰂶 Western Australi󰂶 14 m
dept󰂶 June 1󰆗󰂶󰆕󰆓󰆔󰆖 󰂺orell󰂶 󰂺r󰂶
󰂺ille󰂶 󰂺󰂺earha󰂶 
󰆛󰆛󰆛󰆙󰆔󰂶 lo󰂺󰆜󰃍 󰄀󰆕󰆓󰂺󰆜󰆚󰆛󰆖󰆖󰆖󰎣󰉓󰂶 11󰆘󰂺󰆘󰆘󰆕󰆕󰆕󰆕󰎣󰉓E)󰂶
The Man in the Boa󰂶 Pilbara Shel󰂶 Western
Australi󰂶 󰆔󰆛  󰂶  󰆕󰆔󰂶 󰆕󰆓󰆔󰆖 
󰂺orell󰂶 󰂺r󰂶 󰂺ille󰂶 󰂺
󰂺 earha󰂶 󰆛󰆛󰆛󰆙󰆖󰂶 lo󰂺󰆚󰃍󰈵󰆕󰆔󰂺󰆗󰎣󰉓󰂶
11󰆘󰂺󰆓󰆛󰆜󰆚󰆕󰆕󰎣󰉓E)󰂶  󰂶 Pilbara Shel󰂶
Western Australi󰂶󰆔󰆛󰂶 󰆔󰆖󰂶󰆕󰆓󰆔󰆖
by 󰂺orell󰂶 󰂺r󰂶 󰂺ille󰂶 󰂺 homson
󰂺 earha󰂶 and  󰆛󰆛󰆛󰆘󰆖󰂶 lo󰂺 2󰆘󰂶
󰃍󰈵󰆕󰆔󰂺󰆓󰆛󰆓󰆕󰆚󰆛󰎣󰉓󰂶 11󰆘󰂺󰆔󰆛󰎣󰉓E)󰂶  󰂶
Pilbara Shel󰂶 Western Australi󰂶 21 m
dept󰂶 󰆔󰆙󰂶󰆕󰆓󰆔󰆖 󰂺orell󰂶 󰂺r󰂶
󰂺ille󰂶 󰂺󰂺earha󰂺
Associated host. Umimayanthus c󰂺 aru-
ensis      󰂶 only
associated with the host sponge Triken-
  󰃍amily Raspailiidae)󰂺
Interestingl󰂶 the paralectotype of T. -
belliforme 󰃍 󰆔󰆜󰆖󰆔󰂺󰆛󰂺󰆗󰂺󰆘󰆚󰂶 from Aru
Island󰂶 Indonesia) and another historical
󰆽󰆼󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰇀 Summary chart of the alignments showing nucleotide positions and deletions characteristics
to U󰂺 c󰂺 aruensis󰂺 across the 󰄀 regio󰂺 Positions in green are unique to U󰂺 c󰂺 aruensis
s󰂺 no󰂺 in genus Umimayanthus󰂺 Positions in grey indicate regions with a unique combination
of nucleotides insertion and deletions for U󰂺 c󰂺 aruensis
󰆽󰆽 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰇁 Diversity of cnidae found in U󰂺 c󰂺 aruensis across tissues in specimen 󰆛󰆛󰆛󰆔󰆜󰂺
󰃍S) spriocyst󰂶 󰃍󰃎 basitrichs and microbasic 󰄀󰂶 󰃍) holotrich mediu󰂶
󰃍) holotrich larg󰂶 󰃍) microbasic 󰄀 and special 󰃍) microbasic
󰄀
󰆾 Results for the cnidocyte analyses for Umimayanthus c󰂺 aruensis󰂶 holotype specimen
󰆛󰆛󰆛󰆔󰆜
Tissue Category Length
(max–min,
average)
Width
(max–min,
average)
nFrequency
Tentacles Spirocysts 2󰆖󰂺󰆙󰄍󰆔󰆓󰂺󰆜󰂶 1󰆙󰂺󰆛 󰆖󰂺󰆚󰄍󰆔󰂺󰆖󰂶 󰆕󰂺󰆘 󰆞󰆣󰆠 Numerous
Bastrichs and
microbasic
󰄀
2󰆓󰂺󰆚󰄍󰆔󰆖󰂺󰆙󰂶 1󰆙󰂺󰆛 󰆗󰂺󰆓󰄍󰆕󰂺󰆕󰂶 󰆖󰂺󰆖 󰆟󰆟 Common
Column 󰃍󰃎 2󰆖󰂺󰆖󰄍󰆕󰆓󰂺󰆚󰂶 2󰆔󰂺󰆘 1󰆔󰂺󰆘󰄍󰆔󰆓󰂺󰆙󰂶 1󰆔󰂺󰆓 󰆢 Rare
󰃍󰃎 1󰆛󰂺󰆛󰄍󰆔󰆚󰂺󰆙󰂶 1󰆛󰂺󰆕 1󰆓󰂺󰆖󰄍󰆛󰂺󰆚󰂶 󰆜󰂺󰆙 󰆠 Rare
Pharynx 󰃍󰃎 19 1󰆓󰂺󰆕 󰆞 Rare
Bastrichs and
microbasic
󰄀
󰆖󰆕󰂺󰆕󰄍󰆔󰆗󰂺󰆛󰂶 1󰆛󰂺󰆗 󰆖󰂺󰆚󰄍󰆕󰂺󰆔󰂶 󰆕󰂺󰆛 󰆠󰆝 Common
Mesenterial
Filaments
Special microbasic
󰄀
1󰆔󰂺󰆙󰄍󰆚󰂺󰆔󰂶 󰆜󰂺󰆓 󰆖󰂺󰆜󰄍󰆔󰂺󰆜󰂶 󰆖󰂺󰆔 󰆞󰆥 Common
Bastrichs and
microbasic
󰄀
2󰆕󰂺󰆛󰄍󰆔󰆖󰂺󰆛󰂶 1󰆚󰂺󰆘 󰆖󰂺󰆜󰄍󰆔󰂺󰆛󰂶 󰆕󰂺󰆚 󰆟󰆡 Common
Microbasic
󰄀
1󰆜󰂺󰆜󰄍󰆔󰆜󰂺󰆓󰂶 1󰆜󰂺󰆘 󰆘󰂺󰆙󰄍󰆘󰂺󰆗󰂶 󰆘󰂺󰆘 󰆟 Rare
󰆽󰆾󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
specimen 󰃍 󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘󰂶 precise
location unknow󰂶 southwest Western
Australia) were found associated with
Umimayanthus discolor s󰂺 no󰂺󰂶
belo󰂶 rather than with U. c󰂺 aruensis󰂺
Remarks. Specimen  󰆛󰆛󰆛󰆙󰆘 
an abnormally small polyp diameter and
height for U. c󰂺 aruensis󰂶 󰆓󰂺󰆜 mm in diam󰄀
eter and 󰆓󰂺󰆔 mm in heigh󰂺 It is worth
noting that only two polyps were avail󰄀
able for examination from this specime󰂺
Nonetheles󰂶 molecular evidence clearly
determined specimen  󰆛󰆛󰆛󰆙󰆘 
belong to U. c󰂺 aruensis 󰃍󰂺 󰆘󰃎󰂺
U. c󰂺 aruensis    
to those of U. kanabou as described in
Fujii 󰂺 󰃍󰆕󰆓󰆕1)󰂶U. kanabou has
been reported to be exclusively in asso󰄀
ciation with gorgonians while U. c󰂺 aru-
ensis exclusively associates with sponge󰂶
      Trikentrion
e󰂺
Specimen  󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘 
referred to Trikentrion laeve Carte󰂶 󰆔󰆛󰆚󰆜
by Carter 󰃍󰆔󰆛󰆛2)󰂶
from South Afric󰂺 Although the speci󰄀
men number was not given in the publi󰄀
catio󰂶 Carter’s 󰃍󰆔󰆛󰆜9) description is of a
󰄀 sponge with an anastomos󰄀
    󰂺 
󰃍󰆔991) used Carter’s name for the specimen
󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘󰂶 namely Trikentrion
laeve va󰂺 e󰂶 but Van Soest 󰂺
󰃍󰆕󰆓󰆔2) noted that the specimen was never
formerly describe󰂺 󰄀 of a
fragment of the specimen by 󰂺󰂺󰂺ooper
 T.
 based on the spicule comple󰄀
ment and skeletal character󰂺 Therefor󰂶
the locality of this specimen as southwest
Western Australia is potentially incor󰄀
rect as no specimens of T. 
have since been collected south of Red
   󰃍󰈵󰆕󰆗󰂺󰆓󰆗󰆖󰆙󰆔󰆔󰎣󰉓󰂶
11󰆖󰂺󰆓󰆕󰆙󰆜󰆗󰆗󰎣󰉓E) in Western Australi󰂺
 󰃍󰆔991) redescribed T. -
liforme and commented on the heavy
     
regularly occurs on this specie󰂺
it was previously referred to as Bergia in
Carter 󰃍󰆔󰆛󰆛2)󰂺  
is common in shallow subtidal tropical
waters and has been reported from the
Arafura Sea 󰃍ype locality)󰂶
and Western Australi󰂺
Umimayanthus mirnangga sp. nov.
Montenegro, Kise & Reimer
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆘󰆓󰆓󰆚󰄀
D󰆖󰆛󰆖󰄀󰆗󰆘󰄀92󰆔󰄀󰆔󰆔󰆗󰆓󰆔󰆕󰆜󰆖󰆗󰆚
Etymology.    “mir󰄀
nangga” is derived from the phoneme
used to refer to a young single woman in
the Wunambal languag󰂺 This in reference
to the fact that the colonies of U󰂺 mir-
nangga s󰂺 no󰂺 are exclusively composed
of solitary polyp󰂺 “m a” n.,
B-class young woma󰂺 Syn󰂹 munangg󰂺 See
Bengmoro et a󰂺 󰃍1971) and Boona 󰃍󰆕󰆓󰆕2)󰂺
Material examined. Type localit󰂹 Maret
I󰂺 [lo󰂺 19]󰂶󰂶 󰄀󰆔󰆗󰂺󰆖󰆘󰆗󰆗󰆘󰎣󰉓󰂶
12󰆗󰂺󰆜󰆗󰆛󰆛󰎣󰉓󰂺 Holotype󰂹  󰆛󰆛󰆛󰆕󰆗
󰃍󰈵󰆔󰆗󰂺󰆖󰆘󰆗󰆗󰆘󰎣󰉓󰂶 12󰆗󰂺󰆜󰆗󰆛󰆛󰎣󰉓󰂶 lo󰂺 1󰆜󰂶 Maret
I󰂺󰂶󰂶 61 m dept󰂶 Decem󰄀
ber󰆔󰆙󰂶󰆕󰆓󰆔󰆘󰂺󰂺󰂺󰂺itchie)󰂺
Paratype󰂹  󰆛󰆛󰆛󰆕󰆖 󰃍󰈵󰆔󰆗󰂺󰆗󰆕󰆗󰆗󰆔󰆚󰎣󰉓󰂶
12󰆘󰂺󰆓󰆗󰆓󰆜󰆖󰆖󰎣󰉓󰂶 lo󰂺 1󰆚󰂶 Maret I󰂺󰂶 
Australi󰂶 󰆘󰆘  󰂶 December 󰆜󰂶 󰆕󰆓󰆔󰆘
by 󰂺󰂺󰂺󰂺itchie)󰂺
Other material. Other examined speci󰄀
mens belong to the Western Australian
Museum;  󰆛󰆛󰆛󰆔󰆚 󰃍󰈵󰆔󰆘󰂺󰆗󰆗󰆙󰆗󰆗󰆕󰎣󰉓󰂶
󰆽󰆿 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
12󰆗󰂺󰆓󰆛󰆖󰆓󰆕󰆕󰎣󰉓󰂶 lo󰂺 1󰆘󰂶 Camden Soun󰂶
Western Australi󰂶 61 m dept󰂶 󰆕󰆓󰂶
󰆕󰆓󰆔󰆘󰂺󰂺irkendale)󰂺
Diagnosis. U. mirnangga s󰂺 no󰂺 can be
distinguished from other species in the
genus Umimayanthus by having colonies
exclusively formed of solitary polyp󰂶 and
by having symbiotic associations with
sponges in genus Endectyon Topsen󰂶󰆔󰆜󰆕󰆓
and Ectyoplasia Topsen󰂶 󰆔󰆜󰆖1; current
known hosts are Endectyon 󰃍Endectyon)
fruticosum 󰃍end󰂶 󰆔󰆛󰆛7) and Ectyoplasia
vannus󰂶 199󰆔󰂺 Additionall󰂶 U. mir-
nangga s󰂺 no󰂺
all other species in genus Umimayanthus
󰇂 Type specimens of Umimayanthus mirnangga s󰂺 nov; 󰃍󰃎 󰆛󰆛󰆛󰆕󰆗
󰃍olotype)󰂶󰃍󰃎 󰆛󰆛󰆛󰆕󰆖󰃍aratype)󰂺󰂹󰆘
by three unique nucleotide substitutions
across the 󰄀 region as follow󰂹 “C”
󰆛󰆛  󰆗󰆔󰆛󰂶 and “G” at
󰆗󰆖󰆛󰃍󰂺 󰆛󰃎󰂺
Description. Size. Preserved polyps were
on average 󰆕󰂺󰆗󰆔󰈷󰆓󰂺󰆕󰆖m 󰃍󰇠󰈺󰆓󰂺󰆓󰆘󰂶
max 󰆕󰂺󰆚22 m󰂶  󰈺 󰆜 s) in diam󰄀
ete󰂶 and 󰆕󰂺󰆔󰆛  󰈷 󰆓󰂺󰆕󰆖 m 󰃍󰇠 󰈺 󰆓󰂺󰆓󰆘󰂶
max 󰆕󰂺󰆘󰆓󰆙 󰂶  󰈺 󰆜 s) in heigh󰂺
All measurements were performed of
ethanol󰄀preserved specimen󰂹 󰄀
ian voucher numbers 󰆛󰆛󰆛󰆕󰆗󰂶 
󰆛󰆛󰆛󰆕󰆖󰂶 and 󰆛󰆛󰆛󰆔󰆚󰂺
Morphology. The type specimens are
associated with Ectyoplasia vannus. The
󰆽󰇀󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰇃 Summary chart of the alignments showing nucleotide positions characteristics to
U. mirnangga s󰂺 no󰂺 across the 󰄀 and 󰄀 regio󰂺 Positions in green are
unique to U. mirnangga s󰂺 no󰂺 in genus Umimayanthus󰂺 Positions in grey are characteristic
but not unique to U. mirnangga s󰂺 nov
󰆽󰇁 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
species has solitary polyps spread all over
the surface of the sponge󰂺 The 󰄀
distance is variabl󰂶 with a minimum dis󰄀
tance of 󰆕󰂺󰆖󰆘m between polyp󰂶 and an
average of 󰆗󰂺󰆕󰆚 󰈷󰆓󰂺󰆜1 mm 󰃍󰇠󰈺 󰆓󰂺󰆛󰆖󰂶
ma󰂺 󰆙󰂺󰆚󰆘󰆔 󰂶  󰈺 󰆗󰆗 s) between
the󰂺 Capitulary ridges were visibl󰂶 1󰆗󰄍󰆔6
in numbe󰂺 Polyps preserved in ethanol are
yellowish in colou󰂺 No cnidae or internal
morphological data are available for this
species due to the poor condition of the
preserved specimen󰂺
Distribution󰂺 All specimens analysed
were collected along the west coast of
Australi󰂺 Camden Sound [lo󰂺 1󰆘󰃖 and
Maret I󰂺 [lo󰂺 1󰆚󰂶 19] 󰃍󰂺 1)󰂺 
󰆘󰆘󰄍󰆙1 󰂺
Associated host. Umimayanthus mir-
nangga s󰂺 no󰂺 was found associated with
   󰂶 Ectyoplasia
vannus and Endectyon (Endectyon) frutico-
sum󰂶 both in the family Raspailiida󰂺
Remarks. Umimayanthus mirnangga s󰂺
no󰂺󰂶 U. wunanggu s󰂺 no󰂺 󰂶U. jebarra
s󰂺 no󰂺 are sibling species based on our
phylogenetic analyse󰂺 Key diagnostic
molecular and morphological character󰂶
including the general external morphol󰄀
ogy of the colonies and the height of the
polyp󰂶       󰄀
cie󰂶 clearly separate these three species
from each othe󰂺
Out of all the species in Umimayanthus
the closest resemblances can be found
between the sibling species U. wunanggu
s󰂺 no󰂺󰂶U. jebarra s󰂺 no󰂺󰂶
similar polyp diameters as U. mirnangga
s󰂺 no󰂺 Nonetheles󰂶 the heights of polyps
in U. mirnangga s󰂺 no󰂺 are 󰆕󰂺󰆗󰆔󰈷󰆓󰂺󰆕󰆖
m󰂶 twice as large as U. wunanggu s󰂺 no󰂺
󰃍󰆓󰂺󰆜󰆕  󰈷 󰆓󰂺󰆖6 mm)󰂶   
U. jebarra s󰂺 no󰂺 󰃍󰆖󰂺󰆓󰆜󰈷 󰆓󰂺󰆙󰆖 m)󰂺
Furthermor󰂶   󰄀
ences between U. mirnangga s󰂺 no󰂺 and
U. wunanggu s󰂺 no󰂺 are present even
though both species were found to estab󰄀
lish associations with the same sponge
specie󰂶 Endectyon (Endectyon) fruticosum󰂺
Out of the three sibling specie󰂶 U. mir-
nangga s󰂺 no󰂺 is the only species com󰄀
posed exclusively of solitary polyp󰂺
The type locality of Ectyoplasia van-
nus󰂶 the host sponge of Umimayanthus
mirnangga s󰂺 no󰂺󰂶    
the Northern Territor󰂶 Australi󰂶 and this
sponge species has otherwise only been
reported from other areas in the Northern
Territory and tropical Western Australi󰂺
Umimayanthus jebarra sp. nov.
Montenegro, Kise & Reimer
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆘󰆘󰆚󰆗󰄀󰆛󰆛󰆓󰆘󰄀
462󰆙󰄀󰆛󰆘󰆗󰄀󰆘󰆜󰆔󰆛󰆛󰆘󰆜󰆛
Etymology.“jebarra”
is derived from the phoneme used to refer
to the emu in Wunambal languag󰂺 This
in reference to the elongated shape of
the polyps in U. jebarra s󰂺 no󰂺󰂶 
resemble the neck of an em󰂺 As wel󰂶
the name can act as a memorial to all the
emus killed during the Great Emu Wars
 󰆔󰆜󰆖󰆕   󰂺 “jebarra
anya” n., A-class. em󰂺 Dromaius novaehol-
landiae󰂺 Syn󰂹 garnanganyja; jeebarra󰂺 See
Mangglamarra 󰃍󰆔991) and Karadada  󰂺
󰃍󰆕󰆓󰆔1)󰂺
Material examined󰂺 Type localit󰂹 Eclipse
I󰂺 [lo󰂺 21]󰂶 󰈵󰆔󰆖󰂺󰆗󰆜󰆖󰆚󰆛󰆕󰎣󰉓󰂶 12󰆘󰂺󰆛󰆘󰆔󰆙󰆖󰆖󰎣󰉓󰂺
Holotype󰂹  󰆛󰆛󰆛󰆕󰆘 󰃍󰈵󰆔󰆖󰂺󰆗󰆜󰆖󰆚󰆛󰆕󰎣󰉓󰂶
12󰆘󰂺󰆛󰆘󰆔󰆙󰆖󰆖󰎣󰉓󰂶 lo󰂺 2󰆔󰂶 Eclipse I󰂺󰂶 
󰆽󰇂󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰇄 Umimayanthus jebarra s󰂺 no󰂺; 󰃍󰃎 󰆛󰆛󰆛󰆕󰆘
󰃍olotype)󰂺󰂹󰆘
Australi󰂶 41 m dept󰂶  󰆕󰂶 󰆕󰆓󰆔󰆙 
󰂺󰂺󰂺󰂺itchie)󰂺󰄀
rial was availabl󰂺
Diagnosis. U. jebarra s󰂺 no󰂺 can be
distinguished from other species in the
genus Umimayanthus by having colonies
with polyps connected to each other in a
linear fashio󰂶 and establishing symbiotic
associations with sponges in the genus
Endectyon󰂺 Additionall󰂶 three unique
substitutions in the 󰄀 region dif󰄀
ferentiate U. jebarra s󰂺 no󰂺 from all other
species in the genus Umimayanthus󰂶 as
follow󰂹 “G”󰆖󰆙󰆚󰂶 “C” in posi󰄀
tion 417 bp and “A”   󰆚󰆙󰆓 󰂺
Furthermor󰂶 a unique combination of
nucleotides can be found between posi󰄀
 󰆗󰆔󰆚   󰆗󰆕󰆘    󰄀
region 󰃍󰂺 1󰆓󰃎󰂺
Description. Size. Preserved polyps were
on average 󰆕󰂺󰆖󰆗  󰈷 󰆓󰂺󰆓2 mm 󰃍󰆕 󰈺 󰆓󰂶
ma󰂺 󰆕󰂺󰆖6 m󰂶󰈺 󰆖s) in diamete󰂶
and 󰆖󰂺󰆓󰆜 󰈷󰆓󰂺󰆙󰆖󰃍󰆕󰈺 󰆓󰂺󰆖󰆜󰂶 ma󰂺
󰆖󰂺󰆚7 m󰂶 mi󰂺 󰆕󰂺󰆘󰆖󰂶󰈺󰆖s) in heigh󰂺
All measurements were performed on
ethanol󰄀preserved specimen󰂹 󰄀
ian voucher 󰆛󰆛󰆛󰆕󰆘󰂺
Morphology. The holotype specimen
is associated with a sponge in the genus
Endectyon󰂺 The colony is formed by a
chain of polyps that branches and extends
linearly over the surface of the spong󰂺
The coenenchyma connecting the polyps
is thin but clearly visibl󰂺 All polyps were
clearly spread over the sponge matrix and
the coenenchyma tissue by 󰆖󰂺󰆓󰆜  󰈷
󰆓󰂺󰆙󰆖   󰂺 Capitulary ridges
were visibl󰂶 and approximately 16 in
numbe󰂺 Polyps preserved in ethanol were
orange in colou󰂺 No cnidae or internal
morphological data are available for this
species due to the poor condition of the
preserved specime󰂺
Distribution󰂺 The specimen analysed
was collected along the west coast of
Australi󰂺 Eclipse I󰂺 [lo󰂺 21] 󰃍󰂺 1)󰂺 
specimen was found at a depth of 41 󰂺
󰆽󰇃 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰆼󰆻 Summary chart of the alignments showing nucleotide positions characteristics to U. jebarra
s󰂺 no󰂺 across the 󰄀 regio󰂺 Positions in green are unique to U. jebarra s󰂺 no󰂺 in
genus Umimayanthus󰂺 Positions in grey are characteristic but not unique to U. jebarra s󰂺 nov
󰆽󰇄󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Associated host󰂺 Umimayanthus jebarra
s󰂺 no󰂺 was found in association with a
sponge in the genus Endectyon󰂺
Remarks󰂺 U. mirnangga s󰂺 no󰂺󰂶U. wun-
anggu s󰂺 no󰂺󰂶  U. jebarra s󰂺 no󰂺
are closely related sibling specie󰂺 󰄀
theles󰂶 key diagnostic molecular and
morphological character󰂶 including the
external morphology of the colonies and
the height of the polyp󰂶 as well as the dif󰄀
ferent host specie󰂶 clearly separate these
three species from each othe󰂺
The sponge specimen voucher 
󰆜󰆗󰆚󰆜󰆔  Endec-
tyon s󰂺 The acanthostyles are “cladotylote󰄀
like”󰂺  󰂶 we have retained this
specimen in Endectyon but this interest󰄀
ing specimen requires further study for a
species󰄀level󰂺
While no other species in the genus
Umimayanthus quite resemble U. jebarra
s󰂺 no󰂺󰂶      
of the specimens  󰆛󰆛󰆛󰆔󰆚  U. mir-
nangga s󰂺 no󰂺 associated with the sponge
Endectyon (Endectyon) fruticosum 󰃍ponge
voucher 󰆛󰆚󰆕󰆓󰆓󰃎󰂺󰂶 the pol󰄀
yps of U. mirnangga s󰂺 no󰂺 are solitar󰂶
while the polyps of U. jebarra s󰂺 no󰂺 are
clearly connected to each other in a linear
fashion by a coenenchym󰂶 which is not as
well developed as in U. c󰂺 aruensis or in U.
discolor s󰂺 no󰂺
Umimayanthus wunanggu sp. nov.
Montenegro, Kise & Reimer
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆓󰆙󰆚󰆘󰆛󰄀󰆘󰆘󰆓󰆙󰄀
4󰆚󰆓󰆓󰄀󰆜F4󰆗󰄀󰆜󰆛󰆗󰆚󰆛󰆜󰆕󰆚󰆚
Etymology.    “wun󰄀
anggu” is derived from the phoneme
used to refer to the hill white gum tree in
Wunambal languag󰂺 This in reference to
U. wunanggu s󰂺 no󰂺 forming colonies of
white polyps connected by a thin coenen󰄀
chyma that extends on a linear branching
pattern over the sponge surfac󰂺 “wun󰄀
anggu winya” n., W-class. 󰃈unag󰃈󰂺 
white gu󰂶 tropical red bo󰂶 Eucalyptus
brachyandra von Muelle󰂶 󰆔󰆛󰆘󰆜󰂺 See Capell
󰃍󰆔941) and Karadada 󰃍󰆕󰆓󰆔1)󰂺
Material examined󰂺 Type localit󰂹
Eclipse I󰂺 [lo󰂺 2󰆓󰃖󰂶󰈵󰆔󰆖󰂺󰆚󰆜󰆗󰆔󰆜󰆚󰎣󰉓󰂶 12󰆙󰂺󰆔󰆔󰆛󰆛󰆔󰎣
󰉓󰂶 Western Australia 󰃍󰂺 1)󰂺
Holotype.  󰆛󰆛󰆛󰆕󰆙 󰃍󰈵󰆔󰆖󰂺󰆚󰆜󰆗󰆔󰆜󰆚󰎣󰉓󰂶
12󰆙󰂺󰆔󰆔󰆛󰆛󰆔󰎣󰉓󰂶 lo󰂺 2󰆓󰂶 Eclipse I󰂺󰂶 
Australi󰂶 󰆘󰆜  󰂶  󰆚󰂶 󰆕󰆓󰆔󰆙 
󰂺󰂺   󰂺󰂺 itchie)󰂺 Paratype 1󰂹
󰆛󰆛󰆛󰆕󰆕󰃍󰈵󰆔󰆗󰂺󰆗󰆓󰆔󰆛󰆛󰆖󰎣󰉓󰂶 12󰆗󰂺󰆜󰆗󰆗󰆓󰆙󰆚󰎣󰉓󰂶
lo󰂺 1󰆛󰂶 Maret I󰂺 Western Australi󰂶 󰆘󰆓 
dept󰂶  󰆛󰂶 󰆕󰆓󰆔󰆘  󰂺󰂺 
 󰂺󰂺 itchie)󰂺 Paratype 2󰂹  󰆛󰆛󰆛󰆔󰆛
󰃍󰈵󰆔󰆘󰂺󰆗󰆗󰆙󰆗󰆗󰆕󰎣󰉓󰂶 12󰆗󰂺󰆓󰆛󰆖󰆓󰆕󰆕󰎣󰉓󰂶 lo󰂺 1󰆘󰂶
Camden Soun󰂶 Western Australi󰂶 61 m
dept󰂶  󰆕󰆓󰂶 󰆕󰆓󰆔󰆘  󰂺  
󰂺irkendale)󰂺
Other material. One additional exam󰄀
     󰄀
ern Australian Museum;  󰆛󰆛󰆛󰆕󰆚
󰃍󰈵󰆔󰆘󰂺󰆙󰆕󰆖󰆖󰎣󰉓󰂶 12󰆔󰂺󰆜󰆚󰆕󰆕󰆖󰆖󰎣󰉓󰂶 lo󰂺 1󰆖󰂶 Lynher
Ban󰂶 Western Australi󰂶 61 m dept󰂶 󰄀
ber󰆕󰆛󰂶󰆕󰆓󰆔󰆙󰂺󰂺󰂺itchie)󰂺
Diagnosis. U. wunanggu s󰂺 no󰂺 can
be distinguished from all other sponge󰄀
associated    
associations with sponges in the genus
Endectyon󰂶 and forming colonies of pol󰄀
yps connected by a thin coenenchyma
that extends linearly over the host sponge
surface; currently known to establish
associations with Endectyon 󰃍Endectyon)
fruticosum and Endectyon 󰃍Endectyon)
󰆾󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
thurstoni 󰃍end󰂶 󰆔󰆛󰆛7)󰂺 󰂶
unique substitutions across the 󰄀
region set this species apart from other
species in the genus Umimayanthus󰂶 as fol󰄀
low󰂹 “C” 󰆖󰆙󰆓 󰂶 421 b󰂶 and
426 bp; “ from positions 42󰆖󰄍󰆗26 bp;
“A”󰆚󰆓󰆗p; and a unique combi󰄀
nation of nucleotide󰂶  between posi󰄀
 󰆚󰆓󰆗󰄍󰆚󰆓󰆘 󰂶 and   󰆛󰆔󰆙󰄍󰆛17 bp
󰃍󰂺 12)󰂺
Description󰂺 󰂹 Preserved polyps are
on average 󰆕󰂺󰆗󰈷󰆓󰂺22 mm 󰃍󰇠󰈺󰆓󰂺󰆓󰆘󰂶
ma󰂺 󰆕󰂺󰆚9 m󰂶󰈺󰆔󰆕s) in diamete󰂶
and 󰆓󰂺󰆜󰆕󰈷󰆓󰂺󰆖6 mm 󰃍󰇠󰈺 󰆓󰂺󰆔󰆖󰂶 ma󰂺
󰆔󰂺󰆚7 m󰂶 n = 12 polyps) in heigh󰂺 All mea󰄀
surements were performed on voucher
specimens preserved in ethano󰂹󰄀
ian voucher numbers  󰆛󰆛󰆛󰆕󰆙󰂶 
󰆛󰆛󰆛󰆕󰆕󰂶 󰆛󰆛󰆛󰆔󰆛󰂶 and 󰆛󰆛󰆛󰆕󰆚󰂺
Morphology. The holotype specimen
is associated with Endectyon (Endec tyon)
thurstoni󰂺 The polyp diameter of U. wun-
anggu s󰂺 no󰂺 is remarkably constan󰂶
󰆕󰂺󰆕󰅦󰆕󰂺󰆛 mm across all analysed specimen󰂺
All specimens were colonies with polyps
extended well over the sponge surfac󰂺
Most specimens had polyps connected by
a 󰄀 coenenchym󰂶 forming
󰆼󰆼 Specimens of Umimayanthus wunanggu s󰂺 no󰂺; 󰃍󰃎 󰆛󰆛󰆛󰆕󰆙
󰃍olotype)󰂶󰃍󰃎 󰆛󰆛󰆛󰆕󰆕󰃍aratype)󰂶󰃍󰃎 󰆛󰆛󰆛󰆔󰆛󰃍aratype)󰂶
󰃍󰃎 󰆛󰆛󰆛󰆕󰆚󰂺 Scale bar󰂹󰆘
󰆾󰆼󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰆼󰆽 Summary chart of the alignments showing nucleotide positions characteristics to
U. wunanggu s󰂺 no󰂺 across the 󰄀 and 16󰄀 regio󰂺 Positions in green are unique
to U. wunanggu s󰂺 no󰂺 in genus Umimayanthus󰂺 Positions in grey are characteristic but not
unique to U. wunanggu s󰂺 nov
󰆾󰆽 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
chains of polyps in branches rather than
in a reticulate patter󰂶   U.
c󰂺 aruensis󰂺 Capitulary ridges were visibl󰂶
1󰆗󰄍󰆔󰆛󰂺 Tentacles were approxi󰄀
   󰆖󰆙  󰂺 Preserved
tentacles were light brown in coloratio󰂺
Capitulum and scapus were heavily
encrusted by various particles of sand and
󰃍󰈺  s)󰂺
preserved in ethanol were white or cream
in colo󰂺
Cnidae. Except for holotrich 󰃍󰃎󰂶󰄀
egories of cnidae were foun󰂺 The cnidae
composition across tentacles and pharynx
was similar and made up of spirocyst󰂶
holotrichs 󰃍󰃎 and 󰃍󰃎󰂶  
microbasic 󰄀󰂺 The column
had the lowest diversity of cnidae with
only holotrichs 󰃍󰃎 and 󰃍󰃎󰂺  
  
diversity of cnida󰂶 including holotrichs
󰃍󰃎 and 󰃍󰃎󰂶󰄀󰂶
bastrichs and microbasic 󰄀
and special microbasic 󰄀󰂺
󰂶 length󰂶 and widths of
each cnidae typ󰂶󰆗󰂺 1󰆖󰂺
Internal morphology. Sphincter muscle
was located in the endoder󰂺 Mesenterial
arrangement was macrocnemi󰂺 Mesen󰄀
󰆕󰆛󰄀
be󰂺 Ectoderm and mesoglea of capitulum
and scapus were heavily encrusted by
various sand and silica particle󰂺 Single
siphonoglyp󰂺
Distribution󰂺 All specimens analysed
were collected along the west coast of
Western Australi󰂺 Lynher Bank [lo󰂺 1󰆖󰃖󰂶
Camden Sound [Lo󰂺 1󰆘󰃖󰂶󰂺 [lo󰂺 1󰆛󰃖
and Eclipse I󰂺 [lo󰂺 2󰆓󰃖 󰃍󰂺 1)󰂺
󰆘󰆓󰄍󰆙1 󰂺
Associated host. Umimayanthus wun-
anggu s󰂺 no󰂺 was associated with four
sponges in two species in the family Ras󰄀
pailiidae Nard󰂶 󰆔󰆛󰆖󰆖󰂶 Endectyon 󰃍Endec-
tyon) thurstoni 󰃍 󰈺 󰆖󰃎 and Endectyon
󰃍Endectyon) fruticosum 󰃍 󰈺 1)󰂺  
locality of Endectyon 󰃍Endectyon) thur-
stoni is Indi󰂶 and this species has also
been reported from the Arabian Sea and
Western Australi󰂺 The type locality of
Endectyon 󰃍Endectyon) fruticosum is also
India and it has additionally been reported
from the Aru Island󰂶 Indonesi󰂶 the south
Andaman Se󰂶 Thailand 󰃍oope󰂶 1991)󰂶
and now from the Kimberley regio󰂶 West󰄀
ern Australi󰂺 Based on this wide host
sponge distributio󰂶 it may be that the dis󰄀
tribution of U󰂺 wunanggu s󰂺 no󰂺 is wider
than currently know󰂺
Remarks. Umimayanthus wunanggu s󰂺
no󰂺󰂶 Umimayanthus mirnangga s󰂺 no󰂺
and Umimayanthus jebarra s󰂺 no󰂺 are
󰆼󰆾 Diversity of cnidae found in Umimayanthus wunanggu s󰂺 no󰂺 across tissues in specimen
󰆛󰆛󰆛󰆕󰆙󰂺 󰃍󰃎 spriocyst󰂶 󰃍󰃎 basitrichs and microbasic 󰄀󰂶 󰃍) holotrich
mediu󰂶 󰃍) holotrich larg󰂶 󰃍) microbasic 󰄀 and 󰃍) special
microbasic 󰄀
󰆾󰆾󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
sibling species that were shown to be
closely related in our phylogenetic analy󰄀
se󰂺 Nonetheles󰂶 key diagnostic molecular
and morphological character󰂶 including
the general external morphology of the
colonies and the height of the polyp󰂶 as
     󰂶 clearly
separate these three species from each
othe󰂺 For details refer to each of the spe󰄀
cies formal descriptio󰂺
Umimayanthus discolor sp. nov.
Montenegro, Kise & Reimer
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆚󰆓󰆕󰆕󰆘󰆘󰄀󰆖2F󰆜󰄀
49󰄀󰆖󰆜󰆘󰄀󰆓󰆛󰆔󰆚󰆕󰆗󰆓󰆖
Synonymy󰂺 This specimen was mis󰄀
Parazoanthus lividum󰂶 speci󰄀
󰆙󰆚󰆜󰆘󰆗   
Victori󰂺
󰆿 Results for the cnidocyte analyses for Umimayanthus wunanggu s󰂺 no󰂺󰂶
󰆛󰆛󰆛󰆕󰆙
Tissue Category Length
(max–min,
average)
Width
(max–min,
average)
nFrequency
Tentacles Spirocysts 2󰆕󰂺󰆙󰄍󰆔󰆔󰂺󰆙󰂶 2󰆜󰂺󰆕 󰆖󰂺󰆖󰄍󰆔󰂺󰆔󰂶 󰆕󰂺󰆕 󰆦󰆝 Numerous
Bastrichs and microbasic
󰄀
1󰆛󰂺󰆔󰄍󰆜󰂺󰆛󰂶 1󰆘󰂺󰆚 󰆖󰂺󰆙󰄍󰆔󰂺󰆜󰂶 󰆖󰂺󰆓 󰆞󰆢 Occasional
󰃍󰃎 2󰆗󰂺󰆔󰄍󰆕󰆖󰂺󰆙󰂶 2󰆖󰂺󰆛 1󰆔󰂺󰆔󰄍󰆜󰂺󰆛󰂶 1󰆓󰂺󰆘 󰆟 Rare
󰃍󰃎 1󰆛󰂺󰆛󰄍󰆔󰆔󰂺󰆛󰂶 1󰆙󰂺󰆗 󰆛󰂺󰆛󰄍󰆘󰂺󰆜󰂶 󰆚󰂺󰆘 󰆦 Occasional
Column 󰃍󰃎 2󰆜󰂺󰆗󰄍󰆕󰆓󰂺󰆓󰂶 2󰆖󰂺󰆘 1󰆗󰂺󰆖󰄍󰆔󰆔󰂺󰆔󰂶 1󰆕󰂺󰆗 󰆠󰆥 Common
󰃍󰃎 1󰆜󰂺󰆛󰄍󰆔󰆗󰂺󰆚󰂶 1󰆚󰂺󰆔 1󰆔󰂺󰆓󰄍󰆛󰂺󰆛󰂶 1󰆓󰂺󰆓 󰆞󰆞 Occasional
Pharynx Spirocysts 1󰆜󰂺󰆘󰄍󰆔󰆔󰂺󰆚󰂶 1󰆘󰂺󰆚 󰆖󰂺󰆓󰄍󰆔󰂺󰆕󰂶 󰆕󰂺󰆔 󰆞󰆣 Common
Bastrichs and microbasic
󰄀
2󰆖󰂺󰆔󰄍󰆔󰆔󰂺󰆓󰂶 1󰆚󰂺󰆖 󰆖󰂺󰆘󰄍󰆔󰂺󰆙󰂶 󰆕󰂺󰆙 󰆥󰆝 Numerous
󰃍󰃎 2󰆖󰂺󰆕󰄍󰆕󰆔󰂺󰆓󰂶 2󰆔󰂺󰆜 1󰆔󰂺󰆛󰄍󰆔󰆔󰂺󰆚󰂶 1󰆔󰂺󰆛 󰆠 Rare
󰃍󰃎 1󰆛󰂺󰆘󰄍󰆔󰆘󰂺󰆓󰂶 1󰆙󰂺󰆙 󰆜󰂺󰆖󰄍󰆚󰂺󰆔󰂶 󰆚󰂺󰆜 󰆥 Occasional
Mesenterial
Filaments
Bastrichs and microbasic
󰄀
1󰆜󰂺󰆜󰄍󰆙󰂺󰆗󰂶 1󰆚󰂺󰆙 󰆕󰂺󰆜󰄍󰂺󰆖󰂶 󰆕󰂺󰆙 󰆡 Rare
󰃍󰃎 2󰆘󰂺󰆓󰄍󰆕󰆓󰂺󰆘󰂶 2󰆕󰂺󰆙 1󰆕󰂺󰆛󰄍󰆚󰂺󰆚󰂶 1󰆓󰂺󰆓 󰆡 Rare
󰃍󰃎 1󰆛󰂺󰆙󰄍󰆔󰆚󰂺󰆘󰂶 1󰆛󰂺󰆔 󰆚󰂺󰆕󰄍󰆙󰂺󰆜󰂶 󰆚󰂺󰆔 󰆟 Rare
Microbasic 󰄀 1󰆛󰂺󰆜󰄍󰆔󰆙󰂺󰆓󰂶 1󰆚󰂺󰆚 󰆘󰂺󰆘󰄍󰆖󰂺󰆗󰂶 󰆗󰂺󰆘 󰆞󰆝 Occasional
Special microbasic
󰄀
1󰆔󰂺󰆙󰄍󰆙󰂺󰆗󰂶 󰆜󰂺󰆚 󰆖󰂺󰆚󰄍󰆕󰂺󰆗󰂶 󰆖󰂺󰆔 󰆞󰆡 Occasional
󰆾󰆿 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Etymology󰂺    “dis󰄀
color” means multiple colors in Lati󰂺 This
is in reference to U. discolor s󰂺 no󰂺 form󰄀
ing colonies of polyps with contrasting
colorations between the oral disk and the
colum󰂶 stolo󰂶 and coenenchym󰂺
Material examined󰂺 Type localit󰂹
Albany [lo󰂺 󰆖󰃖󰂶 󰈵󰆖󰆘󰂺󰆓󰆜󰆖󰆛󰆛󰆜󰎣󰉓󰂶 11󰆚󰂺󰆜󰆙󰆖󰆛󰆛󰆜󰎣
󰉓󰂺 Holotype󰂹 󰆛󰆛󰆙󰆔󰆙󰃍󰈵󰆖󰆘󰂺󰆓󰆜󰆖󰆛󰆛󰆜󰎣󰉓󰂶
11󰆚󰂺󰆜󰆙󰆖󰆛󰆛󰆜󰎣󰉓󰂶 lo󰂺 󰆖󰂶 Murray Road boat
ram󰂶 Alban󰂶 Western Australi󰂶 󰆙󰂺󰆗 m
dept󰂶  󰆔󰆓󰂶 󰆕󰆓󰆔󰆛  󰂺󰂺 ome󰃎󰂺
Paratype󰂹  󰆛󰆛󰆙󰆕󰆙 󰃍󰈵󰆖󰆘󰂺󰆓󰆗󰆜󰆚󰆕󰆕󰎣󰉓󰂶
11󰆚󰂺󰆙󰆜󰆖󰆙󰆔󰆔󰎣󰉓󰂶 lo󰂺 󰆗󰂶 Shelter I󰂺󰂶 󰂶
Western Australi󰂶 󰆛󰂺󰆘 m dept󰂶  󰆔󰆔󰂶
󰆕󰆓󰆔󰆛󰂺󰂺ome󰃎󰂺
Other material 󰃍󰈺󰆖󰃎󰂺  󰄀
ined specimens belong to the Museum of
    a;
󰄀󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘 󰃍recise location
unknow󰂶 southwestern part of Western
Australia)󰂶 󰄀󰆔󰆜󰆖󰆔󰂺󰆛󰂺󰆗󰂺󰆘󰆚 󰃍󰈵󰆙󰂺󰆔󰆙󰆗󰆓󰆕󰆛󰎣
󰉓󰂶󰆔󰆖󰆗󰂺󰆜󰆗󰆗󰆙󰆙󰆚󰎣󰉓󰂶 lo󰂺 2󰆗󰂶 east coast of Aru
I󰂺󰂶 󰂶 Indonesi󰂶 󰆗󰄍1󰆘  h)󰂶
󰄀󰆙󰆚󰆜󰆘󰆗 󰃍󰈵󰆖󰆜󰂺󰆓󰆔󰆙󰆖󰆓󰆙󰎣󰉓󰂶 14󰆙󰂺󰆗󰆗󰆕󰆜󰆔󰆚󰎣󰉓󰂶
lo󰂺 󰆔󰂶 South Wal󰂶 Sealer Cov󰂶 Wilsons
Promontor󰂶 Victori󰂶 Australi󰂶 󰆔󰆓 
dept󰂶 󰆔󰆙󰂶󰆔󰆜󰆛󰆚󰂺 Conservation
of Environment)󰂺
󰆼󰆿 Type specimens of Umimayanthus discolor s󰂺 no󰂺; 󰆛󰆛󰆙󰆔󰆙
󰃍olotype) voucher specimen 󰃍󰃎 and 󰄀 pictures 󰃍󰃎󰂶󰆛󰆛󰆙󰆕󰆙
󰃍aratype) voucher specimen 󰃍󰃎 and 󰄀 pictures 󰃍󰃎󰂺󰂹
󰆘
󰆾󰇀󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Diagnosis. U. discolor s󰂺 no󰂺 can be dis󰄀
tinguished from other species in the genus
Umimayanthus by combining the growing
pattern and coloration of colonie󰂺 U. dis-
color has polyps connected in chains fol󰄀
lowing a branching patter󰂶 but branches
are not connected to each othe󰂺
from all other species of Umimayanthus
in the 󰄀 Ocea󰂶 U. discolor s󰂺
no󰂺 has a disruptive coloration pattern
when observed in-vivo󰂶 with polyps having
a dark brown oral disk clearly contrast󰄀
ing against the 󰄀 colum󰂶
stolo󰂶 and coenenchyma 󰃍󰂺 14󰄍󰃎󰂺
Currently known to establish associations
with sponges in the genera Trikentrion
Ehler󰂶 󰆔󰆛󰆚󰆓  Clathria Schmid󰂶 󰆔󰆛󰆙2;
known host species are -
forme and Clathria 󰃍Thalysias) cactiformis
󰃍amarc󰂶󰆔󰆛󰆔4)󰂺
Additionall󰂶 multiple unique substitu󰄀
tions across the 󰄀󰂶 16󰄀 and
󰄀   
this species from all other members of
genus Umimayanthus in the concatenated
alignmen󰂶 as follow󰂹 in the 󰄀
there is a “A” in position 9 b󰂶 
between 42 bp to 44 b󰂶 “T” at 74 b󰂶󰆖󰆗󰆗
󰆙󰆙󰆘󰂶 “G”󰆛󰆚 󰂶 󰆗󰆖󰆓 󰂶 󰆙󰆘󰆕󰂶
󰆚󰆔󰆓󰂶󰆘󰆔
󰆗󰆘󰆘 p; remarkably substitutions were
found in the 16󰄀 regio󰂶T” at posi󰄀
󰆔󰆖󰆖󰆚󰂶 and 󰄀 regio󰂶 “T” at
󰆔󰆙󰆘󰆗󰂺󰂶 a unique combi󰄀
nation of substitutions and deletion󰃈abs
   󰆔󰆖󰆕󰄍󰆖󰆖󰆜   
󰄀 region 󰃍󰂺 1󰆘󰃎󰂺
Description. Size. Preserved polyps were
on average 󰆕󰂺󰆔 󰈷󰆓󰂺󰆕6 mm 󰃍󰇠󰈺󰆓󰂺󰆓󰆚󰂶
ma󰂺 󰆕󰂺󰆖9 m󰂶󰈺 󰆜s) in diamete󰂶
and 󰆓󰂺9󰆚󰈷 󰆓󰂺󰆗6 mm 󰃍󰇠 󰈺 󰆓󰂺󰆕󰆔󰂶 ma󰂺
󰆔󰂺󰆘󰆛󰂶󰈺󰆛s) in heigh󰂺 All mea󰄀
surements were performed on voucher
specimens preserved in ethano󰂹󰄀
ian specimen vouchers 󰆛󰆛󰆙󰆔󰆙󰂶 
󰆛󰆛󰆙󰆕󰆙󰂶 and 󰄀󰆙󰆚󰆜󰆘󰆗󰂺
Morphology󰂺 The holotype specimen is
associated with Clathria (Thalysias) cacti-
formis 󰃍amarc󰂶 󰆔󰆛󰆔4)󰂺  
by polyps tightly connected by stolonifer󰄀
ous chains in a branching pattern extend󰄀
ing over the surface of the host spong󰂺
Polyp chains branch continuously with
branches interconnecte󰂺 The coenen󰄀
chyma is clearly visible over the sponge
surface and connects multiple polyps by
the stolo󰂺 Polyps preserved in ethanol are
white or cream in colo󰂺 Capitulary ridges
were not visibl󰂺 Tentacles were approxi󰄀
mately up to 2󰆕󰄍󰆕4 in numbe󰂺 Capitulum
and scapus were moderately encrusted by
small sand particle󰂺
Cnidae. The diversity of cnidae was rel󰄀
atively low across tissue󰂺 Spirocyst󰂶bas󰄀
trichs and microbasic 󰄀
were numerous in the tentacles and
pharyn󰂺 Additionall󰂶 holotrichs 󰃍󰃎
were found in the pharyn󰂺 Mesenterial
    
microbasic 󰄀󰂶 while cni󰄀
dae were rare in the column with only
holotrichs 󰃍󰃎 foun󰂺󰆘󰂺 1󰆙󰂺
Internal morphology. Sphincter muscle
was located in the endoder󰂺 Mesenterial
arrangement was macrocnemi󰂺󰄀
ries were approximately up to 2󰆕󰄍󰆕4 in
numbe󰂺
Distribution󰂺 Analysed specimens were
collected from Australia and Indonesi󰂺
In Australi󰂶 specimens were from Albany
[lo󰂺 󰆖󰂶 4] and Wilson’s Promontory [lo󰂺 1]󰂶
and in Indonesia from the Aru Islands
󰆾󰇁 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰆼󰇀 Summary chart of the alignments showing nucleotide positions characteristics to U. discolor
s󰂺 no󰂺 across the 󰄀󰂶 16󰄀 and 󰄀 regio󰂺 Positions in green are unique
to U. discolor s󰂺 no󰂺 in genus Umimayanthus󰂺 Positions in grey are characteristic but not
unique to U. discolor s󰂺 nov
󰆾󰇂󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰆼󰇁 Diversity of cnidae found in Umimayanthus discolor s󰂺 no󰂺 across tissues in specimen
󰆛󰆛󰆙󰆔󰆙󰂺 󰃍󰃎 spriocyst󰂶 󰃍󰃎 basitrichs and microbasic 󰄀󰂶 󰃍) holotrich
large and 󰃍) microbasic 󰄀
󰇀 Results for the cnidocyte analyses for Umimayanthus discolor sp. nov.󰂶
󰆛󰆛󰆙󰆔󰆙
Tissue Category Length
(max–min,
average)
Width
(max–min,
average)
nFrequency
Tentacles Spirocysts 2󰆙󰂺󰆖󰄍󰆔󰆖󰂺󰆘󰂶 1󰆜󰂺󰆗 󰆖󰂺󰆙󰄍󰆔󰂺󰆖󰂶 󰆕󰂺󰆖 󰆟󰆞󰆠 Numerous
Bastrichs and
microbasic
󰄀
2󰆖󰂺󰆚󰄍󰆔󰆘󰂺󰆙󰂶 1󰆛󰂺󰆘 󰆖󰂺󰆜󰄍󰆔󰂺󰆓󰂶 󰆕󰂺󰆕 󰆞󰆠 Occasional
Column 󰃍󰃎 2󰆕󰂺󰆜 󰆜󰂺󰆘 󰆞 Rare
Pharynx Spirocysts 2󰆖󰂺󰆜󰄍󰆔󰆖󰂺󰆘󰂶 1󰆚󰂺󰆗 󰆖󰂺󰆗󰄍󰆔󰂺󰆔󰂶 󰆕󰂺󰆕 󰆞󰆝󰆣 Numerous
Bastrichs and
microbasic
󰄀
2󰆖󰂺󰆔󰄍󰆔󰆖󰂺󰆖󰂶 1󰆚󰂺󰆕 󰆗󰂺󰆘󰄍󰆔󰂺󰆚󰂶 󰆕󰂺󰆛 󰆡󰆤 Numerous
󰃍󰃎 2󰆔󰂺󰆜 1󰆛󰂺󰆕 󰆞 Rare
Mesenterial
Filaments
Microbasic
󰄀
2󰆗󰂺󰆓󰄍󰆔󰆘󰂺󰆕󰂶 1󰆜󰂺󰆜 󰆚󰂺󰆓󰄍󰆖󰂺󰆘󰂶 󰆘󰂺󰆖 󰆣󰆢 Numerous
󰆾󰇃 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
[lo󰂺 24] 󰃍󰂺 1)󰂺
depths of 󰆗󰄍󰆔󰆘󰂺
Associated host. Umimayanthus discolor
s󰂺 no󰂺 was found to be associated with
two sponge species; Clathria (Thalysias)
cactiformis󰂶 family Microcionidae Carte󰂶
󰆔󰆛󰆚󰆘󰂶 and  e󰂶 family
Raspailiida󰂺
As with Umimayanthus c󰂺 aruensis󰂶
only historic specimens 󰃍󰆔󰆛󰆛󰆚
󰆔󰆜󰆖1) of  were
shown to host Umimayanthus discolor s󰂺
no󰂺󰂶󰄀
mens of this sponge species available to us
instead hosted Umimayanthus c󰂺 aruensis󰂺
Clathria (Thalysias) cactiformis is in a
   󰃍icrocionidae)
from   󰃍aspaili󰄀
idae)󰂺   Umimayanthus species
 
same host famil󰂶 often to the same genu󰂶
and in one instance to a single specie󰂺
Thu󰂶 Umimayanthus discolor s󰂺 no󰂺 is
a more 󰄖󰄀󰄘 specie󰂶 and the
exception among these newly described
Umimayanthus specie󰂺
Remarks. Molecular data and the
arrangement of polyps in specimens
󰄀󰆔󰆛󰆛󰆚󰂺󰆘󰂺󰆕󰆔󰂺󰆔󰆛󰆙󰆘  󰄀󰆔󰆜󰆖󰆔󰂺󰆛󰂺
󰆗󰂺󰆘7 led us to identify these specimens as
Umimayanthus discolor s󰂺 no󰂺󰂶  󰄀
ther morphological analyses will be help󰄀
󰂺
Specimen 󰄀󰆙󰆚󰆜󰆘󰆗󰄀
P. lividum󰂶 however based on the
general morphology of the colon󰂶 with
polyps arranged in branching chain󰂶 and
the association with Clathria (Thalysias) c󰂺
cactiformis󰂶󰄀
cation of this specimen to Umimayanthus
discolor s󰂺 no󰂺
U. discolor s󰂺 no󰂺 has polyp diam󰄀
      
U. chanpuru󰂶 U. miyabi󰂶 and U. nakama󰂶
all from southern Japa󰂺 In contrast to
these specie󰂶 U. discolor s󰂺 no󰂺 has a
well󰄀developed 󰄀
necting polyps in chains in a branching
patter󰂺 These branches remain unlinked
and do not form a reticulate pattern over
the surface of the host spong󰂶 unlike as in
U. c󰂺 aruensis󰂶 and do not form a mat as in
Parazoanthus lividum󰂺
Umimayanthus lynherensis sp. nov.
Montenegro, Kise & Reimer
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆘󰆓󰆗󰆚󰆕󰆚󰆚󰄀󰆛󰆛󰆗󰆙󰄀
496󰆘󰄀󰆛1E󰆔󰄀󰆘󰆖󰆕󰆘󰆕󰆙󰆛󰆘󰆙
Etymology󰂺    lynhe-
rensis is derived from the locality where
the type specimen was collecte󰂶 the
Lynher Bank sea country north Kimberle󰂶
Western Australi󰂶 Australi󰂺
Material examine󰂺 Type localit󰂹 Lynher
Bank [lo󰂺 14]󰂶 󰈵󰆔󰆘󰂺󰆗󰆜󰆖󰆙󰆛󰆖󰎣󰉓󰂶 12󰆔󰂺󰆙󰆖󰆙󰆕󰆖󰆖󰎣
󰉓󰂺 Holotype󰂹 󰆛󰆛󰆛󰆕󰆔 󰃍󰈵󰆔󰆘󰂺󰆗󰆜󰆖󰆙󰆛󰆖󰎣󰉓󰂶
12󰆔󰂺󰆙󰆖󰆙󰆕󰆖󰆖󰎣󰉓󰂶 lo󰂺 1󰆗󰂶 Lynher Ban󰂶 Western
Australi󰂶󰆜󰆘󰂶 󰆕󰆘󰂶󰆕󰆓󰆔󰆙
󰂺󰂺󰂺itchie)󰂺󰄀
rial was availabl󰂺
Diagnosis. U. lynherensis s󰂺 no󰂺 can be

genus Umimayanthus by combining polyp
󰂶 colony morphology and identity of
the host sponge󰂺 U. lynherensis s󰂺 no󰂺
have comparatively the smallest polyp
diameter of all the species described in
her󰂶 󰆔󰂺󰆘󰆛󰈷󰆓󰂺󰆔󰆚 󰂶 colonies exclu󰄀
sively composed of solitary polyp󰂶 and
associate with sponges in Sigmaxinella
󰆾󰇄󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
soelae󰂶󰆔󰆜󰆛󰆗
Morro󰂶󰆕󰆓󰆔󰆖󰂺
Additionall󰂶 there are multiple unique
nucleotide substitutions and insertions
across 󰄀 and 󰄀 in the
concatenated alignmen󰂶 as follow󰂹 for
󰄀 an “A” in positions 47 bp and
󰆔󰆖󰆘 󰂶 a “C”  󰆙󰆘   󰆖󰆘󰆗 󰂶 a “G”
 󰆗󰆓󰆖 󰂶 411b󰂶 󰆗󰆕󰆙   󰆚󰆓󰆘 󰂶 a
“T”  󰆚󰆘󰆙 󰂶 and one unique insertion
 󰆛   between
69󰆘󰄍󰆚󰆓󰆕 󰂺 As wel󰂶 multiple unique
substitutions were also found in the 
regio󰂹 a “G” at positions 1442 bp and 1446
b󰂶 a “C”󰆔󰆛󰆓󰆗󰂶 and an “A”󰆔󰆛󰆖󰆘 
󰃍󰂺 1󰆛󰃎󰂺
Description. Size. Preserved polyps were
on average 󰆔󰂺󰆘󰆛󰈷󰆓󰂺󰆔7 mm 󰃍󰇠󰈺󰆓󰂺󰆓󰆖󰂶
ma󰂺 󰆔󰂺󰆚4 m󰂶  󰈺 󰆖 s) in diamete󰂶
and 󰆓󰂺󰆖󰆗  󰈷 󰆓󰂺󰆓6 mm 󰃍󰇠 󰈺 󰆓󰂶 ma󰂺
󰆓󰂺󰆖9 m󰂶󰈺󰆖s) in heigh󰂺 All mea󰄀
surements were performed on the ethanol
 
󰆛󰆛󰆛󰆕󰆔󰂺
Morphology󰂺 The holotype specimen
is associated with Sigmaxinella soe-
lae󰂺 Colonies formed of solitary polyp󰂶
barely extending out from the surface of
the spong󰂺 The polyps were distributed
all over the surface of the spong󰂶 and
inte󰄀 distances were relatively con󰄀
stan󰂶 󰆖󰂺󰆘󰆛󰈷󰆓󰂺󰆗4 mm 󰃍󰇠󰈺󰆓󰂺󰆔󰆜󰂶 ma󰂺
󰆗󰂺󰆘6 m󰂶󰈺󰆔󰆗s)󰂺
were visibl󰂶 1󰆓󰄍󰆔2 in numbe󰂺 Tentacles up
to 24 in numbe󰂺 Polyps preserved in etha󰄀
nol were white in colo󰂺
Cnidae. All dissected tissues had a
unique composition of cnidae compared
to other species examined in this study
󰃍able 6)󰂺    
in tentacle󰂺 Bastrichs and microbasic
󰄀 were found across most
tissues except for the colum󰂺 Special
microbasic 󰄀 were found
󰆼󰇂 Umimayanthus lynherensis s󰂺 no󰂺 specimen 󰆛󰆛󰆛󰆕󰆔
󰃍olotype)󰂺󰂹󰆘
󰆿󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰆼󰇃 Summary chart of the alignments showing nucleotide positions characteristics to
U. lynherensis s󰂺 no󰂺 across the 󰄀󰂶 16󰄀 and 󰄀 regio󰂺 Positions
in green are unique to U. lynherensis s󰂺 no󰂺 in genus Umimayanthus󰂺 Positions in grey are
characteristic but not unique to U. lynherensis s󰂺 nov
󰆿󰆼󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
only in the pharyn󰂺  󰃍󰃎 were
󰂺󰄀
basic 󰄀 were only present
󰃍󰂺 19)󰂺
Internal morphology. The sphincter
muscle was located in the endoder󰂺󰄀
enterial arrangement was macrocnemi󰂺
Mesenteries were approximately 2󰆓󰄍󰆕4 in
numbe󰂺 Single siphonoglyp󰂺
Distribution󰂺 The single available speci󰄀
men was collected from Lynher Ban󰂶
Australia [lo󰂺 14] 󰃍󰂺 1)󰂺  
󰆜󰆘󰂺
Associated host. U. lynherensis s󰂺 no󰂺
is associated with Sigmaxinella soelae in
   󰂶 192󰆖󰂺
The type locality of Sigmaxinella soelae
      󰄀
tribution reported between Exmouth
and Broome 󰃍oope󰂶 󰆔󰆜󰆛4) in tropical
Western Australi󰂺 Sigmaxinella soelae
is now known to be more widespread in
Western Australia and occurs between
Lynher Ban󰂶  󰃍󰈵󰆔󰆘󰂺󰆗󰆜󰆖󰆙󰆔󰆔󰎣󰉓󰂶
12󰆔󰂺󰆙󰆖󰆙󰆔󰆔󰎣󰉓E) in the north and Point Cloate󰂶
󰃍󰈵󰆕󰆕󰂺󰆙󰆓󰆖󰆖󰆖󰆖󰎣󰉓󰂶 11󰆖󰂺󰆙󰆓󰆜󰆗󰆗󰆗󰎣󰉓E) on
the upper central west coast of Western
Australi󰂺
Remarks. Only a single specimen of
U. lynherensis s󰂺 no󰂺 was availabl󰂶 and
the 󰄀 distances and polyp diame󰄀
ters were very consistent across the colon󰂺
The colonies of U. lynherensis s󰂺 no󰂺 are
formed by solitary polyps spread homog󰄀
enously across the surface of the host
spong󰂶
polyps in chain󰂶 as in U. discolor s󰂺 no󰂺
The diameter of the polyps of U. lynher-
ensis s󰂺 no󰂺 are similar to those observed
for U. chanpuru󰂶 U. nakama󰂶 U. miyabi󰂶 and
U. parasiticus󰂺 Out of these four specie󰂶
U. lynherensis s󰂺 no󰂺 most closely resem󰄀
bles U. parasiticus󰂶 however U. parasiticus
has only been reported from the Atlantic
Ocean while U. lynherensis s󰂺 no󰂺 was
collected from Western Australia in the
Indian Ocea󰂺 Furthermor󰂶 U. parasiticus
has only been reported in association with
sponges in the orders Clionaida Morrow
 árdena󰂶 󰆕󰆓󰆔󰆘󰂶  󰂶
192󰆛󰂶    árdena󰂶
󰆕󰆓󰆔󰆘󰂶 and Tetractinellida Marshal󰂶 󰆔󰆛󰆚󰆙
󰆼󰇄 Diversity of cnidae found in Umimayanthus lynherensis s󰂺 no󰂺 across tissues in specimen
󰆛󰆛󰆛󰆕󰆔󰂺 󰃍󰃎 spriocyst󰂶 󰃍󰃎 basitrichs and microbasic 󰄀󰂶 󰃍) holotrich
larg󰂶 󰃍) special microbasic 󰄀 and 󰃍) microbasic 󰄀
󰆿󰆽 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰃍ontenegro  󰂺󰂶 󰆕󰆓󰆕󰆓󰂷  󰂶
󰆕󰆓󰆓7)󰂶U. lynherensis s󰂺 no󰂺 is asso󰄀
ciated with Sigmaxinella soelae in the
order Biemnid󰂺
Umimayanthus raksasa sp. nov.
Montenegro, Kise & Reimer
ur󰂹si󰂹ooban󰂺r󰂹c󰂹󰆓1BCCB9󰆕󰄀󰆔7󰄀
476󰆛󰄀󰆓󰄀󰆔󰆛󰆙󰆖󰆔󰆙󰆘󰆖󰆕󰆖󰆛
Synonymy󰂺 Parazoanthus s󰂺󰆖
󰂺 󰃍󰆕󰆓󰆔4) and Parazoanthus
󰂺 󰃍󰆕󰆓󰆔6)󰂺
Etymology󰂺    “rak󰄀
sas󰄛󰂶 which means “giant” or “gigantic” in
Indonesia󰂶   
polyps of this species in comparison to the
other members of its genu󰂺
Material examined󰂺 Type localit󰂹
NE coast of Sumb󰂶 Nusa Tenggara
Timu󰂶 Indonesia [lo󰂺 22]󰂶 󰈵󰆜󰂺󰆛󰆜󰆔󰆙󰆜󰆗󰎣󰉓󰂶
12󰆓󰂺󰆚󰆔󰆔󰆙󰆜󰆗󰎣󰉓󰂺
Holotype󰂺 󰂺󰂺󰆗󰆙󰆘󰆕󰆓  󰂺
󰂺󰆜󰆔󰆖󰆜󰂶 Phakellia c󰂺 tropicalis
󰂶󰆕󰆓󰆓󰆜󰂶󰃍󰈵󰆜󰂺󰆛󰆜󰆔󰆙󰆜󰆗󰎣󰉓󰂶 12󰆓󰂺󰆚󰆔󰆔󰆙󰆜󰆗󰎣󰉓󰂶
lo󰂺 2󰆕󰂶 east of Melol󰂶 NE coast of
Sumb󰂶 Nusa Tenggara Timu󰂶 Indonesi󰂶
󰇁 Results for the cnidocyte analyses for Umimayanthus lynherensis s󰂺 no󰂺󰂶
󰆛󰆛󰆛󰆕󰆔
Tissue Category Length
(max–min,
average)
Width
(max–min,
average)
nFrequency
Tentacles Spirocysts 1󰆜󰂺󰆕󰄍󰆔󰆖󰂺󰆕󰂶 1󰆘󰂺󰆙 󰆖󰂺󰆜󰄍󰆔󰂺󰆖󰂶 󰆕󰂺󰆘 󰆠󰆞 Common
Bastrichs and
microbasic
󰄀mastigophores
1󰆜󰂺󰆔1󰆗󰄍󰆔󰆗󰂺󰆓󰆗󰂶 1󰆙󰂺󰆛 󰆗󰂺󰆚6󰆙󰄍󰆔󰂺󰆘1󰆖󰂶
󰆖󰂺󰆓󰆜󰆚󰆙󰆕󰆘
󰆥Occasional
Column 󰃍󰃎 󰆖󰆚󰂺󰆖󰄍󰆕󰆘󰂺󰆖󰂶 2󰆜󰂺󰆕 2󰆔󰂺󰆙󰄍󰆔󰆕󰂺󰆔󰂶 1󰆘󰂺󰆕 󰆞󰆡 Occasional
Pharynx Special microbasic
󰄀
󰆛󰂺󰆛󰄍󰆛󰂺󰆙󰂶 󰆛󰂺󰆚 󰆕󰂺󰆙󰄍󰆕󰂺󰆔󰂶 󰆕󰂺󰆗 󰆟 Rare
Bastrichs and
microbasic
󰄀
1󰆜󰂺󰆖󰄍󰆘󰂺󰆗󰂶 1󰆚󰂺󰆘 󰆖󰂺󰆚󰄍󰆔󰂺󰆙󰂶 󰆕󰂺󰆚 󰆞󰆞 Occasional
Mesenterial
Filaments
󰃍󰃎 󰆖󰆖󰂺󰆖󰄍󰆖󰆕󰂺󰆜󰂶󰆖󰆖󰂺󰆔 2󰆖󰂺󰆖󰄍󰆔󰆖󰂺󰆙󰂶 1󰆛󰂺󰆘 󰆟 Rare
Bastrichs and
microbasic
󰄀
2󰆓󰂺󰆓󰄍󰆔󰆘󰂺󰆘󰂶 1󰆚󰂺󰆘 󰆖󰂺󰆛󰄍󰆕󰂺󰆖󰂶 󰆖󰂺󰆓 󰆢 Rare
Microbasic
󰄀
1󰆜󰂺󰆘󰄍󰆔󰆖󰂺󰆔󰂶 1󰆙󰂺󰆘 󰆚󰂺󰆚󰄍󰆖󰂺󰆙󰂶 󰆘󰂺󰆗 󰆠󰆝 Common
󰆿󰆾󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
7󰆘󰄍󰆜󰆓  󰂶  󰆔󰆖󰂶 󰆔󰆜󰆛󰆗󰂺
Collected by 󰂺󰂺󰂺 van Soes󰂶 󰄀
Expedition)󰂺 Paratype󰂹 󰂺󰂺󰆗󰆙󰆘󰆕󰆔
in 󰂺󰂺󰆕󰆓󰆚󰆓󰆗󰂶 Phakellia spe󰂺󰂶
󰃍󰈵󰆛󰂺󰆗󰆙󰆛󰆖󰆖󰆖󰎣󰉓󰂶 11󰆜󰂺󰆙󰆔󰆚󰆘󰎣󰉓󰂶 lo󰂺 2󰆖󰂶 east of
Komodo Field #1󰆓󰆓󰂶 Nusa Tenggara Timu󰂶
Indonesi󰂶 91 m dept󰂶 󰆔󰆜󰂶󰆔󰆜󰆛󰆗
Collected by 󰂺󰂺󰂺an Soes󰂶 󰄀
Expedition)󰂺
Other material 󰃍󰈺2)󰂺  󰄀
ined specimens belong to the collec󰄀
tion of the Western Australian Museum;
 󰆛󰆛󰆛󰆔󰆘 󰃍󰈵󰆔󰆙󰂺󰆚󰆘󰆕󰆘󰎣󰉓󰂶 12󰆔󰂺󰆓󰆗󰆙󰆙󰆙󰆚󰎣󰉓󰂶
lo󰂺 1󰆕󰂶 Broome L2󰆘󰂶 Broom󰂶 Western
Australi󰂶󰆔󰆓󰆛󰄀󰆔󰆓󰆓 󰂶 󰆖󰆓󰂶 󰆕󰆓󰆓󰆚
by 󰂺󰂺alotti)󰂶󰆛󰆛󰆛󰆕󰆛󰃍󰈵󰆔󰆘󰂺󰆙󰆕󰆖󰆖󰎣󰉓󰂶
12󰆔󰂺󰆜󰆚󰆕󰆕󰆖󰆖󰎣󰉓󰂶 lo󰂺 1󰆖󰂶 Lynher Ban󰂶 Western
󰆽󰆻 Specimens of Umimayanthus raksasa s󰂺 no󰂺; 󰃍󰃎 󰂺󰂺󰆗󰆙󰆘󰆕󰆓
󰃍olotype)󰂶󰃍󰃎 󰂺󰂺󰆗󰆙󰆘󰆕󰆔󰃍aratype)󰂶󰃍󰃎 󰆛󰆛󰆛󰆔󰆘󰂶 and
󰃍󰃎 󰆛󰆛󰆛󰆕󰆛󰂺󰆘󰂺 Note that specimens
C and D are tightly contracted in comparation to specimens A and B
Australi󰂶 61 m dept󰂶 󰆕󰆛󰂶󰆕󰆓󰆔󰆙
󰂺󰂺󰂺itchie)󰂺
Diagnosis. U. raksasa s󰂺 no󰂺 can be

genus Umimayanthus by presenting com󰄀
paratively large polyp󰂶 colonies with a
unique growth patter󰂶 and the identity
of host spong󰂺 U. raksasa s󰂺 no󰂺 has an
average polyp diameter of 󰆕󰂺󰆛󰆖󰈷󰆓󰂺󰆗2
mm and polyp height of 󰆙󰂺󰆘󰆖  󰈷 󰆘󰂺󰆘󰆛
m󰂶 colonies primarily extended along
the edges of the sponge and this species
has only been found in association with
sponges in the genus Phakellia Bowerban󰂶
󰆔󰆛󰆙󰆕 󰃍󰂺 󰆕󰆓A)󰂺 󰂶 there are
multiple unique nucleotide substitu󰄀
tion across the 󰄀 and 16󰄀
󰆿󰆿 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
regions in the concatenated alignmen󰂶
as follow󰂹 for the 󰄀 region a “G”
in positions 47 b󰂶󰆔󰆖󰆔󰂶󰆗󰆘󰆗󰆛󰆙󰆓
b󰂶 a “T”󰆘󰆔 󰂶 󰆔󰆖󰆓󰂶󰆙󰆖󰆗󰂶 󰆙󰆘󰆓 󰂶
716 b󰂶 󰆛󰆖󰆘   󰆛󰆘󰆓 󰂶 an “A”  󰆙󰆗󰆛
b󰂶 and a unique combination of substitu󰄀
tions and deletio󰃈󰆔󰆖󰆓󰄍󰆖󰆗󰆓
bp; and for the 16󰄀 region there is a
T”󰆔󰆓󰆖󰆙󰂶 a “C󰆔󰆔󰆖󰆕󰂶 and
a unique combination of substitutions
and deletio󰃈  󰆔󰆖󰆗󰆛󰄍󰆔󰆖󰆛󰆔 
󰃍󰂺 21)󰂺
Description. Size. Preserved polyps were
on average 󰆕󰂺󰆛󰆖 󰈷󰆓󰂺󰆗2 mm 󰃍󰇠󰈺 󰆓󰂺󰆔󰆚󰂶
ma󰂺 󰆖󰂺󰆘1 m󰂶󰈺󰆔󰆕s) in diamete󰂶
and 󰆙󰂺󰆘󰆖󰈷 󰆘󰂺󰆘󰆛󰃍󰇠󰈺󰆖󰆔󰂺󰆔󰆚󰂶 ma󰂺
1󰆘󰂺󰆚 m󰂶  󰈺 󰆔󰆕 s) in heigh󰂺 All
measurements were performed on the
ethanol preserved specime󰂹 󰄀
ian voucher number 󰂺󰂺󰆗󰆙󰆘󰆕󰆓󰂶
󰂺󰂺󰆗󰆙󰆘󰆕󰆔󰂶  󰆛󰆛󰆛󰆔󰆘󰂶 and
 󰆛󰆛󰆛󰆕󰆛󰂺 Note that polyps in speci󰄀
mens 󰆛󰆛󰆛󰆔󰆘󰆛󰆛󰆛󰆕󰆛
tightly contracte󰂺
Morphology. The holotype specimen
is associated with Phakellia c󰂺 tropica-
lis   󰂶 󰆕󰆓󰆓󰆜󰂺 Colonies
formed by polyps tightly connected in
a single chai󰂶 although small branches
󰆕󰅦󰆖 󰂺 All pol󰄀
yps were conspicuously spread over a
󰄀 coenenchym󰂺 Capitulary
ridges were visibl󰂶 16 in numbe󰂺 Tentacles
 󰆖󰆕  󰂺 Preserved tentacles
were brown in coloratio󰂺 Capitulum and
scapus were heavily encrusted by vari󰄀
ous particles of sand and silica 󰃍picules
of host sponges)󰂺   
primarily on the outer edge of the host
spong󰂶 and most of the sponge surface
remained free of polyp󰂺 Polyps preserved
in ethanol were brown or white in colo󰂺
Cnidae. Tentacles and pharynx had sim󰄀
ilar cnidae composition󰂶 with spirocyst󰂶
bastrichs and microbasic 󰄀
commonly foun󰂺 In the column only
holotrichs 󰃍󰃎 were found at a low fre󰄀
quenc󰂺 󰄀
trichs and microbasic 󰄀󰂶
and microbasic 󰄀 were
found in low frequenc󰂺 See table 7 and
󰂺 2󰆕󰂺
Internal morphology. Sphincter muscle
was located in the endoder󰂺 Mesente󰄀
rial arrangement was macrocnemi󰂺 Mes󰄀
     󰆖󰆕 
numbe󰂺 Ectoderm and mesoglea of capit󰄀
ulum and scapus were heavily encrusted
by various sand and silica particle󰂺 Single
siphonoglyp󰂺
Distribution󰂺 The analysed specimens
󰄀
si󰂺 In Australi󰂶 from Broome [lo󰂺 12]󰂶
Lynher Bank [lo󰂺 1󰆖󰃖󰂶 
 [lo󰂺 22] and Komodo [lo󰂺 2󰆖󰃖
islands 󰃍󰂺 1)󰂺    
depths of 6󰆔󰄍󰆔󰆓󰆛󰂺
Associated host. Umimayanthus raksasa
s󰂺 no󰂺 appears to be exclusively associ󰄀
ated with sponges in the genus Phakellia󰂶
within the family Bubaridae Topsen󰂶󰆔󰆛󰆜󰆗󰂺
One of the  specimens was identi󰄀
P. c󰂺 tropicalis 󰃍󰂺󰂶󰆕󰆓󰆔6)󰂶
while the  sponge specimens were
not P. tropicalis󰂺
Remarks. Molecular dat󰂶 identity of the
host spong󰂶 and polyp diameter group
all specimens here analysed as Umima-
yanthus raksasa s󰂺 no󰂺 It is worth noting
that in specimens 󰆛󰆛󰆛󰆔󰆘 
󰆛󰆛󰆛󰆕󰆛  
therefore it will appear to have smaller
heights 󰃍󰆔󰂺󰆙󰆚  󰈷 󰆓󰂺󰆘2 m󰂶󰇠 󰈺 󰆓󰂺󰆕󰆚󰂶
ma󰂺 󰆕󰂺󰆜󰆖 󰂶  󰈺 󰆙 s) than those
󰆿󰇀󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
󰆽󰆼 Summary chart of the alignments showing nucleotide positions characteristics to U. raksasa
s󰂺 no󰂺 across the 󰄀 and 16󰄀 regio󰂺 Positions in green are unique to U. raksasa
s󰂺 no󰂺 in genus Umimayanthus󰂺 Positions in grey are characteristi󰂶 but not uniqu󰂶 to
U. raksasa s󰂺 nov
󰆿󰇁 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
󰆽󰆽 Diversity of cnidae found in Umimayanthus raksasa s󰂺 no󰂺 across tissues in specimen
󰂺󰂺󰆗󰆙󰆘󰆕󰆔󰂺 󰃍󰃎 spriocyst󰂶 󰃍󰃎 basitrichs and microbasic 󰄀󰂶 󰃍)
holotrich large and 󰃍) microbasic 󰄀
󰇂 Results for the cnidocyte analyses for Umimayanthus raksasa s󰂺 no󰂺󰂶
󰂺󰂺󰆗󰆙󰆘󰆕󰆓
Tissue Category Length
(max–min,
average)
Width
(max–min,
average)
nFrequency
Tentacles Spirocysts 2󰆖󰂺󰆓󰄍󰆔󰆕󰂺󰆓󰂶 1󰆛󰂺󰆔 󰆗󰂺󰆓󰄍󰆔󰂺󰆓󰂶 󰆕󰂺󰆘 󰆠󰆞 Common
Bastrichs and
microbasic
󰄀
2󰆖󰂺󰆓󰄍󰆔󰆙󰂺󰆓󰂶 2󰆓󰂺󰆖 󰆗󰂺󰆓󰄍󰆔󰂺󰆓󰂶 󰆕󰂺󰆘 󰆟󰆢 Common
Column 󰃍󰃎 󰆖󰆚󰂺󰆓󰄍󰆕󰆘󰂺󰆓󰂶󰆖󰆓󰂺󰆓 1󰆖󰂺󰆓󰄍󰆔󰆓󰂺󰆓󰂶 1󰆔󰂺󰆓 󰆢 Rare
Pharynx Spirocysts 2󰆗󰂺󰆓󰄍󰆔󰆖󰂺󰆓󰂶 1󰆛󰂺󰆘 󰆗󰂺󰆓󰄍󰆔󰂺󰆓󰂶 󰆕󰂺󰆚 󰆡󰆞 Common
Bastrichs and
microbasic
󰄀
2󰆛󰂺󰆓󰄍󰆔󰆚󰂺󰆓󰂶 2󰆕󰂺󰆔 󰆗󰂺󰆓󰄍󰆕󰂺󰆓󰂶 󰆕󰂺󰆜 󰆡󰆤 Common
Mesenterial
Filaments
Bastrichs and
microbasic
󰄀
2󰆘󰂺󰆓󰄍󰆕󰆕󰂺󰆓󰂶 2󰆖󰂺󰆛 󰆘󰂺󰆓󰄍󰆕󰂺󰆓󰂶 󰆖󰂺󰆖 󰆞󰆝 Occasional
Microbasic
󰄀
2󰆖󰂺󰆓󰄍󰆔󰆜󰂺󰆓󰂶 2󰆓󰂺󰆘 󰆙󰂺󰆓󰄍󰆗󰂺󰆓󰂶 󰆗󰂺󰆛 󰆡 Rare
󰆿󰇂󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
observed in specimens 󰂺󰂺󰆗󰆙󰆘󰆕󰆓
and 󰂺󰂺󰆗󰆙󰆘󰆕   
are fully extende󰂺
       U. rak-
sasa s󰂺 no󰂺 clearly set it apart from the
other species in the genus Umimayanthus
󰃍󰂺 󰆕󰆓󰄍󰃎󰂺 U. aruensis as described in
Pax 󰃍󰆔911) is the only species that slightly
resembles U. raksasa s󰂺 no󰂺 Nonetheles󰂶
the maximum height of polyps of U. rak-
sasa s󰂺 no󰂺 was found to be 1󰆘󰂺󰆚 mm in
preserved specimen󰂶 approximately four
times the height of polyps reported in
U. aruensis󰂺 As wel󰂶 colonies of U. rak-
sasa s󰂺 no󰂺 primarily extended along the
edges of host sponge󰂶 while U. aruensis
colonies extended indiscriminately across
the whole surface of sponges in a reticu󰄀
late patter󰂺
Key to the valid species of
Umimayanthus
       
    
Umimayanthus specie󰂶 and is thus largely
based on gross morphological attributes
along with associated organisms and occa󰄀
sionally geograph󰂺󰄀
cation can be made using supplementary
table 󰆔󰂺 This key should not be used as a
basis to erect new specie󰂺
󰆔󰂺 Associated with Ellisella s󰂺
 󰄍 U󰂺 kanabou Fujii  󰂺󰂶
󰆕󰆓󰆕󰆔󰂺
󰄍Not associated with octocoral󰂶 but
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 2
󰆕󰂺 Associated with Caribbean
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 parasiti-
cus 󰃍󰂶󰆔󰆛󰆙󰆓󰃎
󰄍Associated with 󰄀
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰆖
󰆖󰂺 Associated with encrustin󰂶 󰄀
󰂶󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 4
󰄍     
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 6
󰆗󰂺 
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 nakama
Montenegr󰂶󰂶󰆕󰆓󰆔󰆘
󰄍 󰂺󰂺󰂺󰂺󰂺 󰆘
󰆘󰂺 Associated with massive sponge󰂶
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 miyabi
Montenegr󰂶󰂶󰆕󰆓󰆔󰆘
󰄍Association with encrusting or
cushion󰄀 sponge󰂶 colonies
often spread across neighboring
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 chanpuru
Montenegr󰂶󰂶󰆕󰆓󰆔󰆘
󰆙󰂺 󰆕󰆗󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺7
󰄍 󰆕󰆗󰂺󰂺󰂺󰂺󰂺
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 9
󰆚󰂺 Colonies formed by chains of polyps
extending in a reticulated patter󰂶
on Raspailiidae sponges; in associa󰄀
tion with  
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 c󰂺 aruensis
󰄍Colonies not formed by reticulated
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 󰆛
󰆛󰂺 Solitary polyp󰂶󰆔󰆓 󰆔󰆕 󰄀
lary ridges visible; associated with
Biemnidae; in association with Sig-
maxinella soelae󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 lynherensis s󰂺 no󰂺
󰄍Polyps arranged in branching chains
not interconnecte󰂺 No capitulary
ridges visible; associated with Micro󰄀
cionidae or Raspailiidae; in asso󰄀
ciation with Trikentrion 
and Clathria 󰃍Thalysias) cactiformis
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 discolor s󰂺 no󰂺
󰆜󰂺     󰄀
rida󰂶 colony often growing in the
edges of the host spong󰂶 polyp
heights up to 16 m󰂶 brown or white;
󰆿󰇃 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
in association with sponges in genus
Phakelia󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 raksasa s󰂺 no󰂺
󰄍Associated with sponges in Raspaili󰄀
idae; yello󰂶 whit󰂶 cream or orange
in colo󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰆔󰆓
󰆔󰆓󰂺 Orange polyp󰂶 extending linearl󰂶
and with a poorly developed coenen󰄀
chyma; in association with sponges
in genus Endectyon󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 jebarra s󰂺 no󰂺
󰄍Polyps of color other than
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 11
󰆔󰆔󰂺 Yellowish polyp󰂶 solitary and coe󰄀
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 mirnangga s󰂺 no󰂺
󰄍Whit󰃈ream polyp󰂶 extending in
linear chain󰂶 and coenenchyma
clearly visible; in association with
Endectyon 󰃍ndectyon) fruticosum
and E. 󰃍ndectyon) thurstoni
󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺󰂺 U󰂺 wunanggu s󰂺 nov󰂺
Discussion
Importance of museum collections
     󰆖󰆔 
specimens of sponges with associated
󰂶 and three type specimens of
󰄀 󰂶 gather󰄀
ing data on morphological and molecular
      󰄀
tio󰂺 Surprisingl󰂶 our results led to the dis󰄀
covery of six species new to science in the
genus Umimayanthus󰂶 highlighting the
importance of proper maintenance and
curation of biological collection󰂺
Museum collections have played a cru󰄀
cial role on the study of the ecolog󰂶 taxon󰄀
omy and systematics of sponge󰄀associated
   
 󰂺 For instanc󰂶 Swain
󰃍󰆕󰆓󰆓7)󰂶  󰄀
ination of the Porifera collection in
the United States National Museum of
   󰂶 DC󰂶 USA
󰃍)󰂶    󰄀
sponge󰄀
Zoantharia associations for the Caribbean
regio󰂺      
󰃍󰆕󰆓󰆓7) played a crucial role in the study of
Montenegro 󰂺 󰃍󰆕󰆓󰆕󰆓󰃎󰄀
tion of extensive legacy material from the
 and  collections of  in the
Netherland󰂶 and specimens recently col󰄀
lected in the Dutch Caribbea󰂺 The study
published by Montenegro  󰂺 󰃍󰆕󰆓󰆕󰆓󰃎
remains to date the most comprehensive
     
in the Caribbean region and includes the
original description of Parazoanthus atlan-
ticus       󰄀
tially undescribed species for the regio󰂺
      󰃍󰆕󰆓󰆓7) also
set the basis for later reexamination of P.
tunicans 󰃍uerde󰂶󰆔󰆜󰆓󰆓󰃎 by Sinniger 󰂺
󰃍󰆕󰆓󰆔󰆓󰃎󰂶   P󰂺 tunicans into
the newly created genus Hydrozoanthus󰂺
Similarl󰂶 Kise et a󰂺 󰃍󰆕󰆓󰆕2) reexamined
voucher specimens from the coelenterate
collection in  and the Porifera col󰄀
lections of 󰂶 and revealed the existence
of two new genera and three new species
󰂺
It is important to note that the oldest
specimen analysed by Kise 󰂺 󰃍󰆕󰆓󰆕2) was
  󰆔󰆜󰆙󰆖   “Equalant 
Expedition” to the Gulf of Guine󰂶 while
some of the specimens from the Dutch
Caribbean analysed by Montenegro 󰂺
󰃍󰆕󰆓󰆕󰆓󰃎 were collected in Curaçao by 󰂺󰂺
  󰆔󰆜󰆕󰆓󰃍a󰂶 1924)󰂶
oldest specimens analysed in the current
󰆔󰆜󰆓󰆛󰃍able 2)󰂺
󰆿󰇄󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Therefor󰂶 biological collections not only
play a crucial role as reference materials
    󰂶 but also
as time capsules for future generations of
scientists to access information in light
of modern technological developments
such as molecular dat󰂶 thus collecting
data in ways beyond the imagination of
scientists at the original time of collec󰄀
tio󰂶 preservation and curation of speci󰄀
men󰂺 Furthermor󰂶 the representation of
      
opportunity to return to the same locali󰄀
ties where they were originally found and
examine whether they still occur there or
may have disappeared 󰃍󰂶
󰆕󰆓󰆓9; van der Meij 󰂺󰂶󰆕󰆓󰆓󰆜󰂶󰆕󰆓󰆔󰆓󰃎󰂺
information is vital to document possible
local species extinction󰂺

Umimayanthus
   hos󰄀 asso󰄀
ciations in Umimayanthus has not been
thoroughly studie󰂶 primarily because of
the taxonomic uncertainty of the groups
involved in the symbiose󰂺 This study pro󰄀
vided a rare situation where taxonomists
with specialties in both taxa worked in
collaboration to provide a more complete
picture of associations 󰃍  
󰂶󰆕󰆓󰆓7)󰂺
Earlier work on 󰄀 asso󰄀
ciations concluded that it is relatively
 
to associate with multiple host specie󰂶
        
 󰄀
ian species 󰃍  󰂶 󰆕󰆓󰆓7)󰂺  
worth noting that multiple exceptions
are known for host sponges in the genera
Agelas   󰂶 󰆔󰆛󰆙󰆗󰂶
Cribrochalina Schmid󰂶󰆔󰆛󰆚󰆓󰂶 Xestospongia
de Laubenfel󰂶 󰆔󰆜󰆖󰆕󰂶 Svenzea Alvare󰂶 van
  ü󰂶 󰆕󰆓󰆓󰆕  Hymeniacidon
Bowerban󰂶 󰆔󰆛󰆘󰆛 󰃍  󰂶 󰆕󰆓󰆓7;
Montenegro  󰂺󰂶 󰆕󰆓󰆕󰆓󰃎󰂺 󰂶 in
general term󰂶    
    󰃍󰆕󰆓󰆓7) appears to be
valid for 󰄀Umimayanthus associa󰄀
tions 󰃍able 2)󰂺 󰂶 U. wunanggu
s󰂺 no󰂺 was found in association with
  
Endectyon; U. mirnangga s󰂺 no󰂺 was in
association with two species in two gen󰄀
er󰂶 as was U. discolor s󰂺 no󰂺; and U. rak-
sasa s󰂺 no󰂺 is likely associated with more
than one species in the genus Phakellia󰂺
Remarkabl󰂶 Caribbean U. parasiticus
has been reported in association with
󰆕󰆖     󰆔󰆓 
genera of host sponges 󰃍  󰂶
󰆕󰆓󰆓7; Montenegro 󰂺󰂶󰆕󰆓󰆕󰆓󰃎󰂺󰄀
cies such as U. chanpuru󰂶 U. miyabi and
U. nakama are likely associated with mul󰄀
tiple genera of encrusting and calcareous
sponge󰂶 but no detailed taxonomic data
are yet available on the identity of their
host sponges 󰃍ontenegr󰂶 per󰂺 obser󰂺󰃎󰂺
     
   U. c󰂺 aruensis󰂶
 󰄀
ciation with e󰂶 and
U. kanabou consistently found in asso󰄀
ciation with a gorgonian in the genus
Ellisella󰂶 although the identity of the spe󰄀
cies remains unknown 󰃍ujii 󰂺󰂶 󰆕󰆓󰆕1)󰂺
Other species such as U. jebarra s󰂺 no󰂺
and U. lynherensis s󰂺 no󰂺 are only known
from a single recor󰂶 and thus is not pos󰄀

of the associations for these specie󰂺
On the other han󰂶 the host sponges in
this study appear to be quite restricted to
󰇀󰆻 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
  Umimayanthus specie󰂶 with
most of them associated with a single
󰂺 Two exceptions were
foun󰂹 e󰂶 which had
associations with two phylogenetically
distinct specie󰂶 U. c󰂺 aruensis and U. dis-
color s󰂺 no󰂺; and Endectyon 󰃍Endectyon)
fruticosum󰂶 which was associated with U.
wunanggu s󰂺 no󰂺 and U. mirnangga. s󰂺
no󰂺 Given that the latter two sibling spe󰄀
cies are closely phylogenetically relate󰂶
we speculate that some level of overlap in
host preference is to be expected 󰃍rändle
et a󰂺󰂶󰆕󰆓󰆓󰆓󰂷󰂶󰆕󰆓󰆓2)󰂺
Based on the results of our phylogenetic
analyse󰂶 it is clear that these species repre󰄀
sent a large radiation of 󰄀
Umimayanthus󰂶 with species and clades
   󰂶 based
on host species and dept󰂺 For instanc󰂶
Clade  was found inhabiting depths of
1󰆕󰄍󰆖9 󰂶 Clade  between 4󰆔󰄍󰆘9 󰂶 and
Clade  overlapping all other depth
ranges with records from depths of 󰆗󰄍󰆔󰆓󰆓
󰂺󰂶 a closer look revealed strati󰄀
    Clade 󰂶 with
U. raksasa s󰂺 no󰂺 and U. lytherensis s󰂺
no󰂺 restricted to deeper waters while
U. discolor s󰂺 no󰂺 inhabits shallow water󰂺
Many studies have shown the Central
󰄀 󰃍he Coral Triangle) to be the
center of marine biodiversity for a vari󰄀
ety of marine taxa such as alga󰂶 larger
benthic foram󰂶 crustacean󰂶 󰂶 mol󰄀
lusc󰂶 and scleractinian corals 󰃍oeksem󰂶
󰆕󰆓󰆓7; Förderer  󰂺󰂶 󰆕󰆓󰆔󰆛󰃎; but whether
the region also harbors high diversi󰄀
ties of many less studied tax󰂶 including
󰂶 still needs to be examined
󰃍eimer  󰂺󰂶 󰆕󰆓󰆔4)󰂺   󰂶
focused on species associated with only
four families of sponge󰂶 indicates that
     
Triangle centre of biodiversit󰂶 and further
󰂺
Systematics and phylogeny within
genus Umimayanthus
Fujii  󰂺 󰃍󰆕󰆓󰆕1) recently described U.
kanabou from Amamioshima Island in
southern Japa󰂶 and established three sub󰄀
genera within Umimayanthus based on
the results of their phylogenetic analyse󰂺
󰂶 as revealed by our stud󰂶 the evo󰄀
lutionary independence of these “subgen󰄀
eric” lineages is brought into questio󰂺 Our
results cannot establish with certainty the
phylogenetic position of U. parasiticus󰂶 U.
chanpuru󰂶 and U. kanabou󰂶 with a lack of
support in both  and  phylogenetic
analyse󰂺 This result renders the phyloge󰄀
netic distinction between the subgenera
Gorgoniazoanthus and Umimayanthus to
possibly be invali󰂺 The remaining sub󰄀
genus proposed by Fujii  󰂺 󰃍󰆕󰆓󰆕1) was
Paraumimayanthus and included the spe󰄀
cies U. miyabi and U. nakama󰂺 This lineage
remains 󰄀 in our analyse󰂶
but its position within the genus Umima-
yanthus is uncertai󰂺
In Fujii et a󰂺 󰃍󰆕󰆓󰆕1) the primary char󰄀
acters used to tell apart subgenera were
insertions and deletions across the
󰄀 and 16󰄀 region󰂶 but
alignments were extensively masked using
GBlock 󰃍astresan󰂶󰆕󰆓󰆓󰆓󰃎 previous to the
phylogenetic reconstructions; the mask󰄀
ing resulted in the exclusion of 6󰆔󰂺󰆚󰈱 of
the position󰂶 󰆘󰆘󰆙󰆜󰆓󰆔󰂶 from
the 󰄀 region 󰃍ujii  󰂺󰂶 󰆕󰆓󰆕1)󰂺
This calls the diagnostic genetic characters
     
󰇀󰆼󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
questio󰂺 Furthermor󰂶 the 󰄀
model seems to have been only evaluated
for the  regio󰂶 and extrapolated to the
16󰄀 and  region󰂺 Therefor󰂶 in
light of the phylogenetic results presented
here 󰃍󰂺 2)󰂶    
in Fujii 󰂺 󰃍󰆕󰆓󰆕1)󰂶 
diversity within the genus Umimayanthus
remains clearly underestimated as dem󰄀
onstrated by our result󰂶 in this study we
refrain from using subgeneric categories
within Umimayanthus󰂺 Furthermor󰂶 we
recommend a comprehensive census of
the diversity within Umimayanthus to
achieve a better understanding of the
relationships among all Umimayanthus
species; at this point a reassessment of
subgeneric or possibly generic divisions
can be conducte󰂺
Conclusions
Currentl󰂶 the genus Umimayanthus
includes three well supported subclades
and four well supported monophylies
formed by single specie󰂺 The single species
monophylies are U. chanpuru󰂶 U. parasiti-
cus󰂶 U. kanabou󰂶 and U󰂺 c󰂺 aruensis 󰃍󰂺 2)󰂶
while the lineages forming well supported
subclades ar󰂹 󰃍󰃎 U. miyabi and U. nakama
󰃍ontenegro 󰂺󰂶󰆕󰆓󰆔󰆘󰂷 Fujii 󰂺󰂶󰆕󰆓󰆕1)󰂶
󰃍󰃎 U. wunanggu s󰂺 no󰂺 󰂶U. mirnangga s󰂺
no󰂺󰂶  U. jebarra s󰂺 no󰂺 󰃍  in
󰂺 2)󰂶󰃍󰃎 U. discolor s󰂺 no󰂺󰂶 U. lyn-
herensis s󰂺 no󰂺󰂶  U. raksasa s󰂺 no󰂺
󰃍󰂺 2)󰂺󰂶 the genus
also includes two potentially undescribed
species Umimayanthus s󰂺 Madagascar
   äussermann 󰃍󰆕󰆓󰆓9)󰂶 
Umimayanthus s󰂺  󰆔󰆚󰆓󰆙󰆔󰆜󰄁󰆕󰆓󰄁
94 󰃍eimer 󰂺󰂶 󰆕󰆓󰆔󰆛󰂷 Montenegro 󰂺󰂶
󰆕󰆓󰆕󰆓󰃎󰂺
This study highlights the need for fur󰄀
ther examining in detail the Porifera col󰄀
lections at museums around the world to
better expose the undescribed diversity
of 󰄀󰂶 which

their host specie󰂺 It would also be advan󰄀
tageous to conduct 󰄀 analyses
to further clarify the phylogenetic position
of Umimayanthus specie󰂶 and identify
potential hotspots of genetic variation that

genus in the central 󰄀 region
as uncovered in this stud󰂺 󰄀

on the genetic regions linked to the evolu󰄀
tion of symbiotic association󰂶
on the fact that the genus Umimayanthus
is an obligate symbiont with the rare evo󰄀
lutionary capacity of switching across
phylogenetically unrelated host specie󰂶
as demonstrated by the association of
U. kanabou with gorgonians 󰃍ujii  󰂺󰂶
󰆕󰆓󰆕1)󰂺
Acknowledgements
We would like to thank the following
institutions for their fundin󰂶 project sup󰄀
port and collection of specimen󰂹 The
Western Australian Marine Science Insti󰄀
tution 󰃍) and partner󰂶 Western
Australian Museum 󰃍)󰂶 
Institute of Marine Science 󰃍) for
the following Kimberley Survey󰂹 
Survey 1B Camden Sound 󰆕󰆓󰆔󰆘 󰃍er󰄀
mit number󰂹 󰄍󰆕󰆘󰆗󰆚󰂶 󰄀󰆓󰆓󰆗󰆚󰆜󰆘󰂶
󰆻󰆼󰆻󰆽󰆾󰆿);  Survey 2 Maret
󰇀󰆽 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Islands December 󰆕󰆓󰆔󰆘 󰃍ermit num󰄀
ber󰂹 󰆓󰆔󰆓󰆙󰆕󰆚󰂶 󰃍oF) 2677 ) and 
Survey 4 Lynher Bank 󰄍 󰆕󰆓󰆔󰆙
󰃍ermit number󰂹 󰄀󰆕󰆓󰆔󰆙󰄀󰆖26)󰂶
 Dredging Survey󰂹  Onslow
Survey  󰆕󰆓󰆔󰆖 󰃍ermit number󰂹 
󰆻󰆻󰇃󰆿󰇃󰆾󰂶  󰆕󰆔󰆛󰆖󰃎;  Onslow
Survey  July 󰆕󰆓󰆔󰆘 󰃍ermit number󰂹 
󰆓󰆓󰆛󰆗󰆛󰆖󰂶 WAFi2442)󰂺   and
󰂺 eesing for the following  surve󰂹
Pilbara 󰂹 Seabed Biodiversity Char󰄀
   󰆕󰆓󰆔󰆖󰂶 󰂺 osie
 for his Albany Sponge Barnacle
Survey 󰆕󰆓󰆔󰆛 󰃍ermit number󰂹 WA Fish󰄀
eries Exemption #2󰆚󰆘6)󰂶  Tasmania
and its surve󰂹  “Southern Surveyor”
Cruise 󰆻󰇀󰆻󰇂 Jun󰃈 󰆕󰆓󰆓󰆚󰂶  Gor󰄀
gon Project’s Barrow Island Net Conser󰄀
 󰂹  Murions
and Montebellos Islands  󰆕󰆓󰆔󰆘 󰃍er󰄀
mit Number󰂹 Fisheries Exemption 󰆕󰆘󰆘󰆓󰂶
DpaW 󰆻󰆻󰆿󰇀󰇃󰆿 Reg 4 and 󰆻󰆼󰆻󰆽󰆼󰇃
Reg 17)󰂺󰄀
 s;
 and Tom White 󰂺 Thanks to
Saskia Dimter at the Forschungsinstitut
und 󰄀 Senckenberg 󰃍)
in German󰂺 We thank Dhugal Lindsay at
 in Japa󰂶 and Alan Jamieson at
the 󰄀 󰄀 Research
Centre in Australia for kindly providing
the logistics and support to write this man󰄀
uscrip󰂺 JM and JDR were supported in part
by fellowships to visit the Naturalis collec󰄀
tion hosted by BW󰂺 JDR’s visit to 
was supported via a Curtin University fel󰄀
lowship hosted by Joseph DiBattista and
Michael Bunc󰂺 The authors would partic󰄀
ularly like to thank the Wunambal Gaam󰄀
bera community including Tom Vigilante
and Jason Lee but especially Lillian Kara󰄀
dada and Jeremy Kowan for the Wunambal
names used for new species from Wunam󰄀
bal Gaambera Countr󰂺 We are very grate󰄀
ful to the anonymous reviewers and the
  
the quality of this study with very accurate
comments and recommendation󰂺
Supplementary material
Supplementary material is available online
a󰂹
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆙󰆓󰆛󰆗󰃈󰆜󰂺󰂺󰆕󰆙󰆖󰆜
󰆗󰆜󰆛󰆛
References
Alvare󰂶 󰂺󰂶d󰂶 󰂺󰂺t󰂶 󰂺󰂺󰂺
󰃍2󰆓󰆔6)󰂺     
󰃍orifer󰂹 Demospongiae) in Indonesia󰂺
Zootaxa󰂶 󰆗󰆔󰆖7󰂶 󰆗󰆘1󰄍477󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔164󰆙󰃈ootax󰂺󰆗󰆔󰆖󰆚󰂺󰆗󰂺󰆔󰂺
Bakker󰂶 󰂺󰂺󰂶 i󰂶 󰂺󰂶 e󰂶 󰂺󰂺󰂶 k󰂶
󰂺󰂺󰂶 s󰂶 󰂺󰂺󰂶 n󰂶 󰂺󰂺󰂺󰂶 y󰂶
󰂺󰂶 d󰂶 󰂺󰂶 g󰂶 󰂺󰂶 e󰂶 󰂺󰂺󰂶
Irestedt󰂶 󰂺󰂶n󰂶 󰂺󰂶n󰂶 󰂺󰂶󰄀
Maraví󰂶 󰂺󰂶 üller󰂶 󰂺󰂶  󰂶 󰂺󰂶
Roderick󰂶 󰂺󰂺󰂶 p󰂶 󰂺󰂶 g󰂶 󰂺󰂶
Wiedenhoeft󰂶 󰂺ällersjö󰂶 󰂺 󰃍2󰆓󰆕󰆓)󰂺
Global Museu󰂹 Natural history collec󰄀
tions and the future of evolutionary sci󰄀
ence and public education󰂺 PeerJ󰂶 󰆛󰂶 󰆛󰆕󰆕󰆘󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆚71󰆚󰃈eer󰂺󰆛22󰆘󰂺
Bengmor󰂶 󰂺󰂶 󰂶 󰂺󰂶 󰂶 󰂺󰂶
Lulpundah󰂶 󰂺  󰂶 󰂺 󰃍󰆔971)󰂺 󰄀
_E󰆓󰆔   󰄀
tation with some Mangarl󰂶 󰂺󰂺 in
Wunambal Gaambera Aboriginal Corpo󰄀
ration 󰃍󰆕󰆓󰆕󰆖󰃎󰂺   󰄀
tionary 󰃍 󰆔󰂺󰆓)󰂺  󰂹 http󰂹󰃈󰃈
󰇀󰆾󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
app󰂺ppl󰂺o󰃈󰃈p󰃈󰄀
󰄀󰃈󰂺
Boon󰂶 󰂺 󰃍󰆕󰆓󰆕2)󰂺Lee J Wunambal recording󰂶
Kalumbur󰂶 󰂺 in Wunambal Gaambera
Aboriginal Corporation 󰃍󰆕󰆓󰆕󰆖󰃎󰂺 
Gaambera dictionary 󰃍 󰆔󰂺󰆓)󰂺 
Ap󰂹󰎛󰂹󰃈󰃈pp󰂺ppl󰂺o󰃈󰃈p󰃈
󰄀󰄀󰃈󰂺
Blomberg󰂶 󰂺󰂺 d󰂶 󰂺 Jr󰂺 󰃍2󰆓󰆓2)󰂺
and mode in evolutio󰂹 Phylogenetic iner󰄀
ti󰂶 adaptation and comparative methods󰂺
J. Evol. Biol.󰂶 󰆔󰆘󰂶 󰆛󰆜9󰄍91󰆓󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔󰆓󰆗󰆙󰃈󰂺󰆔42󰆓󰄀󰆜󰆔󰆓󰆔󰂺󰆕󰆓󰆓󰆕󰂺󰆓󰆓󰆗󰆚󰆕󰂺󰂺
Brändle󰂶 󰂺󰂶 r󰂶 󰂺  l󰂶 󰂺 󰃍2󰆓󰆓󰆓)󰂺
󰄀
roptera󰂺 Ecography󰂶 2󰆖󰂶 󰆔󰆖 9󰄍147󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔11󰆔󰃈󰂺󰆔󰆙󰆓󰆓󰄀󰆓󰆘󰆛󰆚󰂺󰆕󰆓󰆓󰆓󰂺󰆓󰆓󰆕󰆙󰆜󰂺󰂺
Capell󰂶 󰂺 󰃍1941)󰂺󰄀
guage󰂺 Oceania󰂶 11󰃍󰆖)󰂶 󰆕󰆜󰆘󰄍󰆖󰆓󰆛󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆓󰆕󰃈󰂺󰆔󰆛󰆖󰆗󰄀󰆗46󰆔󰂺󰆔94󰆔󰂺󰆓󰆓󰆖󰆕󰆘󰂺󰂺
Card󰂶 󰂺󰂺󰂶 o󰂶 󰂺󰂶 t󰂶 󰂺󰂶 󰂶 󰂺
s󰂶 󰂺󰂺 󰃍2󰆓󰆕1)󰂺 s󰂺
Annu. Rev. Genet.󰂶 󰆘󰆘󰂶 󰆙󰆖󰆖󰄍6󰆘9󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔14󰆙󰃈󰄀󰄀󰆓7171󰆜󰄀󰆓󰆕󰆓󰆘󰆓6󰂺
Carter󰂶 󰂺󰂺 󰃍1󰆛󰆛2)󰂺 󰂶 observations
on old one󰂶 and a proposed new group󰂺
Ann. Mag. Nat. Hist. 1󰆓󰂶󰆔󰆓6󰄍12󰆘󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆛󰆓󰃈󰆓󰆓󰆕󰆕󰆕󰆜󰆖󰆛󰆕󰆓󰆜󰆗󰆘󰆜󰆙󰆛1󰂺
Castresana󰂶 󰂺 󰃍2󰆓󰆓󰆓)󰂺   
blocks from multiple alignments for their
use in phylogenetic analysis󰂺 Mol. Biol. Evol.󰂶
17󰂶 󰆘󰆗󰆓󰄍󰆘󰆘2󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈xford
journal󰂺olbe󰂺󰆓󰆕󰆙󰆖󰆖4󰂺
Connelly󰂶 󰂺󰂺󰂶 g󰂶 󰂺󰂺󰂶 i󰂶
󰂺󰂺 󰃍2󰆓󰆕4)󰂺    󰂹
leveraging dry coral specimens for museum
genomics󰂺 Coral Reefs󰂶 1󰄍7󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆔󰆓󰆓󰆚󰃈󰆓󰆓󰆖󰆖󰆛󰄀󰆓2󰆗󰄀󰆓󰆕󰆘󰆕󰆘󰄀󰆘󰂺
Cutress󰂶 󰂺󰂺 󰃍1971)󰂺󰆕󰂺
Corallimorphari󰂶 Actiniaria and Zoanthi󰄀
dea󰂺 Mem. Mus. Vic.󰂶󰆖2󰂶󰆛󰆖󰄍92󰂶 p󰂺 󰆜󰂺
Darriba󰂶 󰂺󰂶 a󰂶 󰂺󰂶 v󰂶 󰂺󰂺󰂶
Stamatakis󰂶 󰂺󰂶l󰂶 󰂺i󰂶 󰂺 󰃍2󰆓󰆕󰆓)󰂺
󰄀󰂹 A new and scalable tool for
the selection of  and protein evolu󰄀
tionary models󰂺 Mol. Biol. Evol.󰂶󰆖7󰂶 291󰄍294󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈olbe󰃈󰆔󰆛9󰂺
Donat󰂶 󰂺 󰃍󰆔76󰆘󰃎󰂺l’ Antipat󰂶
o corallo nero dell’A driatic󰂺 Giornale d’I󰄀
tali󰂶  󰂶 e prin󰄀
cipalmente all’ agricoltur󰂶 alle ar󰂶 ed al
commercio󰂶 󰆔󰂹󰆘󰆔󰄍󰆘󰆙󰂶 6󰆓󰄍󰆙󰆗󰂶 2 p󰂺 󰃕󰂺 󰆘󰆔󰄍󰆘󰆙󰂶
1 p󰂺 󰃍ssue n󰂺 󰆙󰂶 session of 󰆔󰆛󰆔󰆚󰆙󰆗󰃎;
󰂺 󰆙󰆓󰄍󰆙󰆗󰂶 1 p󰂺 󰃍ssue n󰂺 󰆛󰂶 session of 󰆕󰆘
August 1764)󰃖󰂺
de Voog󰂶 󰂺󰂺󰂶 󰂶 󰂺󰂶 󰄀󰂶
󰂺󰂶 árdenas󰂶 󰂺󰂶 ía󰂶 󰂺󰂺󰂶 n󰂶
󰂺󰂶 y󰂶 󰂺󰂶 n󰂶 󰂺󰂶 u󰂶 󰂺󰂶
r󰂶 󰂺󰂺󰂺󰂶 y󰂶 󰂺󰂶u󰂶 󰂺󰂶 m󰂶
󰂺󰂺󰂶 i󰂶 󰂺󰂶 w󰂶 󰂺󰂶 o󰂶
󰂺󰂶 a󰂶 󰂺󰂺󰂶 íos󰂶 󰂺󰂶 ür󰂶 󰂺󰂶
Schönberg󰂶 󰂺󰂶 r󰂶 󰂺 󰂶 t󰂶 󰂺󰂶 
Soest󰂶 󰂺󰂺󰂺  r󰂶 󰂺 󰃍2󰆓󰆕󰆖)󰂺 
Porifera Database󰂺 Available a󰂹 http󰂹󰃈󰃈
ww󰂺 arinespecie󰂺r󰃈orifer󰃈orifera
󰂺hp?p󰈺󰈺󰆔󰆙󰆚󰆜󰆘󰆓 󰃍Accessed 21
󰆕󰆓󰆕󰆖)󰂺
Drew󰂶 󰂺 󰃍2󰆓󰆔1)󰂺󰄀
tutions and bioinformatics in conservation
biology󰂺 Conserv. Biol.󰂶󰆕󰆘󰂶󰆔󰆕󰆘󰆓󰄍1󰆕󰆘2󰂺 http󰂹󰃈󰃈
do󰂺or󰃈󰆔󰆓󰂺󰆔11󰆔󰃈󰂺󰆔󰆘󰆕󰆖󰄀󰆔󰆚󰆖󰆜󰂺󰆕󰆓󰆔󰆔󰂺󰆓172󰆘󰂺󰂺
Edgar󰂶 󰂺󰂺 󰃍2󰆓󰆓4) 󰂹 Multiple sequence
alignment with high accuracy and high
throughput󰂺 Nuc. Acids Res󰂺󰂶 󰆖2󰂶 1792󰄍1797󰂺
http󰂹󰃈󰃈o󰂹󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈a󰃈󰆖󰆗󰆓󰂺
Ellis󰂶 󰂺 󰃍176󰆛)󰂺 󰄀
at󰂶 or clustered 󰄀󰂶 lately found
on the 󰄀oasts of the 󰄀 islands󰂺
Philos. Trans. R. Soc. London󰂶󰆘7󰂶 42󰆛󰄍4󰆖7󰂺
England󰂶 󰂺󰂺 󰃍1991)󰂺   
anemones 󰃍ctiniari󰂶 Ceriantharia and
Corallimorphari󰂹 Cnidaria)󰂹e󰂺
󰇀󰆿 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
Hydrobiologia󰂶 21󰆙󰄍󰆕17󰂶 691󰄍697󰂺 http󰂹󰃈󰃈
do󰂺or󰃈󰆔󰆓󰂺󰆔󰆓󰆓󰆚󰃈󰆓󰆓󰆓󰆕󰆙󰆘󰆖2󰂺
Folmer󰂶 󰂺󰂶 k󰂶 󰂺󰂶 h󰂶 󰂺󰂶 󰂶 󰂺 
Vrijenhoek󰂶 󰂺 󰃍1994)󰂺  primers for

 
invertebrates󰂺 Mol. Mar. Biol. Biotechnol.󰂶 󰆖󰂶
294󰄍299󰂺
rderer󰂶 󰂺󰂶ödder󰂶 󰂺r󰂶 󰂺󰂺 󰃍2󰆓󰆔󰆛)󰂺
Patterns of species richness and the center
of diversity in modern 󰄀 larger
Foraminifera󰂺 Sci. Rep.󰂶 󰆛󰂶 󰆛󰆔󰆛9󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆖󰆛󰃈󰆗󰆔󰆘󰆜󰆛󰄀󰆓1󰆛󰄀2󰆙󰆘󰆜󰆛󰄀󰆜󰂺
Fujii󰂶 󰂺  r󰂶 󰂺󰂺 󰃍2󰆓󰆔󰆖)󰂺   
   
󰃍exacoralli󰂹 Zoantharia)󰂺 Zool. J. Linn.
Soc.󰂶󰆔󰆙9󰂶󰆘󰆓9󰄍󰆘22󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺111󰆔󰃈oj
󰂺󰆔󰆕󰆓󰆚󰆘󰂺
Fujii󰂶 󰂺󰂶 s󰂶 󰂺󰂺r󰂶 󰂺󰂺
󰃍2󰆓󰆕1)󰂺       gorgo󰄀
󰄀 Zoantharian 󰃍nidari󰂹
󰂹 󰂹 e)
from the Ryukyu Island󰂶 Japa󰂶 with subge󰄀
neric subdivision of genus Umimayanthus󰂺
Zool. Sci.󰆖󰆛󰂶 466󰄍4󰆛󰆓󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆕󰆔󰆓󰆛󰃈󰆕󰆓󰆓󰆔󰆚2󰂺
Fujii󰂶 󰂺r󰂶 󰂺󰂺 󰃍2󰆓󰆔1)󰂺
    Microzo-
anthidae 󰃍󰂶a) from the
c󰂺 Zool. Scr.󰂶 󰆗󰆓󰂶 41󰆛󰄍4󰆖1󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔11󰆔󰃈󰂺󰆔46󰆖󰄀󰆙󰆗󰆓󰆜󰂺󰆕󰆓󰆔󰆔󰂺󰆓󰆓󰆗󰆚󰆜󰂺󰂺
Fromont󰂶 󰂺󰂶󰂶 󰂺󰂶󰂶 󰂺 s󰂶
󰂺 󰃍2󰆓󰆔1)󰂺  󰃍emospongia󰂹
Poecilosclerid󰂹 Guitarridae) in Australi󰂶
with the description of a new species󰂺 Rec.
West. Aust. Mus.󰂶󰆕6󰂹 7󰆓󰄍󰆛󰆜󰂺
a󰂶 󰂺󰂺 󰃍2󰆓󰆓7)󰂺   
󰄀 centre of maximum marine
biodiversit󰂹 the Coral Triangle󰂺 I󰂹 Renema󰂶
󰂺 󰃍󰂺) Biogeography, Time, and Place:
Distributions, Barriers, and Islands󰂶 󰂺117󰄍
17󰆛󰂺 Springer󰂶 Dordrecht󰂺
a󰂶 󰂺󰂺 󰂶  h󰂶 󰂺󰂺 󰃍2󰆓󰆓9)󰂺 󰄀
peration of the mushroom coral fauna
󰃍ungiidae) of Singapore 󰃍󰆔󰆛󰆙󰆓󰄍󰆕󰆓󰆓6) in
changing reef conditions󰂺 󰂐 󰂐
Suppl.󰂶󰆕2󰂶 91󰄍1󰆓1󰂺
a󰂶 󰂺󰂺 󰂶   d󰂶 󰂺󰂶  
Meij󰂶 󰂺󰂺󰂺󰂶  n󰂶 󰂺󰂺󰂶 n󰂶
󰂺󰂺󰂶  t󰂶 󰂺󰂺󰂺   d󰂶 󰂺󰂺
󰃍2󰆓󰆔1)󰂺    󰄀
cal collections as baselines to determine
biotic change of coral reef󰂹 the Saba Bank
case󰂺 Mar. Ecol.󰂶 󰆖2󰂶 󰆔󰆖󰆘󰄍141󰂺 http󰂹󰃈󰃈o󰂺org
󰃈󰆔󰆓󰂺󰆔11󰆔󰃈󰂺󰆔󰆗󰆖󰆜󰄀󰆓󰆗󰆛󰆘󰂺󰆕󰆓󰆔󰆔󰂺󰆓󰆓󰆗󰆖󰆗󰂺󰂺
r󰂶 󰂺󰂺󰂺 󰃍1󰆜󰆛4)󰂺 Sigmaxinella soelae
and Desmacella ithystela󰂶 two new des󰄀
macellid sponges 󰃍orifer󰂶 Axinellid󰂶
Desmacellidae) from the Northwest shelf
of western Australi󰂶 with a revision of the
family Desmacellidae󰂺 N. Terr. Mus. Arts Sci.
Monogr. Ser󰂺󰂶2󰂶 1󰄍1󰆘󰆛󰂺
r󰂶 󰂺󰂺󰂺 󰃍1991)󰂺    
Raspailiidae 󰃍 󰂹 e)󰂶
with description of Australian species󰂺
Invertebr. Syst.󰂶 󰆘󰂶 1179󰄍1󰆗󰆛1󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆔󰆓󰆚󰆔󰃈t9911179󰂺
r󰂶 󰂺󰂺󰂺 󰃍1996)󰂺   󰄀
cionidae 󰃍orifer󰂹 Poecilosclerid󰂹 Demo󰄀
spongiae)󰂶    
species󰂺 Mem. Queensl. Mus.󰂶󰆗󰆓󰂹 1󰄍626󰂺
r󰂶 󰂺󰂺󰂺 󰃍2󰆓󰆓2)󰂺  
󰂶 192󰆖󰂺 I󰂹 󰂺󰂺󰂺 󰂺󰂺󰂺
Van Soest 󰃍d󰂺) Systema Porifera. Guide to
󰂐󰂐 1󰂶 󰂺469󰄍
󰆘1󰆓󰂺 Kluwer Academi󰃈lenum Publishers󰂶
New Yor󰂶 Dordrecht󰂺
Karadad󰂶 󰂺󰂶 󰂶 󰂺󰂶 󰂶 󰂺󰂶
Mangolamar󰂶 󰂺󰂶 󰂶 󰂺󰂶 󰂶
󰂺󰂶 󰂶 󰂺󰂶 󰂶 󰂺󰂶
Oobagoom󰂶 󰂺󰂶 󰂶 󰂺󰂶 󰂶 󰂺󰂶
Karadad󰂶 󰂺󰂶󰂶 󰂺 󰂶 󰂺
󰃍󰆕󰆓󰆔1)󰂺    󰂹 󰄀
ginal biological knowledge from Wunambal
󰇀󰇀󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Gaambera Country in the 󰄀
Kimberle󰂶 Australi󰂺 Wunambal Gaambera
Aboriginal Corporatio󰂺
Katoh󰂶 󰂺󰂶  y󰂶 󰂺󰂺 󰃍2󰆓󰆔󰆖)󰂺 
multiple sequence alignment software ver󰄀
sion 󰆚󰂹 improvements in performance and
usability󰂺 Mol. Bio. and Evo.󰂶󰆖󰆓󰃍4)󰂶 󰆚󰆚2󰄍7󰆛󰆓󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈olbe󰃈󰆓󰆔󰆓󰂺
Krell󰂶 󰂺󰂺  r󰂶 󰂺󰂺 󰃍2󰆓󰆔4)󰂺 
collectio󰂹 plan for the future󰂺 Science 󰆖󰆗󰆗󰂹
󰆛󰆔󰆘󰄍󰆛16󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔12󰆙󰃈cienc󰂺󰆖44
󰂺󰆙󰆔󰆛󰆙󰂺󰆛1󰆘󰂺
Kise󰂶 󰂺󰂶a󰂶 󰂺r󰂶 󰂺󰂺 󰃍2󰆓󰆔9)󰂺󰄀

    󰄀
tion of a new genus and two new species󰂺
Mol. Phylogenet. Evol.󰂶󰆔󰆖󰆓󰂶󰆖󰆓4󰄍󰆖14󰂺 http󰂹󰃈󰃈
do󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆔󰆙󰃈󰂺mpe󰂺󰆕 󰆓󰆔󰆛󰂺󰆔󰆓󰂺󰆓11󰂺
Kise󰂶 󰂺󰂶 o󰂶 󰂺󰂶 s󰂶 󰂺󰂺󰂺󰂶
a󰂶 󰂺󰂺 󰂶s󰂶 󰂺󰂶e󰂶 󰂺󰂶i󰂶
󰂺󰂶󰄀󰂶 󰂺r󰂶 󰂺󰂺 󰃍2󰆓󰆕2)󰂺
Evolution and phylogeny of 󰄀󰄀
associated󰂶 with a description
of two new genera and three new species󰂺
Zool. J. Linn. Soc.󰂶 󰆔󰆜4󰂶 󰆖󰆕󰆖󰄍󰆖47󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈oolinnea󰃈󰆓󰆙󰆛󰂺
v󰂶 󰂺󰂺󰂶 a󰂶 󰂺󰂶 i󰂶 󰂺󰂶 l󰂶 󰂺󰂶
Stamatakis󰂶 󰂺 n󰂶 󰂺 󰃍2󰆓󰆔9)󰂺󰄀󰂹
A fas󰂶 scalable and 󰄀 tool for
maximum likelihood phylogenetic infer󰄀
ence󰂺 Bioinformatics󰂶󰆖󰆘󰂶󰆗󰆗󰆘󰆖󰄍4󰆗󰆘󰆘󰂺 http󰂹󰃈󰃈
do󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈ioinformatic󰃈󰆖󰆓󰆘󰂺
Low󰂶 󰂺󰂺󰂺  r󰂶 󰂺󰂺 󰃍2󰆓󰆔1)󰂺 Parazo-
anthus   󰂶 󰆔󰆛󰆜󰆔󰂶 and
   érouar󰂶 󰆔󰆜󰆓󰆔󰂹
Conservation of usage by reversal of prece󰄀
dence with Bergia   󰄀
lott󰂶 󰆔󰆛󰆙󰆓󰂶 and Bergiidae Verril󰂶 󰆔󰆛󰆙󰆜
󰃍nidari󰂹 󰂹 a)󰂺 Zoo-
taxa󰂶 299󰆘󰂶 64󰄍󰆙󰆛󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔1646
󰃈ootax󰂺󰆕99󰆘󰂺󰆔󰂺󰆘󰂺
Low󰂶 󰂺󰂺󰂶 r󰂶 󰂺  r󰂶 󰂺󰂺 󰃍2󰆓󰆔6)󰂺
   󰂶 󰆔󰆛󰆔󰆘
󰃍nidari󰂶 󰂹 a)󰂹 󰄀
   e󰂺
Zookeys󰂶 14󰂶 1󰄍󰆛󰆓󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆖󰆛󰆜7
󰃈ookey󰂺󰆙4󰆔󰂺󰆔󰆓󰆖󰆗6󰂺
Mangglamarra󰂶 󰂺󰂶e󰂶 󰂺󰂺r󰂶 󰂺󰂺
󰃍1991)󰂺  
other Kimberley plants and animal󰂺 I󰂹 󰂺󰂺
Me󰂶 󰂺󰂺 J  󰂺󰂺 Kendrick
󰃍Ed󰂺) Kimberley Rainforests of Australia󰂶
󰂺 41󰆖󰄍421󰂺     󰂶
Chipping Norto󰂺
Montenegro󰂶 󰂺󰂶 r󰂶 󰂺 󰂶 r󰂶 󰂺󰂺 
Davis󰂶 󰂺 󰃍2󰆓󰆔󰆘)󰂺   
new species in the 󰄀󰄀
dae association in southern Japan󰂺 Mol.
Phylogenet. Evol.󰂶 󰆛9󰂶 7󰆖󰄍󰆜󰆓󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆔󰆙󰃈󰂺mpe󰂺󰆕 󰆓󰆔󰆘󰂺󰆓󰆗󰂺󰆓󰆓2󰂺
Montenegro󰂶 󰂺󰂶 w󰂶 󰂺󰂺󰂺󰂺  r󰂶 󰂺󰂺
󰃍2󰆓󰆔6)󰂺Bergia
󰃍󰂶 Zoanthari󰂶 e)󰂺
Syst. Biodivers.󰂶󰆔4󰂶 6󰆖󰄍󰆚󰆖󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓
󰂺󰆔󰆓󰆛󰆓󰃈󰆔󰆗󰆚󰆚󰆕󰆓󰆓󰆓󰂺󰆕󰆓󰆔󰆘󰂺󰆔󰆔󰆓󰆔󰆓󰆕󰆛󰂺
Montenegro󰂶 󰂺󰂶 a󰂶 󰂺 󰂺󰂶 s󰂶
󰂺󰂺󰂺󰂶 e󰂶 󰂺  r󰂶 󰂺󰂺 󰃍2󰆓󰆕󰆓)󰂺
Zoantharia 󰃍nidari󰂹a) of the
Dutch Caribbean and one new species of
Parazoanthus󰂺 Diversity󰂶 12󰂶 19󰆓󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆖󰆖󰆜󰆓󰃈󰆔󰆕󰆓󰆘󰆓󰆔󰆜󰆓󰂺
Morrow󰂶 󰂺󰂺󰂶 d󰂶 󰂺󰂺󰂶 n󰂶 󰂺󰂺󰂶
Thacker󰂶 󰂺󰂺󰂶 s󰂶 󰂺󰂺󰂶 s󰂶
󰂺󰂺󰂶 t󰂶 󰂺󰂺  k󰂶 󰂺󰂺 󰃍2󰆓󰆔󰆖)󰂺
Molecular phylogenies support homoplasy
of multiple morphological characters used
    
󰃍orifer󰂹 Demospongiae)󰂺 Integr. Comp.
Biol.󰂶 󰆘󰆖󰂶 42󰆛󰄍446󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖
󰃈ic󰃈󰆓󰆙󰆘󰂺
Nakahama󰂶 󰂺 󰃍2󰆓󰆕1)󰂺  󰂹
An overlooked and valuable material for
󰇀󰇁 󰂺
󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄󰃊󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂
conservation genetics󰂺 Ecol. Res.󰂶󰆖6󰂶 1󰆖󰄍󰆕󰆖󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔11󰆔󰃈󰆔44󰆓󰄀󰆔󰆚󰆓󰆖󰂺󰆔󰆕󰆔󰆛1󰂺
Nylande󰂶 󰂺󰂺󰂺 󰃍󰆕󰆓󰆓4)󰂺Version 󰆕󰂺
Evolutionary Biology Centr󰂶 Uppsala Uni󰄀
versit󰂶 Uppsal󰂺 http󰂹󰃈󰃈ithu󰂺o󰃈ylan
de󰃈MrModeltest󰆕󰃈eleases󰂺
Pax󰂶 󰂺󰂺 󰃍1911)󰂺   󰄀n󰂺 Abh.
Senckenberg. Naturforsch. Gesellsch󰂺󰂶 󰆖󰆖󰂶
󰆖󰆓󰆓󰄍󰆖󰆓2󰂺
Pax󰂶 󰂺󰂺 󰃍1924)󰂺󰂶 Zoantharien und
Ceriantharien von Curaçao󰂺 Bijdr. Dierk󰂺
2󰆖󰃍1)󰂶󰆜󰆖󰄍121󰂺
e󰂶 󰂺󰂺 󰃍1󰆛󰆔󰆘)󰂺Analyse de la Nature, ou
Tableau de l’Univers et des Corps Organisés󰂺
󰄀󰂶 Palerme󰂶 224 p󰂺
Rasban󰂶 󰂺󰂺 󰃍󰆕󰆓󰆔2)󰂺 󰂺 󰂺󰂺 National
󰂶 Bethesd󰂶 MD󰂶 USA󰂺
Reimer󰂶 󰂺󰂺󰂶 e󰂶 󰂺󰂶 s󰂶 󰂺󰂺󰂺󰂶 y󰂶
󰂺󰂺󰂶 e󰂶 󰂺󰂺󰂶 s󰂶 󰂺󰂺󰂶 n󰂶 󰂺󰂺 󰂶
Nonaka󰂶 󰂺󰂶 i󰂶 󰂺  u󰂶 󰂺
󰃍2󰆓󰆔9)󰂺󰄀
studied benthic taxa at mesophotic and
deeper depth󰂹 Examples from the order
Zoantharia 󰃍󰂹a)󰂺Front.
Mar. Sci.󰂶 6󰂶 󰆖󰆓󰆘󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆖󰆖󰆛9
󰃈mar󰂺󰆕󰆓󰆔󰆜󰂺󰆓󰆓󰆖󰆓󰆘󰂺
Reimer󰂶 󰂺󰂺󰂶r󰂶 󰂺󰂶a󰂶 󰂺󰂶o󰂶 󰂺
a󰂶 󰂺 󰃍2󰆓󰆓󰆚a)󰂺
molecular characterisation of Abyssoanthus
nankaiensis󰂶 a new famil󰂶 new genus
and new species of 󰄀 
󰃍󰂹󰂹 Zoantharia) from
a 󰄀    p󰂺
Invertebr. Syst.󰂶 󰆕1󰂶 󰆕󰆘󰆘󰄍262󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆚󰆔󰃈󰆓󰆙󰆓󰆓󰆛󰂺
Reimer󰂶 󰂺󰂺󰂶a󰂶 󰂺󰂶 o󰂶 󰂺󰂶a󰂶
󰂺  a󰂶 󰂺 󰃍2󰆓󰆓󰆚b)󰂺 
   󰄀
Zoanthus sp󰂺 󰃍󰂹󰄀
corallia)󰂺Zool. Sci.󰂶 󰆕4󰂶󰆖󰆗6󰄍󰆖󰆘9󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆕󰆔󰆓󰆛󰃈s󰂺󰆕󰆗󰂺󰆖46󰂺
Reimer󰂶 󰂺󰂺󰂶 o󰂶 󰂺  a󰂶
󰂺󰂺 󰃍2󰆓󰆔4)󰂺 󰄀 
󰃍nidari󰂶 a) from the Central
󰄀󰂺 ZooKeys󰂶 1󰄍󰆘󰆚󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆖󰆛󰆜󰆚󰃈ookey󰂺󰆗4󰆗󰂺󰆚󰆘󰆖7󰂺
Reimer󰂶 󰂺󰂺󰂶 e󰂶 󰂺󰂺󰂶 Garcí󰄀á󰂶
󰂺󰂺  a󰂶 󰂺 󰂺 󰃍2󰆓󰆔󰆛)󰂺 
󰃍󰂹 a) abundance and
    
across a depth gradient on the west coast
of Curaçao󰂺 Syst. Biodivers.󰂶 󰆔6󰂶 󰆛󰆕󰆓󰄍󰆛󰆖󰆓󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆛󰆓󰃈󰆔󰆗󰆚󰆚󰆕󰆓󰆓󰆓󰂺󰆕󰆓󰆔󰆛󰂺󰆔󰆘󰆔
󰆛󰆜󰆖6󰂺
Richards󰂶 󰂺󰂺󰂶y󰂶 󰂺 h󰂶 󰂺 󰃍2󰆓󰆔4)󰂺
Kimberley marine biot󰂺  󰂹
scleractinian corals󰂺 Rec. West. Aust. Mus.
Suppl.󰂶 󰆛4󰂹 111󰄍1󰆖2󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆛󰆔󰆜󰆘
󰃈ss󰂺󰆓󰆖󰆔󰆖󰄀󰆔22󰂺󰆛󰆗󰂺󰆕󰆓󰆔󰆗󰂺󰆔1󰆔󰄀󰆔󰆖2󰂺
Rocha󰂶 󰂺󰂺󰂶 o󰂶 󰂺󰂶 n󰂶 󰂺󰂶 a󰂶 󰂺󰂶
Baldwin󰂶 󰂺󰂺󰂶 y󰂶 󰂺󰂺  n󰂶
󰂺󰂺 󰃍2󰆓󰆔4)󰂺󰂹 An essen󰄀
tial tool󰂺 Science 󰆖󰆗󰆗󰂹 󰆛󰆔4󰄍󰆛1󰆘󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔12󰆙󰃈scienc󰂺󰆖4󰆗󰂺󰆙󰆔󰆛󰆙󰂺󰆛󰆔󰂺
Ronquist󰂶 󰂺󰂺  k󰂶 󰂺󰂺 󰃍2󰆓󰆓󰆖)󰂺
󰂹 Bayesian inference of phylogeny󰂺
Bioinformatics󰂶 19󰂶󰆔󰆘󰆚2󰄍1󰆘󰆚4󰂺 http󰂹󰃈󰃈o󰂺rg
󰃈󰆔󰆓󰂺󰆔󰆓󰆜󰆖󰃈ioinformatic󰃈󰆔󰆚󰂺󰆛󰂺󰆚󰆘4󰂺
Ryland󰂶 󰂺󰂺 r󰂶 󰂺󰂺 󰃍2󰆓󰆓4)󰂺  
     
population structure󰂺 Hydrobiologia󰂶 󰆘󰆖󰆓󰄍
󰆘󰆖1󰂶 179󰄍1󰆛7󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆓󰆚󰃈󰆔󰆓󰆚󰆘󰆓
󰄀󰆓󰆓󰆗󰄀󰆕󰆙󰆛󰆘󰄀󰆔󰂺
Sampaio󰂶 󰂺󰂺󰂶 y󰂶 󰂺󰂺󰂶e󰂶
󰂺󰂺󰂶c󰂶 󰂺󰂺 󰂶u󰂶 󰂺󰂶e󰂶 󰂺󰂶
Rajendran󰂶 󰂺󰂶󰄀󰂶 󰂺󰂶s󰂶
󰂺󰂶 i󰂶 󰂺 󰂶  a󰂶 󰂺󰂶
Kotharambath󰂶 󰂺󰂶 h󰂶 󰂺 
Gower󰂶 󰂺󰂺 󰃍2󰆓󰆕󰆖)󰂺󰄀 specie󰄀
level phylogeny of uropeltid snakes harness󰄀
ing historical museum collections as a 
source󰂺 Mol. Phylogenet. Evol.󰂶 󰆔󰆚󰆛󰂶 󰆔󰆓󰆚󰆙󰆘1󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆔󰆙󰃈󰂺mpe󰂺󰆕 󰆓󰆕󰆕󰂺󰆔󰆓󰆚󰆙󰆘1󰂺
󰇀󰇂󰂺󰂺
󰃍󰆽󰆻󰆽󰆿󰃎󰆼󰄍󰇀󰇂󰃊󰆼󰆻󰂺󰆼󰆼󰇁󰆾󰃈󰆼󰇃󰇂󰇀󰇄󰇃󰇁󰇁󰄀󰆼󰆻󰆻󰇁󰇄
Sinniger󰂶 󰂺äussermann󰂶 󰂺 󰃍2󰆓󰆓9)󰂺 󰄀
thids 󰃍nidari󰂹 󰂹 Zoantharia)
from shallow waters of the southern Chil󰄀
󰂶 with descriptions of a new
genus and two new species󰂺 Org. Divers.
Evol.󰂶 9󰂶 2󰆖󰄍󰆖󰆙󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆔󰆙󰃈󰂺de
󰂺󰆕󰆓󰆓󰆛󰂺󰆔󰆓󰂺󰆓󰆓󰆖󰂺
Sinniger󰂶 󰂺󰂶Montoy󰄀󰂶 󰂺󰂺󰂶é󰂶
󰂺i󰂶 󰂺 󰃍2󰆓󰆓󰆘)󰂺  
order Zoantharia 󰃍󰂶a)
based on the mitochondrial ribosomal
genes󰂺 Mar. Biol󰂺󰂶 󰆔󰆗7󰂶 1121󰄍112󰆛󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆓󰆚󰃈󰆓󰆓󰆕󰆕󰆚󰄀󰆓󰆓󰆘󰄀󰆓󰆓󰆔󰆙󰄀󰆖󰂺
Sinniger󰂶 󰂺󰂶 r󰂶 󰂺󰂺  i󰂶 󰂺
󰃍2󰆓󰆔󰆓)󰂺   󰃍exacoralli󰂹
Zoantharia)  taxonom󰂹 description of
two new genera󰂺 Mar. Biodivers.󰂶󰆗󰆓󰂶󰆘7󰄍󰆚󰆓󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆓󰆚󰃈󰆔󰆕󰆘󰆕󰆙󰄀󰆓󰆓󰆜󰄀󰆓󰆓󰆖󰆗󰄀󰆖󰂺
Suare󰂶 󰂺󰂺 i󰂶 󰂺󰂺 󰃍2󰆓󰆓4)󰂺
of museum collections for research and
society󰂺 BioScience󰂶󰆘4󰂶 66󰄍74󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔64󰆔󰃈󰆓󰆓󰆓󰆙󰄀󰆖󰆘󰆙󰆛󰃍2󰆓󰆓󰆗󰃎󰆓󰆘󰆗󰃕󰆓󰆓󰆙6
󰂹VOMC󰃖󰆕󰂺󰆓󰂺󰂷󰆕󰂺
Swain󰂶 󰂺󰂺 f󰂶 󰂺󰂺 󰃍2󰆓󰆓7)󰂺
 󰄍
symbiose󰂹 a foundation for understanding
 
generating hypotheses about highe󰄀
systematics󰂺 Biol. J. Linn. Soc. Lond.󰂶 󰆜2󰂶
69󰆘󰄍711󰂺󰎛󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔11󰆔󰃈󰂺1󰆓󰆜󰆘󰄀󰆛󰆖󰆔2
󰂺󰆕󰆓󰆓󰆚󰂺󰆓󰆓󰆛󰆙󰆔󰂺󰂺
Swain󰂶 󰂺󰂺󰂶 r󰂶 󰂺󰂺󰂶 s󰂶 󰂺󰂺󰂶
and Reuter󰂶 󰂺󰂺 󰃍2󰆓󰆔󰆘)󰂺  
   󰂹
convergent functional morphology and
evolutionary allometry of the marginal
musculature in order Zoanthidea 󰃍nidari󰂹
󰂹 a)󰂺  Evol. Biol.󰂶
1󰆘󰂶󰎛󰆔󰆕󰆖󰂺󰎛󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺1󰆔󰆛󰆙󰃈󰆔󰆕󰆛󰆙󰆕󰄀󰆓1󰆘
󰄀󰆓󰆗󰆓󰆙󰄀󰆔󰂺
van der Meij󰂶 󰂺󰂺󰂶 Moolenbeek󰂶 󰂺󰂺󰂶 
a󰂶 󰂺󰂺 󰃍2󰆓󰆓9)󰂺   
Jakarta Bay molluscan fauna linked to
human impact󰂺 Mar. Pollut. Bull.󰂶󰆘9󰂶󰆔󰆓1󰄍1󰆓7󰂺
http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆔󰆙󰃈󰂺arpolbu󰂺󰆕󰆓󰆓󰆜󰂺󰆓󰆕
󰂺󰆓21󰂺
van der Meij󰂶 󰂺󰂺󰂶 Suharsono󰂶  a󰂶
󰂺󰂺 󰃍2󰆓󰆔󰆓)󰂺 󰄀 changes in coral
assemblages under natural and anthro󰄀
pogenic stress in Jakarta Bay 󰃍󰆔92󰆓󰄍󰆕󰆓󰆓󰆘󰃎󰂺
Mar. Pollut. Bull.󰂶 󰆙󰆓󰂶 1442󰄍1󰆗󰆘4󰂺 http󰂹󰃈󰃈oi
󰂺r󰃈󰆔󰆓󰂺󰆔󰆓󰆔󰆙󰃈󰂺marpolbu󰂺󰆕󰆓󰆔󰆓󰂺󰆓󰆘󰂺󰆓11󰂺
van Soest󰂶 󰂺󰂺󰂺󰂶 o󰂶 󰂺󰂺  r󰂶
󰂺󰂺󰂺 󰃍2󰆓󰆔2)󰂺  󰂹 revi󰄀
sion of raspailiid sponges with polyactine
megascleres 󰃍Cyamon and Trikentrion)󰂺
ZooKeys󰂶 󰆕󰆖9󰂶 1󰄍󰆚󰆓󰂺 http󰂹󰃈󰃈o󰂺or󰃈󰆔󰆓󰂺󰆖󰆛󰆜7
󰃈ookey󰂺󰆕󰆖󰆜󰂺󰆖󰆚󰆖4󰂺
Winker󰂶 󰂺 󰃍2󰆓󰆓4)󰂺   
in a postbiodiversity era󰂺 BioScience󰂶󰆘4󰂶
󰆗󰆘󰆘󰄍4󰆘9󰂺 http󰂹󰃈󰃈o󰂺r󰃈󰆔󰆓󰂺󰆔64󰆔󰃈󰆓󰆓󰆓󰆙󰄀󰆖󰆘󰆙󰆛
󰃍󰆕󰆓󰆓󰆗󰃎󰆓󰆘󰆗󰃕󰆓󰆗󰆘󰆘󰂹󰃖󰆕󰂺󰆓󰂺󰂷󰆕󰂺
... The situation above is not uncommon as most museums house a large number of unidentified or misidentified specimens, often categorized only to higher taxonomic levels, and many invertebrate collections not identified to species level (Wheeler et al. 2012). Natural history collections around the world harbor an amazing hidden biodiversity, containing a significant number of undescribed taxa and can house information on species that are difficult to access or no longer available to science (Fontaine et al. 2012;Wheeler et al. 2012;Montenegro et al. 2024). Such collections are a rich resource for comparison with modern survey data, aiding in studies of biogeographic range changes and community composition over time, including both the recent past and deeper geological periods (Lister 2011). ...
Article
Full-text available
Neomicrorbis Rovereto, 1903 is a serpulid taxon well represented in the Cretaceous and Tertiary fossil records and described as the bathyal extant species Neomicrorbis azoricus Zibrowius, 1972. This enigmatic species of uncertain taxonomic affinities exhibits a morphology intermediate between serpulids sensu stricto (Serpulinae and Filograninae) and Spirorbinae. Only recently the phylogenetic placement of these unique serpulids has been clarified, unequivocally positioning them as the sister group to all other Spirorbinae. Despite this advancement, most aspects of their biology, distribution, and even morphology remain largely unexplored. We provide detailed morphological descriptions of specimens from the Azores (type locality) in the Atlantic, as well as from the Indian and the Pacific Oceans, using both long-hidden material in museum collections and recently collected specimens. This study enhances the original description of N. azoricus, which was based on a single, poorly preserved juvenile specimen, by offering a comprehensive overview of the species’ morphology. Our analysis utilizes advanced imaging techniques such as scanning electron microscopy, microCT, and 3D visualization. Contrast-enhanced microCT scanning has proven exceptionally valuable for non-invasive visualization of the worms within their calcareous tubes. This method shows great promise for studying serpulids in natural history collections. Our findings reveal a remarkable morphological consistency across specimens from geographically remote regions, suggesting a wide distribution for the species. However, molecular data on Neomicrorbis are currently limited to recently collected specimens from the Indian Ocean. Further genetic studies are necessary to fully understand the population structure and genetic diversity of Neomicrorbis azoricus across its range.
... The order Zoantharia is a group of sessile cnidarians consisting of > 300 species (Reimer and Sinniger 2024). In the deep sea, species of zoantharians within the family Parazoanthidae are known to associate with many different host taxa, prominently including octocorals and sponges (e.g., Carlgren 1923;Sinniger et al. 2005Sinniger et al. , 2013Reimer et al. 2008Reimer et al. , 2019Carreiro-Silva et al. 2017;Kise et al. 2022;Montenegro et al. 2024). Four zoantharian genera have been reported to be associated with Hexasterophora sponges; Churabana Kise, Montenegro & Reimer, 2021, Parachurabana Kise, 2023, Thoracactis Gravier, 1918, and Vitrumanthus Kise, Montenegro & Reimer, 2022 Thoracactis are monotypic genera while Vitrumanthus includes three species from the Pacific and Atlantic oceans. ...
Article
Full-text available
Seamounts are biodiversity hotspots that face increasing threats from anthropogenic activities. Seamounts host diverse sessile suspension-feeding organisms such as sponges and anthozoans, which are crucial for seamount ecosystems as they construct three-dimensional habitats utilized by numerous other animals. Therefore, accurate identification of seamount fauna, in particular of sessile suspension-feeding organisms, is of paramount importance for robust conservation efforts. This study focused on Zoantharia, a sessile anthozoan group, and specifically the family Parazoanthidae, known for associations with many different host taxa, prominently including octocorals and sponges. We collected Parazoanthidae specimens from northwestern Pacific seamounts and formally describe a new species, Vitrumanthus flosculus Kise & Reimer, sp. nov., based on morphological and molecular analyses. We also report the complete mitochondrial genomes of this new species and the related species Churabana kuroshioae. Our results reconfirm the phylogenetic positions of these two species within Parazoanthidae, while demonstrating much remains to be learned about the benthic diversity of northwestern Pacific seamounts.
Article
Full-text available
Natural history museums house the largest biodiversity collections in the world and represent an enormous repository of genetic information. Much of this information, however, has remained inaccessible until recently. Emerging technologies, such as techniques for isolation of historical DNA (hDNA) and target enrichment sequencing of ultraconserved elements (UCEs) that can utilize degraded DNA as input material, have the potential to unlock museum collections for genomics research. Here, we demonstrate that hDNA extracted from dried Pocillopora coral specimens, collected up to 90 yrs ago, can be used as input for UCE target enrichment sequencing. The resulting sequence data can be used in phylogenetic studies to resolve questions about taxonomic species identities, biogeographic distributions, and evolutionary histories. Our results provide a blueprint for research groups seeking to take advantage of untapped genetic information stored in natural history museum collections.
Article
Full-text available
Uropeltidae is a clade of small fossorial snakes (ca. 65 extant species) endemic to peninsular India and Sri Lanka. Uropeltid taxonomy has been confusing, and the status of some species has not been revised for over a century. Attempts to revise uropeltid systematics and undertake evolutionary studies have been hampered by incompletely sampled and incompletely resolved phylogenies. To address this issue, we take advantage of historical museum collections, including type specimens, and apply genome-wide shotgun (GWS) sequencing, along with recent field sampling (using Sanger sequencing) to establish a near-complete multilocus species-level phylogeny (ca. 87% complete at species level). This results in a phylogeny that supports the monophyly of all genera (if Brachyophidium is considered a junior synonym of Teretrurus), and provides a firm platform for future taxonomic revision. Sri Lankan uropeltids are probably monophyletic, indicating a single colonisation event of this island from Indian ancestors. However, the position of Rhinophis goweri (endemic to Eastern Ghats, southern India) is unclear and warrants further investigation, and evidence that it may nest within the Sri Lankan radiation indicates a possible recolonisation event. DNA sequence data and morphology suggest that currently recognised uropeltid species diversity is substantially underestimated. Our study highlights the benefits of integrating museum collections in molecular genetic analyses and their role in understanding the systematics and evolutionary history of understudied organismal groups.
Article
Full-text available
Museum specimens include genetic information from when they were collected. This historical information, which is very difficult to ascertain from samples collected currently, could be a valuable material for use in conservation genetics. However, the genetic analysis of museum specimens is technically difficult because of DNA fragmentation and the deamination of cytosine to uracil. In recent years, various methods have been developed for the genetic analysis of museum specimens, such as data analysis techniques including next-generation sequencing. The development of approaches that extract historical genetic information from museum specimens is expected to provide a new perspective on conservation genetics. This review focuses on the availability of museum specimens as genetic resources for conservation genetics. Some case studies are introduced , and perspectives on the future utility of conservation genetic studies using museum specimens are discussed. Moreover, recommended genetic analysis methods and important points for the usage of museum specimens are presented. This review provides a strong case for increasing the usage of museum specimens in conservation genetics studies in the future.
Article
Full-text available
Species of the anthozoan order Zoantharia (=Zoanthidea) are common components of subtropical and tropical shallow water coral reefs. Despite a long history of research on their species diversity in the Caribbean, many regions within this sea remain underexamined. One such region is the Dutch Caribbean, including the islands of St. Eustatius, St. Maarten, Saba, Aruba, Bonaire, and Curaçao, as well as the Saba Bank, for which no definitive species list exists. Here, combining examinations of specimens housed in the Naturalis Biodiversity Center collection with new specimens and records from field expeditions, we provide a list of zoantharian species found within the Dutch Caribbean. Our results demonstrate the presence at least 16 described species, including the newly described Parazoanthus atlanticus, and the additional potential presence of up to four undescribed species. These records of new and undescribed species demonstrate that although the zoantharian research history of the Caribbean is long, further discoveries remain to be found. In light of biodiversity loss and increasing anthropogenic pressure on declining coral reefs, documenting the diversity of zoantharians and other coral reef species to provide baseline data takes on a new urgency.
Article
Full-text available
Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their How to cite this article Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PGP, Faurby S, Ferrand N, Gelang M, Gille-spie RG, Irestedt M, Lundin K, Larsson E, Matos-Maraví P, Müller J, von Proschwitz T, Roderick GK, Schliep A, Wahlberg N, Wiedenhoeft J, Källersjö M. 2020. The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ 8:e8225 http://doi.org/10.7717/peerj.8225 impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.
Article
Hexactinellid sponges are important members of deep-sea benthic ecosystems because they provide available hard substrate habitats for filter-feeding invertebrates. However, symbioses between hexactinellid sponges and their symbionts are poorly known. Zoantharians associated with hexactinellid sponges have been reported widely from deep-sea marine ecosystems, either on the bodies or stalks of hexactinellid sponges. Despite these records, there has been a lack of research on their diversity and phylogenetic relationships. In this study, 20 specimens associated with amphidiscophoran and hexasterophoran sponges were collected from the waters of Australia and Japan in the Pacific, and from Curaçao in the southern Caribbean, and these were examined in addition to museum specimens. Based on molecular phylogenetic analyses and morphological observations, we formally describe two new genera and three new species of Zoantharia and report several previously described species. The results suggest at least two independent origins for the symbioses between hexactinellid sponges and zoantharians. Our results demonstrate that the diversity of hexactinellid sponge-associated zoantharians is much higher than has been previously thought. The
Article
Hexactinellid sponges are important members of deep-sea benthic ecosystems because they provide available hard substrate habitats for filter-feeding invertebrates. However, symbioses between hexactinellid sponges and their symbionts are poorly known. Zoantharians associated with hexactinellid sponges have been reported widely from deep-sea marine ecosystems, either on the bodies or stalks of hexactinellid sponges. Despite these records, there has been a lack of research on their diversity and phylogenetic relationships. In this study, 20 specimens associated with amphidiscophoran and hexasterophoran sponges were collected from the waters of Australia and Japan in the Pacific, and from Curaçao in the southern Caribbean, and these were examined in addition to museum specimens. Based on molecular phylogenetic analyses and morphological observations, we formally describe two new genera and three new species of Zoantharia and report several previously described species. The results suggest at least two independent origins for the symbioses between hexactinellid sponges and zoantharians. Our results demonstrate that the diversity of hexactinellid sponge-associated zoantharians is much higher than has been previously thought. The new taxa described in this work further reconfirm that the deep-sea harbours high levels of undescribed zoantharian diversity.
Article
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics—genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations—has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Symbioses between invertebrates are common in the ocean although usually the diversity and specificity of their interactions are not well understood. Parazoanthidae (Cnidaria: Anthozoa: Zoantharia) is one of the most diverse zoantharian families in terms of numbers of genera and species. Species in this family are commonly associated with various other invertebrates that they utilize as their substrate. Previous studies have re-organized the taxonomy of Parazoanthidae and revealed a strong specificity between many parazoanthid species and genera and their substrates. However, our understanding of the species diversity of Parazoanthidae is far from complete, as parazoanthids are often overlooked in sampling surveys. In this study, we establish three subgenera under the genus Umimayanthus Montenegro, Sinniger, and Reimer, 2015; the nominotypical Umimayanthus, Paraumimayanthus subgen nov., and Gorgoniazoanthus subgen. nov., based on the finding of a new species, Umimayanthus (Gorgoniazoanthus) kanabou sp. nov., associated with the sea-whip gorgonian Ellisella sp. from approximately 30 m depth in shallow mesophotic coral reef communities in Oura Bay on Okinawajima Island and in Oshima Strait near Amami-Oshima Island, in the Ryukyu Islands, southern Japan. We additionally report on gastropods and crustaceans observed in association with U. kanabou, and these species are thought to potentially prey upon the zoantharians or on gorgonian polyps. Umimayanthus kanabou is phylogenetically closely related to congeneric sponge-associated Umimayanthus spp., further supporting the recent hypothesis that substrate preferences may change during the evolutionary history of zoantharians.