Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Several ducted fuel injection (DFI) studies have highlighted the importance of accuracy in aligning the duct axis with that of its corresponding spray for optimal effectiveness, as misalignment adversely impacts the method’s performance. The need for accurate alignment could lead to added manufacturing complexity via tighter tolerances. This study systematically explores cases of horizontal, vertical, and rotational misalignment, analyzing their respective effects on DFI performance. Vertical and horizontal misalignments at the duct inlet plane were varied at magnitudes of 6.25%, 12.5%, and 25.0% of the duct diameter, corresponding to 0.125, 0.25, and 0.5 mm, respectively. Rotational misalignments were set at 1°, 2°, and 4°, corresponding to 3.65%, 7.30%, and 14.6%, respectively, of the duct diameter at its inlet plane. The investigation yields spray-duct alignment tolerance limits and highlights the influence of misalignment direction on emissions due to the interactions with swirl and squish inside the combustion chamber. The results indicate that the tolerance limits for the alignment are within 4° and 0.5 mm relative to the geometrically aligned position. If the misalignment exceeds 4°of rotation or 0.5 mm in the horizontal direction, the beneficial effects on soot reduction using this method are no longer observed. The findings contribute to an understanding that can be used to optimize DFI for cleaner and more efficient combustion in compression-ignition engines.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... On the other hand, research is done to reduce exhaust emissions by using cleaner and renewable fuels [11][12][13]. Additionally, technological advancements are being made to improve fuel efficiency and decrease the overall environmental impact [14]. Previous studies have suggested several promising alternative fuels [15][16][17]. ...
Article
Full-text available
Several studies have proven how ducted fuel injection (DFI) reduces soot emissions for compression-ignition engines. Nevertheless, no comprehensive study has investigated how DFI performs over a load range in combination with low-net-carbon fuels. In this study, optical-engine experiments were performed with four different fuels—conventional diesel and three low-net-carbon fuels—at low and moderate load, to measure emissions levels and performance. The 1.7-liter single-cylinder optical engine was equipped with a high-speed camera to capture natural luminosity images of the combustion event. Conventional diesel and DFI combustion were investigated at four different dilution levels (to simulate exhaust-gas recirculation effects), from 14 to 21 mol% oxygen in the intake. At a given dilution level, with commercial diesel fuel, DFI reduced soot by 82 % at medium load, and 75 % at low load without increasing NOx. The results further show how DFI with dilution reduces soot and NOx without compromising engine performance or other emission types, especially when combined with low-net-carbon fuels. DFI with the oxygenated low-net-carbon blend HEA67 simultaneously reduced soot and NOx by as much as 93 % and 82 %, respectively, relative to conventional diesel combustion with commercial diesel fuel. These soot and NOx reductions occurred while lifecycle CO2 was reduced by at least 70 % when using low-net-carbon fuels instead of conventional diesel. All emissions changes were compared with future emissions regulations for different vehicle sectors to investigate how DFI can be used to facilitate achievement of the regulations. The results show how the DFI cases fall below several future emissions regulation levels, rendering less need for aftertreatment systems and giving a possible lower cost of ownership.
Article
Full-text available
The ducted fuel injection strategy is a method that significantly reduces soot emissions in direct injection compression ignition engines. Fuel is injected into the combustion chamber through a duct enhancing the air-fuel mixture. It guarantees more efficient combustion and less soot formation by reducing the equivalence ratio at the autoignition zone inside the combustion chamber. The effects of the duct fuel injection on the performance, combustion, and emission of the compression ignition engine were numerically investigated in this study. The duct geometries with varying diameters, lengths, and stand-off distances were examined to find the most appropriate size using an experimentally validated CFD model and detailed soot model. Results show that up to 66.7% reduction in soot emissions were observed with the usage of the ducted fuel injection strategy compared to conventional diesel combustion. In addition to reducing soot emissions, the ducted fuel injection strategy decreased CO and HC emissions by 20.4% and 7.8%, respectively. While the ducted fuel injection strategy reduces emissions, it does not decrease engine performance; on the contrary, it increases gross IMEP by 0.58%.
Article
Full-text available
Ducted fuel injection (DFI) has been shown to attenuate engine-out soot emissions from diesel engines. The concept is to inject fuel through a small tube within the combustion chamber to enable lower equivalence ratios at the autoignition zone, relative to conventional diesel combustion. Previous experiments have demonstrated that DFI enables significant soot attenuation relative to conventional diesel combustion for a small set of operating conditions at relatively low engine loads. This is the first study to compare DFI to conventional diesel combustion over a wide range of operating conditions and at higher loads (up to 8.5 bar gross indicated mean effective pressure) with a four-orifice fuel injector. This study compares DFI to conventional diesel combustion through sweeps of intake-oxygen mole fraction (XO2), injection duration, intake pressure, start of combustion (SOC) timing, fuel-injection pressure, and intake temperature. DFI is shown to curtail engine-out soot emissions at all tested conditions. Under certain conditions, DFI can attenuate engine-out soot by over a factor of 100. In addition to producing significantly lower engine-out soot emissions, DFI enables the engine to be operated at low-NOx conditions that are not feasible with conventional diesel combustion due to high soot emissions.
Article
Full-text available
Transport is almost entirely powered by internal combustion engines (ICEs) burning petroleum-derived liquid fuels and the global demand for transport energy is large and is increasing. Available battery capacity will have to increase by several hundred fold for even light duty vehicles (LDVs), which account for less than half of the global transport energy demand, to be run on electricity alone. However the greenhouse gas (GHG) impact of battery electric vehicles (BEVs) would be worse than that of conventional vehicles if electricity generation and the energy used for battery production are not sufficiently decarbonized. If coal continues to be a part of the energy mix, as it will in China and India, and if power generation is near urban centers, even local urban air quality in terms of particulates, nitrogen oxides and sulfur dioxide would get worse. The human toxicity impacts associated with the mining of metals needed for batteries are very serious and will have to be addressed. Large prior investments in charging infrastructure and electricity generation will be needed for widespread forced adoption of BEVs to occur. There will be additional costs in the short term associated with various subsidies required to promote such a change and in the longer term, the loss of revenue from fuel taxes which contribute significantly to public finances in most countries. ICEs will continue to power transport, particularly commercial transport, to a large extent for decades to come and will continue to improve. There will also be a role for low-carbon and other alternative fuels where they make sense. However such alternatives also start from a low base and face constraints on rapid and unlimited growth so that they are unlikely to make up much more than 10% of the total transport energy demand by 2040. As the energy system is decarbonized and battery technology improves there will be an increasing role for BEVs and hydrogen which could replace liquid hydrocarbons in transport and the required infrastructure will evolve. Meanwhile, there will certainly be increasing electrification, particularly of LDVs in the form of hybridization to improve ICEs.
Article
Full-text available
An improved spray atomization model is presented for use in both diesel and gasoline spray computations. The KH-RT hybrid atomization model consists of two distinct steps: primary and secondary breakup. The Kelvin-Helmholtz (KH) instability model was used to predict the primary breakup of the intact liquid core of a diesel jet. The secondary breakup of the individual drops was modeled with the Kelvin-Helmholtz model in conjunction with the Rayleigh-Taylor (RT) accelerative instability model. A modification was made to the KH-RT hybrid model that allowed the RT accelerative instabilities to affect all drops outside the intact liquid core of the jet. In previous implementations, only the drops beyond the breakup length are affected by RT breakup. Furthermore, a Rosin-Rammler distribution was used to specify the sizes of children drops after the RT breakup of a parent drop. The modifications made to the KH-RT hybrid model were found to give satisfactory results and to improve the temperature dependence of the liquid fuel penetration of the diesel sprays significantly. The KH-RT model was also found to predict the spray shape, penetration, and local SMD of hollow-cone sprays as well as previous gasoline spray models based on the TAB model.
Conference Paper
div class="section abstract"> Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [ 1 ]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this combustion chamber geometry may at best be load-limited. </div
Article
Experiments have shown that ducted fuel injection (DFI) effectively reduces soot emissions from direct-injection diesel engines. Although many computational studies have evaluated DFI's spray development and soot reduction mechanisms in constant volume chambers, only limited computational work on internal combustion engines exists. The DFI duct assembly changes the engine's in-cylinder flow, spray, and combustion development. Therefore, current production engine designs might not be optimal for achieving the best engine performance with DFI. This work conducted an extensive numerical study to evaluate how parameter changes affect DFI performance. The parameters include swirl ratio, piston geometry, compression ratio (CR), number of injector orifices, split injection strategy, and exhaust gas recirculation (EGR) in a heavy-duty diesel engine utilizing DFI. The combustion and soot emission data from the Sandia compression ignition optical research engine were used for model validation. Simulations showed that an increased swirl ratio resulted in more intense jet flame-piston interaction, slowing down the combustion heat release during the late combustion stage and leading to lower indicated thermal efficiency (ITE) due to higher exhaust losses. A piston-bowl design with a reentrant inner piston edge yielded the highest thermal efficiency, due to the reduced cylinder head heat transfer loss. Additional injector orifices led to higher efficiency owing to a more advanced combustion phasing. Nevertheless, the maximum pressure rise rate (MPRR) and oxides of nitrogen (NO x) emissions also increased with the number of injector orifices due to more rapid heat release and higher combustion temperature. Implementation of a split injection strategy combined with a higher EGR rate effectively inhibited the excessive MPRR and NO x formation. In general, the study concluded that DFI is not sensitive to most parameter changes but will benefit from future parameter optimization.
Article
div>Earlier studies have proven how ducted fuel injection (DFI) substantially reduces soot for low- and mid-load conditions in heavy-duty engines, without significant adverse effects on other emissions. Nevertheless, no comprehensive DFI study exists showing soot reductions at high- and full-load conditions. This study investigated DFI in a single-cylinder, 1.7-L, optical engine from low- to full-load conditions with a low-net-carbon fuel consisting of 80% renewable diesel and 20% biodiesel. Over the tested load range, DFI reduced engine-out soot by 38.1–63.1% compared to conventional diesel combustion (CDC). This soot reduction occurred without significant detrimental effects on other emission types. Thus, DFI reduced the severity of the soot–NOx tradeoff at all tested conditions. While DFI delivered considerable soot reductions in the present study, previous DFI studies at low- and mid-load conditions delivered larger soot reductions (>90%) compared to CDC operation at the same conditions. Therefore, the DFI configuration used here has been deemed nonoptimal (in terms of parameters such as the injector-spray and piston geometries), and several improvements are recommended for future studies with high-load DFI. These improvements include employing better spray-duct alignment, a deeper piston bowl with a smaller injector umbrella angle, and a fuel injector that opens and closes faster. The study also suggests future research to make DFI ready for commercialization, such as metal-engine tests to ensure desirable DFI performance over an engine’s complete speed/load map. Overall, this study supports the continued development and commercialization of DFI to meet upcoming emissions regulations for heavy-duty vehicles. Specifically, multicylinder engine experiments and CFD simulations should be utilized to optimize the performance and clarify the full potential of DFI.</div
Article
Ducted fuel injection (DFI) is an innovative method that curtails or prevents soot formation in direct-injection compression-ignition engines. DFI uses a simple duct, positioned outside each injector hole, facilitating the fuel/charge gas mixing before ignition. This reduces the equivalence ratio below two, in the autoignition zone, which in turn decreases soot formation. But this method also reduces fuel-conversion efficiency. This study investigates the effects of DFI on in-cylinder heat transfer. Experiments with conventional diesel combustion (CDC) and DFI were performed at four different dilution levels. Computational fluid dynamics (CFD) simulations were carried out at conditions matching those of the experiments, and the simulations were validated by the experimental data. The CFD simulations enabled to examine of in-cylinder heat release and temperature distributions. The heat transfer to the piston, head, and cylinder was investigated. The results show that DFI increased the heat transfer to the walls compared to CDC under the same conditions. This could help explain why DFI has been observed to reduce fuel-conversion efficiency by approximately 1% (absolute) relative to CDC under certain conditions. The efficiency loss typically decreases with dilution, such that DFI can improve fuel-conversion efficiencies relative to CDC at higher dilution levels.
Article
The ducted fuel injection strategy is an innovative method that significantly prevents soot formation in direct injection compression ignition engines. This method is based on the injection of the fuel directly into the combustion chamber through the tube placed in front of the injector hole. The fuel mixes with air inside the duct before ignition. Thus, the formation of soot can be prevented by reducing the local equivalence ratio in the lift-off length in the combustion chamber. In this study, the implementation of the duct geometry to the compression ignition engine was evaluated in-cylinder flow and emission formation. The duct geometry was adopted for the test engine. The effects of the ducted fuel injection (DFI) on the combustion and performance of a compression ignition diesel engine were investigated. Conventional diesel combustion (CDC) and DFI system at low (25%), medium (50%), and high (75%) loads were compared in terms of performance, combustion, and emission using an experimentally validated engine model. Particle size mimic (PSM) detailed soot mechanism was used in the CFD model in order to solve the complex soot formation and oxidation with detailed chemistry. Compared to CDC, the DFI method reduces soot emissions up to 67%. In addition, the DFI strategy decreases CO and HC emissions up to 39% and 26%, respectively. With this innovative method, it has been observed that exhaust emissions are reduced without compromising engine performance.
Article
Combustion efficiency and exhaust emission of the compression-ignition engines are highly dependent on the combustion chamber design. In this study, shape optimization was performed to reduce the emissions and maximize the combustion efficiency of a compression ignition engine with the guidance of computational fluid dynamics (CFD). The aim was to optimize diesel combustion efficiency while maintaining engine power and torque. A double-swirl piston bowl is used, and the bowl depth, bowl diameter, and other dimensions of the piston bowl are optimized to minimize the soot and NOX emission while meeting the IMEP target. The spray angle of the injector, SOI, and injector protrusion were parametrized to meet the optimization targets. The numerical model was developed using Converge software. CAESES software and multi-objective genetic algorithm (MOGA) were used to automatically change the chamber design parameters and to optimize the piston bowl geometry. A total of 104 different combustion chamber designs and 23 varied injection parameters were determined parametrically and the optimum case was decided with the MOGA. A comprehensive optimization study was carried out using experimental, CFD, and MOGA methods. Compared to the baseline design, the optimized new piston bowl design has provided enhanced in-cylinder air utilization and rapid mixing-controlled combustion, resulting in enhanced fuel efficiency. The optimized design emits remarkably lower NOX and soot emissions.
Article
This paper describes results from an optical-engine investigation of oxygenated fuel effects on ducted fuel injection (DFI) relative to conventional diesel combustion (CDC). Three fuels were tested: a baseline, non-oxygenated No. 2 emissions certification diesel (denoted CFB), and two blends containing potential renewable oxygenates. The first oxygenated blend contained 25 vol% methyl decanoate in CFB (denoted MD25), and the second contained 25 vol% tri-propylene glycol mono-methyl ether in CFB (denoted T25). Whereas DFI and fuel oxygenation primarily curtail soot emissions, intake-oxygen mole fractions of 21% and 16% were employed to explore the potential additional beneficial impact of dilution on engine-out emissions of nitrogen oxides (NOx). It was found that DFI with an oxygenated fuel can attenuate soot incandescence by ∼100X (∼10X from DFI and an additional ∼10X from fuel oxygenation) relative to CDC with conventional diesel fuel, regardless of dilution level and without large effects on other emissions or efficiency. This breaks the soot/NOx trade-off with dilution, enabling simultaneous reductions in both soot and NOx emissions, even with conventional diesel fuel. Significant cyclic variability in soot incandescence for both CDC and DFI suggests that additional improvements in engine-out soot emissions may be possible via improved control of in-cylinder mixture formation and evolution.
Conference Paper
High-pressure internal combustion engines show promises in high efficiencies, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the multiple-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case, and NOx emissions where no hefty increase followed from the two-injector approach. Finally, the two-injector approach was connected to a waste-heat recovery system through GT-Power 1-D simulations, increasing the importance of heat transfer reduction. The final two-injector system then delivered a 54.4% brake thermal efficiency compared to 53% of the one-injector reference case while keeping NOx at reference levels.
Article
Enhancing mixture preparation upstream of the premixed autoignition zone is a solution to reduce soot emission formation in compression ignition engines. With this aim, in recent years, Ducted Fuel Injection (DFI) concept has been developed: DFI is based on the idea of injecting the fuel spray through a small cylindrical pipe within the combustion chamber at a certain distance from the nozzle injector hole. Recent research studies have highlighted the high potential of this innovative concept for soot mitigation in both constant volume vessel and engine-like operating conditions. However, the mechanisms driving the soot reduction have not yet been fully understood. The aim of this research work is to further investigate the DFI concept, evaluating its impact on the spray characteristics, on the air/fuel mixing and, therefore, on the soot formation phenomena. Firstly, an experimental activity was carried out by means of a constant volume vessel test bench with optical accesses to compare the spray evolution and sizing with and without duct adoption, over a wide range of vessel thermodynamic conditions and injection pressures. After that, a simulation setup was defined in the commercially available 3D-CFD software CONVERGE reproducing the experimental test bench, calibrating and validating the spray model. Firstly, the spray model was calibrated and validated considering the same non-reacting conditions exploited in the experimental analysis. Then, the calibrated spray model was used as a virtual tool to investigate the air entrainment process. As a results, the DFI adoption increases the air entrainment in the near-nozzle region caused by the high velocity spray that generates a pumping effect at the duct inlet. Moreover, mixing process is also enhanced by the turbulence distribution at the duct exit resulting in a narrower distribution of equivalence ratio at the ignition. As a consequence of the more effective air entrainment and improved turbulent mixing, DFI remarkably mitigates soot emissions, with a reduction up to 80% with respect to free spray configuration in all tested operating conditions.
Article
Dimensional tolerance allocation is a very important and difficult task that traditionally seeks to balance cost/productivity and quality. Common tolerance allocation models have two shortcomings: i) they are overly reliant on models focused on minimizing cost and tend to ignore waste, and ii) they fail to connect to the root cause of many quality issues: process variation. This paper proposes a tolerance allocation model that addresses these shortcomings. The proposed model considers both product design (tolerance selection) and operation planning (or production rate selection). Relations among production rate, production cost, processing precision, and waste are considered. A gradient-based optimization method is proposed to minimize the cost and waste. A clutch assembly case study is analyzed to evaluate the method. Monte Carlo simulations are employed to validate the accuracy of the proposed cost model. The proposed method is compared with a heuristic method from the literature. The proposed method produced more satisfactory products at a lower cost while producing less waste. For the case study, it is found that when the precision of a process is high, it is not necessary from an economic standpoint to inspect the quality of individual components. For poor precision processes, inspecting the quality of individual components is the preferred approach from a cost/throughput standpoint.
Article
Diesel engines are an important technology for transportation of both people and goods. However, historically they have suffered a significant downside of high soot and nitrogen oxides (NOx) emissions. Recently, ducted fuel injection (DFI) has been demonstrated to attenuate soot formation in compression-ignition engines and combustion vessels by 50% to 100%. This allows for diesel engines to be run at low-NOx emissions that would have otherwise produced significantly more soot due to the soot/NOx tradeoff. Currently the root causes of this soot attenuation are not well understood. To be able to better optimize DFI for use across a variety of engines and conditions, it is important to understand clearly how it works. This study expands on the current understanding of DFI by using numerical modeling under nonreacting conditions to provide insights about the roles of entrainment and mixing that would have been much more challenging to obtain experimentally. This study found that DFI enhances charge gas entrainment upstream of the duct and blocks entrainment inside of the duct. Mixing is enhanced by the duct, which results in lower peak equivalence ratios at the exit of the duct.
Article
A ducted fuel injection (DFI) strategy has been proposed as an efficient approach to reduce the soot emission in direct-injection compression ignition engines. By injecting the fuel through a small tube within the combustion chamber, a leaner air−fuel mixture is generated compared to the conventional free spray approach, which significantly inhibits the soot formation and helps to reduce the dependence of the engine on after-treatment systems. However, the soot reduction mechanism is still not fully understood. Therefore, in this work, a three-dimensional computational investigation was performed to explain the experimental results. Four different reduced chemical mechanisms were used to simulate the reacting spray A (n-dodecane) data from both the Engine Combustion Network group and literature. An improved post-processing method was also proposed to investigate the detailed combustion feature. The results revealed that the ignition processes using different mechanisms were all dominated by the same reaction CH 2 O + OH = HCO + H 2 O. Of the four reduced mechanisms, Yao mech demonstrated the best-predicted performance. Compared to the free-spray case, the DFI case generated a longer ignition delay and lift-off length and lower soot concentration owing to the significant reduction of air entrainment and longer core jet velocity from the duct exit to the lift-off length location. In addition, the DFI case had a significantly longer low-temperature heat release region but a shorter high-temperature heat release region and a smaller core between these two regions, which helps to reduce the sooting tendency.
Article
To simulate the wall film formation and vaporization processes in gasoline direct-injection spark-ignition engines including considerations of the physical properties and vapor-liquid equilibrium of multi-component fuels, spray-wall interaction sub-models were implemented with the 3D-CFD software HINOCA which has been developed for automotive engine cylinder simulations. The models used were the Senda model for spray-wall impingement including splash, deposition, droplet-droplet interactions, and droplet-film interactions; the O'Rourke model for heat transfer and film vaporization; a simple film flow model considering momentum conservation; and Raoult's law for vapor-liquid equilibrium. First, the model validated the calculated results for a single-component fuel (iso-octane) through comparisons with experimental data in terms of wall film area and heat flux between the wall and film. Second, numerical simulations were conducted with a 5-component gasoline surrogate fuel which was designed taking into account the average octane number, aromatic content, and distillation characteristic. The results showed clear differences in the contributions of the 5 components to the wall film, and the possibility that the aromatic content with higher carbon atoms could be a source of soot formation.
Article
Premixed burners have been widely used in many applications for both industrial and household appliances. For this reason, it is very important to enhance the combustion and emission efficiency of premixed burners because of their strong position in the global dimension. On the other hand, the addition of hydrogen to various fuels has been a research topic in the last decade due to its environmental and economic positive effects. In this study, the effect of hydrogen addition to different gaseous fuels at different rates has been investigated in a premixed burner. A numerical parametric study has been carried out using a commercial CFD code. The gaseous fuels namely; methane, propane, LPG and natural gas have been enriched by different hydrogen addition rates with a 10% increment. Moreover, the results of pure hydrogen have been presented. The results reveal that the combustion efficiency for all fuels has been affected positively with hydrogen enrichment except for certain gas compositions. Furthermore, this study has shown that the hydrogen addition in general, decreases the unburnt HC and CO emissions.
Article
An Equilibrium Phase (EP) spray model for simulating high-pressure diesel fuel injection has recently been proposed, which is based on a local phase equilibrium assumption and jet theory. In this model, spray vaporization is assumed to be a mixing-controlled equilibrium process, while the non-equilibrium processes of droplet breakup, collision and surface vaporization are neglected. The model shows a good grid-independency by introducing a Liquid-Jet model and a Gas-Jet model. In this study, the EP model is applied in simulations of multi-hole gasoline direct injection (GDI). The model validation is performed for two different GDI injectors, i.e., the Engine Combustion Network (ECN) Spray G injector and a GM injector, operated at ambient temperatures from 400 K to 900 K and ambient densities from 3 to 9 kg/m3, with fuel of iso-octane. Good agreement are found between simulation and available experimental data in terms of liquid/vapor penetrations, shape of the vapor envelope, and the axial velocity evolution along the injector centerline for no or slight spray collapse conditions. In addition, a 10-component gasoline surrogate fuel is employed to demonstrate the capability of this model for simulating multi-component spray. The results reveal considerable dependency of vapor distribution on fuel properties and ambient temperature, which is essential for predictions of engine combustion and emissions.
Article
The study aims to investigate the sensitivity of combustion stability to the intake air temperature for partially premixed combustion (PPC). The experiments were carried out in a full view optical engine at low load condition. The ω shape optical piston crown as same as the actual product piston, rather than the flat crown piston used in the previous study, was employed for the present experimental test. The continuous-fire mode rather than the skip-fire mode was used to run the optical engine ensuring the similarity to the actual engine operating conditions. The interaction among fuel spray jets, piston and cylinder wall was visualized by fuel-tracer planar laser-induced fluorescence. The high-speed combustion images were processed to determine the combustion stratification based on the natural flame luminosity. The combustion phasing, maximum in-cylinder pressure, and indicated mean effective pressure (IMEP) were compared at various intake temperatures. The results showed that the lower intake temperature could be used for achieving better combustion stability at low load condition along with the retarded CA50, the lower maximum in-cylinder pressure, and the higher IMEP. 70 °C was the lower limit of intake temperature to achieve stable PPC operation with the single-injection strategy. The same trend of the combustion characteristics with respect to the start of injection timing was confirmed at various intake temperatures. The combustion stratification analysis indicated more inhomogeneous low-temperature combustion with decreased natural flame luminosity and increased soot emission when the intake temperature reduced from 120 °C to 70 °C. Nitrogen oxides emission decreased when compared to the higher intake temperature cases at the expense of increased unburned hydrocarbon and carbon monoxide emissions at PPC mode. The fuel tracer measurements showed that most of the injected fuel hit on the piston top and only less amount of fuel was injected into the piston crown bowl at PPC mode due to the wider spray umbrella angle. The fuel trapped in crevice zone was verified as an important source for the unburned hydrocarbon and carbon monoxide emissions at PPC mode. The injector dribbling during the late stage of combustion attributed to soot formation. The injector with a relatively narrow spray umbrella angle was suggested for optimized interaction among the fuel spray jets, piston and the cylinder wall at PPC mode.
Article
Ducted fuel injection is a strategy that can be used to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection compression-ignition engine. The concept involves injecting the fuel through a small tube within the combustion chamber to make the most fuel-rich regions of the micture in the autoignition zone leaner relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This study is a follow-on to initial proof-of-concept experiments that also were conducted in a constant-volume combustion vessel. While the initial natural luminosity imaging experiments demonstrated that ducted fuel injection lowers soot incandescence dramatically, this study adds a more quantitative diffuse back-illumination diagnostic to measure soot mass, as well as investigates the effects on performance of varying duct geometry (axial gap, length, diameter, and inlet and outlet shapes), ambient density, and charge-gas dilution level. The result is that ducted fuel injection is further proven to be effective at lowering soot by 35–100% across a wide range of operating conditions and geometries, and guidance is offered on geometric parameters that are most important for improving performance and facilitating packaging for engine applications.
Conference Paper
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm. A single nominal operating condition was studied: 100% load at 1800 rpm. Variations in the start of injection (SOI), injection pressure, intake pressure, and exhaust gas recirculation (EGR) level were also studied. These broad hardware and operational variations were modeled using Reynolds-averaged Navier-Stokes (RANS) CFD simulations with direct combustion chemistry integration. The focus of the work was to assess the ability of the model with Chalmers n-heptane combustion chemistry to predict the soot emissions from the various combustion systems. The results show that while the model predicts some general trends regarding SOI and injection pressure, it tends to fail as a comprehensive predictive simulation tool for designing DI diesel combustion systems regarding soot emissions. This suggests that further improvements in diesel engine CFD modeling for predicting soot emissions are needed.
Article
An approach to reduce CO2 emissions while simultaneously keeping the soot emissions down from compression ignition (CI) engines is to blend in short chained oxygenates into the fuel. In this work, two oxygenated fuel blends consisting of diesel, gasoline and ethanol (EtOH) in the ratio of 68:17:15 and 58:14:30 have been utilized and studied in a single cylinder light duty (LD) CI engine in terms of efficiency and emissions. The reasons of utilizing gasoline in the fuel blend is due to the emulsifying properties it has while increasing the total octane rating of the fuel to be able to run the engine with a higher fraction of premixed flame. When performing the experiments, the control parameters were set as close as possible to the original equipment manufacturer (OEM) EU5 calibration of the multi-cylinder engine to study the possibility of using such blends in close to stock LD CI engines. With the oxygenates, in particular the fuel with the higher concentration of EtOH achieved an indicated net efficiency of ∼51% inf comparison to ∼47% for diesel at 8 bar BMEP. The NOX emissions increased slightly for the double injection strategy at 13 bar BMEP from ∼13.5 g/kW h to ∼14.5 g/kW h when going from diesel fuel to the higher ethanol blend. However utilizing single injection strategy at lower loads reduces the NOX. Highest soot mass measured for diesel was ∼0.46 g/kW h in contrast to ∼0.1 g/kW h for the oxygenates. Also, soot production when running the engine on the ethanol containing fuels was not significantly affected by EGR utilization as in the case of diesel. Considering particle size distribution, the particles are reduced both in terms of mean diameter and quantity. At 1500 rpm and 2 bar BMEP an increase of over ∼300% in THC and CO was measured, however, increasing the speed and load to above 2000 rpm and 8 bar BMEP respectively, made the difference negligible due to high in-cylinder temperatures contributing to better fuel oxidation. Despite having lower cetane numbers, higher combustion stability was observed for the oxygenates fuels.
Article
Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). The results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.
Article
From measurements carried out on flat premixed hydrocarbon/oxygen argon (or helium) flames, into which small amounts of ammonia, or cyanogen are added, overall reaction rates of formation of NO and N//2 are determined. From similar measurements effected on nitrogen-diluted ethylene/oxygen flames, an overall rate of prompt NO formation is obtained. The discussion of these rate constants indicates that the relative importance of HCN molecules as intermediates in the fuel NO mechanism increases according to the following sequence of primary fuel nitrogen compounds: ammonia, cyanogen and molecular nitrogen; this last is found to behave like a true fuel nitrogen compound in the early flame stages.
Article
This work is a technical review of past research and a synthesis of current understanding of post injections for soot reduction in diesel engines. A post injection, which is a short injection after a longer main injection, is an in-cylinder tool to reduce engine-out soot to meet pollutant emissions standards while maintaining efficiency, and potentially to reduce or eliminate exhaust aftertreatment. A sprawling literature on post injections documents the effects of post injections on engine-out soot with variations in many engine operational parameters. Explanations of how post injections lead to engineout soot reduction vary and are sometimes inconsistent or contradictory, in part because supporting fundamental experimental or modeling data are often not available. In this paper, we review the available data describing the efficacy of post-injections and highlight several candidate in-cylinder mechanisms that may control their efficacy. We first discuss three in-cylinder mechanisms that have been frequently proposed to explain how post injections reduce engine-out soot. Thereafter, to provide a foundation for interpretation of past research, we briefly review basic soot formation and oxidation chemistry, and soot/fluid processes in fuel sprays and engine flows. Next, we provide a comprehensive overview of the literature on the efficacy of post-injections for soot reduction as a function of engine operational parameters including injection duration and dwell, exhaust-gas recirculation, load, boost, speed, swirl, and spray targeting. We conclude by identifying major remaining research questions that need to be addressed to help achieve a design-level understanding of the mechanisms of soot reduction by post injections.
Article
This research uses computational modeling to explore methods to increase diesel engine power density while maintaining low pollutant emission levels. Previous experimental studies have shown that injection-rate profiles and injector configurations play important roles on the performance and emissions of particulate and NO x in DI diesel engines. However, there is a lack of systematic studies and fundamental understanding of the mechanisms of spray atomization, mixture formation and distribution, and subsequently, the combustion processes in spray/spray and spray/swirl interaction and flow configurations. In this study, the effects of split injections and multiple injector configurations on diesel engine emissions are investigated numerically using a multi-dimensional computer code. In order to be able to explore the effects of enhanced fuel-air mixing, the use of multiple injectors with different injector locations, spray orientations and impingement angles was studied. The interaction of the spray with the geometry of the combustion chamber was also systematically studied. The potential for the use of multiple injectors to increase engine power density and to significantly reduce particulate and NO x emissions in DI diesel engines is revealed. This work demonstrates that multidimensional modeling can now be used to gain insight into the combustion process and to provide direction for exploring new engine concepts.
Article
Increasingly stringent emission legislations, such as US 2010 and Euro VI, for NOx in mobile applications will require the use of intensification of NOx reduction aftertreatment technologies, such as the selective catalytic reduction (SCR). Due to the required higher deNO(x) efficiency, a lot of efforts have recently been concentrated on the optimization of the SCR systems for broadening the active deNO(x) temperature window as widely as possible, especially at low temperatures, enhancing the catalysts durability, and reducing the cost of the deNO(x) system. This paper provides a comprehensive overview of the state-of-the-art SCR technologies, including the alternative ammonia generation from the solid reductants, Vanadium-based, Cu-zeolite (CuZ) and Fe-zeolite (FeZ) based, and the novel chabazite zeolite with small pore size SCR catalysts. Furthermore, the progresses of the highly optimized hybrid approaches, involving combined CuZ and FeZ SCR, passive SCR, integration of DOC + (DPF, SCR), as well as SCR catalyst coated on DPF (referred as SCRF hereinafter) systems are well discussed. Even though SCR technology is considered as the leading NOx aftertreatment technology, attentions have been paid to the adverse by-products, such as NH3 and N2O. Relevant regulations have been established to address the issues.
Article
From measurements carried out on flat premixed hydrocarbon/oxygen argon (or helium) flames, into which small amounts of ammonia, or cyanogen are added, overall reaction rates of formation of NO and N2 are determined. From similar measurements effected on nitrogen-diluted ethylene/oxygen flames, an overall rate of prompt NO formation is obtained. The discussion of these rate constants indicates that the relative importance of HCN molecules as intermediates in the fuel NO mechanism increases according to the following sequence of primary fuel nitrogen compounds: ammonia, cyanogen and molecular nitrogen; this last is found to behave like a true fuel nitrogen compound in the early flame stages. Experimental values of the total yield of nitric oxide obtained from the added nitrogen compounds have been determined; they are found to be in good agreement with yields calculated by numerical integration of the empirical overall reaction rates of NO and N2 formation, showing almost the same dependence of the NO yield on temperature, initial fuel nitrogen concentration and oxygen concentration.
Article
The Plasma Source Ion Implantation (PSII) collaboration is described. Its principal objective is to develop the PSII process, invented at the University of Wisconsin, on a large-scale for practical use in the automotive industry. The process achieves ion implantation for surface modification at higher implantation currents than conventional methods by biasing a target part immersed in a low temperature plasma to high negative voltage. Automotive applications being explored involve hardening of tool dies and automotive power train components.
Article
The RNG κ-ϵ turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study. The original RNG-based turbulence transport approximations were developed formally for an incompressible flow. In order to account for flow compressibility the RNG ϵ-equation is modified and closed through an isotropic rapid distortion analysis. Computations were made of engine compressing/expanding flows and the results were compared with available experimental observations in a production diesel engine geometry. The modified RNG κ-ϵ model was also applied to diesel spray combustion computations. It is shown that the use of the RNG model is warranted for spray combustion modeling since the ratio of the turbulent to mean-strain time scales is appreciable due to spray-generated mean flow gradients, and the model introduces a term to account for these effects. Large scale flow structures are predicted which are affected by the spray and the squish and are consistent with endoscope combustion images. The effects of flow compressibility on both non-reacting compressing/expanding flows and reacting flows are discussed. It is concluded that predicted combustion parameters, particularly, soot emissions, are significantly influenced by the treatment of flow compressibility in the turbulence model.
Article
This report describes an extended version of KIVA-3, known as KIVA-3V, that can model any number of vertical or canted valves in the cylinder head of an internal combustion (IC) engine. The valves are treated as solid objects that move through the mesh using the familiar snapper technique used for piston motion in KIVA-3. Because the valve motion is modeled exactly, and the valve shapes are as exact as the grid resolution will allow, the accuracy of the valve model is commensurate with that of the rest of the program. Other new features in KIVA-3V include a particle-based liquid wall film model, a new sorting subroutine that is linear in the number of nodes and preserves the original storage sequence, a mixing-controlled turbulent combustion model, and an optional RNG {kappa}-{epsilon} turbulence model. All features and capabilities of the original KIVA-3 have been retained. The grid generator, K3PREP, has been expanded to support the generation of grids with valves, along with the shaping of valve ports and runners. Graphics output options have also been expanded. The report discusses the new features, and includes four examples of grids with vertical and canted valves that are representative of IC engines in use today.
Article
The droplet collision algorithm of O'Rourke is currently the standard approach to calculating collisions in Lagrangian spray simulations. This algorithm has a cost proportional to the square of the number of computational particles, or “parcels”. To more efficiently calculate droplet collisions, a technique applied to gas dynamics simulations is extended for use in sprays. For this technique to work efficiently, it must be able to handle the general case where the number of droplets in each parcel varies. The present work shows how the no-time-counter (NTC) method can be extended for the general case of varying numbers of droplets per parcel. The basis of this improvement is analytically derived. The new algorithm is compared to closed-form solutions and to the algorithm of O'Rourke. The NTC method is several orders of magnitude faster and slightly more accurate than O'Rourke's method for several test cases. The second part of the paper concerns implementation of the collision algorithm into a multidimensional code that also models the gas phase behavior and spray breakup. The collision computations are performed on a special collision mesh that is optimized for both sample size and spatial resolution. The mesh is different every time step to further suppress the artifacts that are common in the method of O'Rourke. The parcels are then sorted into cells, so that a list of all the parcels in a given cell are readily available. Next, each cell is individually checked to see if it is so dense that a direct collision calculation is cheaper than the NTC method. The cheaper method is applied to that cell. The final result is a method of calculating spray droplet collisions that is both faster and more accurate than the current standard method of O'Rourke.
Article
Applied to the primary reference fuel n-heptane, we present the chemistry-guided reduction (CGR) formalism for generating kinetic hydrocarbon oxidation models. The approach is based on chemical lumping and species removal with the necessity analysis method, a combined reaction flow and sensitivity analysis. Independent of the fuel size, the CGR formalism generates very compact submodels for the alkane low-temperature oxidation and provides a general concept for the development of compact oxidation models for large model fuel components such as n-decane and n-tetradecane. A defined sequence of simplification steps, consisting of the compilation of a compact detailed chemical model, the application of linear chemical lumping, and finally species removal based on species necessity values, allows a significantly increased degree of reduction compared to the simple application of the necessity analysis, previously published species, or reaction removal methods. The skeletal model derived by this procedure consists of 110 species and 1170 forward and backward reactions and is validated against the full range of combustion conditions including low and high temperatures, fuel-lean and fuel-rich mixtures, pressures between 1 and 40 bar, and local (species concentration profiles in flames, plug flow and jet-stirred reactors, and reaction sensitivity coefficients) and global parameters (ignition delay times in shock tube experiments, ignition timing in a HCCI engine, and flame speeds). The species removal is based on calculations using a minimum number of parameter configurations, but complemented by a very broad parameter variation in the process of compiling the kinetic input data. We further demonstrate that the inclusion of sensitivity coefficients in the validation process allows efficient control of the reduction process. Additionally, a compact high-temperature n-heptane oxidation model of 47 species and 468 reactions was generated by the application of necessity analysis to the skeletal mechanism.
Article
We develop the dynamic renormalization group (RNG) method for hydrodynamic turbulence. This procedure, which uses dynamic scaling and invariance together with iterated perturbation methods, allows us to evaluate transport coefficients and transport equations for the large-scale (slow) modes. The RNG theory, which does not include any experimentally adjustable parameters, gives the following numerical values for important constants of turbulent flows: Kolmogorov constant for the inertial-range spectrumC K=1.617; turbulent Prandtl number for high-Reynolds-number heat transferP t =0.7179; Batchelor constantBa=1.161; and skewness factorS 3=0.4878. A differentialK- [`(e)]\bar \varepsilon model is derived, which, in the high-Reynolds-number regions of the flow, gives the algebraic relationv=0.0837 K2/ [`(e)]\bar \varepsilon , decay of isotropic turbulence asK=O(t –1.3307), and the von Karman constant[`(e)]\bar \varepsilon , and[`(e)]\bar \varepsilon is finite. This latter model is particularly useful near walls.
Article
Discretized population balances of aggregating systems are known to consistently over-predict number densities for the largest particles. This over-prediction has been attributed recently by the authors (Kumar and Ramkrishna, 1996, Chem. Engng Sci.51, 1311–1332) to steeply non-linear gradients in the number density when a fixed pivotal particle size is used for each discrete interval. The present work formulates macroscopic balances of populations with due regard to the evolving non-uniformity of the size distribution in each size interval as a result of breakage and aggregation events. This is accomplished through a varying pivotal size for each interval adapting to the prevailing non-uniformity of the number density in the interval. The technique applies to a general grid and preserves any two arbitrarily chosen properties of the population. Comparisons of the numerical and analytical results have been made for pure aggregation for the constant, sum and product kernels. It is established that numerical predictions from macroscopic balances are significantly improved by an adapting pivot accounting for non-uniformities in the number density.
Article
Climate change reports and policies relating to end-of-use products, CO2 emissions, and energy are causing manufacturers to examine their operations closely. Several reports have touted the economic and environmental benefits of remanufacturing, including claims of significant reductions in terms of energy and CO2 emissions. However, large-scale remanufacturing of heavy equipment engine components has not been closely examined and no standard procedure exists to quantify the benefits of remanufacturing. A methodology is presented for determining the energy intensity and benefits of remanufacturing as compared to new manufacturing, and this is applied to a diesel engine example. These findings are used to estimate the embodied manufacturing/remanufacturing energy across multiple use cycles.
Article
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines. Over the series of experiments numerically investigated, the initial pressure ranged from 1–42 atm, the temperature from 550–1700 K, the equivalence ratio from 0.3–1.5, and nitrogen-argon dilution from 70–99%. The combination of ignition delay time and species composition data provide for a stringent test of the chemical kinetic mechanism. The reactions are classed into various types, and the reaction rate constants are given together with an explanation of how the rate constants were obtained. Experimental results from the literature of ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at both low and high temperatures. Additionally, species composition data from a variable pressure flow reactor and a jet-stirred reactor were used to help complement and refine the low-temperature portions of the reaction mechanism. A sensitivity analysis was performed for each of the combustion environments. This analysis showed that the low-temperature chemistry is very sensitive to the formation of stable olefin species from hydroperoxy-alkyl radicals and to the chain-branching steps involving ketohydroperoxide molecules.
Article
We explore the statistical properties of a model proposed by J. K. Dukowicz [ibid. 35, 229-253 (1980; Zbl 0437.76051)] for calculating the dispersion of spray droplets due to turbulent gas motions. The distributions of turbulent velocity and position changes are derived, making no assumptions concerning the relative magnitudes of the drag time, turbulence correlation time, and the time at which the distributions are evaluated. We also tell how the model is implemented in the computer program KIVA and give some computational examples.