ArticlePDF Available

Abstract and Figures

African savanna elephants are a highly mobile species that ranges widely across the diversity of ecosystems they inhabit. In xeric environments, elephant movement patterns are largely dictated by the availability of water and suitable forage resources, which can drive strong seasonal changes in their movement behavior. In this study, we analyzed a unique movement dataset from 43 collared elephants, collected over a period of 10 years, to assess the degree to which seasonal changes influences home range size of elephants in the semi‐arid, Laikipia‐Samburu ecosystem of northern Kenya. Auto‐correlated Kernel Density Estimation (AKDE) was used to estimate elephants' seasonal home range size. For each individual elephant, we also calculated seasonal home range shifts, as the distance between wet season home range centroids and dry season home range centroids. Core areas (50% AKDE isopleths) of all individual elephants ranged from 3 to 1743 km² whereas total home range sizes (the 95% AKDE isopleths) ranged between 15 and 10,677 km². Core areas and home range sizes were 67% and 61% larger, respectively, during the wet season than during the dry season. On average, the core area centroids for all elephants were 17 km away from the nearest river (range 0.2–150.3 km). Females had their core areas closer to the river than males (13.5 vs. 27.5 km). Females differed from males in their response to seasonal variation. Specifically, females tended to occupy areas farther from the river during the wet season, while males occupied areas further from the river during the dry season. Our study highlights how elephants adjust their space use seasonally, which can be incorporated into conservation area planning in the face of increased uncertainty in rainfall patterns due to climate change.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e70198. 
|
1 of 10
https://doi.org/10.1002/ece3.70198
www.ecolevol.org
Received:17March2024 
|
Revised:30July2024 
|
Accepted:1August2024
DOI: 10.1002/ece 3.70198
RESEARCH ARTICLE
Seasonal variation in the ranging behavior of elephants in the
Laikipia- Samburu ecosystem
Loise W. Kuria1| Duncan M. Kimuyu1,2| Mwangi J. Kinyanjui1|
George Wittemyer3| Festus W. Ihwagi3
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
©2024TheAuthor(s).Eco logy an d EvolutionpublishedbyJohnWiley&SonsLtd.
1SchoolofNaturalResourcesand
EnvironmentalStudies,Karatina
University,Karatina,Kenya
2MpalaResearchCenterandWildlife
Foundation,Nanyuki,Kenya
3SavetheElephants,Nairobi,Kenya
Correspondence
LoiseW.Kuria,SchoolofNatural
ResourcesandEnvironmentalStudies,
KaratinaUniversity,P.O.Box1957,10101
Karatina,Kenya.
Email:loisewangui3@gmail.com
Funding information
CenterforMountainandClimateChange;
SavetheElephants
Abstract
Africansavannaelephantsareahighlymobilespeciesthatrangeswidelyacrossthe
diversityofecosystemstheyinhabit.Inxericenvironments,elephantmovementpat-
ternsare largelydictatedbythe availability ofwaterandsuitableforageresources,
whichcan drivestrongseasonal changesin theirmovement behavior.Inthisstudy,
weanalyzedauniquemovementdatasetfrom43collaredelephants,collectedovera
periodof10 years,toassessthedegreetowhichseasonalchangesinfluenceshome
range size of elephants in the semi-arid, Laikipia-Samburu ecosystem of northern
Kenya.Auto-correlatedKernel Density Estimation(AKDE)wasused to estimateel-
ephants' seasonalhome rangesize.Foreachindividualelephant,we alsocalculated
seasonal home range shifts, asthe distancebetween wet season home range cen-
troidsanddryseasonhomerangecentroids.Coreareas(50%AKDEisopleths)ofall
individualelephantsrangedfrom3to1743 km2whereastotalhomerangesizes(the
95%AKDEisopleths)rangedbetween15and10,677 km2.Coreareasandhomerange
sizeswere67%and61%larger,respectively,duringthe wetseasonthanduringthe
dry season. On average, thecorearea centroids forallelephants were17 kmaway
fromthe nearest river (range0.2–150.3 km). Femaleshad theircore areascloserto
theriverthanmales(13.5vs.27.5 km).Femalesdifferedfrommalesintheirresponse
toseasonal variation. Specifically,females tended to occupyareas fartherfromthe
riverduringthewetseason,whilemalesoccupiedareasfurtherfromtheriverduring
thedryseason.Ourstudyhighlightshowelephantsadjusttheirspaceuseseasonally,
whichcan beincorporatedintoconservation areaplanningintheface of increased
uncertaintyinrainfallpatternsduetoclimatechange.
KEYWORDS
coreareas,habitatuse,homerangeshift,homerangesize,Loxodonta africana,mega-
herbivores
TAXONOMY CLASSIFICATION
Behaviouralecology
2 of 10 
|
   KURIA et al.
1  | INTRODUCTIO N
Elephantsact as ecosystemengineersbyinfluencing the structure
and compl exity of the ha bitats in wh ich they occur (Ge bremeskel
Haile et al., 2019),resultinginamyriadofcascadingeffectsonother
trophiclevels(Calengeetal.,2002;Smallie&O'Connor,2000).The
scaleofthiseffectis relativelybroadbecauseelephantsaremega-
herbivoreswithlargehomerangesandhighmobility,allowingthem
to cover large distance s across the landsc ape as they search for
forage re sources (Bolla & H ovorka, 2012). As mi xed feeders wi th
diversediets,elephantscanexhibitgreatplasticityinrangingbehav-
ior(Bastille-Rousseau & Wittemyer,2019; Ortega & Eggert,2004;
Sukumar,2003).Suchchangesmaybedrivenbyseasonalvariation
intheavailabilityofforageandwaterresources(Roeveretal.,2012;
Sukumar,2003; Valls-Fox et al ., 2018; Witte myer et al., 2017 ) as
well as physio logical and beh avioral diffe rences among indi vidual
elephants(Fortinet al.,2022; Moss et al., 2 011). Homerangeslink
themovementofanimalstothedistributionoftheresourcesneces-
sary forsurvival andreproduction.Home range size, location,and
shapemaychangedependingonthestateoftheindividualandthe
conditionsoftheexternalenvironment (Börgeretal., 2006, 2008;
Kenwardetal.,2001).Thereisgreatinterestinexaminingspatialand
temporalvariationinelephant-rangingbehavior,butthelackoflong-
termlongitudinaldatasetsseriouslyconstrainssuchstudies.
Seasonal pulses in the availability and distribution of forage and
water can have enormous impacts on elephants' ranging behavior
(Bastille-Rousseauetal.,2020).Generally,forageandwatertendtobe
morewidelyavailableduringwetthandryseasons.Forexample,rain-
fallcreatestemporarypoolsof water that maybeutilizedbyanimals,
negatingtheneed to rely onmorepermanentwater sourcessuch as
riversandsprings.Similarly,anincreaseinperceivedforageavailabil-
ityduringthewetseasonmayallowanimalstoutilizesomeareasthat
aregenerallyavoided during the dryseason.Inresponsetoseasonal
fluctuations inresourceavailability,elephantsmay eithermigrateout
ofanareaorexhibitseasonalrangefidelity.Migration,definedasthe
repeatedseasonalmovementbetween two non-overlappingregions
(Dingle & Drake, 2007),allowselephants toescapesevereseasonal
declinein resources.Elephantsmayemployanextensivecontinuum
ofmovementbehaviorsthatincludesmigration,highlyvariablehome
ranges, or resident behavior (Bartlam-Brooks et al., 2011; Purdon
et al., 2018).Seasonalrangefidelit yoccurswhenanindividualchanges
thesizeofitsrangewhilemaintainingthecoreareaofhabitatuse,con-
sequentlypresenting relativelyhigh range fidelity but withachange
inthedegreeofrangeoverlap(Damuth,1981 ; Lindstedt et al., 1986).
Sitefidelityisattributabletopredictableaccesstoresources(Burton-
Robertsetal.,2022).
Maleandfemaleelephantsrangingbehaviorvariesacrossspace
andtime due to theirsocial organization(Fortinetal., 2022; Moss
et al., 2011;Wittemyer,Douglas-Hamilton,etal.,2005)aswellasthe
differenceinforagingstrategy(Duffyetal.,2011;Kiokoetal.,2020;
Lee et al., 2 011; Woo lley et al., 2009). Male e lephants may have
largerhomerangesthanfemalesastheydispersetounfamiliarhab-
itatstoseekfoodandmates(duToit&Moe,2014; Lee et al., 2011).
Unlike maleelephants,female African elephants live in matrilineal
families consisting of individuals of different ages. Family-ranging
behaviormaybeconstrainedbycalvesthatmaynotbeabletomove
fastandfarfromwatersources(Ngene,2010).Malee lepha nts ,how-
ever,moveandforagealoneorinbachelorherdswithoutcalvesthat
wouldlimittheirmovement(Ngene,2010).
ElephantsintheLaikipia-Samburuecosystemareknowntomove
overlarge areas over time because theecosystem is stronglysea-
sonal(Bastille-Rousseauetal.,2020;Wittemyeretal.,2008).Inlight
ofthis,therewasacriticalneedtodocumentandcompareelephant
movementsovertheselargeareasasonemightexpecttheirranging
behaviortovaryseasonally.Tounderstandvariationsindistribution
patternsandspaceuseofelephantsinthisresource-limitingregion,
rigorous fielddata modeled withecologically meaningfulpredictor
variablesisneeded. Understanding andpredicting patterns of ani-
malspaceuse isparticularlyimportant for heavilymanagedanimal
populationsandforspeciesthatmayseverelyaffectecologicalpro-
cesses(Reineckeetal.,2014).
Togainadeeperunderstandingofdriversofelephantspaceuse,
weanalyzedthemovementdatasetfrom43collaredelephants,col-
lectedover10 yearsintheLaikipia-Samburuecosysteminnorthern
Kenya.Ouranalysisaimedtoassess(i)thevariationinhomerange
sizesacrossseasonsand(ii)theextentofseasonalhomerangeshifts
ofelephantsinrelationtotheirproximitytotheriver.Wepredicted
thatelephantswouldhavealargerhomerangeduringthewetsea-
son to capi talize on disper sed resources. We exp ected that male
elephantswouldhavelarger homerangesizesthan femalesdueto
theirmovementinsearchofmatesanddispersedresources.Incon-
trast,becausefemaleelephantsliveinmatrilinealfamilieswithde-
pendent calves,theywould beconstrictedto areasnearriversand
watersourcesandexpectedtohavesmallerrangesthanmales.We
expectedelephantstomovefromonelocationtoanotherdepend-
ingonseasonalresources(primarywater)and,therefore,predicted
that the elephants' home range would shift to areas closer to the
EwasoNg'iroriver,whichisakeyperennialwaterresource(Barkham
&Rainy,1976)duringthedryseasonsintheecosystem.Wediscuss
theimplicationsofourresultsforelephantconservation.
2  |METHODS
2.1  | Study area
Thisstudywascondu cte di nt heLai kipia-Sambu ruecosy stemofKe ny a
using datafor 2001and 2021 (Figure 1).The ecosystem isbounded
by coordina tes 0.2° S to 1. 5° Na nd 36.2° E to 3 8° E. The ecos ystem
isdefined by the geographicextent ofthe Ewaso NyiroRiverand its
tributaries,encompassingapproximately36,790 km2(Thouless,1995)
and the his torical elepha nt migration range (G eorgiadis, 2011). Th e
study areais semi-arid withawide range of habitats linked withthe
elevation and climatic gradients that characterize the region: from
cool, wet highlands in t he south to hot, dr y lowlands in the nor th
(Georgiadis, 2011). The rainfall is highly variable and bimodal, with
   
|
3 of 10
KURIA et al.
peaksinMayandNovemberandayearlyrangefrom<400 mminthe
northtoamaximumof600 mminthesouth(Barkham&Rainy,1976 ;
Ihwagi et al., 2012).Theterrainiscomprisedofexpansiveplainsinter-
rupted by rugged terrain and isolated hills. Wildlife shares the land-
scape freely with the predominantly pastoral communities (Ihwagi
et al., 2015).TheconfirmedLaikipia-Samburuelephantrangeencom-
passes six major land use types: community conservancies, private
ranches, communal pastoral areas, state-protected forest reserves,
settlementsmainlyundersedentarysubsistenceproduction,andthe
nationalreservesthatare either owned by individuals, government,
orcommunities.Theprivate,government,andcommunitylandscom-
prise30%,11%,and59%ofthelandscape,respectively.TheLaikipia–
Samburuelephant(Loxodonta africana)populati onisthesecon dlargest
inKenya,withapproximately7347individuals,primarilyrelyingonthe
rangeoutsideofgovernmentallyprotectedareas(Litorohetal.,2010).
2.2  | Data collection
2.2.1  |  Elephantmovementbehavior
ExistingGPS-satellitedata from43 collared elephants(14malesand
29females)thatuse theLaikipia-Samburu ecosystem wereanalyzed
(Figure 2).MaleAfricanelephantsaresolitary,whereasfemaleAfrican
elephantsliveinmatrilinealfamiliesthatcanhaveasmanyas36mem-
bers(Wittemyer,2001;Wittemyer,Daballen,etal.,2005;Wittemyer,
Douglas-Hamilton, et al., 2005). Only one individual elephant was
tracked for family groups consisting of multiple females. Save the
ElephantscarriedoutelephantcollaringoperationswithKenyaWildlife
Serviceusingstandardoperatingprocedures.Thesecollarscamefrom
eitherAfricanWildlifeTrackingfromSouthAfrica,SavannahTracking
from Kenya,or Followit AB from Sweden. Costinfluences the collar
used, theenvironmentthey aredeployed in,and technical specifica-
tions.Thecollarsrecordedthelocationofeachelephantatasetof1-h
intervals.Elephanttrackingdatawereretrievedfromacentralizedda-
tabaseusingcustomizedsoftwarethatemploysadatafiltertoremove
erroneousGPSfixesbasedonamaximumrateoftravelof7 km/h(Wall
et al., 2014). The dataprojections were on the UniversalTransverse
Mercator (UTM) WGS-84 reference system zone 37 N. Data were
stored in ESRI Geodatabase (ArcGIS version 10). Data collected be-
tween2001and2021wereusedforthisstudy.All43elephantsthat
wereselectedforthisstudyhadbeentrackedatvariousintervalsdur-
ing this pe riod, but each e lephant had at le ast 1 year of continu ous
trackingdatawithatleast10 monthsoftrackingdatainanygivenyear.
Theaveragetrackingperiodforall43individualswas4.3 years(range
1–9)years,withthemosttrackedbetween2015and2018(Table S1).
FIGURE 1 ThelocationoftheLaikipia-SamburuecosysteminNorthernKenya.
4 of 10 
|
   KURIA et al.
2.2.2  |  Seasonsdatadelineation
Ecoscope(Copyright2022,WildlifeDynamics,h t t p s : / / e c o s c o p e . i o /   )
anopen-sourcePythonlibraryusedforenvironmentalandconser-
vation dataanalyseswasused to identifytransitions between wet
anddryseasons.Usingstd_ndvi_valsfunctionintheEcoscopetool,
weextractedstandardizedNDVI(NormalizedDifferenceVegetation
Index)valueswithinthestudyarea.NDVIvaluesrangebetween−1
and1;withvaluescloserto1representinghigherproductivity(i.e.,
wetseasons)andvaluescloserto−1representinglowerproductiv-
ity(i.e.,dryseasons).NDVIreflectsactualchangesinvegetationat-
tributes,therefore,itmaybeconsideredabetterproxyforseasonal
changes,thanrainfalldata.TheNDVIvalueswereextractedforthe
wholestudyperiod(2001–2021).Theval_cutsfunctionwasusedto
calculatetheseasonaltransitionpoint,whichisthepointwherethe
NDVIvalueschangefromincreasingtodecreasingorviceversa.The
seasonalwindowsfunctionwasthenusedtodeterminetheseasonal
time windows. The output was a data frame containing each sea-
son's start and end dates, along with a label foreach season.The
seasonaltimewindowsdataframewasexportedtoaCSVfile.The
season'sdatawereusedtodeterminewhetheranelephantlocation
fixwasduringthewetordryseasons,hencesplittingtheelephant
movementdata intotwo (Figure 3).Thiswasachievedbyassigning
anelephantlocationGPSfixtimetoeitherwetordrydependingon
the season.
2.3  | Data analyses
TheAutocorrelatedKernelDensityEstimation(AKDE)methodwas
usedtoestimatetheindividualelephants'corearea(areasbounded
by50%isopleths)andtotalhomerangesize(areasboundedby95%
isopleths)forevery wet anddry instance in a year.Weconsidered
anyperiod lasting morethan80 days of continuous wet or drype-
riodsasa‘significant’wetordryinstance.Wetseasonsinthearea
typicallylast80 days,andtheareaexperiencestwowetseasons in
ayear.Therefore,anaverageyearwouldhavetwowetandtwodry
instances. AKDE was considered appropriate because it was de-
signed tobestatisticallyefficient whendealing withthecomplexi-
tiesand biasesofmodern movementdata,suchasautocorrelation
andmissingdata (Silvaetal., 2022). Semi-variancefunctions (SVF)
werecalculated for eachelephantto assessforrangeresidencyin
alldatasets(Calabreseetal.,2016).Rangeresidencyisanassump-
tionoftheAKDEapproach and isnecessary forthemethodto de-
fineahome rangeaccurately.Theelephantsusedinthis studyare
residents of the Samburu Laikipia ecosystem. We calculated the
WeightedAKDEc(or wAKDEc)tocater forwhen the devicehad a
malfunction, leading toGPS fixesshiftingfrom one fixperhour to
onefixper‘n’hours.Weestimatedtheseasonalhomerangeshiftin
relationtotheirproximitytoriversbycalculatingthedisplacement
ofthecentroidsofindividualelephantcoreareasduringthewetand
dryseasons.WeusedArcGIS(Esri,2011)tocomputethecorearea
FIGURE 2 Rangeextentofthe43
elephants(eachrepresentedbyarandom
color)trackedintheLaikipia-Samburu
ecosystem.
   
|
5 of 10
KURIA et al.
centroids,whichwere calculated using thecentreofgravity algo-
rithm (Ba rtlett e t al., 2016). Th e centroids' coor dinates were the n
extractedandusedtodeterminetheshiftintheindividualelephant
core areas a cross seasons. A rcGIS was also u sed to calculate t he
distancefromthecentroidstotheriver.Thisanalysis allowedusto
quantifyandcomparethemovementpatternsofelephantsbetween
thedryandwetseasons,providinginsightsintohowtheircoreareas
change in response to seasonal changes.
Generalized line ar mixed models (GLMMs) with Gamma error
struc ture and log link f unction were t hen used to test t he effect
ofseason and sex ofindividual elephants on boththe total home
rangeandcoreareas.AllourmodelsincludedelephantIDasaran-
domeffecttoaccountforrepeatedsamplingofindividuals'(multiple
tracki ng instances). To account for di fferences in sampling ef fort
(differences in thenumber of daysper tracking instance), we have
included sampling days per instance as an offset in our models.
Wefittedall ourmodelsusing the generalized linear mixed effect
model ‘glm er’ function of t he ‘lme4’ package ( Bates, 2010; B ates
et al., 2015). Generalized linearmodel(GLM) wasused to test the
effect of season and sex on seasonal home range shift in relation
to their pr oximity to river Ewaso N gi'ro. Similarly, to accoun t for
differencesinsamplingeffort,wehave includedsamplingdaysper
instanceasanoffsetin our models. Akaike's Information Criterion
(AIC) Weighting was used for model averaging and to evaluate
suppor t for competing ra nging behavior mo dels. Model sele ction
andaveragingwereperformedusingtheRpackageMuMInversion
4.2.0(Barton,2016).AllstatisticalanalyseswereperformedusingR
(RCoreTeam,2021),andalltestswerecarriedoutatasignificance
levelof0.05.
3  |RESULTS
Atotal of 771,919hourlyGPS fixes were collectedduringthe dry
seasonand990,772duringthewetseason.Thesedatarepresented
340individual seasonsacross2001–2021.Allindividualelephants'
coreareasrangedbetween3and1743 km2,whereasthetotalhome
range ra nged betwee n 15 and 10,677 km2. Base d on AICc value s,
thebestranking models included season only,and season and sex
asthebestpredictorsoftotalhomerangesize,aswellascoreareas
(Table 1).Weconsideredthelatermodel(includingseasonandsex)
becauseitalignsbetterwith theoreticalexpectations.Onaverage,
the core (50 % isopeth) home r ange size was 67% (101 km2) larger
during wetthan thedry season ( χ2= 21.06,p< .001).Similarly,the
total home range size was 61% (521 km2) larger during wet than
thedryseason( χ2= 15.45, p< .001).Sexdidnotinfluence the indi-
vidualelephant'scoreareaandhomerangesize(χ2= 0.63,p= .429;
χ2= 1.07,p= .300respectively,Figure 4).
FIGURE 3 Rangeextentofelephants
duringthewetanddryseasonsfromGPS
trackingdatacollectedfrom43individuals
intheLaikipia-Samburuecosystem.
6 of 10 
|
   KURIA et al.
Onaverage,thecoreareacentroidsforallelephantswere17 km
awayfromthenearestriver(range0.2–150.3 km).Femaleshadtheir
coreareasclosertotheriverthanmales(13.5vs.27.5 km).Basedon
AICcvalues,thebestrankingmodelincludedseasonandsexasthe
bestpredictorofhomerangeshift(Table 1).Femalesdifferedfrom
males in their response to seasonal variation ( χ2= 6.43, p= .011).
Females tended to occupyareasfarther from the riverduringthe
wetseason,whilemalesoccupiedareasfurtherfromtheriverduring
thedryseason(Figure 5).
4  |DISCUSSION
Understandingelephant rangingbehaviorinaridenvironmentscan
provideinsightintoecologicalconstraintsandrequirementsforthe
species.Wehadpredicted thatelephantswould havelarger home
rangesandcoreareasduringthewets eas ontha nduri ngthedrysea -
son,andthat maleswouldhaveoverall largerrangesthanfemales.
Wefoundevidenceinsupport of ourfirst prediction; but notthat
males have la rger home rang es than female s. Our predic tion that
elephantswouldshifttheirhomerangebasedonseasonswassup-
ported.Lastly,ourpredictionthat elephantswouldshifttheircore
areastooccupyareasproximatetotheriver(perennialwatersource)
duringthedryseasonwaspartiallysupported.
The differencesbetweenwet anddry season coreareas and
the home range size observedin thisstudycan be attributed to
increased dispersion of water and forage resources during the
wetseason, allowing elephants to utilize sectionsof the habitat
thatarenormallyavoidedduringthedryseason.Inourstudy,the
river Ewaso Ng 'iro is the only w ater source duri ng the dry se a-
son.However,numerousephemeralwaterpoolsbecomeavailable
duringthewetseason(Ihwagietal.,2010)resultinginhigh-quality
forageresourcesbecomingmoreavailableawayfromtheriver,im-
plyingt hatel ephant scantakelongforaysawayfromtheriver. Our
findingsconcurwith several other studies thathave shownthat
elephantstendtoreducetheirhomerangesduringthedryseason
byconcentrating their foraging activitiesin areasclose towater
(ChamaillÉ-Jammesetal.,2007;deBeeretal.,2006; Leggett , 2006;
Osborn&Parker,2003;Owen-Smith,2004;Redfernetal.,2003;
Smit et al. , 2007). The ef fect of seasona l shrinking and ex pan-
sionofelephanthomerange warrants subsequentinvestigation.
One possi bility is that re duction in hom e range size during th e
dryseasonmayconcentrateelephantbrowsingdamagetosmall-
isolated patches, significantly impacting vegetation. However,
TAB LE 1  Candidatemodelsofthetemporalvariationofthe
elephantrangingbehaviorinrelationtotheseasonintheLaikipia-
Samburuecosystem,Kenya,2001–2021.
Model AICc Delta
Totalhomerangesize Season 5 089.15 0
Sex + season 5090.14 0.99
Season * sex 5092.17 3 .027
15101 .97 12.819
Sex 5102.95 13.802
Coreareasize Season 3918.16 0
Sex + season 39 19. 59 1.433
Season * sex 3921.45 3.291
13936.21 18.055
Sex 39 3 7. 6 3 19. 476
Coreareashift Sex * season 2195.84 0
Sex 2197. 95 2.119
Sex + season 2200 4.168
12226.39 30.55
Season 2227.12 31.29
Note:Allmodelsincludedelephantidentificationasarandomfactorand
thenumberofdayspertrackinginstanceasanoffset.
FIGURE 4 Seasonaldifferencesin
predicted(a)totalhomerangeand(b)core
areasofelephantsinLaikipia-Samburu
ecosystem.Predictedhomerangevalues
areobtainedfromourbest-candidate
model.Errorbarsrepresentstandard
errors(±oneSE).
   
|
7 of 10
KURIA et al.
such patch es may recover from h eavy browsin g once elephant s
disperseduringthewetseason.
Theobservedincreaseinhome rangeandcoreareasizeduring
thewetseasonwasconsistentforbothmaleandfemaleelephants.
These f indings concu r with an earlie r study that sh owed that the
home ran ge of sexually imm ature males, n on-musth , sexually ma-
turemales,andfemalesissimilar(Whitehouse&Schoeman,2003).
However,sexually active males have been reported to have more
extensivehomerangesthanfemales(Barnes,198 3; Leggett, 2006;
Poole&Moss,1989;Tayloretal.,2020;Viljoen,1989;Whitehouse&
Schoeman,2003).Inourstudy,wedidnotaccountforthereproduc-
tivestatusof individual elephants. However,we expect suchsimi-
laritiescould bemootedbecause theSamburu-Laikipia ecosystem
experiences longdry periods,and bothmales'and females' move-
mentsarelimitedtoareasnearwaterpointsduringthedryseason.
Thisstudyshowedthatonaverage,femalestendedtooccupy
areas further fromthe river during the wet season,while males
occupiedareasfurtherfromtheriverduringthedryseason.This
isbecauseduringthedryseasonstheresourcesavailable,thatis,
waterand food,become limited.Therefore, for the freeroaming
adultmaleelephantsmustmoveawayfromtheriverinsearchof
food. In t he wet season, ma le elephant s prefer to stay cl ose to
theriver.Thisisbecauseoftheavailabilitywaterandhighquality
forage near theriverduringthe wet season withthe consistent
needtodrinkwateraselephantrequiredrinkingwatereveryone
or2 days(Douglas-Hamilton,1973).Shannon concurred withthe
resultsasshenotedthatelephantsareattractedtohabitatsnear
rivers anddams,which notonly provide drinking water but also
anabundanceof forage(Shannonet al., 2006).Astudydone by
Leggettfoundsimilarresultswithdistinctseasonalmovementof
collared elephantsbetween theirwetand dryseasoncore areas
(Leggett, 2006). However, Viljoen reported that the elephants
of the northwestrestrict themselves to seasonalranges within
their individual home ranges, irrespective of higher rainfall or
riverfloodsinareasadjacenttotheirhomeranges(Viljoen,1989).
During thedryseason,female elephants are morelikely toshift
their core a rea to occupy area s near the river, wher e water re-
sources are moreavailable becausefemaleelephants'movement
isrestrictedbydependentcalves. Thisexplainswhyfemaleshad
their core areascloser to theriverthan males.This seasonal be-
haviorunderscorestheimportanceofriversandwatersourcesfor
the Samburu-Laikipia ecosystem elephants' sur vival and move-
mentpatterns.
TheAKDEhomerangesobservedforGPS-collaredelephants
intheLaikipia-Samburuecosystemrangedfrom22to10,677 km2.
Thehomerangesizesofthisstudyarecomparabletohomeranges
reportedinotherstudies(Table 2).Themaximumareaofthetotal
home ran ge for the female r eported in t his study is 10,677 k m2
while the t otal home rang e for males in this s tudy is 6921 km2.
The large home ranges are comparable to the desert-dwelling
elephan ts of Mali with an ap proximate home ra nge of 11,500–
23,980 km2 (Wall et al., 2013) as they had larger home ranges
thanpreviouslyreportedforsavannaelephants.Thelargerhome
ranges of elephants in northwest Namibia probably reflect the
typeandqualityofavailablevegetation(Viljoen,1989).Thelarge
homerange sizesreportedinthis studycould be because of the
unpredictableavailabilityofwater.Secondly,foodavailabilitymay
belimited,thusforcinganimalstomoveoverawiderareaand/or
th e s p atiald i s tributio n ofhab i t a tt y p e sofh i ghernu t r i t ionalq u a l it y
mayresultinawiderareabeing traversed. Thehomerangesizes
determinedbyradio-trackingcollarswereusuallylargerthanthe
onesrevealedbyvisualidentification(Leuthold,1977 ).Thesmall
homerange sizeofsomeelephants couldbe because ofphysical
barrie rs therefore con fining them to a sm aller range of habi tat.
Thehomerangesizesof14to52 km2fortheAfricanelephantat
LakeManyara NationalPark,Tanzania(Douglas-Hamilton,1972)
FIGURE 5 Seasonaldifferencesinpredictedcoreareashift
ofelephantsinLaikipia-Samburuecosystem.Predictedcorearea
valuesareobtainedfromourbestcandidatemodel.Errorbars
representstandarderrors(±oneSE).
TAB LE 2  Autocorrelatedkerneldensityestimation(AKDE)home
rangeestimatesofelephantsfromBukitTigapuluh,Khaudum,
Etosha,Zambezi,andKunene.
Region
Home range size
(km2)References
BukitTigapuluh,Indonesia 275–518 0 Moßbrucker
etal.(2016))
KhaudumNationalPark,
Namibia
3000–12,000 Benitez
etal.(2022)
EtoshaNationalPark,
Namibia
280–38,000 Benitez
etal.(2022)
Zambezi,Namibia 1400–25,000 Benitez
etal.(2022)
Kuneneregionof
northwesternNamibia
1500–37,000 Benitez
etal.(2022)
8 of 10 
|
   KURIA et al.
couldbeimposedbythedensevegetationinthepark,likelypro-
vidingahighdensityofforageforelephants.
Sambur u-Laikipia e cosystem is amon g the many ecosys tems
worldwidethat are facing increased fragmentation. Factors con-
tributingtosuchfragmentationincludeintensiveagriculture,over-
grazing , conversion of large a reas to human sett lements, ill egal
logging,urbanization,etc.Suchfragmentationwilllikelyaffectthe
distributionpatterns ofelephantsandotherherbivoresin these
systems . The future clima tic projections s uggest an increa se in
droughtfrequencyandseverityintheregion(GebremeskelHaile
et al., 2019).Such changesmayhavesevere implicationsforele-
phantsaswellasotherbiodiversity.Elephants,amongotherspe-
cies,co ntra c tth eirran getor emainn earperm ane ntw ate rso urces.
Spendingmoretimeinthevicinityofwaterintensifiesthebrows-
ingpressure inthoseregionsandmaycauseremarkable changes
invegetationcoverandcomposition.IntheLaikipia-Samburueco-
system,EwasoNg'iroRivertendstoretainwaterfor aprolonged
perioddur ingdr ought ,at trac tinga nimal sf romdi fferentr egion sto
thearea.Conservationeffortsshouldfocusonmaintaininganet-
workof conservationareasthatislargeenoughtoaccommodate
seasonalexpansion inhomerangeor migrationofanimalswhile
stillmaintainingaccesstocriticalresourcessuchaswateranddry
seasonforaginghabitats.
In conclusion, the behavioral patterns of elephants in the
Samburu-Laikipia ecosystemare intricately tiedto seasonal varia-
tions.Thewetseasonpromptstheexpansionofhomerangeaswater
and food resources become more abundantacross the landscape.
Contrarytoour predictions,male elephantsdidnotexhibitsignifi-
cantly larger homerangesthan females, indicatingthat females as
well as males demonstrate the use of vast areas. The prolonged
dry pe riods in the La ikipia-Sambu ru ecosyste m facilitate el ephant
home rangeshifts acrossseasons. Thisraisesquestions about po-
tentialtrade-offsbetweenforagingnearwateringpointswithlower-
qualityresourcesandembarkingoncostlyjourneystodistantfood
patches.Given these challenges, theL aikipia-Samburuecosystem
necessitates tailored conservation strategies such as protection
andmanagementof movementcorridors,communityengagement
andeducation,habitatrestorationamongothersthatwouldensure
thelongevityofelephantpopulationswhilesafeguardinglandscape
connectivityand crucialmovementcorridors,addressingbothim-
mediateandlong-termthreats.
AUTHOR CONTRIBUTIONS
Loise W. Kuria: Conceptualization(equal);datacuration(lead);for-
mal analysis (lead); methodology (equal); writing – original draft
(lead); writing – review and editing (equal). Duncan M. Kimuyu:
Conceptualization (equal); data curation (equal); formal analysis
(equal); me thodolog y (equal); writi ng – review and edi ting (equal).
Mwangi J. Kinyanjui:Fundingacquisition(supporting);writing–re-
viewandediting(supporting).George Wittemyer:Writing–review
and editing (equal). Festus W. Ihwagi: Conceptualization (equal);
data curation (equal); formal analysis (equal); funding acquisition
(lead);methodology(equal);writing–reviewandediting(equal).
ACKNOWLEDGEMENTS
Wethankeveryonewhocontributed to this research paperinone
way or anoth er.Wi thout your sup port, this w ork would not have
been accomplished. Wethank Save the Elephants and the Center
for Mountain and Climate Change for providing the financialsup-
porttopursuethisstudy.Tomyfellowcolleagues,AlfredKibungei,
PaulMunene,andRobertAng'ilaIacknowledgeandappreciateyour
support.
CONFLICT OF INTEREST STATEMENT
Thecorrespondingauthorconfirmsonbehalfofallauthorsthatno
involvementsmightraisethequestionofbiasinworkreportedorin
theconclusions,implications,oropinionsstated.
DATA AVAIL AB I LI T Y STATE MEN T
Thedata onhome rangesize and shift acrossseasonsare publicly
available on the Dryad website (h t t p s : / / d o i . o r g / 1 0 . 5 0 6 1 / d r y a d .
djh9w0w77). GPS positions of elephant distribution are ethically
restrictedasthelocationsmayjeopardizetheanti-poachingopera-
tionsand thusputelephants atgreaterrisk. The dataarehowever
available on written request from the Office of Senior Assistant
DirectorofKenyaWildlifeService.
ORCID
Loise W. Kuria https://orcid.org/0009-0000-4422-7029
George Wittemyer https://orcid.org/0000-0003-1640-5355
REFERENCES
Barkham, J. P., & Rainy,M. E. (1976).The vegetation of the Samburu–
Isiolo Game Reser ve. African Journal of Ecology, 14(4), 297–329.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 0 2 8 . 1 9 7 6 . t b 0 0 2 4 4 . x
Barnes,R.F.W.(1983).Elephantbehaviourinasemi-arid environment.
African J ournal of Ecolog y, 21(3),185–196.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j .
1 3 6 5 - 2 0 2 8 . 1 9 8 3 . t b 0 1 1 8 0 . x
Bartlam-Brooks,H.L .A .,Bonyongo,M. C.,&Harris,S.(2011).Willrecon-
necting ecosystems allow long-distance mammalmigrations to re-
sume?AcasestudyofazebraEquus burchellimigrationinBotswana.
Oryx, 45(2),210–216.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 7 / S 0 0 3 0 6 0 5 3 1 0 0 0 0 4 1 4
Bart lett, T. Q., Light , L. E. O., & Broc kelman, W. Y. (2016). Long-term
home ran ge use in white-handed gibbo ns (Hylobates lar)in k hao
YaiNationalPark, Thailand. American Journal of Primatology, 78(2),
192–20 3 .h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / a j p . 2 2 4 9 2
Barton, K. (2016). Package ‘MuMIn’: Multi- model inference. R package
version 1.15.6. h t t p s : / / c r a n . r - p r o j e c t . o r g / w e b / p a c k a g e s / M u M I n / 
MuMIn.pdf
Bastille-Rousseau,G.,Wall,J.,Douglas-Hamilton,I.,Lesowapir,B.,Loloju,
B., Mwangi, N., & Wittemyer,G. (2020). Landscape-scale habitat
responseofAfricanelephantsshowsstrongselectionforforaging
opportunitiesin ahumandominatedecosystem. Ecography, 43(1),
149–1 6 0 . https:// doi. org/ 10. 1111/ ecog. 04240
Bastille-Rousseau, G., & Wittemyer,G.(2019).Leveragingmultidimen-
sionalheterogeneityinresourceselectiontodefinemovementtac-
tics of an imals. Ecology Letters, 22(9 ), 1417–1427. https:// doi. org/
10. 1111/ e le. 13327
Bates, D. (2010). lme4: Linear mixed- effects models using S4 classes. R
packageversion0.999375-37.h t t p s : // w w w . r - p r o j e c t . o r g /
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H.,
Singman n, H., Dai, B., & G rothendieck , G. (2015). lme4: Linear
   
|
9 of 10
KURIA et al.
mixed- effects models using Eigen and S4. R package version 1.1-7.
2014.
Benite z, L., Kilia n, J. W., Wittemyer, G. , Hughey, L. F., Fleming , C. H.,
Leimgruber,P.,duPreez, P.,& Stabach, J. A. (2022).Precipitation,
vegetat ion product ivity, and hum an impact s control home r ange
sizeofelephantsindrylandsystemsinnorthernNamibia.Ecology
and Evolution, 12(9),e9288.ht tps:// doi. org/ 10. 1002/ ece3. 9288
Bolla, A ., & Hovorka, A. (2012). Placing wild animals in Botswana:
Engaging Geography's transspecies spatial theory. Humanimalia,
3(2),56–82.h t t p s : / / d o i . o r g / 1 0 . 5 2 5 3 7 / h u m a n i m a l i a . 1 0 0 4 8
rger,L .,Dalziel,B.D.,&Fr yxell,J.M.(200 8).Aretherege neralm echa-
nismsofanimalhomerangebehaviour?Areviewandprospectsfor
futureresearch.Ecology Letters, 11(6),637–650.https:// doi. org/ 10.
1 1 1 1 / j . 1 4 6 1 - 0 2 4 8 . 2 0 0 8 . 0 1 1 8 2 . x
Börger,L.,Franconi,N.,DeMichele,G.,Gantz,A.,Meschi,F.,Manica,A.,
Lovari, S., &Coulson,T.(2006). Effects ofsamplingregimeonthe
meanandvarianceofhomerangesizeestimates.Journal of Animal
Ecology, 75 (6), 1393–1405. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 6 5 6 .
2 0 0 6 . 0 1 1 6 4 . x
Burton-Roberts, R., Cordes, L. S., Slotow, R., Vanak, A. T.,Thaker,M.,
Govender,N., & Shannon, G.(2022). Seasonal range fidelity of a
megaherbivore in response to environmental change. Scientific
Reports, 12(1),22008.h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 2 - 2 5 3 3 4
- 8
Calabrese,J.M.,Fleming,C.H.,&Gurarie, E.(2016).Ctmm:An Rpack-
ageforanalyzinganimalrelocationdata asacontinuous-time sto-
chastic process. Methods in Ecology and Evolution, 7(9),1124–1132.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / 2 0 4 1 - 2 1 0 X . 1 2 5 5 9
Calenge,C.,Maillard,D.,Gaillard,J.-M.,Merlot,L.,&Peltier,R. (2002).
ElephantdamagetotreesofwoodedsavannainZakoumaNational
Park, Chad.Journal of Tropical Ecology, 18(4),599–614.h t t p s : // d o i .
o r g / 1 0 . 1 0 1 7 / S 0 2 6 6 4 6 7 4 0 2 0 0 2 3 9 0
ChamaillÉ-Jammes, S., Valeix,M., & Fritz, H.(2007).Managing hetero-
geneity in elephant distribution: Interactions between elephant
populationdensityandsurface-wateravailability.Journal of Applied
Ecology, 44(3), 625–633. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 6 6 4 .
2 0 0 7. 0 1 3 0 0 . x
Damuth,J.(1981).Homerange,homerangeoverlap,andspeciesenergy
useamongherbivorousmammals.Biological Journal of the Linnean
Society, 15(3), 185–193. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 3 1 2 .
1 9 8 1 . t b 0 0 7 5 8 . x
deBeer,Y.,Kilian,W.,Versfeld,W.,&vanAarde,R.J.(2006).Elephants
and low ra infall alter wo ody vegetatio n in Etosha Nation al Park,
Namibia.Journal of Arid Environments, 64(3),412–421.h t t p s : // d o i .
o r g / 1 0 . 1 0 1 6 / j . j a r i d e n v . 2 0 0 5 . 0 6 . 0 1 5
Dingle, H., & Drake, V. A.(2007).What ismigration? Bioscience, 57(2),
113–121 . h t t p s : / / d o i . o r g / 1 0 . 1 6 4 1 / B 5 7 0 2 0 6
Douglas-Hamilton, I. (1972). The elephant s of Lake Manyara. Doctoral
dissertation,D.Phil.Thesis,OxfordUniversity.https:// www. savet
h e e l e p h a n t s . o r g / w p - c o n t e n t / u p l o a d s / 2 0 2 3 / 1 0 / 19 7 2 - D o u g l a s - 
H a m i l t o n - T h e - E c o l o g y - a n d - B e h a v i o u r - o f - t h e - A f r i c a n - E l e p h a n t - 
D o u g l a s - H a m i l t o n - D - P h i l - t h e s i s - 2 B . p d f
Douglas-Hamilton, I. (1973).On theecology andbehaviour of the Lake
Manyaraelephants. African Journal of Ecology, 11(3–4), 4 01–403.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 0 2 8 . 1 9 7 3 . t b 0 0 1 0 1 . x
duToit,J.,&Moe,S.(2014).Elephants and Savanna Woodland Ecosystems:
A study from Chobe National Park, Botswana.
Duffy,K.J.,Dai,X.,Shannon,G.,Slotow,R.,&Page,B.(2011).Movement
patternsofAfricanelephants(Loxodonta africana)indifferenthab-
itattypes.South African Journal of Wildlife Research, 41(1),21–28.
Esri, A. D. (2011). Release 10. Documentation manual. Environmental
SystemsResearchInstitute.
Fortin, D., Bérubé,A.-J., Boudreau, S., Shrader, A., & Ward,D. (2022).
Density-dependent habitat selection varies between male and
female African elephants. Biological Conservation, 276 , 109794.
h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . b i o c o n . 2 0 2 2 . 1 0 9 7 9 4
GebremeskelHaile,G.,Tang, Q., Sun,S.,Huang,Z.,Zhang,X.,&Liu,X .
(2019). Drought s in East Africa: C auses, impac ts and resilience.
Earth- Science Reviews, 19 3, 146–161. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
e a r s c i r e v . 2 0 1 9 . 0 4 . 0 1 5
Georgiadis,N.J.(2011).Conserving wildlife in African landscapes: Kenya's
Ewaso ecosystem (p.632).Smithsonian Institution Scholarly Press.
SmithsonianContributionstoZoology.h t t p s : / / d o i . o r g / 1 0 . 5 4 7 9 /s i .
0 0 8 1 0 2 8 2 . 6 3 2
Ihwagi, F., Vollrat h, F., Chira, R ., Douglas-H amilton, I., & Kironchi, G.
(2010). The im pact of eleph ants, Loxodon ta African a, on woody
vegetation through selective debarkingin Samburu and Buffalo
Spring s National Rese rves, Kenya. African Journal of Ecology, 48,
87–9 5. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 0 2 8 . 2 0 0 9 . 0 1 0 8 9 . x
Ihwagi, F. W., Chira, R. M., Kironchi, G., Vollrath, F., & Douglas-
Hamilton, I. (2012). Rainfallpattern and nutrient content influ-
ences on African elephants' debarking behaviour in Samburu
andBuffaloSpringsNationalReserves,Kenya.African Journal of
Ecology, 50(2), 152–159. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 0 2 8 .
2 0 1 1 . 0 1 3 0 5 . x
Ihwagi,F.W.,Wang,T.,Wittemyer,G.,Skidmore,A.K.,Toxopeus,A.G.,
Ngene,S.,King,J., Worden,J., Omondi,P.,&Douglas-Hamilton,I.
(2015). Using poaching levels and elephant distribution to assess
the conse rvation ef ficacy of p rivate, commu nal and governm ent
landinnorthernKenya.PLoS On e, 10(9),e0139079.https:// doi. org/
1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 3 9 0 7 9
Kenward,R.E.,Clarke,R.T.,Hodder,K.H.,&Walls,S.S.(2001).Densit y
andlinkageestimatorsofhomerange:Nearest-neighborclustering
definesmultinuclearcores.Ecolog y, 82(7),1905–1920.h t t p s : // d oi.
o r g / 1 0 . 1 8 9 0 / 0 0 1 2 - 9 6 5 8 ( 2 0 0 1 ) 0 8 2 [ 1 9 0 5 : D A L E O H ] 2 . 0 . C O ; 2
Kioko,J.,Horton,A.,Libre,M.,Vickers,J.,Dressel,E.,Kasey,H.,Ndegeya,
P.M., Gadiye,D.,Kissui,B., & Kiffner,C. (2020).Distributionand
abundance of African elephants inNgorongoro crater, northern
Tanzania.African Zoology, 55(4),303–310.https:// doi. org/ 10. 10 80/
15627020.2020.1813625
Lee,P.C.,Lindsay,W.K.,&Moss,C.J.(2011).Chapter6:Ecologicalpat-
ternsofvariabilityindemographicrates.InC.J.Moss,H.Croze,&
P.C.Lee(Eds.),The Amboseli elephant s: A long-term perspective on a
long-lived mammal(Vol.1,pp.74–88).Universit yofChicagoPress.
h t t p s : / / d o i . o r g / 1 0 . 7 2 0 8 /c h i c a g o / 9 7 8 0 2 2 6 5 4 2 2 6 3 . 0 0 3 . 0 0 0 6
Legget t, K. E. A. (20 06). Home range an d seasonal moveme nt of el-
ephants in the Kunene region, northwestern Namibia. African
Zoology, 41(1), 17–36. h t t p s : / / d o i . o r g / 1 0 . 1 0 8 0 / 1 5 6 2 7 0 2 0 . 2 0 0 6 .
11407332
Leutho ld, W. (1977). Spatial or ganizatio n and strate gy of habita t utili-
zation of e lephants in Tsavo Nat ional Park , Kenya. Zeitschrift fur
Saugetierkunde, 42(6),358–379.
Lindstedt, S.L., Miller,B. J., &Buskirk,S.W.(1986).Homerange, time,
andbodysizeinmammals.Ecolog y, 67(2),413–418 .https:// doi. org/
1 0 . 2 3 0 7 / 1 9 3 8 5 8 4
Litoroh,M.,Ihwagi,F.W.,Mayienda,R.,Bernard,J.,&Douglas-Hamilton,
I.(2010). Total aerial count of elephants in Laikipia- Samburu ecosys-
tem in November 2008.KenyaWildlifeService.
Moss, C.J.,Croze, H.,& Lee, P.C. (2011).1.“The Amboseli elephants:
Introduction”.InC.J.Moss,H.Croze,&P.C.Lee(Eds.),The Amboseli
elephants: A long- term perspective on a long- lived mammal(pp.1–8).
UniversityofChicagoPress.h t t p s : / / d o i . o r g / 1 0 . 7 2 0 8 / 9 7 8 0 2 2 6 5 4 2
2 6 3 - 0 0 3
Moßbrucker, A. M., Fleming, C. H., Imron, M. A., & Pudyatmoko, S.
(2016).AKDEChomerangesizeandhabitatselectionofSumatran
elephants. Wildlife Research, 43(7), 566–575. https:// doi. org/ 10.
1 0 7 1 / W R 1 6 0 6 9
Ngene,S.M.(2010).Why elephant roam.UniversityofTwente,Facultyof
Geo-informationScienceandEarthObservation.
Ortega,J.,&Eggert,L.(2004).The living elephants: Evolutionary ecology,
behavior, and conservation(Vol.85,pp.581–582).OxfordUniversity
Press.h t t p s : / / d o i . o r g / 1 0 . 1 6 4 4 / 1 3 8 3 9 6 0
10 of 10 
|
   KURIA et al.
Osborn, F.V.,& Parker,G. E. (2003). Towardsan integrated approach
forreducing the conflictbetweenelephantsandpeople:Areview
of current research. Oryx, 37(1),8 0–84. ht tps:// doi. or g/ 10 . 1017/
S0030605303000152
Owen-Smith,N.(2004).Functionalheterogeneityinresourceswithin
landscapes and herbivore population dynamics. Landscape
Ecology, 19(7), 761771. https:// doi. or g/ 10. 1007/ s1098
0 - 0 0 5 - 0 2 4 7 - 2
Poole, J., & Moss,C.(1989).Elephant mate searching:Group dynamics
andvocalandolfactorycommunication.Proceedings of the Sym posia
Zoological Society (London), 61,111–125.
Purdon ,A .,Mol e, M.A .,Ch as e,M.J.,&va nA arde,R.J.(2018).Par tialmi-
grationinsavannaelephantpopulationsdistributedacrosssouth-
ernAfrica.Scientific Reports, 8(1),11331.https:// doi. org/ 10. 1038/
s 4 1 5 9 8 - 0 1 8 - 2 9 7 2 4 - 9
RCoreTeam.(2021).R:Alanguageandenvironmentforstatisticalcom-
puting.Publishedonline2020.Supplemental Information References
S, 1,371–378.
Redfern,J.V.,Grant,R.,Biggs, H.,&Getz,W.M.(2003).Sur face-water
constraints on herbivore foraging in the Kruger National Park,
SouthAfrica.Ecology, 84(8),2092–2107.https:// doi. org/ 10. 1890/
0 1 - 0 6 2 5
Reinecke, H., Leinen, L., Thißen, I., Meißner, M., Herzog, S., Schütz,
S., &Kiffner,C. (2014). Homerange sizeestimates of red deerin
Germany:Environmental,individualandmethodologicalcorrelates.
European Journal of Wildlife Research, 60,237–247.https:// doi. org/
10. 1007/ s1034 4 - 013- 0772- 1
Roever,C.L.,vanAarde,R.J.,&Leggett,K.(2012).Functionalresponses
inthehabitatselectionofageneralistmega-herbivore,theAfrican
savannah elephant. Ecography, 35(11),972–982.https:// doi. org/ 10.
1 1 1 1 / j . 1 6 0 0 - 0 5 8 7 . 2 0 1 2 . 0 7 3 5 9 . x
Shannon,G., Page, B., Slotow, R., &Duffy,K. (2006). African elephant
homerange andhabitatselectioninPongolagame reserve, South
Africa. African Zoology, 41(1), 37–44. https :// doi. org/ 10 . 108 0/
1 5 6 2 7 0 2 0 . 2 0 0 6 . 1 1 4 0 7 3 3 3
Silva, I.,Fleming,C .H.,Noonan, M.J.,Alston,J.,Folta,C.,Fagan,W.F.,
& Calab rese, J. M. (202 2). Autocorre lation-in formed hom e range
estimation:A review and practicalguide.Methods in Ecology and
Evolution, 13(3), 534–544. ht tps: // doi. org / 10. 1111/ 2041- 210X.
13786
Smallie, J. J., & O'Connor, T. G. (2000). Elephant utilization of
Colophospermum mopane: Possible benefits of hedging. African
Journal of Ecology, 38(4),352–359.h t t p s : / / d o i . o r g / 1 0 . 1 0 4 6 / j . 1 3 6 5 - 
2028.2000.00258.x
Smit,I.P.J.,Grant,C.C.,&Whyte,I.J.(2007).Elephantsandwaterpro-
vision:Whatarethemanagementlinks?Diversity and Distributions,
13(6),666–669.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 4 7 2 - 4 6 4 2 . 2 0 0 7 . 0 0 4 0 3 .
x
Sukuma r, R. (20 03). The living elephants: Evolutionary ecology, behavior
and conservation.OxfordUniversityPress.
Taylor,L. A.,Vollrath,F.,Lambert,B.,Lunn,D.,Douglas-Hamilton, I., &
Wittemyer,G. (2020). Movementreveals reproductive tactics in
maleelephants.Journal of Animal Ecology, 89(1),57–67.ht t p s : // d o i .
o r g / 1 0 . 1 1 1 1 / 1 3 6 5 - 2 6 5 6 . 1 3 0 3 5
Thouless,C.R.(1995).Longdistancemovementsofelephantsinnorth-
ern Kenya. African Journal of Ecolog y, 33(4), 321–334. h t t ps: // d o i .
o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 0 2 8 . 1 9 9 5 . t b 0 1 0 4 2 . x
Valls-Fox, H., Chamaillé-Jammes, S., de Garine-Wichatitsky, M.,
Perrotton, A., Courbin, N., Miguel, E., Guerbois, C., Caron, A.,
Loveridge, A., St apelkamp, B., Muzamba , M., & Fritz, H. (2018).
Water and cattle shape habitat selection by wild herbivores at
theedgeofaprotectedarea.Animal Conservation, 21(5),365–375.
https :// doi. or g/ 10. 1111/ a cv. 1 2403
Viljoe n, P. J. (1989). Habitat sele ction and pr eferred food pl ants of
a desert-dwelling elephant population in the northern Namib
Deser t, south West Af rica/Namibia . African Journal of Ecology,
27(3), 227–240. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 0 2 8 . 1 9 8 9 .
t b 0 1 0 1 6 . x
Wall, J., Wittemyer,G.,Klinkenberg,B., & Douglas-Hamilton, I. (2014).
Novel opportunities for wildlife conservation and research with
real-time monitoring. Ecological Applications, 24(4), 593–601.
https:// doi. org/ 10. 1890/ 13- 1971. 1
Wall,J.,Wittemyer,G.,Klinkenberg,B.,LeMay,V.,&Douglas-Hamilton,
I. (2013). Cha racterizing p roperties an d drivers of long dis tance
movementsbyelephants(Loxodontaafricana)intheGourma,Mali.
Biological Conservation, 157,60–68. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . b i o -
con. 2012. 07. 019
Whitehouse,A.M.,&Schoeman,D.S.(2003).Rangingbehaviourofele-
phantswithinasmall,fencedareainAddoelephantNationalPark,
South Africa. African Zoology, 38(1), 95–108. https:// doi. org/ 10.
1 0 8 0 / 1 5 6 2 7 0 2 0 . 2 0 0 3 . 1 1 6 5 7 19 7
Wittemyer, G. (2001). The elephant population of Samburu and
Buffalo Springs National Reserves, Kenya. African Journal of
Ecology, 39(4), 357–365. h t t p s : / / d o i . o r g / 1 0 . 1 0 4 6 / j . 1 3 6 5 - 2 0 2 8 .
2 0 0 1 . 0 0 3 2 4 . x
Wittemyer, G., Daballen, D., Rasmussen, H., Kahindi, O., & Douglas-
Hamilton, I. (2005). Demographic status of elephants in the
Sambur u and Buffalo Springs N ational Reserves, Kenya. African
Journal of Ecology, 43(1), 44–47. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 
2028.2004.00543.x
Wittemyer,G., Douglas-Hamilton, I., &Getz,W.M.(2005).The socio-
ecologyofelephants:Analysisoftheprocessescreatingmultitiered
social structures. Animal Behaviour, 69(6), 1357–1371. h t t p s : // d o i .
o r g / 1 0 . 1 0 1 6 / j . a n b e h a v . 2 0 0 4 . 0 8 . 0 1 8
Wittemyer,G.,Keating,L.M.,Vollrath,F.,&Douglas-Hamilton,I.(2017).
Graph theory illustratesspatialand temporal featuresthat struc-
tureelephantrestlocationsandreflectriskperception.Ecography,
40(5),598–605.https:// doi. org/ 10. 1111/ ecog. 02379
Wittemyer,G.,Polansky,L.,Douglas-Hamilton,I.,&Getz,W.M.(2008).
Disentangling theeffectsofforage,socialrank,andriskonmove-
ment autocorrelation of elephants using Fourier and wavelet
analyses.Proceedings of the National Academy of Sciences, 105(49),
19108–19113.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 3 / p n a s . 0 8 0 1 7 4 4 1 0 5
Woolley,L.A.,Millspaugh,J.J.,Woods,R.J.,VanRensburg,S.J.,Page,B.
R.,&Slotow,R.(2009).IntraspecificstrategicresponsesofAfrican
elepha nts to temporal v ariation in fora ge quality. The Journal of
Wildlife Management, 73(6), 827–835. https:// doi. org/ 10. 2193/
20 08- 412
SUPPORTING INFORMATION
Additional supporting information can be found online in the
SupportingInformationsectionattheendofthisarticle.
How to cite this article: Kuria,L.W.,Kimuyu,D.M.,
Kinyanjui,M.J.,Wittemyer,G.,&Ihwagi,F.W.(2024).
Seasonalvariationintherangingbehaviorofelephantsinthe
Laikipia-Samburuecosystem.Ecology and Evolution, 14,
e70198. https://doi.org/10.1002/ece3.70198
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
For large herbivores living in highly dynamic environments, maintaining range fidelity has the potential to facilitate the exploitation of predictable resources while minimising energy expenditure. We evaluate this expectation by examining how the seasonal range fidelity of African elephants (Loxodonta africana) in the Kruger National Park, South Africa is affected by spatiotemporal variation in environmental conditions (vegetation quality, temperature, rainfall, and fire). Eight-years of GPS collar data were used to analyse the similarity in seasonal utilisation distributions for thirteen family groups. Elephants exhibited remarkable consistency in their seasonal range fidelity across the study with rainfall emerging as a key driver of space-use. Within years, high range fidelity from summer to autumn and from autumn to winter was driven by increased rainfall and the retention of high-quality vegetation. Across years, sequential autumn seasons demonstrated the lowest levels of range fidelity due to inter-annual variability in the wet to dry season transition, resulting in unpredictable resource availability. Understanding seasonal space use is important for determining the effects of future variability in environmental conditions on elephant populations, particularly when it comes to management interventions. Indeed, over the coming decades climate change is predicted to drive greater variability in rainfall and elevated temperatures in African savanna ecosystems. The impacts of climate change also present particular challenges for elephants living in fragmented or human-transformed habitats where the opportunity for seasonal range shifts are greatly constrained.
Article
Full-text available
Climatic variability, resource availability, and anthropogenic impacts heavily influence an animal's home range. This makes home range size an effective metric for understanding how variation in environmental factors alter the behavior and spatial distribution of animals. In this study, we estimated home range size of African elephants (Loxodonta africana) across four sites in Namibia, along a gradient of precipitation and human impact, and investigated how these gradients influence the home range size on regional and site scales. Additionally, we estimated the time individuals spent within protected area boundaries. The mean 50% autocorrelated kernel density estimate for home range was 2200 km2 [95% CI:1500–3100 km2]. Regionally, precipitation and vegetation were the strongest predictors of home range size, accounting for a combined 53% of observed variation. However, different environmental covariates explained home range variation at each site. Precipitation predicted most variation (up to 74%) in home range sizes (n = 66) in the drier western sites, while human impacts explained 71% of the variation in home range sizes (n = 10) in Namibia's portion of the Kavango‐Zambezi Transfrontier Conservation Area. Elephants in all study areas maintained high fidelity to protected areas, spending an average of 85% of time tracked on protected lands. These results suggest that while most elephant space use in Namibia is driven by natural dynamics, some elephants are experiencing changes in space use due to human modification. We analyze the largest dataset of collared elephants ever recorded in Namibia to determine the relative importance of humans and environmental variables in shaping elephant movements. We found that human activities are influencing elephant space use at some sites, though regional trends are still driven by precipitation and vegetation productivity.
Article
Full-text available
Modern tracking devices allow for the collection of high‐volume animal tracking data at improved sampling rates over very‐high‐frequency radiotelemetry. Home range estimation is a key output from these tracking datasets, but the inherent properties of animal movement can lead traditional statistical methods to under‐ or overestimate home range areas. The autocorrelated kernel density estimation (AKDE) family of estimators was designed to be statistically efficient while explicitly dealing with the complexities of modern movement data: autocorrelation, small sample sizes and missing or irregularly sampled data. Although each of these estimators has been described in separate technical papers, here we review how these estimators work and provide a user‐friendly guide on how they may be combined to reduce multiple biases simultaneously. We describe the magnitude of the improvements offered by these estimators and their impact on home range area estimates, using both empirical case studies and simulations, contrasting their computational costs. Finally, we provide guidelines for researchers to choose among alternative estimators and an R script to facilitate the application and interpretation of AKDE home range estimates.
Article
Full-text available
This paper engages transspecies spatial theory to illuminate the dynamics of human ‘placement’ of animals and resulting human-animal encounters through a case study of wild animals in Kasane, Botswana. It details the ways in which human conceptual imaginings and material fixing of wild animals are mutually constituted and grounded in human wonderment of and economic use value associated with nonhuman animals. Resulting interspecies minglings reinforce such placements through human’s fear-based responses and ‘problem animal’ discourses, ultimately re-placing animals into spaces where-they-belong. This paper highlights specifically geographical perspectives to further explorations of human-animal relations within the realm of critical animal studies.
Article
Full-text available
Balancing trade‐offs between foraging and risk factors is a fundamental behavior that structures the spatial distribution of species. For African elephants Loxodonta africana, human pressures from poaching and conflict are primary drivers of species decline, but little is known about how elephants structure their spatial behavior in the face of human occupancy and predation. We seek to understand how elephants balance trade‐offs between resource access, human presence and human predatory risk factors (poaching and conflict killing) in an unfenced, dynamic ecosystem where elephants persist primarily outside protected areas in community rangelands. We used tracking data from 101 elephants collected between 2001 and 2016. We investigated elephant behavior in response to landcover, topography, productivity, water, human features and human predation risk using third‐order resource selection functions. We extended this analysis by employing a mixed‐effects multinomial regression to identify temporal shifts in habitat use, and evaluated temporal shifts in movement patterns by estimating mean squared displacement across different productivity periods. Across periods, elephants displayed strong selection for productive areas and areas near water. Temporal shifts in habitat use showed that, during the dry period, elephants were clustered around permanent water sources where humans also congregated. At the onset of the wet period, a shift occurred where elephants moved away from permanent water and from permanent settlements towards seasonal water sources and seasonal settlements. Our findings indicate that foraging and water access are important limiting factors affecting elephants that potentially restrain their spatial responses to humans at the scale of our analysis. Given that pastoralists and elephants rely on the same resources, increasing human and livestock populations enhance pressure on shared resources and space in Africa's drylands. The long‐term conservation of elephants will require approaches that reduce poaching as well as landscape level planning to prevent negative impacts from increasing competition for preferred resources.
Book
The Living Elephants is the authoritative resource for information on both Asian and African elephants. From the ancient origins of the proboscideans to the present-day crisis of the living elephants, this volume synthesizes the behavior, ecology and conservation of elephants, while covering also the history of human interactions with elephants, all within the theoretical framework of evolutionary biology. The book begins with a survey of the 60-million year evolutionary history of the proboscideans emphasizing the role of climate and vegetation change in giving rise to a bewildering array of species, but also discussing the possible role of humans in the late Pleistocene extinction of mastodonts and mammoths. The latest information on the molecular genetics of African and Asian elephants and its taxonomic implications are then presented. The rise of the elephant culture in Asia, and its early demise in Africa are traced along with an original interpretation of this unique animal-human relationship. The book then moves on to the social life of elephants as it relates to reproductive strategies of males and females, development of behavior in young, communication, ranging patterns, and societal organization. The foraging strategies of elephants, their impact on the vegetation and landscape are then discussed. The dynamics of elephant populations in relation to hunting for ivory and their population viability are described with the aid of mathematical models. A detailed account of elephant-human interactions includes a treatment of crop depredation by elephants in relation to their natural ecology, manslaughter by elephants, habitat manipulation by humans, and a history of the ivory trade and poaching in the two continents. The ecological information is brought together in the final chapter to formulate a set of pragmatic recommendations for the long-term conservation of elephants. The broadest treatment of the subject yet undertaken, by one of the leading workers in the field, Raman Sukumar, the book promises to bring the understanding of elephants to a new level. It should be of interest not only to biologists but also a broader audience including field ecologists, wildlife administrators, historians, conservationists and all those interested in elephants and their future.
Article
Habitat selection models are the basis of an increasing number of conservation and management programs. Decision-makers rely on accurate models to assess animal distribution over space and time, and to recommend suitable actions that can alleviate human-wildlife conflicts. Despite a rapidly growing number of field studies on habitat selection, there remains a paucity of empirical evidence that selection is a density-dependent process that can impact males and females differently. Based on 11 years of monitoring, we demonstrate that the response of African elephants (Loxodonta africana) to land-cover types varied with population size, and that density-dependent adjustments differed between sexes. Specifically, our longitudinal follow-up of GPS-collared elephants revealed that elephants gradually decrease their selection for open woodlands and forests, as the population increased and the availability of palatable browse species decreased. Both sexes – though males more strongly – increased their travel rate together with their relative probability of selection of roads for travel. Also, elephants displayed a density-dependent increase in their selection of infrastructures, a response that was stronger for males than females. The risk of human-elephant conflicts thus increased with population size, with males being particularly prone to be involved in such conflicts. Overall, we provide rare empirical evidence that density-dependence in fine-grain habitat selection can differ between sexes. This information can be critical to accurately forecast potential human-wildlife conflicts, and for taking targeted and effective conservation and management actions.
Chapter
This chapter, which aims to examine some of the ecological factors affecting the birth and death rates of elephants, investigates seasonal and annual variation in rates of conception and calf mortality using 30 years of demographic data for the Amboseli population. It attempts to link these demographic rates to the underlying factors of food abundance and quality, using a proxy measure of rainfall and its distribution over an annual cycle and between years. The chapter assesses the long-term consequences of ecological impacts on individuals and the population.
Article
We studied the distribution and abundance of African elephants in Ngorongoro Crater (NC), northern Tanzania to test whether male and female elephants select different habitats and to assess whether elephant abundance was related to monthly precipitation. From 2016 to 2017, we conducted thirteen total counts in the dry and wet seasons and collected data on elephant age, sex, social structure, and habitat use. Most elephants encountered in NC were male-only groups (70%). Elephant numbers were significantly greater in the wet season, compared with the dry season evidenced by a significant and positive linear relationship between elephant abundance and monthly rainfall. Elephants in the NC showed distinct sex segregation, with males preferring open habitats (swamps and grasslands) and female groups preferring closed habitats (bush-shrubland and Vachellia xanthophloea woodland). This study advances our understanding of elephant grouping patterns and sex-specific habitat usage in savannah ecosystems.