Available via license: CC BY 4.0
Content may be subject to copyright.
Surfaces2024,7,589–642.https://doi.org/10.3390/surfaces7030040www.mdpi.com/journal/surfaces
Review
Analysis,Assessment,andMitigationofStressCorrosion
CrackinginAusteniticStainlessSteelsintheOilandGas
Sector:AReview
MohammadtaghiVakili*,PetrKoutník,JanKohoutandZahraGholami
ORLENUniCRE,a.s.,Revoluční1521/84,40001ÚstínadLabem,CzechRepublic;
petr.koutnik@orlenunicre.cz(P.K.);jan.kohout@orlenunicre.cz(J.K.);zahra.gholami@orlenunicre.cz(Z.G.)
*Correspondence:mohammadtaghi.vakili@orlenunicre.cz
Abstract:Thiscomprehensivereviewexaminesthephenomenaofstresscorrosioncracking(SCC)
andchloride-inducedstresscorrosioncracking(Cl-SCC)inmaterialscommonlyusedintheoiland
gasindustry,withafocusonausteniticstainlesssteels.ThestudyrevealsthatSCCinitiationcan
occurattemperaturesaslowas20°C,whileCl-SCCpropagationratessignificantlyincreaseabove
60°C,reachingupto0.1mm/dayinenvironmentswithhighchlorideconcentrations.Experimental
methodssuchasSlowStrainRateTests (SSRTs),SmallPunchTests(SPTs),andConstant-LoadTests
(CLTs)wereemployedtoquantifytheimpactsoftemperature,chlorideconcentration,andpHon
SCCsusceptibility.Theresultshighlightthecriticalroleofthesefactorsindeterminingthesuscep-
tibilityofmaterialstoSCC.Thereviewemphasizestheimportanceofimplementingvariousmiti-
gationstrategiestopreventSCC,includingtheuseofcorrosion-resistantalloys,protectivecoatings,
cathodicprotection,andcorrosioninhibitors.Additionally,regularmonitoringusingadvancedsen-
sortechnologiescapableofdetectingearlysignsofSCCiscrucialforpreventingtheonsetofSCC.
Thestudyconcludeswithpracticalrecommendationsforenhancinginfrastructureresilience
throughmeticulousmaterialselection,comprehensiveenvironmentalmonitoring,andproactive
maintenancestrategies,aimedatsafeguardingoperationalintegrityandensuringenvironmental
compliance.Thereviewunderscoresthesignificanceofconsideringtheinterplaybetweenmechan-
icalstressesandcorrosiveenvironmentsintheselectionandapplicationofmaterialsintheoiland
gasindustry.LowpHlevelsandhightemperaturesfacilitatetherapidprogressionofSCC,with
experimentalresultsindicatingthatstainlesssteelformspassivefilmswithmoredefectsunder
theseconditions,reducingcorrosionresistance.Thisinterplayhighlightstheneedforacomprehen-
siveunderstandingofthecomplexinteractionsbetweenmaterials,environments,andmechanical
stressestoensurethelong-termintegrityofcriticalinfrastructure.
Keywords:stresscorrosioncracking;mechanism;mitigation;austeniticstainlesssteel
1.Introduction
Materialswithexceptionalpropertiesarehighlyvaluedintheoilandgasindustry
duetotheirabilitytowithstanddiverseandspecializedenvironments.Austeniticstain-
lesssteel(ASS),aclassofiron-basedalloys,isrenownedforitsversatility.Var iou sgrades
aretailoredforspecificapplicationsandarewidelyutilizedinthissector[1].ASStypically
containsapproximately19%chromiumand10%nickel,resultinginapredominantlyaus-
teniticmicrostructureatroomtemperature.ThisstructuralstabilityendowsASSwithex-
ceptionalcharacteristics,includinghighstrainhardening,cleanability,lowsusceptibility
toproductcontamination,superiorimpacttoughness,plasticity,thermalstability,weld-
ability,corrosionresistance,andextendedlifespan[2,3].ThesepropertiesmakeASSa
Citation:Vakili,M.;Koutník,P.;
Kohout,J.;Gholami,Z.Analysis,
Assessment,andMitigationofStress
CorrosionCrackinginAustenitic
StainlessSteelsintheOilandGas
Sector:AReview.Surfaces2024,7,
589–642.hps://doi.org/10.3390/
surfaces7030040
AcademicEditors:JaehoKim,
SusumuYonezawaandAlexey
Yer ok hin
Received:25June2024
Revised:5August2024
Accepted:14August 2024
Published:16August2024
Copyright:©2024bytheauthors.Li-
censeeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon-
ditionsoftheCreativeCommonsAt-
tribution(CCBY)license(hps://cre-
ativecommons.org/licenses/by/4.0/).
Surfaces2024,7590
versatilematerialwellsuitedfordiverseapplications,particularlywithintheoilandgas
industry[4].
However,despitetheiradvantages,equipmentandpipelinesintheoilandgasin-
dustryaresusceptibletovariouslocalizedcorrosionphenomena,includingstresscorro-
sioncracking(SCC),intergranularcorrosion(IGC),crevicecorrosion,andpiing.This
susceptibilityisoftenaributedtothereversionofhigh-iron-concentrationASStoitsna-
tivehydroxideoroxideformfollowingtherefiningprocessinblastfurnaces[5].Numer-
ousfailuresintheoilandgassectorhavebeenlinkedtolocalizedcorrosionprocesses,
particularlySCC,whichiswidelyrecognizedasaprimaryfailuremodeinhumidenvi-
ronments,leadingtosignificanteconomiclossesandenvironmentaldisastersworldwide.
SCCisaphenomenonobservedinmetalsandalloys,characterizedbyenvironmen-
tallyinducedcrackpropagation.Itprimarilyaffectsmaterialsprotectedagainstuniform
corrosionbypassivefilms.Thebreakdownoflocalizedpassivityduetomechanical
stressescanaccelerateaacksinspecificregions[6].SCCarisesfromthesynergisticeffects
ofaparticularaqueousenvironment,asusceptiblealloy,andtensilestress[7,8].Thevul-
nerabilityofpipelinesteelstoSCCisinfluencedbyamultitudeoffactors,includingthe
steel’schemicalcomposition,texture,inclusionandprecipitatedistribution,andmicro-
structure;thepHoftheenvironmentsurroundingthepipeline;thepHofthetransported
oilandgas;andotherrelevantconsiderations[9].SCCgrowthinpipelinescanoccurun-
predictablyunderconstant-loadandstatictensileconditions,particularlyinenviron-
mentsconducivetocorrosion.Thiscanalterthemechanicalcharacteristicsofcarbonsteel
pipelines,makingthemmoresusceptibletoSCCandinitiatingcrackformation.Subse-
quently,crackscanpropagaterapidlythroughthepipelinematerial,ultimatelyleadingto
failure.Laboratorytestingcombiningelectrochemicalandmechanicalmeasurementsis
oftenconductedundercontrolledconditionsbeforeandafterelectrochemicalevaluations
toassessSCCsusceptibility[5].DetectingandpredictingSCCpresentschallenges,espe-
ciallyintheoilandgasindustry,whereunforeseenfailurescanhavesignificantconse-
quences[10].SCCgrowthcaninitiateandspreadtototalfracturewithlilewarning,even
incorrosion-resistantmaterials.Fracturesurfacesoftenexhibitsevereembrilement,with
numeroussmallcracksatthetimeoffailure.TheindustrialsignificanceofSCCliesinthe
difficultyofeliminatingstressesinducedduringcomponentfabrication,makingreliable
measurementschallenging[11].
SCCisacomplexprocessthatuniquelyaffectsmaterialproperties,distinguishingit
fromstressorcorrosionalone.Thiscomplexityisparticularlysignificantinindustries
wherestressesarecommonlyinducedduringfabrication.Removingoraccuratelymeas-
uringthesestressesinengineeringstructuresisoftenchallengingorimpractical.SCCsub-
stantiallyimpactsstructuralintegrityandrepresentsacommoncauseoffailuresinvari-
oussystemsandindustries,suchasoilandgasandpetrochemicals[12,13].Figure1sche-
maticallyillustratesthedevelopmentofuniformandlocalizedcorrosion.Unlikegeneral
corrosion,wheremateriallosscanbedeterminedbasedonaveragecorrosionrates,SCC
isalocalizedformofcorrosion.Theservicelifeofthematerialisconsideredcomplete
whenthefastest-growinglocalizedcorrosionaackleadstothefirstperforation.There-
fore,consideringthemaximumcrackgrowthrateortheminimumtimeforcrackinitiation
iscrucialinestimatingthelifeofcomponentsaffectedbySCC.Intheabsenceofacrack,
acomponentcanbeassumedtohaveaninfinitelifefromtheperspectiveofSCCconsid-
erations[6].
Surfaces2024,7591
Figure1.Schematicofgeneralandlocalizedcorrosiondevelopment.
SCCcanoccurinhighlycorrosion-resistantalloys,eveninseeminglyinnocuousen-
vironments.Detectingtightcracksperpendiculartothetensilestressaxisduringtheini-
tialstagesofSCCischallengingusingnon-destructivetechniques.Thehighlylocalized
natureofSCCisevidentfromthehighaspectratioofagrowingcrack,whichcanreach
valuesashighas1000.Additionally,SCCexhibitsmacroscopicbrilenessinductilema-
terials,allowingcrackstoinitiateandpropagatewithoutsignificantdimensionalchanges.
ThesefeaturesemphasizethepotentialforunnoticedfailuresifSCCisnotanticipated[6].
Inpipelinesteel,SCCcrackinitiationandpropagationoccurinthreestages.Initially,
smallSCCcrackscontinuouslyinitiateandcoalesce,representingasignificantproportion
ofthepipelinesteel’slifetime.Subsequently,thesesmallcrackspropagaterapidly,ulti-
matelyleadingtomaterialfailure.AnotablefeatureofSCCinpipelinesteelsisthebranch-
ingofcracks,whichcanbeclassifiedintomicro-andmacro-branching[9].
ThisreviewaimstoprovideacomprehensiveoverviewofSCCinrefineryenviron-
ments,highlightingtheimportanceofresearchanddevelopmentinthisarea.Thecom-
plexityofSCCanditssignificantimpactonrefineryoperations,includingeconomiclosses
andenvironmentaldisasters,underscorestheurgentneedforathoroughunderstanding
oftheunderlyingmechanismsandthedevelopmentofeffectivepreventionstrategies.In
thisreview,theparameters,mechanisms,assessment,andpreventionmethodsofSCCin
refineryenvironmentsarediscussedindetail.Furthermore,chlorine-inducedSCCisex-
amined.Bycombiningdetailedfailureanalyses,processoptimization,andmaterialsen-
gineering,therefiningindustrycandevelopeffectivestrategiestomitigateSCCanden-
surethesafeandreliableoperationofrefineryequipment,therebyminimizingtheriskof
catastrophicfailuresandtheirassociatedconsequences.
2.SCCFailureEvents
SCChasbeenamajorcauseoffailuresingasandoiltransmissionpipelinessincethe
mid-1960s.Thisphenomenon,particularlyaffectingtheexternalsurfacesofburiedpipe-
lines,occurswhenasusceptiblematerialisexposedtoacorrosiveenvironmentandtensile
stress,eitherfrominternalpressureorexternalforces.SCCposessignificantrisks,includ-
ingleaksorruptures,whichcanhavesevereconsequencesfornearbyresidents,workers,
andtheenvironment.ThefirstdocumentedSCCincidentoccurredin1965in
Natchitoches,Louisiana,wherea24-inchnaturalgaspipelineruptured,resultingin17
fatalities.ThistragiceventspurredextensiveresearchintoSCCandledtotheintroduction
ofU.S.pipelinesafetyregulationsin1970[14].
Sincethen,SCChasbeendetectedinpipelinesacrossvariouscountries,including
Iran,Canada,Pakistan,Australia,theUnitedStates,andtheformerSovietUnion.These
Surfaces2024,7592
incidentshaveoftenresultedincatastrophicpipelinefailures[15].Forexample,theTrans-
CanadapipelineexperiencedseveralSCC-relatedfailuresinNorthernOntariobetween
1985and1995,leadingtotwopublicinquiriesbytheNationalEnergyBoard(NEB)of
Canada[16].TheNEBidentifiedtheneedforimproveddetectionmethodsandmaterial
standardstomitigateSCCrisks.InCanada,SCCisasignificantissue,with30to40pipe-
linefailureseachyear,someresultinginfatalities,suchasa1985incidentwhereadrain-
agetileplowrupturedagaspipeline[17].Thesefailureshighlighttheneedforstringent
regulatoryoversightandcontinuousmonitoringofpipelineintegrity.
SCCoccurrenceshavealsobeenreportedacrossNorthAmericaandEurope.InNorth
America,affectedregionsincludeAlberta,Ontario,andSaskatchewaninCanada,aswell
asArizona,Kentucky,SouthCarolina,andTennesseeintheU.S.Additionally,SCChas
beenreportedintwosouthernEuropeancountries.Theoutcomesofthesecasesvary
widely:whileonlytwoincidentsresultedinruptureswhilethepipelineswereinservice,
mostwerediscoveredduringmaintenanceorhydrostatictesting[18].Hydrostatictesting,
whichinvolvespressurizingthepipelinewithwatertoalevelaboveitsoperatingpres-
sure,canrevealweaknesses.ThemostcommonlyaffectedpipegradewasX60,knownfor
itswidespreaduseduetoitsfavorablestrengthandcostcharacteristics.Notably,73%of
incidentsoccurredinpipesolderthan30years,primarilyconstructedbetween1956and
1980,withnoSCCincidentsreportedinpipelinesbuiltinthelast32years[18].Thissug-
geststhatnewermaterialsandconstructiontechniquesmaybemoreresistanttoSCC.
SCCrepresentsacriticalthreattoenergypipelines,potentiallyleadingtocata-
strophicfailuresthatendangerhumansafety,harmtheenvironment,andresultinsub-
stantialrepaircosts.Forinstance,inthe1970s,significantSCCincidentsoccurredinCan-
ada’sLakeheadPipelinesystem,particularlyinregionswithhighlevelsofhydrogensul-
fide(H2S),acorrosivecomponentpresentinsomecrudeoils.In1978,theTrans-Alaska
PipelineSystemexperiencedamajorSCCeventnearAtigunPass,Alaska,resultingin
multipleruptures,oilspills,andatemporaryshutdown.Morerecently,in2017,SCC-re-
latedfailuresontheKeystonePipeline,operatedbyTransCanada(nowTCEnergy),
causedasignificantoilspillinSouthDakota,releasingapproximately210,000gallonsof
oil.TheseincidentsunderscoretheongoingchallengesinmanagingSCCrisks[19,20].
Alarmingly,SCCisresponsibleforover50%offailuresingaspipelines[21].
Overall,thethreatofSCCtopipelinesnecessitatesamultifacetedapproach,includ-
ingimprovedmaterialsscience,beerconstructionpractices,rigorousregulatoryframe-
works,andongoingmaintenanceandmonitoringefforts.Theindustrycontinuestoex-
plorenewtechnologiesandmethodstopredict,detect,andmitigateSCC,ensuringthe
safetyandreliabilityofpipelinesystemsworldwide.NotableSCC-relatedincidents,such
asthe2014gaspipelineexplosioninKaohsiung,Taiwan,whichresultedin32fatalities
and321injuries,andthe2013oilpipelineexplosioninQingdao,China,whichcaused136
injuriesand62deaths,illustratetheglobalnatureoftheSCCproblemandtheneedfor
internationalcollaborationinresearchandtechnologysharing.In2020,theEnbridgeLine
5pipeline,whichtransportsoilandnaturalgasliquidsbetweentheUnitedStatesand
Canada,alsofailedduetoSCC,furtheremphasizingthevulnerabilityofcriticalenergy
infrastructuretothistypeofcorrosion[22].
3.RequiredParametersforSCC
SCCisamultifacetedphenomenoninfluencedbyseveralcriticalparameters.These
includesensitizedmaterialssuchascarbonsteels,copperalloys,andhigh-carbon-content
stainlesssteels,aswellasthepresenceofvarioustypesoftensilestress(residual,thermal,
orappliedstress).Specificenvironmentalconditions,includinghigh-temperaturewater,
chlorideoracidicsolutions,moisture,andaqueousenvironments,alsoplaypivotalroles.
Theinteractionamongthesefactorsiscrucialforboththeinitiationandpropagationof
SCC[23].Figure2illustratestheprimarycontributorstoSCC,emphasizingtheintricate
interplayamongthesevariables[24,25].Thesefactorswillbediscussedinmoredetailin
thesubsequentsections.
Surfaces2024,7593
Figure2.RequirementsforSCC.
3.1.Stress
SCCarisesfromtheinterplayoftwoprimarystressfactors:internalresidualstresses
andexternalmechanicalforces[23].Internalstresses,alsoknownasresidualstresses,are
inherentinmaterialsandstemfromprocessessuchasplasticdeformation,thermaltreat-
ments,andmanufacturingtechniques[5,26,27].Theseresidualstressescanbeclassified
intodistinctcategoriesbasedontheirscales:TypeI(macroscopic),TypeII(microscopic),
andTypeIII(atomiclevel).
TypeIresidualstressesoccuratamacroscopiclevelduetophenomenasuchasdif-
ferentialcooling,whileTypeIIstressesmanifestonamicroscopicscaleandareassociated
withfeatureslikebandedmicrostructures.TypeIIIresidualstressesoperateattheatomic
levelandresultfromchemicalsegregationsandsmallcoherentphaseswithinthematerial
[26].ResearchindicatesthatinternalresidualstressessignificantlyinfluenceSCC.Forin-
stance,Chen’sstudyexaminedtheimpactofTypeIresidualstressesonneutral-pHSCC
inpipelinesteels,demonstratingthatplasticdeformationandanodicdissolutioncanmit-
igateSCCundersuchconditions.Beaversetal.[28]alsofoundthatthelikelihoodofSCC
occurrenceisgreaterinregionswithelevatedresidualstresses.Theirstudyindicatedthat
residualstressinareasclosetoSCCcolonieswasnearlydoublethatinregionsfarther
awayfromnear-neutral-pHSCCcolonies,highlightingthesignificantroleoftensilere-
sidualstressinSCCinitiation.Similarly,VanBovenetal.[23,29]investigatedtheinterplay
betweenresidualstressandcyclicloadinginpipelinematerials.Theirfindingsrevealed
thatcyclicloadingfrombendingforcesincreasedresidualstressatthepipeline’ssurface,
significantlyheighteningthesteel’ssusceptibilitytocrackinitiationinanear-neutral-pH
environment.Tensilestresses,particularlythoseinducedbyweldingandmechanicalpro-
cesses,playacriticalroleinSCCfracturemechanisms[29].
Externalstresses,especiallytensilestress,andmechanicalactionsduringamaterial’s
operationallifemarkedlyaffectitssusceptibilitytoSCC.Thesestressesencompassforces
appliedtothematerialduringservice,suchastensile,compressive,orshearstress,which
cancausethestretching,compression,ordeformationofthematerial,therebycompro-
misingitsstructuralintegrityandincreasingsusceptibilitytocorrosion-inducedcracking
[23,29].Forinstance,externaltensilestressescaninduceSCCinburiedpipelinestrans-
portinghydrocarbons,particularlyiftheprotectivecoatingiscompromised,leadingtoa
wetenvironmentconducivetocorrosion-inducedcracking[5].Tensilestressesarepivotal
inSCCfractureprocesses,whetherapplieddirectlyorasresidualstressesfromthermal
processes[30].Weldingandmechanicalactionssuchascolddeformationandmachining
introduceresidualstresses,therebycontributingtoSCCsusceptibility[30,31].
Surfaces2024,7594
SCCcanoccuratstresslevelsbelowthematerial’sultimatetensilestrength,withthe
rateofcrackpropagationinfluencedbythemagnitudeofstressapplied.Controlledcom-
pressivestresses,suchasthoseinducedbyshotpeeningoncomponentsurfaces,canmit-
igateSCCinitiation[6].Thestrainrateatthecracktipiscritical,withSCCmorelikelyto
occurwithinspecificstrainrateranges.ThestressthresholdforSCCvariesdependingon
thematerialandenvironmentalconditions.Forinstance,ASScomponentsmayexperience
SCCinhotwateratstresslevelsclosetothematerial’sbreakingpoint,whilelowerstress
levelsmaysufficeinhotchlorideenvironments.Effectiveunderstandingandprevention
ofSCCrequirecarefulconsiderationofbothexternalforcesandinternalresidualstresses,
particularlyinapplicationsinvolvingASScomponents[23].
3.2.Environment
SCCposesasignificantthreattoengineeringmaterials,particularlyinenvironments
whereaqueousconditionsandspecificaggressiveions,suchaschlorides,arepresent.
TheseenvironmentsplayacrucialroleinboththeinitiationandpropagationofSCC.The
susceptibilityofanalloytoSCCisdeterminedbyboththenatureofthematerialandthe
aggressivenessofthesurroundingenvironment.However,whileacorrosiveenvironment
isnecessary,notallconditionsinduceSCC.Specificions,suchaschlorides,areparticu-
larlyharmfultoalloyswithprotectivefilms.Forinstance,copperalloysarevulnerableto
SCCinammonia-richenvironments[32],whereasstainlesssteelandaluminumalloysare
morepronetochloride-inducedcracking[33].TheASS300series,inparticular,exhibits
highsusceptibilitytoSCCinchloride-richconditions,especiallyattemperaturesabove70
°C,wherecrackingoccursprimarilyinatransgranularmanner[34,35].
Variousaggressiveions,includingchlorides,causticsubstances,andpolythionic
acid,canaccelerateSCC.Chloridesarenotoriousforpenetratingthepassivelayerofstain-
lesssteel,leadingtothebreakdownofprotectivefilmsandtheonsetofSCC,evenatam-
bienttemperatures,particularlyinheavilymachinedcomponents[36,37].Inenviron-
mentswhereASSisexposedtocausticsubstancesoracidicconditions,suchasinregions
withintergranularwelding,theriskofSCCissignificantlyheightened[35].Inchemical
andpetrochemicalplants,thepresenceofpolythionicacid,abyproductofsulfurinfeed
gas,isaknowncauseofintergranularSCC(IGSCC)inASS,especiallyinmoistconditions
[36,38].AluminumandtitaniumalloysalsoshowsusceptibilitytoSCCinenvironments
suchasliquidmetals,organicliquids,andaqueoussolutions,includingwatervaporand
methanolicsolutions[35].
Pipelinematerials,particularlythosemadefromAPI5LX60,X65,andX70,areoften
exposedtoharshconditionsinvolvinghighlevelsofH2S,carbondioxide(CO2),andlow-
pHwater,allofwhichpromoteacceleratedcorrosionandhydrogenabsorption.These
conditionsareprevalentinenvironmentslikeseawater,whereatmosphericcorrosiondue
tosaltandchlorideionscanbecomesevereifthepipeline’scoatingiscompromised,par-
ticularlyunderdeep-seahydrostaticpressure[39,40].Studies,suchasthosebySunetal.,
showvaryingSCCsusceptibilitiesatdifferentdepths,withlowersusceptibilityat1500m
buthighersusceptibilityat3000m[41].PipelinesburiedinsoilfaceSCCchallengesinflu-
encedbyanodicdissolutioninhigh-pHsolutionsandhydrogenembrilement(HE)in
near-neutral-pHenvironments[42–46].Theelectrolytecomposition,especiallyincar-
bonate-richordilutesolutions,significantlyaffectswhetherthecrackingwillbeintergran-
ularortransgranular[47].
SulfurcompoundsfurthercomplicatetheSCClandscape.Theynotonlycontribute
tohydrogen-inducedcracking(HIC)byformingmanganesesulfide(MnS)inclusions,
whichactasstressconcentrationsites[48,49],butalsocreatecorrosiveconditionsthat
exacerbateSCC.ResearchbyFanetal.highlightsincreasedSCCsusceptibilityinL360NS
pipelinesteelinsulfurenvironments,linkingittohydrogenionpermeation,thedegrada-
tionofprotectivefilms,andthesubsequentlossofmechanicalpropertiesunderstress[50].
ThetransitionfromabenigntoacorrosiveenvironmentconducivetoSCCcanbedriven
bychangesintemperature,aeration,ortheconcentrationofionicspecies.Thestability
Surfaces2024,7595
andsolubilityofthereactionproductsintheenvironmentsignificantlyaffectcrackprop-
agation.Cracksofteninitiatefromthesurfaceoxidefilm,displayingatransgranularpat-
tern,emphasizingtheimportanceofunderstandingcrackmorphologyinSCC.
Theresistanceofanalloytocrackinglargelydependsonthestabilityofitssurface
film,aconditiondescribedasborderlinepassivity,whichiscriticalforcrackinitiationand
isachievableonlywithinspecificelectrochemicalpotentialranges[51].Inpipelinesteels,
SCCisinfluencedbystressintensityfactorsarisingfrombothexternalloadsandstresses
inducedbytheoxidefilm.Thesefilm-inducedstressesarecrucialindevelopingSCC
cracks,withinitiationandpropagationoccurringwhenthesestressesexceedacritical
threshold[52].Figure3demonstratesSCCcracksinitiatedfromtheoxidefilm.
Figure3.Initiationoftransgranularstresscorrosioncracking(TGSCC)inducedbysurfaceoxide.
(a)Overviewofthecrackinitiation;(b)Detailofthetransgranularcrackintersectingaferritegrain
boundary.(Reprinted/adaptedwithpermissionfromRef.[41].2024,Elsevier)
Achievingandmaintainingborderlinepassivity,whichisinfluencedbyenvironmen-
talconditionsandalloycharacteristics,isessentialformitigatingSCCrisks.Understand-
ingthecomplexinterplaybetweenalloysusceptibility,environmentalaggressiveness,
andprotectivefilmformationisvitalforpreventingSCCacrossvariousindustrialappli-
cations.ForadetailedsummaryofenvironmentsthatcauseSCCincommonlyusedal-
loys,refertoTable1[35].
Tab le1.SummaryofenvironmentsassociatedwithSCCofvariousalloys[25].
MetalEnvironment
TitaniumalloysMethanol-HCl
Seawater
Red-fumingnitricacid
StainlesssteelsCondensingsteamfromchloridewaters
NaOH-H2Ssolutions
H2S
Seawater
NaCl-H2O2solutions
Acidicchloridesolutions
SteelsCarbonate–bicarbonatesolutions
Seawater
AcidicH2Ssolutions
Mixedacids(H2SO4-HNO3)
Calcium,ammonium,andsodiumnitritesolutions
NaOH-Na2SiO4solutions
NaOHsolutions
NickelFusedcausticsoda
MagnesiumalloysDistilledwater
Seawater
Surfaces2024,7596
Ruralandcoastalatmospheres
NaCl-Na2CrO4solutions
LeadLeadacetatesolutions
InconelCausticsodasolutions
GoldalloysAceticacid–saltsolutions
FeCl3solutions
CopperalloysWaterorwatervapor
Amines
Ammoniavaporandsolutions
AlalloysSeawater
NaClsolutions
NaCl-H2O2solutions
3.3.Material
EnvironmentalconditionscriticallyinfluenceSCC,butthemetallurgicalconditionof
thematerialisequallypivotalinitsinitiationandpropagation.SCCrequiresaspecific
metallurgicalstateshapedbyfactorssuchasalloycomposition,strengthlevels,thepres-
enceofsecondaryphases,andgrainboundarysegregation.Thesefactorscaneitheren-
hanceordiminishthematerial’sresistancetoSCC[5,6].Forinstance,ASSbecomessus-
ceptibletoIGSCCwhensensitized,eveninseeminglybenignenvironmentslikehigh-pu-
ritywateratelevatedtemperatures,especiallyifoxygenispresent.Surfaceimpuritiesand
irregularitiessignificantlycontributetoSCCandfailureoccurrences.However,reducing
traceimpuritiessuchasphosphorus,sulfur,andarsenicinASSsubstantiallyimprovesits
resistancetoSCC[5].
ImpuritieslikenitrogenandcarbonatgrainboundariescaninfluencecausticIGSCC
incarbonsteelbydisruptingpassivefilmformationandaffectingplasticity.Thissegrega-
tionresultsinlocalizedcorrosiveconditions,illustratingtheintricaterelationshipbetween
metallurgicalfactorsandSCCsusceptibility[6].Inweldingapplications,preventingse-
lectivecorrosioninausteniticsteelsrequirescontrollingthecarboncontentwithinitssol-
ubilitylimitsinaustenite.Evenlow-carbonchromium-nickelausteniticsteelsarenoten-
tirelyimmunetotheadverseeffectsofweldingthermalcycles[53,54].Researchshows
thatlow-carbonsteelscontainingnitrogenareparticularlyvulnerabletoSCC,asnitrogen
formssolidinterstitialsolutionswithironandothermetalsduetoitssmallatomicradius
[55,56].
SeveralstudieshaveexaminedhowvariouselementsimpacttheSCCbehaviorof
pipelinematerials,identifyingphosphorus,manganese,andcarbonasprimaryelements
ofconcern[9,57].Duringsteelsolidification,theseelementstendtosegregatetowardthe
centeroftheslabthickness,forminghardphasesandstructureslikemartensiteandbain-
ite.Thesegregationratioofmanganeseisdirectlycorrelatedwiththecarboncontent.No-
tably,low-strengthcarbonsteelsexhibitgreaterresiliencetothedetrimentaleffectsof
phosphorussegregationcomparedtohigh-strengthalloysteels[9,57].
Manganesesignificantlyenhancesaustenitestabilityinsteel,leadingtoincreasedsu-
percoolingandreducedcriticalquenchingrates,whichimprovethesteel’shardenability.
However,asthemanganesecontentincreases,theSCCresistanceofhigh-strengthmar-
tensiticsteeldecreases.Manganese’sabilitytotrapnitrogenwithinthecrystallaice,com-
binedwithcarbon’spreferencefordislocationsalonggrainboundaries,reducestheSCC
resistanceofhigh-strengthsteels[53,58].Addingcalciumtopipelinesteelhelpscontrol
sulfurlevels,formingsphericalsulfide-basedinclusionsthatpreventtheformationof
elongatedMnSparticles,whicharetypicalsitesforcracknucleation[59–62].
Copperalsoplaysacrucialrolebyenhancingsteel’sstrengthandSCCresistance
throughtheformationoffinecopper-enrichedprecipitates.Theseprecipitatesimprove
mechanicalpropertiesandreducecrackformation.Coppercreatesaprotectivebarrieron
thesteelsurfacethatlimitshydrogendiffusionintothesteelmatrix,enhancingresistance
Surfaces2024,7597
toHE[63].Babaetal.[64]demonstratedthattheadditionofcoppersignificantlyreduces
hydrogenpermeationinsourenvironmentsbyformingathickbarrieronthesteelsurface.
Elementsthatformstablecompoundswithnitrogenandcarbon,whicharesoluble
inbothα-andγ-iron,profoundlyimpactSCCresistance.Strongcarbideformersliketita-
nium,molybdenum,niobium,andvanadiumimprovetheSCCresistanceoflow-carbon
steelsbyformingcarbidesthathindercrackpropagation.Amongthese,titaniumandmo-
lybdenumhavethemostsignificanteffects[53,58].
Niobium-stabilizedausteniticsteelsshowsuperiorresistancetoknife-linecorrosion
comparedtotitanium-stabilizedsteelsduetoniobium’sgreaterresistancetodissolution
inausteniteathightemperatures.Niobiumbindscarbonatgrainboundaries,preventing
chromiumcarbide(M23C6)formation,whereastitaniumcarbidesdissolvemorereadily
duringtempering,increasinglaicestresses.Niobium-stabilizedsteelsalsoexhibitbeer
corrosionresistancenearthefusionline.Forinstance,08Cr17Hi5Mn9NNbsteeljoints
showednoknife-linecorrosion,evenwithsomeniobium-formingnitrides[53].
Chromiumisessentialforenhancingthecorrosionresistanceofsteelalloys.Itspas-
sivationleadstotheformationofaprotectiveoxidelayer,significantlyincreasingcorro-
sionresistance.Stainlesssteelrequiresatleast13–15%chromiumbymasstomaintain
theseproperties[53,58].Conversely,highernickelcontentcanreduceSCCresistance.Sil-
iconplaysacrucialroleinpreventingcarbidecoagulationduringtempering,enhancing
thestabilityofsorbitolstructures,andslightlyincreasingthestrengthandyieldstrength
ofsteel[53,58].
MetallurgicalfactorsandmicrostructuralcharacteristicscriticallyinfluenceSCCin
metals.Hardandbrilephaseswithinthemicrostructure,particularlyinsteel,exacerbate
susceptibilitytoSCCcrackpropagation[9].Zhuetal.[65]highlightedtherelationship
betweenSCCcracksandlocalmicrostructureinX80pipelinesteel.Inhigh-pHenviron-
ments,abundantbulkygranularbainiteandpolygonalferritemicrostructuresprimarily
leadtointergranularcracking.Asthemicrostructuretransitionstofinegranularbainite
andacicularferrite,bothintergranularandtransgranularSCC(TGSCC)cracksareob-
served.ThepHofthesolutionsignificantlyaffectsthelikelihoodoftransgranularcrack
propagation[65].
Beyondmicrostructuralconsiderations,Gonzalezetal.[66]examinedhigh-strength
low-alloysteelandunderscoredthesignificantinfluenceofmicrostructureonSCCcrack
propagation.Theirfindingshighlighttherolesofgrainsizeandgrainboundarycharac-
teristicsinthedevelopmentofintergranularcracking.Sulfidestresscracking(SSC)sus-
ceptibilityiscloselyrelatedtothesteel’shardness,microstructure,andchemicalcompo-
sition,typicallypropagatingalonggrainboundariesbutsometimestransgranularly[9].
Despitetraditionalmitigationmethodslikemicro-alloyingandheattreatments,recentre-
searchhasfocusedoncrystallographictextureasanovelapproachtoreducingSCCsus-
ceptibilityinpipelinesteels.Studiessuggestthattextureplaysasignificantroleinmiti-
gatingSCC[67–69].
3.3.1.CarbonandLow-AlloySteels
Carbonandlow-alloysteels,includingthosethatarequenchedandtemperedorpos-
sessaferritic–pearliticmicrostructure,exhibitsusceptibilitytoSCCacrossavarietyofen-
vironmentalconditions.Theseconditionsincludechloride,carbonate–bicarbonatesolu-
tions,ammonia,alkanolamines,hydroxide,andhotnitrate[70].Thepredominantfailure
modeinthesesteelsisintergranularcracking,whichoccursalongtheprioraustenitegrain
boundaries.However,transgranularcrackingcanalsomanifestinenvironmentscontain-
inghydrogen(H2),H2S,orhigh-temperaturewater.
TheSCCresistanceofthesesteelsisinverselyrelatedtotheirstrengthlevelorhard-
ness;asthestrengthorhardnessincreases,theresistancetoSCCtypicallydecreases.Ex-
tensiveresearchhasbeenconductedontheinfluenceofsteelcompositiononSCCsuscep-
tibility.However,real-worldapplicationsoftenpresentcomplexitiesduetointeractions
amongweldingproperties,materialstrength,andheat-treatmentresponses[71].
Surfaces2024,7598
Thesusceptibilityofcarbonandlow-alloysteelstoSCCisalsoaffectedbythedistri-
butionofpotential–pHdomainsacrossvariousenvironmentalconditionsandtempera-
tures[70].Thesedomainsarecriticalforunderstandingtheinitiationandpropagation
mechanismsofSCCinthesematerials.ThepresenceofFe3O₄(magnetite)isoftenindica-
tiveofconditionsconducivetoSCC,suggestingitsroleinthecrackingprocess.Addition-
ally,phasessuchasFeCO3(siderite)andFe3(PO₄)2(vivianite)caninfluenceSCCbehavior
inspecificenvironments.AkeyaspectofSCCsusceptibilityistherelationshipbetween
thepiingcorrosionpotentialandcrackinitiation,underscoringthesignificanceoflocal-
izedfactors.AlthoughSCCmechanismscanvary,understandingthesepotential–pHdo-
mainsprovidesvaluableinsightsintotheprocessesdrivingSCCincarbonandlow-alloy
steels.Moreover,thesesteelsarepronetoSCCeveninenvironmentsthataretypically
consideredpassivatingorconducivetoformingprotectiveoxidefilms.Forinstance,envi-
ronmentslikehigh-temperaturewater,ethanol,carbonates,nitrates,phosphates,and
strongcausticsolutions,whichusuallyfostertheformationofpassivelayersoncarbon
steels,haveinducedSCCinthesematerials.
Thesechallengesposesignificanteconomicandsafetyconcernsduetotheextensive
useofcarbonsteelsinindustrialapplications.Forexample,thecatastrophicfailureofan
ammoniumnitrateplant,resultingfromnitrate-inducedcracking,ledtoseverefinancial
lossesandmajorsafetyincidents.Similarly,causticcrackinginsteam-generatingboilers
madefromlow-alloysteelsremainsapersistentproblem,causingrepeatedemergency
shutdownsinfacilitieslikeammoniaplants[30,70].
3.3.2.High-StrengthSteels
High-strengthsteels,characterizedbyhardnesslevelsabove440HRC,exhibitheight-
enedsusceptibilitytoIGSCC,evenintypicallynon-corrosiveenvironmentssuchasmoist
air.Environmentscontainingchloridesareparticularlydetrimental,astheypromoteSCC
inthesematerials.HEiswidelyrecognizedastheprimarymechanismofSCCinhigh-
strengthsteel.Thepresenceofcathodicpoisonssuchassulfur,tellurium,selenium,and
arsenicexacerbatesSCCbyimpedinghydrogenrecombinationandincreasinghydrogen
absorptionbythesteel.Moreover,thesesteelsaresusceptibletoSCCinthepresenceof
organiccompoundsandinenvironmentsthatproducehydrogen.Temperaturesignifi-
cantlyinfluencesSCCkineticsinhydrogengasenvironments,withthesteel’sstrength
levelcriticallyaffectingsusceptibility.Maragingsteelsgenerallyexhibitbeerresistance
toSCCthanhigh-strengthsteelsduetotheirmicrostructuralrefinementandhydrogen-
trappingcapabilities.However,thespecificmechanismbywhichHEinducesSCCin
high-strengthsteelsremainsunclearandnecessitatesfurtherinvestigation.
DuetotheirinherentsensitivitytoSCC,isolatinghigh-strengthsteelsfromcorrosive
environmentsisadvisablewheneverpossible.DespitevariationsinSCCresistanceamong
differenthigh-strengthsteels,itisprudenttolimitthespecifiedyieldstrengthtomeet
minimumrequirements.Regardingintergranularcracking,chemicalcompositionandre-
actionsatgrainboundariesarecriticalfactorsinfluencingmaterialsusceptibilitytoSCC.
Impurityelementssuchasantimony,tin,arsenic,andphosphoruscanpromotetemper
embrilementandincreasesusceptibilitytoSCC.However,microstructuralmodifica-
tions,includingmartensitestructurerefinementandincreaseddislocationdensities,can
mitigateSCCbyreducinghydrogenaccumulationandenhancingresistancetoembrile-
ment.Understandingtheinterplayamongcomposition,microstructure,andSCCmecha-
nismsisessentialfordevelopingeffectivemitigationstrategiesforhigh-strengthsteels.
CurrentresearchendeavorsaimtoelucidatespecificSCCmechanismsinthesematerials,
offeringinsightsintopotentialmitigationtechniquesandenhancingthereliabilityofhigh-
strengthsteelcomponentsincorrosiveenvironments[71].
Surfaces2024,7599
3.3.3.StainlessSteels
Stainlesssteels,characterizedbyachromiumcontentofatleast11%,exhibitdiverse
microstructures,includingaustenitic,ferritic,martensitic,andduplexphases.Thesuscep-
tibilityofthesesteelstoSCCisinfluencedbyfactorssuchasthermalhistory,microstruc-
ture,andalloycomposition.TheSCCsusceptibilityofvariousstainlesssteelgradesde-
pendsonspecificenvironmentalconditions.ASSsarepronetocrackinginhydroxide-and
chloride-richenvironments,whileduplexstainlesssteelscanexperiencecrackinginsour
gasandchloride-richenvironments.Ferriticandmartensiticstainlesssteelsarevulnerable
tocrackingunderbothcathodicandanodicconditions.TheexactmechanismsofSCCin
thesesystemsvarybutaretypicallyassociatedwithspecificenvironmentaltriggers,such
aschloride-inducedSCCorcausticSCC.
ExtensiveresearchhasinvestigatedSCCinaustenitic,ferritic,martensitic,anddu-
plexstainlesssteels.Thenickelcontentandsensitizationofthesesteelssignificantlyinflu-
encetheirsusceptibilitytoSCC,withhighernickelcontentgenerallyenhancingresistance.
SensitizedstainlesssteelsarepronetoIGSCC,whereasnon-sensitizedsteelstypicallyex-
periencetransgranularcracking.ThebehaviorofASSinchloride-containingenviron-
mentsshowsatemperature-dependentthresholdbelow50°C,beyondwhichsusceptibil-
itytoSCCincreases.Thissusceptibilityarisesfromlocalizedcorrosionprocessessuchas
piing,crevicecorrosion,andtrenchformation,whichleadtoacidificationatthecracktip
andacceleratecrackpropagationthroughcorrosivespeciesandenhancedelectrochemical
reactions.
Thepresenceofdelta-ferriteinASSsenhancestheirresistancetoSCCbyimpeding
crackgrowth.Incontrast,duplexstainlesssteelsexhibitsuperiorresistanceduetothe
cathodicprotectionprovidedbytheferritephase.Inhigh-temperaturewater,SCCinweld
heat-affectedzones(HAZ)presentsasignificantchallenge,necessitatingpredictivemod-
elingandmitigationstrategies.IGSCCinducedbypolythionicacidinsensitizedstainless
steelscanbemitigatedbyreducingsensitizationandadjustingplantshutdowncondi-
tions.Anodicandcathodicpolarizationtechniquesalsoofferpreventivemeasuresagainst
polythionicacidSCC,operatingwithinanarrowpotentialrange.Othersulfurspecies,
suchassulfate,thiocyanate,andthiosulfatesolutions,canalsoinduceSCCinsensitized
stainlesssteels[71].
3.3.4.NickelAlloys
NickelanditsalloysarefrequentlychosenfortheirresistancetoSCC,althoughsus-
ceptibilitycanariseunderspecificenvironmental,microstructural,andstressconditions.
IGSCCisprevalentinenvironmentssuchashigh-temperaturewater,gaseoushydrogen,
sulfur-containingatmospheres,andacidicandbasicsolutions.Nickel-basedalloyshave
applicationsinvariousindustries,includingNi-Fe-Cralloysforpowergeneration,Ni-Cr-
Moalloysforchemicalprocessing,andCu-Nialloysforseawaterapplications.Precipita-
tion-hardenablealloyslikeX750and718areutilizedfortheirhigh-strengthproperties.
Alloy600,awell-studiednickel-basedalloy,primarilyexperiencesIGSCC.Precipita-
tion-hardenablealloysaremoresusceptibletoSCCduetotheformationofintermetallic
phasesduringaging,whichenhancesmaterialstrength.Carbideprecipitationandsensi-
tizationfromchromiumdepletionalonggrainboundariessignificantlycontributetoSCC
susceptibilityacrossdifferentenvironments.Nickel-basedalloysexhibitheightenedsus-
ceptibilitytoSCCatelevatedtemperaturesinhigh-puritywater,particularlyunderde-
aeratedconditions,whereastheydemonstrateresistancetoSCCathightemperaturesin
solutionswithelevatedchlorideconcentrations.
Hydrogenabsorptioncanacceleratecrackpropagationinnickel-basedalloys,partic-
ularlyundervarioushydrogenchargingconditions.Hydrogen-assistedmechanismsand
anodicdissolutioncontributetoSCC,withlocalgrainboundaryslidingidentifiedasa
significantfactorincrackinitiation.High-strengthnickel-basedalloysarepronetohydro-
gen-assistedcracking,potentiallyinfluencedbytheSlipDissolutionViscousCreep
Surfaces2024,7600
(SDVC)mechanism,whichpromoteslocalgrainboundaryslidingunderspecificSCC
conditions[71].
3.3.5.CopperAlloys
Copperalloys,suchasbrass,areparticularlysusceptibletoSCC,especiallyinenvi-
ronmentswheremoisturecondensationfacilitatestherapidformationofcupriccomplex
ionsandtarnishfilmspredominantlycomposedofCu2O[71].Thisphenomenon,known
asseasonalcracking,hashistoricallybeenobservedduringrainyseasons,notablyaffect-
ingbrasscartridgesusedbytheBritishArmyinIndia.Brass,primarilycomposedofcop-
perandzinc(Cu-Zn)alloy,exhibitsvaryingdegreesandmodesofcrackingdependingon
itszinccontent[32,72].
ResearchonSCCincopperalloyshasprimarilyfocusedonmoistairconditions.
However,SCChasbeendocumentedinvariousotherenvironments,includingthosecon-
tainingchlorides,nitrites,nitrates,sulfates,andevenpurewater[71].Purecopper,espe-
ciallywhenexposedtosolutionscontainingacetateandnitrite,alsoshowssusceptibility
toSCC.CathodicpolarizationsuppressesSCC,whilegeneralcorrosionisexacerbatedun-
dernoblepotentials.Conversely,theanodicpolarizationofcopperalloysfromtheirfree
corrosionpotentialsignificantlyincreasesSCC.Additionally,thetemperaturedepend-
enceofSCCincopperalloysfollowsanArrhenius-typebehavior,characteristicofther-
mallyactivatedprocesses.
ThemechanismofSCCinthesealloysiscomplex,involvingbothintergranularand
transgranularcrackingmechanisms.IGSCCtypicallyproceedsthroughadetachmentor
filmbreakageprocess,whileTGSCCmayinvolvediscontinuouscleavageinitiatedbyan
epitaxialfilm,suchasadealloyedlayeroroxideatthecracktip[32,72].InTGSCC,deal-
loyingbecomescriticalwhenthealloyexceedsspecificlimits,approximately14atomic
percent(a/o)forCu-Alalloysand18a/oforCu-Znalloys,whichdictatetheirsusceptibil-
itytoSCC.Itisnoteworthythatwhilealloyswithhigherzinccontentcommonlyexhibit
TGSCC,thosewithlowerzinccontentmaydisplayIGSCC[32,71,72].
3.3.6.AluminumAlloys
Aluminumanditsalloysarerenownedfortheirexceptionalcorrosionresistance,
whichisaributedtotheformationofaprotectiveoxidefilmontheirsurfaces.Thisoxide
film,typicallyconsistingoftwolayers,providesstabilitywithinapHrangeofapproxi-
mately4to8.5.However,exposureoutsidethesepHvaluescanleadtoaluminumcorro-
sion,resultinginthegenerationofAl3⁺orAlO2⁻ionsduetothesolubilityofaluminum
oxidesinvariousacidsandbases[71].TheSCCphenomenoninaluminumalloyshasbeen
extensivelystudied,revealingitscomplexitiesandinfluencingfactors.Secondphases,of-
tenintermetalliccompounds,arecommoninaluminumalloys,rangingfromnegligible
amountstoabout20%.Thesephasesprecipitatepredominantlyalonggrainboundaries
andsignificantlyaffectthecorrosionbehaviorofaluminumalloysduetotheirvarying
electrodepotentialsrelativetothematrix.IGC,frequentlyobservedinthesealloys,arises
fromelectrochemicalpotentialgradientsbetweenadjacentgrainsandgrainboundaries,
withtheanodicpathshowingcompositionalvariationsacrossdifferentalloycomposi-
tions.ThesusceptibilityofaluminumalloystoSCCisnotablyinfluencedbyIGCandpit-
tingcorrosion.Alloyscontainingsolublealloyingelements(e.g.,zinc,silicon,magnesium,
andcopper)areparticularlypronetoSCC,whereintergranularpathwaysfacilitatecrack
propagationunderstressandenvironmentalconditions.However,mitigationstrategies
suchascathodicprotectionorspecificheattreatmentscanmodifythemicrostructureand
reduceSCCsusceptibility[71,73,74].
InthecontextofSCCinaluminumalloys,waterandwatervaporarecriticalenviron-
mentalfactorscontributingtoitsdevelopment.Halideions,especiallychlorides,signifi-
cantlyexacerbatethesusceptibilityofthesealloystoSCC.Generally,inalkalinesolutions,
thesusceptibilitytoSCCisrelativelylowcomparedtoneutralandacidicenvironments.
ThefundamentalprinciplesofSCCinvolvelocalizedanodicdissolutionoccurringatgrain
Surfaces2024,7601
boundariesunderthesynergisticinfluenceofstressandenvironmentalfactors,alongwith
hydrogeningressoradsorptioncontributingtocrackpropagation.Thenon-uniformpro-
gressionofcracksinSCC-susceptiblealuminumalloyssuggeststhatcontinuousanodic
dissolutionalonecannotfullyexplaincrackpropagation[71].
Aluminumanditsalloysarepronetofailureviaintergranularcrackingwhensub-
jectedtosignificantstressesandexposedtospecificenvironmentalconditions.Notably,
the2xxx,5xxx,and7xxxseriesofaluminumalloysexhibitheightenedsusceptibilityto
SCCduetotheirinherentchemicalcompositionsandmicrostructuralcharacteristics.The
7xxxseriesalloys,widelyusedinstructural,military,andaerospaceapplicationsfortheir
exceptionalmechanicalproperties,includinghighstrength-to-weightratiosandfatigue
resistance,areparticularlyvulnerabletoSCC.Therefore,carefullyconsideringSCCsus-
ceptibilityduringthedesignandmanufacturingprocessesisessentialtoensuretheinteg-
rityandreliabilityoffinalproducts[71,73–75].
3.3.7.HexagonalAlloys:Magnesium,Zirconium,andTitanium
Materialswithahexagonalclose-packedcrystalstructure,suchaszirconiumandti-
tanium,exhibithighlynegativepotentialsinaqueousenvironments,emphasizingthesig-
nificantroleofhydrogenuptakeinenhancingtheirresistancetoSCC.Zirconiumandti-
taniumformstablehydrides,whereasmagnesiumhydridedecomposesrapidlyabove280
°C,displayinglowerhydrogensolubilitythanzirconiumandtitanium[71].
WhiletitaniumalloysgenerallydemonstrateexcellentresistancetoSCC,specificen-
vironments,suchasanhydrousmethanol,hotsalts,andstrongoxidizers,caninduceSCC
[71,76].Inhalidesolutions,activecorrosiontrenchesinitiatecracksthatpropagate
throughanodicdissolutionorhydrogen-assistedcrackingmechanisms.Thisprocesscan
involvethelocalprecipitationofbriletitaniumhydride,significantlyaffectingtheme-
chanicalpropertiesofthematerial[71].KieferandHarplefirstreportedtheSCCsuscep-
tibilityofcommerciallypuretitaniuminaqueousenvironments,particularlyinred-fum-
ingnitricacid(HNO3).Subsequentcasesofhot-saltcrackingwereobservedinturbine
bladesmadefromtitaniumalloysoperatingatelevatedtemperatures.Brownalsodocu-
mentedinstancesofSCCintitaniumalloysexposedtoroom-temperatureaqueousenvi-
ronments,highlightingsusceptibilityinseawater,particularlyinthetitanium8-1-1alloy
[30].
SCCinzirconiumalloysisconfinedtospecificconditions,suchashalogenvapors,
concentratedHNO3,andoxidizingchloridesolutions,withmechanismsakintothoseob-
servedintitaniumalloys.Additionally,susceptibilitytoSCChasbeennotedinmethanol
environments,primarilyaffectingmethanolandpotentiallyotherlow-molecular-weight
alcohols[71].Whethercastorextruded,magnesium-basedalloysmaybesusceptibleto
SCCunderdiverseconditions,suchaspurifiedwaterandair.Alloyscontainingalumi-
numareparticularlyvulnerable,withincreasedsusceptibilityinthepresenceofzinc.
Crackingcanoccuralonggrainboundariesortransgranularly,influencedbycathodicre-
gionswithinthemicrostructure.TGSCCinmagnesiumalloystypicallymanifestsalong
twinningplanesorcleavage,oftenexhibitingextensivebranching.ProposedSCCmecha-
nismsincludethebrilehydridemodel,developedbasedonobservationsofstress-in-
ducedmagnesiumhydridephases.CathodicpolarizationgenerallymitigatesSCCsus-
ceptibility,whereasanodicpolarizationexacerbatesit[71].
3.3.8.AusteniticStainlessSteel(ASS)
ASSissusceptibletoSCCinenvironmentscontainingpolythionicacid,causticsolu-
tions,andchlorides.SensitizationoccurswhenASSwithmorethan0.03wt.%carbonis
heated,leadingtotheprecipitationofM23C6atgrainboundaries[77].Thissensitization
reducesthechromiumcontentalonggrainboundaries,makingthempronetorapidpref-
erentialdissolutionandincreasingvulnerabilitytoSCC[78].Thestabilityofthepassive
filminASS,crucialforcorrosionresistance,isinfluencedbyfactorssuchastemperature,
acidity,halidecontent,andthepotentialdifferencebetweenthemetalandthesolution
Surfaces2024,7602
[79].SensitizedstainlesssteelsareparticularlysusceptibletoSCCinthepresenceofhal-
ides,includingchlorides,bromides,andiodides,whichcaninducepiingcorrosion[80].
ASSsensitizationoccursatelevatedtemperatures,resultinginM23C6precipitation
alonggrainboundaries[4].Thekineticsofthisprecipitationdependonthecarboncon-
tent,withlowercarboncontentrequiringmoretimeforsensitization.Chromiumandni-
trogenincreasecarbonsolubility,delayingorreducingprecipitation,whilemolybdenum
andnickelpromoteit.Thepresenceofnitrogencanalsoreducecarbideprecipitationin
ASS[81].Elementsenhancingpassivefilmstabilitycontributetoresistanceagainstpiing,
crevicecorrosion,andSCC[35].
Table2presentsthechemicalcompositionsoffrequentlyusedASSsinvariousindus-
trialapplications.ASSslikeSS304andSS316arewidelyusedinindustryfortheirexcep-
tionalproperties,enablingthemanufactureofcorrosion-resistantcomponentsandcon-
tainers.Forinstance,SS304andSS316areemployedinhigh-pressurepipingsystemsand
primarycircuitsofBoilingWaterReactors(BWRs)andPressurizedWaterReactors
(PWRs),respectively.SS316,modifiedwithadditionalelementssuchastitanium,silicon,
andphosphorus,isusedinlightwaterreactorsforfuelcladdingtubes[82,83].Thesealloys
exhibitoutstandingmechanicalproperties,includinganelongationof66.5%,yield
strengthof410MPa,andtensilestrengthof691MPa[4,84].
Tab le2.ChemicalcompositionsofcommonlyappliedASSsincoolingandpipingsystems[4].
ASSElement(wt.%)
CrNiSPMnMoSiNCOthers
SS30217.008.000.0300.0452.00–0.750.100.15–
SS31024.0019.000.0300.0452.00–1.50–0.25–
SS34717.009.000.0300.0452.00–0.75–0.08Nb1.00
SS32117.009.000.0300.0452.00–0.750.100.08Ti0.70
SS31618.0010.000.0300.0452.002.000.750.100.08–
SS30418.238.130.0040.0291.65–0.350.100.06–
TheresistanceofASStopiingcorrosionisinfluencedbythealloycomposition,
whichcanbequantifiedusingthePiingResistanceEquivalentNumber(PREN).A
higherPRENvalueindicatesimprovedcorrosionresistance.Forexample,duetoitsmo-
lybdenumcontent,SS316(PREN=25)exhibitssuperiorpiingcorrosionresistancecom-
paredtoSS304(PREN=20).Othergrades,suchasSS310andSS321/SS347,areutilizedto
mitigatecoldworkhardening,withstandhightemperatures,andfacilitateweldingin
high-temperatureapplications.However,designersmustbecautiousofhighsulfurlevels
intubing,whichaidinweldingbutcompromisecorrosionresistance[85–87].
Piingcorrosionacceleratesinchlorideenvironments,formingdistinctanodicand
cathodiczones.Exposuretochlorideaqueoussolutionsdisruptsthepassivefilm,which
ispromptlyreplenishedwithachromium-enrichedlayer.Thethicknessofthepassive
filmincreasesovertimeduetoelevatedFe2⁺levelsintheoxidelayerwithprolongedex-
posureatelevatedtemperatures.Increasedchlorideionconcentrationwithinthetypical
atmospherichumidityrangeexacerbatespiingcorrosion[88,89].Giventhesusceptibility
ofASSstoSCCinchlorideenvironments,chlorideionsplayacriticalroleininitiatingand
propagatingSCC.Theinteractionbetweenchlorideionsandsensitizedstainlesssteelsur-
facesacceleratespassivefilmbreakdown,leadingtolocalizedcorrosionandeventual
crackformationunderstress.Understandingthesemechanismsiscrucialformitigating
SCCrisksinchloride-richenvironments[88,89].
Theresistanceofhigh-strengthsteelstoSCCvarieswiththetemperingtemperature.
Initially,SCCresistanceincreaseswiththetemperingtemperaturebutdiminishesatspe-
cificpoints.However,furthertemperingcanenhanceresistanceagain.Thespecifictem-
peringtemperatureaffectingSCCresistancedependsonthesteelcomposition.Forin-
stance,steelslike08Cr15Ni5Cu2Tiand13Cr15Ni4NMo3aremostsusceptibletoSCCafter
Surfaces2024,7603
temperingbetween425°Cand475°C,achievingmaximumstrength.Atlowertempera-
tures(200–350°C)andhighertemperatures(525–560°C),SCCresistanceimproves,po-
tentiallyeliminatingcracking.Weldedjointsexhibitdifferentbehaviorsbasedontemper-
ingtemperatures;jointsweldedbelow400°CexperiencereducedSCCrates,whilethose
weldedabove500°Carelesssusceptible.Theeffectivepre-treatmentofsteelslike
08Cr15Ni5Cu2Tiat500–550°Caltersthemicrostructure,preventingSCCandIGCin
weldedjoints[53].
Low-temperaturetemperinguniformlyformscarbideparticleswithinsteelcrystals,
reducinginternalstressandenhancingSCCresistance.Increasedtemperingtemperatures
leadtomoreprecipitationandmartensiteformationfromaustenite.Thisresultsinmar-
tensitedecayalonggrainboundaries,creatingcarbon-depletedzonesascathodesandcar-
bon-enrichedareasasanodes.Furthertemperingextendsmartensitedecaythroughout
thegrain,reducinginternalstressandincreasingSCCresistance.Thesemechanismsillus-
tratehowthetemperingtemperatureinfluencestheSCCresistanceofhigh-strengthsteels,
underscoringtheimportanceofcompositionandheattreatmentinmitigatingSCCrisks
[53,55,90].
4.SCCMechanism
SCCmanifeststhroughtwoprimarymechanisms:dissolution-basedandcleavage-
based.Indissolution-basedSCC,materialscorrodelocallyatcracktips,compromisingthe
passivefilmandinitiatingcracks,whilecleavage-basedSCCinvolvesbrilefractures
alonggrainboundaries[71,91].
4.1.DissolutionMechanism
Dissolution-basedSCCinitiatesthroughlocalizedcorrosionatcracktips,wherethe
passivefilmbreaksdown,indicatinglocalizedfilmfailure.Thisprocessisinfluencedby
threedissolutionmechanisms:thepre-existingactivepathmodel,thestrain-generating
activepathmechanism,andthecorrosiontunnelmodel[71].Anodicdissolutionatpre-
existinggrainboundaries,oftencontainingintermetallicandsegregatedcompounds,is
exacerbatedbytensilestress,aphenomenonknownasthemechanoelectriceffect.Chro-
mium-depletedgrainboundariesareparticularlysusceptible,leadingtointergranular
cracking,whichismainlyobservedinsensitizedASS[35].
Inthestrain-generatingactivepathmechanism,crackgrowthproceedsthroughcy-
clesofpassivationanddissolutionalongslipstepsorcracktips.Thisinvolvestherupture,
dissolution,andrepassivationofthepassivefilmonthemetalsurface[92].Crackgrowth
maypauseatslipstepsuntilrepassivationoccurs,characterizedbyarrestmarkson
crackedsurfaces,whilesmoothsurfacesmayexhibitcleavage.Additionally,intergranular
crackscanformduetograinboundaryfeaturesonthefracturedsurface[93,94].
Thecorrosiontunnelmodeldescribescracksinitiatingatslipstepsandpropagating
undertensilestress,potentiallyleadingtoductileormechanicalfailure.Thesecracksini-
tiallyappearasthintunnelsandmayprogresstomechanicalfracture,withsurfacesex-
pectedtomatchclosely[4].Thedissolution-basedmodelisinfluencedbytheinterplay
betweendissolutionandrepassivationrates.Acceleratedcrackgrowthinchloride-in-
ducedSCCoccurswhendissolutionexceedsrepassivation,drivenbychlorideionsand
mechanicalstress.Conversely,rapidrepassivationthickensthepassivefilm,hindering
furtherslip-stepcorrosion[95,96].
Surfaces2024,7604
4.2.CleavageMechanism
Thecleavage-basedmechanisminvolvescrystalfracturespropagatingalongcrystal-
lographicsurfaces,leadingtobrilefailure[71].Theadsorption-inducedcleavagemech-
anismoccurswhenenvironmentalspeciesareadsorbedunderstress,resultingincleavage
fracture.Tensi lestressweakensatomicbondsalonggrainboundaries,particularlyatcrack
tipswherechlorideionsarepresent[97].Thetarnishrupturemechanisminvolvescyclic
processesofarrestmarks,filmformation,crackgrowth,andfilmfracture.Undertension,
cracksinitiateduetobrilepassivefilms.Uponexposuretothesolution,repassivation
haltscrackpropagation,primarilythroughtransgranularfracturesurfaces,enablingIG-
SCCaheadofthecracktip[98,99].
Thefilm-inducedmechanismsuggeststhatpassivefilmformationthroughdissolu-
tionmayleadtobrilecrackdevelopmentundertensilestress,propagatingbeyondfilm
thicknessintothemetalvolume.Crackpropagationhaltsduetothemetal’stoughmicro-
structure,resultinginbluntedcracksthroughplasticdeformation.Factorsinfluencing
film-inducedcleavageincludefilmthickness,initialcleavagecrackvelocity,substrate
toughness,andthebondingstrengthbetweenthemetalmatrixandthepassivefilm[4].
Theatomicsurfacemobilitymechanism,whichfocusesontheroleofhydrogenatoms,
predictscracksusceptibilityunderenvironmentalconditions.Vacancydiffusioniscritical,
asitremovescrystallaiceelementsnearcracktips,enablingatomicmigrationandcrack
propagationinthepresenceofaqueouscontaminants[4,100].Chaerjee[101]notesthat
multiplemechanismscontributetoSCCratherthanasingledominatingmechanism.Ac-
cordingtothecleavage-basedmodel,hydrogenatomsmigratetocracktips,causingem-
brilementandcontributingtoSCC.Thedissolutionofoxidefilmsbyanodicchloride
ionsenhancestheconcentrationofacidicspeciesatcracktips[102].
4.3.SCCDevelopment
Crackgrowthratesdependonloadingconditions,environmentalaggressiveness,ex-
posureduration,andmaterialsensitization.Mathematically,thecrackgrowthrateisre-
latedtothecracklength,exposuretime,andmetalsensitization.Sensitizationinvolves
theformationandprecipitationofM23C6alonggrainboundaries,depletingthechromium
contentanddisruptingtheprotectivefilm(Figure4a).Decreasedchromiumcontentleads
toasuddendiscontinuityinthepassivefilm.ASSsensitization,oftenresultingfromweld-
ingorexposuretohightemperatures,diminishesSCCresistanceandacceleratescrack
propagation,evenunderlow-stressconditions.Figure4billustratesspecificcrackpaths
observedinanodicsolutions,depictingthedistinctionsbetweenIGSCCandTGSCC[103].
Figure4.(left)Chromiumcarbideprecipitationatgrainboundariesinsensitizedstainlesssteeland
(right)SCCmechanism:interactionbetweenanodicsolutionandmaterialresultinginIGSCCand
TGSCC[4].
Surfaces2024,7605
ASScomponentsinBWRsandPWRsaresusceptibletoIrradiation-AssistedSCC
(IASCC)andIGSCC[104].BWRs’thermallysensitizedASScomponentsareparticularly
pronetoIGSCC,whichisexacerbatedbyneutronexposurethatinitiatesandpropagates
cracking[105].Conversely,TGSCCtypicallyoriginatesontheexteriorsurfacesofASS
components.
Chloridecontaminationcreatesaqueousenvironmentsthatareidealforcrackprop-
agation,oftenfacilitatedbythermalinsulation,wateringress,orweing.Thisenviron-
mentfosterspiingorcrevicecorrosionconcurrentlywithSCC,particularlyundertensile
stressconditions[106].ASScomponentsarepronetoSCCundersuitablecorrosivecondi-
tions.Parkinsidentifiedthreestagesinthestresscorrosionspectrumofvariousmaterials
exposedtodiversecorrosivesolutions:pre-existingactivepaths,strain-inducedactive
paths,andspecificsubcriticalstresslocationadsorption[4].AccordingtotheParkins
model,SCCprogressesthroughinitiation,propagation,filmrupture,andpiing[103].
Elevated-temperatureinteractionsbetweenappliedtensilestressandcorrosivesolutions
disruptlocalpassivefilms,leadingtopiingandsubsequentcrackinitiation.Stresslocal-
izationprofoundlyimpactspitformation,influencingthecracklengthandmaterialprop-
erties(Figure5).
Figure5.Athree-stagemodelforSCCprogression(Reproduced/reprinted/adaptedfromRef.[4].
2024,licensedunderanopenaccessCreativeCommonsCCBY4.0license).
Hänninen[71]suggestedthatCl-SCCistypicallyabsentinnon-sensitizedASSsbe-
low50°Cundernear-neutralconditions.However,low-pHconditionscaninduceCl-
SCC,evenatroomtemperature.Inchloridesolutions,pitsorlocalizedcorrosionoften
initiatecracks,whereascrevicecorrosionacidifiescracktips,hydrolyzingdissolvedmetal
ions[99,107].Xieetal.[108]studiedSCCinSS316undersimulatedPWRconditions
throughsolutiontreatmentandcoldworking.Theintroductionofchlorideionssignifi-
cantlyincreasedSCCsusceptibility.Themechanisminvolvesthecyclicruptureandre-
generationoftheoxidefilmthroughmetalatomdiffusion,producingdissolvedchlorides
thatformmicrocracksandacceleratetheinitiationandpropagationofTGSCC.Dissolved
oxygenenhancescrackgrowthincold-workedSS316bypromotinganiondiffusionat
cracktips,therebyacceleratingSCC.
Onceinitiated,Cl-SCCinASScannotbecompletelystopped,butitcanbemitigated.
Yeometal.[109]employedcoldspraytechnologytomitigateCl-SCCinnuclearfuelstor-
agecanistersbypropellingSS304Lpowderparticleswithheliumandnitrogengases,in-
creasingparticlevelocity.Thismethodpenetratedoxidelayers,inducingcompressivere-
sidualstressandeffectivelysealingcrackopeningsasaphysicalbarrier,whichinhibits
theprogressionofCl-SCC.
Surfaces2024,7606
SCCisasuddenandseverefailuremechanisminmaterialsexposedtocorrosiveen-
vironments,particularlyinchloride-richandhigh-temperatureconditions.ASSsensitiza-
tionfromweldingorhightemperaturesleadstointergranularcrackformationalonggrain
boundaries,contrastingwithtransgranularcrackinginunsensitizedmaterials.Parkins’s
stresscorrosionspectrumanddissolution-basedmodelselucidatethecontributionsof
chlorideionstopassivefilmbreakdownandcrackpropagation.
5.Chloride‐InducedStressCorrosionCracking(Cl‐SCC)
Chloride-inducedstresscorrosioncracking(Cl-SCC)occurswhenmetals,particu-
larlyASSandnickelalloys,areexposedtocorrosiveenvironmentsundertensilestress
[110].ThekineticsoftransientoxidationinCl-SCCsystemsarecomplexanddependon
theinterplayofmaterialproperties,environmentalfactors,andloadingconditions[111].
Shallowpits,althougheasilyinspected,canactasstressconcentrators,potentiallyinitiat-
ingSCC[112].Inpetroleumrefining,environmentscontainingpolythionicacids,amines,
ammonia,caustics,andmoltenchloridesarecommonplace.Chlorides,inparticular,are
knowntoinduceTGSCCinASSandnickelalloys[113].Despitetheprevalenceofsulfates,
chloridesareconsideredmoreaggressiveinpromotingSCC.Understandingthecompo-
sitionandoriginofdepositsinrefiningenvironmentsiscrucial[110].
TheinitiationofCl-SCCinrefineriestypicallystemsfromchloride-containingcom-
poundspresentincrudeoil,refiningprocesses,orexternalsourcessuchasseawaterin-
gress.Uponcontactwithmetalsurfaces,subsequentcoolingandmoistureabsorptionlead
totheformationofacorrosivelayer,fosteringlocalizedcorrosionandpotentialSCCun-
derstressconditions[4].ExternallyinitiatedCl-SCCinvolveselectrochemicalmecha-
nismsfollowedbyapropagationstageinfluencedbyelectrochemistryandmetalsepara-
tion[114].Cl-SCCcanleadtodeteriorationandpotentialstructuralfailuresinindustrial
applications,impactingsafetythroughpartialorthrough-wallcorrosionandcracking
[115].ThisposesasignificantrisktoASS,especiallyinchloride-richenvironmentswhere
transgranularcrackingpredominates,althoughsensitizedsteelsmayexperienceinter-
granularcracking[113].
VariousparametersinfluenceCl-SCCinrefineryseings,reflectingdiverseopera-
tionalandenvironmentalconditions.Criticalenvironmentalfactorsincludechloridecon-
tent,pH,temperature,impurityconcentrations,andtheformationofchloride-containing
moisturefilms.Relativelylowtemperatures(below100°C)cancatalyzeSCCincorrosive
solutions[4].Deliquescentchlorides,capableofabsorbingmoisture,formhighlyconcen-
tratedfilmsonequipmentsurfaces,withdeliquescencerelativehumidity(RH)playinga
pivotalroleinfilminitiation[116,117].Externalsourcesofchlorides,suchasrain,coastal
fog,deicingsalts,andprocessleaks,significantlycontributetochlorideexposureonmetal
surfaces,particularlyinindustrieslocatednearcoastalareas.Overtime,equipmentper-
formancecanbeadverselyaffectedbycorrosioninducedbythehygroscopicpropertiesof
saltsandthedepositionofchlorideionsasaerosols.Thesefactorscancontributetolocal-
izedSCC,especiallyinareaswithhighresidualstressesfromwelding.Airbornepollu-
tants,dust,andaerosolscandepositonequipmentsurfaces,leadingtolocalizedcorrosion
aacks[118].ThermalinsulationcanexacerbateASSsusceptibilitytoSCC.Whilelocalized
corrosioniswidelyrecognizedastheprimaryinitiatorofCl-SCC,themechanismsgov-
erningcrackpropagationremaincomplexandnotfullyunderstood[119].Crackpropa-
gationlikelyinvolveselectrochemicaldissolutionandatomic-levelfracturemechanisms
withinthemetalstructure[120].
Inindustrialseings,particularlyinequipmentsuchassteamgenerators,coolant
systems,heatexchangers,andpipes,ASSfacesanelevatedriskofCl-SCCduetoprevail-
ingoperationalconditionsandthepresenceofchlorideionsincoolants[82].Despitethe
corrosionresistanceof300seriesstainlesssteel,exposuretotemperaturesabove60°C
increasesitssusceptibilitytoCl-SCCinaqueousenvironments.Thiscanleadtopassive
filmdegradation,pitformation,andcrackingundertensilestress[121].Theresulting
threattorefineryequipmentnecessitatesproactivemeasurestomitigateriskseffectively
Surfaces2024,7607
[111].Operationalstresses,includingcyclicloading,thermalstresses,pressurechanges,
andpotentialweldingduringconstructionormaintenance,contributetoresidualstresses.
Tensilestressesinducedbywelding,particularlyinASSwithoutstressrelieftreatments,
createanenvironmentconducivetotheinitiationandpropagationofCl-SCC.Despite
limiteddirectmeasurements,highresidualstressesalongwelddirectionsincreasethema-
terial’svulnerabilitytoCl-SCC.Advancesinresidualstressmodelingunderscorethecrit-
icalroleofwelding-inducedresidualstressesingoverningCl-SCCsusceptibilityinASS
[4].
5.1.FactorsAffectingCl‐SCC
5.1.1.Materials
Cl-SCCposesasignificantchallengeinrefineryoperations,particularlyconcerning
materialsusceptibility.Thespectrumofsusceptibilityrangesfromcarbonsteelandlow-
alloysteels,whichexhibitlowerresistance,toalloyssuchas300seriesstainlesssteels,
Alloy400,duplexstainlesssteels,Alloy800,Alloy825,Alloys625andC276,andtitanium,
whichdemonstratehigherresistancetoCl-SCC.
Cl-SCCoccurswhenmaterialssusceptibletochlorideexposure,suchas300series
stainlesssteels,encounterchloridesalts.Thisformofcorrosionposesasignificantthreat
topipingandequipmentintegrityacrossvariousrefiningunits,includingproductstabi-
lizertowers,recyclegassystems,FluidizedCatalyticCrackingUnits,overheadsystemsof
crudedistillationandfractionationcolumns,hydroprocessingeffluentsystems,catalytic
reformingunits,andhydrotreaterdesulfurizerprefractionators.Reactoreffluentstreams
operatingatapproximately~300°Fareespeciallypronetofoulingandcorrosioninduced
bychloridesalts.Understandingthemetallurgicalnuancesinfluencingmaterialsuscepti-
bilitytoCl-SCCiscrucialforselectingappropriatematerialsandimplementingeffective
corrosionmitigationstrategiesinrefineryenvironments.Metallurgicalconsiderationsare
paramountindeterminingsusceptibilitytoCl-SCC,withfactorssuchasalloycomposi-
tion,microstructure,andgrainboundarycharacteristicsplayingcrucialroles.Carbon
steelandlow-alloysteels,withhigherironcontentandsusceptibilitytosensitization,are
morepronetochloride-inducedcorrosionandcrackingthanstainlesssteelsandcorro-
sion-resistantalloys.WhileASSs,suchasthe300series,offercorrosionresistance,they
remainsusceptibletoCl-SCCundercertainconditions,particularlyinchloride-richenvi-
ronmentsandundertensilestresses.Duplexstainlesssteelsexhibitimprovedresistance
duetotheirdual-phasemicrostructure,combiningcharacteristicsofausteniticandferritic
stainlesssteels[122].
MicrostructuraleffectssignificantlyinfluencematerialsusceptibilitytoCl-SCC,with
grainboundariesactingaspreferentialsitesforchlorideioningressandcrackinitiation.
SensitizationinASS,characterizedbyM23C6precipitationalonggrainboundaries,canin-
creasesusceptibilitytoCl-SCCbydepletingthechromiumcontentintheadjacentmatrix.
Techniquessuchasgrainboundaryengineering,involvingmodificationoralloying,can
enhanceresistancebyminimizinggrainboundarysensitizationandpromotingamore
corrosion-resistantmicrostructure.AlloyselectioncriteriaarecrucialinmitigatingCl-SCC
risk,consideringfactorsincludingchloridecontent,temperature,pressure,andmechani-
calloading.Alloyswithhigherchromium,molybdenum,andnickelcontents,suchasAl-
loys825,625,andC276,demonstratesuperiorresistancecomparedtocarbonsteeland
low-alloysteels.Titaniumalloysofferexcellentcorrosionresistanceinchloride-richenvi-
ronmentsduetotheformationofastablepassiveoxidefilmontheirsurface.Bycompre-
hendingmetallurgicalfactorsandintegratingthisknowledgeintoalloyselectionandde-
signconsiderations,engineersandmaterialsscientistscandeveloprobustsolutionsto
mitigateCl-SCCriskinrefineryenvironments[122].
Alloychemistryandmicrostructureprofoundlyinfluencethesusceptibilityofstain-
lesssteeltoSCC.ASSsareparticularlyvulnerabletoCl-SCC,contrastingwiththesuperior
resistanceofferriticstainlesssteel.Nickel,molybdenum,andnitrogenplaypivotalroles
Surfaces2024,7608
inenhancingtheSCCresistanceofASSs.Increasingthenickelcontentabove8%inASSs
cansignificantlyimprovetheirresistancetoCl-SCC.Additionally,molybdenumandni-
trogenhavebeenfoundtoenhanceSCCresistance,possiblyduetotheirbeneficialeffects
onpiingresistance,aprecursortoSCCinitiation.Conversely,elevatedlevelsofsulfur
andphosphoruswithinthesteelmatrixdetrimentallyaffectSCCresistance.Stresscorro-
sionstudieshavedemonstratedthathigherphosphoruscontentinASScorrelateswith
increasedsusceptibilitytoSCCinchloride-richenvironments.
Furthermore,thesensitizationofASSsbetween500and850°Crendersthemsuscep-
tibletoIGCandIGSCCinvariousenvironmentscontainingchlorideorfluorideions[6].
ThenickelcontentwithinstainlesssteelalloysalsoplaysacriticalroleinSCCsusceptibil-
ity.Cl-SCCsusceptibilityincreaseswiththenickelcontentuptoacertainthreshold,typ-
icallywithintherangeoftraditionalAISI304and316steels.Beyondthisthreshold,usu-
allyaround10%nickelcontent,nickeldemonstratesamitigatingeffectonSCCinchlo-
ride-richenvironments.Alloyscontainingmorethan42wt.%nickelareimmunetoCl-
SCC[123].
Furtherinvestigationsintosensitizationprocesseshaverevealedinsightsintothenu-
ancedrelationshipbetweensensitizationparametersandSCCsusceptibility.Prolonged
sensitizationdurationsandlowersensitizingtemperatureshavebeenassociatedwith
heightenedsusceptibilitytoIGSCC.Thisvulnerabilityhasbeenlinkedtoareductionin
chromiumconcentrationadjacenttograinboundaries,whichunderminesthestabilityof
passivefilmsandincreasesthechemicalactivityoflocalizedregions,facilitatingIGSCC
initiation[6].QuantitativeassessmentsusingElectronProbeMicro-Analysis(EPMA)and
SlowStrainRateTesting(SSRT)haveprovidedvaluableinsightsintotherelationshipbe-
tweenthedegreeofsensitizationandIGSCCsusceptibility.Whilealinearcorrelationis
observedbetweenIGSCCsusceptibilityandEPMAchargevaluesforlowdegreesofsen-
sitization,complexitiesariseathigherdegreesofsensitization.Conversely,IGSCCsus-
ceptibilityincreaseswithadecreaseinsensitizingtemperatureforagivenEPMAcharge
value,highlightingtheintricateinterplayofmultiplefactorsingoverningSCCbehavior
[6].
Inindustrialapplications,selectingstructuralmaterialsiscriticalduetotheaggres-
sivechloride-richenvironmentsinvolved.AlloyswithPRENsexceeding50haveemerged
aspromisingcandidates,demonstratingnotableresistancetoCl-SCC.Nickelcontenthas
beenidentifiedasadecisivefactor,withalloysfeaturinghighernickelcontentexhibiting
enhancedresistancetoCl-SCC[123].InvestigationsintoSCCsusceptibilitywithinsuper-
criticalwater(SCW)environmentshaveprovidedadditionalinsightsintotheinterplayof
environmentalparametersandmaterialbehavior.ThechlorideconcentrationwithinSCW
hasbeenidentifiedasacriticaldeterminantofSCCsusceptibility,withhigherchloride
concentrationscorrelatingwithheightenedsusceptibility.Conversely,higherchromium
contenthasbeenassociatedwithreducedIGSCCsusceptibility,highlightingtheroleof
alloycompositionindictatingmaterialperformanceunderaggressiveenvironmentalcon-
ditions[124].
Inconclusion,thesusceptibilityofstainlesssteelstoSCCrepresentsamultifaceted
phenomenongovernedbyalloycomposition,microstructure,andenvironmentalfactors.
Continuedinterdisciplinaryresearcheffortsareessentialfordeepeningourunderstand-
ingofSCCmechanismsanddevelopingrobustmitigationstrategiestosafeguardcritical
infrastructureagainsttheperilsofSCC.
5.1.2.TemperatureandLimitingRelativeHumidity
FactorsinfluencingCl-SCCprimarilyincludetemperatureandRH.Theimpactof
temperatureoncorrosionismultifaceted:withinacertainrange,itcanfacilitatebothlo-
calizedcorrosionandSCC.However,beyondthisrange,elevatedtemperaturesmayhin-
dercorrosionbyreducingsurfaceRHbelowthelimitingrelativehumidity(RHL),thereby
Surfaces2024,7609
preventingtheformationofdeliquescentsaltsnecessaryforcorrosion[121,125].Con-
versely,lowertemperaturescanelevatesurfaceRHtolevelswheredeliquescedsolutions
becometoodilutedtosustaincorrosion[115].
ASSsareprizedfortheirgeneralcorrosionresistancebutarehighlyvulnerableto
localizedformssuchaspiing,crevicecorrosion,andSCC,especiallyinchloride-richen-
vironments.Chlorideions,pervasiveinwaterandindustrialseings,catalyzeSCC.Ele-
vatedtemperaturesexacerbateSCC,particularlyinsensitizedASSsthataresusceptibleto
IGSCC,evenatambienttemperatures.Whileaconsensusonthecriticaltemperaturefor
SCCinitiationremainselusive,evidencesuggestsasignificantincreaseincrackgrowth
ratesabove80°C.However,SCCcanoccuratlowertemperatures,particularlywhensur-
faceimpurities,suchasembeddedironparticles,createsitesforchlorideaccumulation.
DeterminingathresholdchlorideconcentrationbelowwhichSCCismitigatedis
challengingduetothelocalizednatureofthecorrosionprocess.Chlorideaccumulation
withincrevicesorunderdepositsonASSsurfacesexacerbatesSCC,withchlorideoften
leachingfromthermalinsulation,therebyincreasingtherisk.ASSscantypicallywith-
standwaterwithlessthan1000ppmchlorideunderflowingconditions,assumingnocon-
centrationmechanismsareactive.However,thepermissiblechloridecontentininsulation
dependsonitssilicatecontent.Therefore,mitigatingSCCrequiresathoroughunder-
standingofhowlocalenvironmentalfactorsinfluencechlorideaccumulationandcorro-
sioninitiationonASScomponents[6].
Understandingthedetailedeffectsoftemperatureoncorrosionkineticsiscrucialfor
Cl-SCC.Temperatureinfluenceselectrochemicalanddiffusionkinetics,resultinginvaried
corrosionrates.Experimentalfindingssupportthisobservationinexposuretestscon-
ductedatdifferenttemperatures.Forinstance,SS304exhibitssignificantlylongerfailure
timesunderappliedstress(~400MPa)at50°Ccomparedto80°C.Additionally,lower
temperaturesgenerallyreduceelectrochemicalanddiffusionkinetics,therebylowering
corrosionrates[126].
RHisalsocriticalinatmosphericchlorideSCC.ExposuretestsindicatethatRHabove
theRHLisessentialforchloridesaltdeliquescenceandsubsequentSCCinitiation[115].
StudiessuggestacriticalRHthresholdof15%forCl-SCCinmaterialslikeSS304and
SS316upto80°C.However,laboratorytestsreplicatingrealisticenvironmentalcondi-
tionssuggestthatvariationsinhumiditymaynotnecessarilyaccelerateCl-SCC,evenwith
elevatedsurfacechlorideconcentrations[116].
Comparisonsbetweennaturalandacceleratedtestconditionsunderscoretheim-
portanceofrealisticenvironmentalsimulationsinassessingSCCrisks.Forexample,SCC
propagationratesdiffersignificantlybetweennaturalandacceleratedtestingconditions,
withatwo-orderdifferenceinpropagationrates[127].Despitetheseinsights,neitherset
ofconditionspreciselymirrorsin-serviceenvironments,highlightingthecomplexityof
predictingactualfailureoccurrences.
Furthermore,findingsfromexposuretestsrevealadditionalnuances.Forinstance,
crackingseverityincreaseswithexposuretimeatlowertemperatures,withmorespeci-
mensdevelopingcracksandlongercracklengthsobserved.Thisunderscoresthedynamic
natureofCl-SCCanditssensitivitytoenvironmentalvariables.
AcomprehensiveunderstandingoftheeffectsoftemperatureandRHonCl-SCCin-
volvesdelvingintotheunderlyingelectrochemicalkinetics,diffusionprocesses,andma-
terialresponses.Highertemperaturesfacilitatethediffusionofcorrosivespeciestomate-
rialsurfaces,promotinglocalizedcorrosioninitiation.Conversely,fluctuationsinRHin-
fluencetheavailabilityofwaterandchlorideionsatsurfaces,affectingcorrosionkinetics
andtheformationofprotectivefilms.
5.1.3.TypesofSalts
Chlorideions,originatingfromsourcessuchashydrogenchloride(HCl)resulting
fromchloridesalthydrolysis,arepivotalininitiatingandpropagatingCl-SCC.Inrefinery
Surfaces2024,7610
operations,chloridesaltslikeNaCl,magnesiumchloride(MgCl2),andcalciumchloride
(CaCl2)undergohydrolysisatelevatedtemperatures,releasingcorrosiveHCl:
NaCl+H2O→NaOH+2HCl
CaCl2+2H2O→Ca(OH)2+2HCl
MgCl2+2H2O→Mg(OH)2+2HCl
Additionally,organicchloridedecompositioncontributestoHClformation,further
exacerbatingcorrosionwithinrefinerysystems.Thepresenceofsaltsinrefineryprocesses
introducescomplexities,asfactorssuchastemperature,pressure,andthechemicalcom-
positionoforganiccompoundsinfluencethekineticsofCl-SCC[122].
Experimentalstudieshavedemonstratedadirectcorrelationbetweenthechlorine
concentrationandCl-SCCincidence.Higherconcentrationsofchlorideionscreateamore
corrosiveenvironment,acceleratingthedegradationofpassivefilmsonstainlesssteelsur-
facesandfacilitatingSCCinitiation.SensitizedSS304specimenshaveexhibitedcrackfor-
mationwhenexposedtoelevatedchlorineconcentrations,suchas1and10g/m2.Simi-
larly,as-receivedSS304specimensshowincreasedsusceptibilitytocrackinitiationwith
higherlevelsofchlorinedeposition.Conversely,whenchlorineconcentrationsarebelow
certainthresholds,typicallyaround1g/m2,occurrencesofcracksonSS304specimensare
significantlyreduced.Itiscrucialtonotethatchlorineexposurecanoccurthroughvarious
means,includingdirectcontactandindirectinfiltrationfromatmosphericdepositionor
industrialemissions.Acomprehensiveassessmentofenvironmentalfactorsandpotential
sourcesofchloridecontaminationisessentialforeffectivecorrosionmanagement[115].
ThetypesofsaltssignificantlyinfluencetheCl-SCCphenomenon.Severalstudies
haveunderscoredthecriticalroleofsalttypesincorrosivity,withvaryingsensitivityob-
servedtowardchangesinionconcentrations.Laboratoryexperimentsinvolvingchloride
mixtureshaveshownthatMgCl2inducesfailureinstainlesssteelspecimensmostrapidly,
followedbyCaCl2,whileNaClexhibitstheslowestcorrosiveaction.Thisdisparitycanbe
aributedtosolubilityandchlorideactivitydifferencesamongvarioussalts.MgCl2and
CaCl2,beingmoresolublethanNaCl,exhibitheightenedcorrosivepotential.Despite
MgCl2demonstratingfasterreactivitythanCaCl2incertainstudies,extensiveresearch
consistentlyidentifiesCaCl2astheprimarycontributortoCl-SCCamongseasaltsatroom
temperature.Thecorrosiveimpactofsaltdepositsdependsontheequilibriumchloride
concentrationwithintheelectrolyteformedonthesurfaceduetowatervaporabsorption.
CaCl2demonstratesgreatercorrosivenessthanMgCl2duetoitsabilitytogeneratesolu-
tionswithhigherconcentrationsatspecificrelativehumidities[128,129].
Atchlorideconcentrationsbelow0.5g/L,sulfidesaltssynergisticallyexacerbateCl-
SCC,particularlyevidentinSS316andSS304,wheresignificanttransgranularcracking
hasbeenobserved[115].Sulfidestypicallyreduceresistancetocrevicecorrosionandpit-
tinginstainlesssteelacrossvariousgrades.ThesusceptibilitytoCl-SCCincreaseswith
highersulfurcontent,leadingtoadenserdistributionofsulfideinclusionsthatserveas
initiationsitesforSCCandpits.Undertypicalambientconditionsandintheabsenceof
H2S,suchlowchlorideconcentrationsgenerallydonotinducecracking[115].
5.1.4.ResidualStress
Cl-SCCmanifeststhroughcrackinitiationandpropagationunderthecombinedin-
fluenceoftensilestress,exposuretochloride-richenvironments,andelevatedtempera-
tures.Whilepiingcorrosiontypicallyinitiatesslowly,residualstresscanexpeditedeg-
radationmechanisms,acceleratingcrackgrowthrates.PreviousstudiesonSCCindry
storageconditionshavepredominantlyutilizedU-bendspecimens,whichmaynotfully
replicatestressdistributionsinactualcanisterwelds.Nevertheless,theseinvestigations
offervaluableinsightsintostress-relatedphenomena.Bysimulatingstressdistributions
akintorealcanisterenvironments,researchershaveestimatedthepotentialimpactofre-
sidualstressonSCCdevelopment[115].
Surfaces2024,7611
Toinvestigatetherelationshipbetweenresidualstressandtimetorupture,experi-
mentswereconductedusingsensitizedandas-receivedSS304LandSS304specimenssub-
jectedtovaryingappliedstresses.Theresultsindicatedadecreaseinrupturetimewith
increasingappliedstress(σap)forSS304,withrupturetimesof100hat510MPaand531
hat147MPa.ThethresholdstressforSCCinitiationwasidentifiedat74MPa,highlighting
thesignificantroleofresidualstressinSCCsusceptibilitymitigation.Interestingly,under
thetestedconditions,agingtreatmentsat650°Cfor10mindidnotsubstantiallyalterSCC
susceptibilityinSS304andSS304Lmaterials[107].SS304Lexhibitedmarginallylonger
rupturetimesthanSS304,particularlyathigherstresslevels,suggestingslightlyenhanced
resistancetoSCC.
5.1.5.SensitizationandFailure
SensitizationinstainlesssteelsoccurswhenM23C6precipitatesatgrainboundaries,
reducingthechromiumcontentwithingrainsandcompromisingcorrosionresistance.
Thisphenomenoniscommonlyinducedduringweldingprocesses,particularlyinthe
HAZ,whereresidualstressesarehighestpost-weldingduetomeltingandsolidification.
Despiteeffortstomitigatesensitization,itseffectspersist,makingsensitizedstainless
steelsvulnerabletorapidcrackingandcorrosioninitiationinbenignenvironmentslike
moistairorwater,particularlyalongsusceptiblegrainboundaries[115].Experimental
studiesonsensitizedSS304at80°Cand35%RHdemonstratedheightenedsusceptibility
toSCC.Belowtheproofstress(approximately290MPa),sensitizedSS304exhibitedsig-
nificantlyshorterrupturetimescomparedtotheas-receivedmaterial,aributedtoele-
vatedresidualstressesinducedduringsensitization[107].
5.1.6.LocalizedCorrosionPotentials
LocalizedcorrosionpotentialsarecrucialininfluencingcrackpropagationinCl-SCC,
particularlywithincrackorcreviceenvironmentsinchloridesolutionswherepHlevels
dropdrasticallytoaround1–2.ThisacidicenvironmentpromotesSCCgrowth[130,131].
AstudyconductedbyTanietal.[132]investigatedtheanodicpolarizationbehaviorof
SS316andSS304insyntheticseawateratpH1and80°C,revealingdistinctpeaksinthe
activedissolutioncurrentataround−0.25Vforeachstainlesssteelsample.Notably,both
specimensexperiencedSCCfailureafterapproximately500hoftesting.Furthermore,
overlappinganodicpolarizationcurvesinpassivationandtransitionzonesindicatedsim-
ilarpiingpotentialbehavior,suggestingcomparablefailuretendencies.
Temperaturesignificantlyinfluenceslocalizedcorrosionpotentials.Generally,crev-
icecorrosionpotentialsarelowerthanpiingpotentialsacrossdifferentspecimens.Stud-
iesbyMayuzumietal.[116],alongwithTanietal.[132],onthetemperaturedependence
oflocalizedcorrosionpotentialsinsaturatedsyntheticseawaterforSS316andSS304
demonstratedaninverserelationshipbetweenthesurfacetemperatureandlocalizedcor-
rosionpotentials,includingtheopen-circuitpotential(OCP).Lowersurfacetemperatures
elevatedlocalizedcorrosionpotentialsandtheOCP,whilehighertemperaturesreduced
thedissolvedoxygenconcentrationonthemetalsurface,therebyloweringthecorrosion
potential.Anodicpolarizationcurveanalysishighlightedconsiderablevariabilityin
SS304’spiingpotentialat80°C,underscoringmeasurementchallengesinassessinglo-
calizedcorrosionpotentialsaccuratelyandtheirimplicationsforSCC.
5.2.CI‐SCCMechanism
Cl-SCCischaracterizedbytheinterplayofresidualstressandpiingcorrosion,oc-
curringintwoprimarystages:initiationandpropagation.
5.2.1.InitiationStage
TheinitiationofCl-SCCinvolvescomplexelectrochemicalprocesses.Theresistance
ofstainlesssteeltoelectrochemicalcorrosionisprimarilyduetoitsprotectivechromium
Surfaces2024,7612
oxidepassivelayer,typically1–3nmthick[115].However,chlorideionssignificantly
threatenthispassivelayer,leadingtolocalizeddamage[133].Thisinitiatespiingcorro-
sionwhenthesteelexceedsacriticalpotentialknownasthefilmbreakdownpotentialor
piingpotential.Chlorideionslocallydisruptthepassivefilm,initiatingpiingcorrosion
[132,134].PitsformedduringpiingcorrosionserveaspreferentialsitesforCl-SCCiniti-
ation,causingincreasedsurfaceroughnessandpassivefilmdisruption.Residualstresses
frommanufacturingormechanicalloadingcanfurtherincreasesusceptibilitytocrackin-
itiation,concentratingatpitedgesorothersurfaceimperfections[132,134].
Inmaterialsscience,piingcorrosioniswidelyrecognizedascrucialininitiatingCl-
SCC.Asthepassivefilmbreaksdown,pitsdeveloponthestainlesssteelsurface,facilitat-
ingSCCinitiationduetoincreasedsurfaceroughnessandthedisruptedpassivefilm.
Withinthesepits,aggressivelocalchemistrypromotesthedevelopmentoftensilestresses
throughmechanismssuchasconcentrationgradientsandstressconcentrationduetopit
geometry[115].Oncetensilestressesexceedthematerial’sSCCthreshold,crackstypically
initiatefromthepitboomandpropagateundertheinfluenceofaggressivechemicalen-
vironmentsandappliedstresses[107].
5.2.2.PropagationStage
ThepropagationofSCCinvolvesintricatescientificprocessesprimarilyinfluenced
bymetaldissolutionandresidualstress.Onceacrackinitiatesatapit,itrapidlypropa-
gatesundertheseconditions,withmechanicalfactorspredominantlyinfluencingthepro-
cess.Specificthresholdconditionsmustbemetforcrackpropagationtooccur.Studies
indicatethattherateofmetallossovertimesignificantlyimpactsSCCprogression,un-
derscoringtheimportanceofprolongedexposuretoconduciveenvironments[135].Ad-
ditionally,environmentalfactorssuchasRHlevelsbelow15%caninhibitSCCpropaga-
tion,highlightingtheinteractionbetweenenvironmentalconditionsandcrackadvance-
ment[116].ThemechanismsunderlyingcrackinitiationandSCCinvolveacombination
ofmechanicalandelectrochemicalprocesses.Cracksprimarilypropagatealonggrain
boundaries,wherematerialmicrostructureiscritical.Crackgrowthisdrivenbymechan-
icalloadingandchemicalreactionsatthecracktip,promotingtheseparationofatomic
bonds.Concurrently,theaggressivechemicalenvironmentwithinthecrackaccelerates
metaliondissolution,furtherexacerbatingcrackpropagation[135].
6.AssessmentofSCC
VarioustechniquesarecommonlyemployedtoassessSCC,includingtheSPT,CLT,
andSSRT.TheSSRTutilizesaconstant-extension-ratemachinetograduallystrainmate-
rials,providingcontrolledinsightsintoSCCbehaviorunderdeformation.TheCLTap-
pliessustainedloadsusingproofringstostudySCCunderconstantstressconditions.The
SPTemploysminiaturizedspecimenstoefficientlyassessSCCcharacteristics,oftencom-
plementedbyelectrochemicalmeasurementsforcomprehensiveSCCanalysis.TheCLT
involvesexposingspecimenstoconstanttensilestressesincorrosiveenvironmentsfor
durationsofuptoonemonth.DespitemeetingANSI/NACETM0177standards,theCLT
haslimitations,suchasstaticconditions,theinabilitytocontinuouslymonitorSCCpro-
gression,andextendedtestdurations[5].
TheSPTisutilizedinacademicresearchtoevaluatevariousmechanicalpropertiesof
metallicmaterials,includingsusceptibilitytoSCC,usingacousticemissionandsmallin-
dentations.Thismethodoffersadvantagesbyenablingtheassessmentofmechanicalchar-
acteristicsinsmall,inaccessibleregionscomparedtoconventionalmethods.Currently,
theSPTisappliedtostudyfracturebehavior,creepresistance,ductile–briletransition
temperatures,tensilestates,andsusceptibilitytoEnvironmentallyAssistedCracking
(EAC)[5,136,137].
TheSSRTisamechanicalapproachextensivelyusedtoassessSCCinburiedpipe-
lines,subjectingsteelsamplestogradualstrainingwithinasimulatedserviceenviron-
ment.Thismethodprovidesvaluableinsightsintothesusceptibilityofpipelinesteelsto
Surfaces2024,7613
SCCwithshortexperimentaldurations[5,138].TheSSRTutilizesportableinstrumentsto
maintainconsistentextensionrates,whichiscrucialforevaluatingmetalsunderchalleng-
ingenvironmentalconditions[139].
6.1.SCCAssessmentUsingSSRT
EvaluatingmaterialsforsusceptibilitytoSCCcommonlyfollowsstandardizedmeth-
odssuchasASTMG129andNACETM0198.Thisprocesstypicallyinvolvescomparing
themechanicalpropertiesofspecimenstestedindefinedenvironments,suchassoilsor
solutions,againstthosetestedinair.Establishedequationsandcriteriaareusedtoquan-
tifytheextentofdeterioration[5,140,141].Acriticalaspectofthisassessmentistheanaly-
sisofductilityparameters,explicitlyfocusingontheplasticstrain-to-failure(PSF)ratio.
ThisratioiscomputedbydividingthePSFobservedinthetestingenvironmentbythat
observedinambientairandmultiplyingby100[5].Ratiosbelow0.5indicatehighersus-
ceptibility,whileratiosbetween0.8and1.0suggestlowersusceptibilitytoEAC.Achiev-
ingPSFratioscloseto1.0isrecommendedtoenhanceresistancetoSCC.Mechanicaland
spectroscopicassessmentsareadvisedtoconfirmSCCoccurrenceatPSFratiosbelow0.8,
withcrackpropertiestypicallyexaminedalongthelongitudinalsectionofthespecimen
gauge.
KaneandWilhelmproposedastandardizationframeworkin1993toharmonizetest-
ingtechniquesacrossindustrialandacademicdomains.TheSSRTandCLTarethepri-
marymethodsforassessingSCCsusceptibilityincarbonsteels.TheSSRTemploysspe-
cializedequipment,suchastheInter-CorrM-CERTmachine,toapplycontrolledstrain
conditions,loads,andextensionratesduringtesting[5].Testspecimens,whethercylin-
dricalorrectangular,aremachinedtomeetspecificexperimentalconditionsandthere-
quirementsofthetensiletestingmachine,adheringtodetailedspecificationsoutlinedin
relevantstandards[5,136,140,141].Commonlyrecommendedtestspecimensforevaluat-
ingSCCincarbonsteelsincludeBent-Beam,pre-crackedcantileverbeam,pre-cracked
wedge-open-loading-type,U-bend,andC-ringconfigurations[5].TheCLTinvolvessub-
jectingspecimenstoconstanttensilestressesinenvironmentsconducivetocrackingfor
extendeddurations,upto30days.
FordetailedSCCtestingprocedures,NACEStandardTM0284providesfurtherguid-
ance[5].Novelmaterialssuchascompositecoatingsorpolymercompoundscanbeeffi-
cientlyevaluatedforSCCsusceptibilityusingmethodsthatallowrelativelyshorttestdu-
rationsandfamiliarterminology.Additionally,combiningelectrochemicaltechniques
withtensiontestsenablesthesimultaneousassessmentofcorrosionprocessesandmate-
rialbehavior[142].However,carefulconsiderationoffactorssuchaselectriccontactiso-
lationfromtestmachinestructuresisessential,alongwithacknowledginglimitations,
suchastheoversimplificationofcrackinitiationstagesandpotentialspecimensizeand
costimplications[5,143].
Moreover,Afanasyevetal.[144]proposedcyclictestingtosimulatereal-worldload
conditionsandunderstandcrackbehavior,particularlyintheabsenceofcorrosiveenvi-
ronments.Thismethodologyinvolvessubjectingfield-damagedsamplestocyclicloading
usingfour-pointloadingconditions,replicatingpressurefluctuationsrepresentativeof
operationalpipelines[5].
6.2.ComplementaryTestMethodsforAssessingSCC
NumerousexperimentalstudieshaveinvestigatedthephenomenaofSCCandtheir
correspondingelectrochemicalbehaviors[5].Establishedprotocolsforsupplementaryin-
vestigationsintoexternalSCCadheretoASTMstandards.TheseincludeASTMD4959for
gravimetricanalysistodeterminemoisturecontent,ASTMG4643forpHdetermination,
ASTMG187andASTMG57forsoilresistivitymeasurementusingasoilresistivitymeter,
andASTMG51forredoxpotentialanalysis.Ionchromatographyandinductivelycoupled
plasma(ICP)spectroscopyareemployedtoassessoxygenconcentration,texturecharac-
Surfaces2024,7614
teristics,andthepresenceofanionsandmetals.Additionally,assessmentsrelatedtoca-
thodicdisbondmentandcriteriaforthecathodicprotectionofundergroundpipelinesfol-
lowstandardssuchasASTMG95,ASTMG80,ASTMG42,ASTMG8,andNACEStandard
TM0497.HolidaydetectionincoatingsisconductedinaccordancewithASTMG62,while
studiesonmicrobiologicallyinfluencedcorrosionalignwithNACEStandardTM0106.
ProtocolsfortheexternaldirectassessmentofpipelinesareoutlinedinANSI/NACE
StandardRP0502[5].
Electrochemicaldataobtainedfromcyclictestsarecomplementedbyfractographic
examinationsofcross-sectionalsamples[144].Elementalanalysisusingspectroscopyis
utilizedtoinvestigatethecompositionofcorrosionproducts(oxides)andtostudySCC
phenomena[144].ForinternalSCC(I-SCC)evaluation,recommendedstandardsinclude
NACEStandardSP110forpipelinesconveyingwetnaturalgasandNACEStandard
SP0206fordirectlyassessingpipelinestransportingdrynaturalgas[6].Furtherinternal
evaluationtestsinvolvedeterminingmetalandanioncontents,oxygenconcentration,and
texturecharacteristicsusingionchromatographyandICPanalysis.Redoxpotentialanal-
ysisfollowsASTMStandardG200,whileASTMStandardD4294characterizessulfur-
compound-containingpetroleumproducts.HydrocarbonpropertiessuchasAPIgravity,
acidnumber,density,andviscosityaredeterminedbyASTMD287,ASTMD1298,ASTM
D664,andASTMD5002,respectively.Vari ous waterproperties,includingpH,density,
conductivity,resistivity,ironcontent,andbacterialpresence,arealsoassessed[5].
6.3.Non‐DestructiveTes ti ng
ToassessmaterialsforSCC,non-destructivetesting(NDT)techniquesareemployed.
NDTisessentialfordetectingearlystagesofcorrosionandfacilitatingtimelycorrective
actions,thusextendingthelifespanofcomponents.Itevaluatesmaterialswithoutcausing
damage,unlikedestructivemethodssuchastheSSRTorCLT,whichintentionallyinduce
failuretogatherdata.Despitemeticulousmaterialselection,design,andenvironmental
controls,somecorrosion-relateddegradationisunavoidable.NDTiscrucialinbothman-
ufacturingandmaintenanceforinspectingrawmaterials,sub-components,andfinished
productswithoutalteringthematerial’spropertiesorfunctionality[145].
SignificantadvancementsinNDTemergedduringWorldWarII,drivenbyheight-
eneddemandsforindustrialqualitycontrol.Inthe1950s,enhancementsinNDTinstru-
mentationledtoimprovedresolutionanddefectdetectioncapabilities.The1960sintro-
ducedfurtheradvancementsthroughtheapplicationofstatisticalmethodsandinterfero-
metricconcepts.Bythistime,NDTtechniqueswerecommonlyusedtoinspectdefects
suchascracks,voids,porosity,non-metallicinclusions,andforginglaps.Overthefollow-
ingdecades,developmentscontinuedinresponsetonewmaterials,increasingquality
standards,complexgeometries,andevolvingdefectmorphologies[146].
OneofthekeyapplicationsofNDTiscorrosion-relatedfailuredetection,whichis
crucialforidentifyingdegradationthatcancompromisestructuralintegrity.Thisincludes
formssuchaspiingcorrosion,uniformcorrosion,andmicrocracking.SCCisparticularly
challengingtodetectduetoitsoften-subtlenature,withcrackspotentiallydeveloping
beneaththesurfaceandremaininginvisibletoconventionalinspectionmethods,suchas
visualinspectionordyepenetranttesting.NDTmethodsarerequiredtodetectsuchhid-
dendefects.TheintegrationofvariousNDTtechniquesenhancestheabilitytoidentify
concealedcracksanddefects,thusimprovingsafetyandreducingtheriskofcatastrophic
failures.Thisintegrationisessentialformaintainingtheintegrityofcriticalinfrastructure
andensuringoperationalsafetyinindustriessusceptibletotheseformsofdegradation.
PredictingSCCinmaterialsiscrucial,asNDTcanrevealimperfectionssuchasvari-
ationsinthedensity,size,location,andmorphologyofdefects.EffectiveNDTtechniques
fordetectingandpredictingSCCincludeultrasonictesting(UT),acousticemissiontesting
(AE),eddycurrenttesting(ECT),radiographictesting(RT),andmagneticparticletesting
(MPT)[147].Thesetechniquesinvolveapplyingenergytoacomponentandanalyzingthe
Surfaces2024,7615
resultingsignalswithsensitivedetectorstoidentifydiscontinuitiesbyassessinghowen-
ergyinteractswiththematerial.Techniquesutilizevariousprobingmedia,including
soundwaves,electromagneticfields,andradiation[146].
ForSCCprediction,suchkindsofmethodsareparticularlyvaluableduetotheirabil-
itytodetectearlysignsofcracking.EachNDTtechniquehasspecificsensitivitiestoma-
terialpropertiesandconditions,evaluatingcharacteristicssuchasgeometric,mechanical,
electrical,magnetic,acoustic,andthermalproperties.Manytechniquesrequireminimal
specimenpreparation,useportableequipment,canbeautomated,andoffergoodtem-
poralresolution.Additionally,somemethodsenableonlinemonitoring,whichiscrucial
forongoingSCCprediction[148].
However,NDTmethodshavelimitations,includingdetectorsensitivity,background
noise,andchallengesinsignalinterpretation.DetectingsmallSCC-relateddefectscanbe
difficultduetothesefactors.Higherresolutionoftenincreasesinspectiontimeandcost.
TheeffectiveapplicationofNDTforSCCpredictionrequirespriorknowledgeofdefect
characteristicsandaccessibilitytotheinspectionarea.WhileNDTcanidentifydefects,it
doesnotassesstheirseverity,necessitatingfurtherevaluationtodeterminetheappropri-
aterepairactions[146,149].
6.3.1.UltrasonicTesting
Ultrasonictesting(UT)isawidelyusedNDTmethodthatemployshigh-frequency
soundwaves,typicallyrangingfrom0.5to10MHz,todetectinternaldefectswithinma-
terials.Soundwavespropagatethroughamediumataknownvelocityandreflectoffin-
terfacesorboundariesbetweendifferentmedia.Thisprincipleofreflectionisfundamental
toUT[147].InUT,ultrasonicwavesaregeneratedanddetectedbytransducers,which
convertelectricalimpulsesintomechanicalsoundwavesandviceversa.Thetransducer
emitsultrasonicpulsesintothematerial,andthereflectedpulsesarecapturedtomeasure
thetimetakenforthewavestotravelthroughthematerial,whichaidsinidentifyingin-
ternaldefectssuchascracksandvoids[147].
UTisparticularlyeffectivefordetectingSCCinvariousstructures,includingpipe-
lines,pressurevessels,andaerospacecomponents.Thetechniqueemploysmethodssuch
aspulse-echoandshear-wave(anglebeam)testingtoidentifydefects.Shear-waveUTis
especiallyusefulfordetectingSCC,asitcananalyzereflectionsfromtheedgesofcracks,
therebyrevealingbothtransgranularandintergranulartypesofSCC[150].Thiscapability
iscrucialforensuringtheintegrityofstructuresexposedtocorrosiveenvironments.Re-
centadvancementsinUTtechnologyhavesignificantlyenhanceditseffectivenessinSCC
detection.Forexample,phased-arrayUTusesmultipletransducerstosteertheultrasonic
beamandcreatedetailedimagesoftheinternalstructure.Thistechniqueallowsformore
accurateandcomprehensivedetectionofcomplexcracks.Additionally,guided-waveUT
caninspectlargeareasofpipesandotherstructures,providinglong-rangeinspectionca-
pabilitiesanddetectingSCCoverextensivedistances[147,151].AutomatedUTsystems
offerconsiderableadvantagesforSCCdetection,includingincreasedspeed,reproducibil-
ity,andtheabilitytoprocesscomplexdata,suchasthree-dimensionaltomography.These
systemsareparticularlyvaluableinhigh-pressureandhigh-temperatureenvironments,
suchasoffshorefacilities,wheremanualinspectionmaybeimpracticalorhazardous.
Moreover,UTiseffectiveinmonitoringcorrosionanddetectingSCCacrossvariousin-
dustries,includingoilandgas,petrochemical,andaerospace[147,151].
TheadvantagesofUTincludetheabilitytoperforminspectionsfromtheexternal
surfacewhilestructuresremaininservice,aswellasitscompatibilitywithvariouscoat-
ingsandlinings.Italsoprovidesanon-contactalternativethroughlaser-ultrasonicmeth-
ods,whichareusefulinhigh-temperatureandhazardousenvironments.However,UT
hasitslimitations.Calibrationmustbetailoredtospecificmaterials,andflaworientation
iscriticalforaccuratedetection.Optimalresultsareachievedwhenthesoundbeamis
perpendiculartotheflaw’saxis;flawsthatareparallelornearlyparalleltothebeammay
Surfaces2024,7616
bemissed.Additionally,UTmayexhibitlowersensitivitytoverysmallchangesinmetal
losscomparedtosomephysicalorelectrochemicalmethods[148].
Insummary,UTisapowerfultoolfordetectingSCC,offeringdetailedinsightsinto
materialintegritywithoutdamagingthecomponents.Itsabilitytoprovidereal-time,non-
destructiveevaluationmakesitessentialformaintainingthesafetyandreliabilityofcrit-
icalinfrastructure.Astechnologycontinuestoadvance,theroleofUTindetectingSCC
andothermaterialdefectswillbecomeincreasinglypivotalinensuringthelongevityand
safetyofstructuralcomponents.
6.3.2.AcousticEmission
Theacousticemission(AE)techniqueisacrucialtoolfordetectingandmonitoring
SCCandothermicroscopicdefectsthatarisefromstressvariationsduetochangesinpro-
cessconditions,suchaspressureortemperaturefluctuations[152].AEinvolvesthedetec-
tionoftransientacousticwavesproducedbytherapidreleaseofenergyfromlocalized
sourceswithinamaterial.Thistechniqueisparticularlyeffectiveforevaluatingcorrosion-
relatedphenomenabecauseitcapturestheacousticemissionsgeneratedbythedevelop-
mentofdefectsorplasticdeformation,providingreal-timeinsightintothestructuralin-
tegrityofmaterials.
AEsensorsdetectthesetransientacousticwavesandconvertthemintoelectricalsig-
nals.Theamountofacousticenergyrecordedisinfluencedbythesizeofthedefect,its
locationrelativetothesensor,andthematerial’sproperties.AEmonitoringhasproven
effectiveinidentifyingsignificantissuesinavarietyofstructures,includingASSaffected
bySCC[153,154].OnenotableadvantageofAEisthatitisnotconstrainedbytemperature
limitsforsensors;thesesensorscanbeconnectedviametalacousticwaveguideswelded
tothestructure,allowingthesensortobepositionedoutsideofthermalinsulation.AEis
particularlyeffectiveforevaluatingcorrosion-relatedphenomena,suchasSCC.SCCin-
volvescomplexinteractionsbetweenmechanicalstressandacorrosiveenvironment,
whichcangeneratesignificantacousticemissions.TheAEtechniquecanmonitorSCC
effectivelybydetectingtheacousticsignalsassociatedwithcrackinitiationandpropaga-
tion.ResearchhasshownthatAEsignalsstronglycorrelatewithSCCinitiationandpro-
gression.Forexample,studiesonAISI316LASSexposedtoa3%NaClsolutionhave
demonstratedthatAEsignalscorrelatewiththeinitiationandgrowthofSCC[155].
AdditionalresearchhasutilizedAEtostudySCCinlow-carbontype304stainless
steelundervaryingcorrosiveconditions.Testsconductedin0.01Mand1MNaClsolu-
tionswithapHadjustedto1revealedthathigherAErateswereobservedinmorecon-
centratedNaClsolutions,correlatingwithincreasedSCCdamage.Boththeappliedstress
andsolutionpotentialinfluencedAErates,indicatingthatAEcandetectvariationsinSCC
severitybasedonenvironmentalconditionsandmechanicalstress[156,157].Thishigh-
lightsAE’scapabilitytoprovidedetailedinsightsintothecorrosionprocessesoccurring
underdifferentconditions.Crevicecorrosion,anothercorrosion-relatedphenomenon,in-
volveslocalizedcorrosioninconfinedareaswhereametalisexposedtoacorrosiveenvi-
ronmentwhileotherpartsofthesurfaceremainprotected.AEhasproveneffectivein
monitoringcrevicecorrosionaswell.Studieson304LASShaveshownthatAEcandetect
crevicecorrosioninitiation,propagation,andrepassivation.ChangesinAEsignalswere
linkedtovariationsincrevicedamage,influencedbyfactorssuchasthepresenceofchlo-
rideionsandthemechanicalassemblyconditions[157].ThisdemonstratesAE’sversatil-
ityinmonitoringvarioustypesofcorrosionbeyondSCC.
AEisparticularlyeffectivefordetectingprocessesassociatedwithSCC,including
crackpropagation,gasevolution,andplasticzoneformation.Whilesomecorrosionpro-
cesses,suchasuniformmetaldissolution,donotgenerateAEduetothelackoflocalized
strain,SCCtypicallyproducessignificantAEsignalsbecauseofthestrainassociatedwith
crackformation.StudiesbyShaikhetal.[158]haveshownthatAEcaneffectivelycapture
themicroprocessesofSCCinmaterialslikeAISI316LNstainlesssteel.Thesestudiesre-
portedincreasedAEcountsandenergyatSCCinitiation,withcontinuousAEpriorto
Surfaces2024,7617
initiationandburstsofAEduringcrackgrowth,underscoringAE’scapabilitytomonitor
SCCinrealtime.
InastandardAEmonitoringsetup,apiezoelectricsensorisacousticallycoupledto
thetestobjectusinganappropriatecouplingmedium.Thesensoroutputisamplifiedand
filteredbypreamplifiersbeforebeingtransmiedtothemonitorthroughshieldedcoaxial
cables.Themonitorprocesses,filters,andamplifiestheAEsignals,providingdatafor
detailedanalysis.Theresultsandrawdataarerecordedforarchivalpurposesorfurther
evaluationtopinpointthelocationandnatureoftheAEsignals[159].
Overall,AEoffersseveraladvantages,suchasitsabilitytoprovidereal-timere-
sponsestoSCCdevelopmentanddetectdiscontinuitiesacrossanentirestructurewith
limitedaccess.However,AEalsohaslimitations,includingitssensitivitytobackground
noiseanditsprimaryfocusondetectingdynamicprocesses.AEcannotdetectstaticdis-
continuitiesunlesstheyareactivelypropagating.Despitetheselimitations,AEremains
anessentialtoolforassessingSCCandothercorrosion-relatedphenomena,offeringval-
uableinsightsintomaterialintegrityandstructuralhealth[147].
6.3.3.EddyCurrentTesting
Eddycurrenttesting(ECT)isanNDEmethodwidelyemployedtoassesstheinteg-
rityofconductivematerials,includingthosesusceptibletoSCC.Thetechniqueoperates
bypassinganalternatingcurrent(AC)throughacoil,whichgeneratesanalternatingmag-
neticfield.Thisfieldinduceseddycurrentswithinthematerial,andvariationsinthese
currentscanprovideinsightsintomaterialintegrity[160].ECTisespeciallyeffectivefor
detectingSCCwhenhigh-frequencycoilsareused,astheyenhancesensitivitytosurface
andnear-surfacecracks,whichareindicativeofSCC.RegularinspectionsusingECTcan
monitorchangesinmetallossandcorrosionovertime,althoughachievinghighsensitiv-
ityinreal-timeapplicationsremainsachallenge.
ECTincludesseveraladvancedmethodologiestailoredtospecificinspectionneeds.
SurfaceECTfocusesonscanningthematerial’ssurfacetoidentifysurface-breakingde-
fectsanddiscontinuities,makingiteffectivefordetectingSCConexposedsurfaces.Tub-
ularECTinvolvesinsertingaprobeintotheinteriorofconductivetubestodetectinternal
flawsandcorrosion,whichisusefulforidentifyingI-SCC.WeldECTevaluatesweldsto
finddefectssuchasincompletefusionorcracks,whichmaysuggestSCCinweldedjoints.
ECTemploysmultiplecoilsactivatedsequentiallyorsimultaneouslytoinspectlargerar-
easrapidly.Thismethodprovidesdetaileddatarecordingandthree-dimensionalimaging
capabilities,allowingfortheprecisedetectionofsurfaceandsubsurfacedefects,including
SCC[148].
Remotefieldtesting(RFT)iseffectiveforassessingdefectsatvariousdepthsbyin-
ducingcurrentsonboththeexternalandinternalsurfacesofatube,makingitsuitablefor
evaluatingthick-walledstructures.Pulsededdycurrenttesting(PEC)involvessending
shortpulsesofcurrentintothematerialratherthanusingcontinuousAC.Thisapproach
enhancessensitivityfordetectingSCCandisvaluableforinspectingcomponentsbeneath
insulation.PECiswidelyutilizedinindustriessuchasoilandgas,powergeneration,and
offshoreoperations,anditperformswellinchallengingenvironments,includingdirty,
rough,cold,andhigh-temperatureconditions.PECisalsoeffectiveforassessingflow-
acceleratedcorrosion(FAC),corrosionunderfireproofing(CUF),andcorrosionunderin-
sulation(CUI)[161,162].Magneto-opticalimagingofeddycurrentsoffersreal-timeimag-
ingoverlargeareas,whichisadvantageousforquicklydetectingSCCandothersubsur-
facedefects.Thismethodallowsforeffectivemonitoringofextensiveregions,enhancing
theoveralldetectioncapabilitiesofECT[148].
Despiteitsadvantages,ECThaslimitationsindetectingSCC.Thetechnique’seffec-
tivenesscandecreasefordefectslocatedinferromagneticmaterialsduetotheeffectsof
magneticpermeability,whichcandistorteddycurrentsandreducesensitivity.Addition-
ally,ECT’sabilitytodetectdeeperdefectsdiminisheswithincreasingdepth,andthesur-
facefinishofthematerialcanalsoimpactperformance.WhileECTmaynotmatchthe
Surfaces2024,7618
spatialresolutionordepthpenetrationofultrasonictechniques,itremainsavaluabletool
fordetectingSCC,especiallyinmultilayerstructuresandcomplexgeometries[148].Ad-
dressingtheselimitationsrequiresconsiderableexpertiseinprobedesignanddatainter-
pretation.
6.3.4. RadiographicTesting
Radiographictesting(RT)isacrucialNDTmethodextensivelyusedtodetectSCC.
Thistechniqueishighlyvaluedforitsabilitytoassesstheinternalstructureofcomponents
andmaterialswithoutcausingdamage.RTisparticularlyeffectiveinidentifyingSCC,
whichcanbedifficulttodetectduetoitsoften-subtleandinternalnature[147,148].RT
employspenetratingradiationtocreateimagesoftheinternalstructureofanobject.By
passingradiationthroughtheobjectandcapturingthetransmiedradiationonadetec-
tionmedium,suchasphotographicfilmoradigitaldetector,RTrevealsvariationsinma-
terialdensityandthickness.Thesevariationsproduceimagesthatcanindicateinternal
features,suchascracksorcorrosion,whicharecrucialforidentifyingSCC[163].Typi-
cally,RTusesX-raysorgammaraysasradiationsources.X-raysaregeneratedbyaccel-
eratingelectronsanddirectingthemtowardatarget,producinghigh-energyphotonsthat
canpenetratematerialsuptoapproximately200mmofsteelequivalent.X-raymachines
comeinvariousconfigurationswithadjustableenergylevelstoaccommodatedifferent
inspectionneeds.Gammarays,producedfromradioactiveisotopeslikeiridium-192and
cobalt-60,arealsoemployed,especiallyfortheirportabilityandcompactnessinfieldap-
plications[147].AnothersignificantRTtechniqueisneutronradiography,whichispar-
ticularlyeffectivefordetectingSCC.Neutrons,sensitivetohydrogen,canidentifyfine
cracksandlocalizedcorrosionthatmaynotbevisiblewithotherradiographicmethods.
Neutronradiographyisenhancedbytechniquessuchasgray-levelstretching,beamflat-
tening,andframeaveraging,whichimprovethequalityandclarityoftheimages[148].
RT’sversatilityextendsbeyondSCCdetection.Itisusedinpipelinecorrosiondetec-
tionwithintheprocessindustry,piingandlocalizedcorrosionidentification,andrebar
corrosioninspectionincivilstructures.RTisalsoappliedtoinspectwelds,castings,as-
semblies,adhesivebonds,plastics,wood,compositematerials,andelectroniccompo-
nents.Thetechniquecanaccommodatearangeofobjectsizes,fromsmallcomponents
likeintegratedcircuitchipstolargeitemssuchasrocketmotorcasings.RTisespecially
effectiveatidentifyingvolumetricdefects,suchasvoidsandporosities,whichcansignal
underlyingSCC[147].
Despiteitsadvantages,RThaslimitationsinSCCdetection.Itrequiresaccesstoboth
sidesofthecomponent,whichmaynotalwaysbefeasible.RTislesseffectiveatdetecting
lineardefects,suchascracks,unlesstheyalignwiththeradiationbeam.Theprecisionof
thicknessmeasurementsisgenerally±10%forpitdepth,andsurfacedebrisorscalecan
impacttheaccuracyofSCCdetection.Additionally,neutronradiographycanbeaffected
byscaeredradiation,complicatingaccuratemeasurement[148].Therelativelyhighcost
ofRTandtheneedforstringentsafetymeasuresduetothehazardousnatureofradiation
arealsoconsiderations.Managingradiationexposureandadheringtosafetyprotocolsis
essentialtoprotectpersonnel.Nonetheless,advancementsinradiographictechnology,in-
cludingimprovementsinradiationsources,digitalimaging,andComptonscaeringtech-
niques,haveaddressedmanyoftheselimitationsandexpandedtheapplicationsofRT
[147].
Inconclusion,RTremainsanessentialtoolfordetectingSCCandassessingthein-
tegrityofvariouscomponentsandstructures.Itsabilitytoprovidedetailedinternalim-
agesandidentifysubtledefectsmakesitinvaluableformaintainingsafetyandperfor-
manceinindustrialapplications.Whiletherearelimitations,ongoingtechnologicalad-
vancementscontinuetoenhancetheeffectivenessandbroadenthescopeofRT,reinforc-
ingitsroleasakeymethodinNDTandinspection.
Surfaces2024,7619
6.3.5. MagneticParticleTesting
Magneticparticletesting(MPT)isacrucialNDTtechniqueusedtoidentifysurface
andnear-surfacediscontinuitiesinferromagneticmaterials.Thismethodisparticularly
significantfordetectingearlysignsofSCC,aphenomenonwherematerialsundergobrit-
tlefractureduetothecombinedeffectsoftensilestressandacorrosiveenvironment.MPT
operatesontheprinciplethatferromagneticmaterialsbecomemagnetizedwhensub-
jectedtoamagneticfield.Defectswithinthesematerialsdisruptthemagneticfluxlines,
causingaleakagefluxthatbecomesvisibleonthesurface.Finemagneticparticles,such
asironfilingsorspecializedmagneticpowders,arethenapplied.Theseparticlescluster
aroundareasofmagneticfluxleakage,creatingavisibleindicationpaernthatreveals
thedefect’slocation,size,andshape[146,147].
TheMPTprocedureinvolvesseveralessentialsteps:cleaningthecomponent’ssur-
facetoremovecontaminants;magnetizingthecomponentusingmethodssuchasAC,di-
rectcurrent(DC),half-wavedirectcurrent(HWDC),orpermanentmagnetsandelectro-
magnets;applyingmagneticparticles;inspectingfordefects;andfinally,demagnetizing
andcleaningthecomponenttoremoveresidualparticles.Effectivedetectionreliesonthe
properalignmentofthemagneticfluxwiththedefectorientation,whichmaynecessitate
multipleinspectionstocovervariouspotentialorientations.Highcurrentsareoftenre-
quiredforlargercomponents,necessitatingcarefulmanagementtopreventlocalized
overheatingatelectricalcontactpoints[147].
MPTisparticularlyeffectiveinidentifyingsurface-breakingcracksandcorrosion-
induceddefectsthatarecriticalinthecontextofSCC.Itcandetectvariousformsofdis-
continuities,suchasgrindingcracks,heattreatmentcracks,andothersurfaceflawsthat
maycontributetoSCC.Thistechniqueisapplicabletoarangeofferromagneticmaterials,
includingfinishedproducts,billets,hot-rolledbars,castings,andforgings.However,MPT
islimitedtoferromagneticmaterials,andthoroughpost-inspectionproceduresareneces-
sarytoensurethatallresidualmagneticparticlesareremovedandthecomponentisde-
magnetized[146].
RecentadvancementsinMPTtechnologyhaveenhanceditsabilitytodetectsmaller
andmoresubtledefects.Vasylenkoetal.[164]haveintroducedatechniqueutilizinglu-
minescentferrofluidsmadefromCoFe2O4nanoparticles,sizedbetween5and11nm.
Theseluminescentferrofluidsofferimprovedsensitivityandcontrastcomparedtostand-
ardmagneticpowders.Ataconcentrationof3.1g/L,theseferrofluidscandetectminute
defects,suchasanartificialringdefectof10mmindiameterwithanopeningwidthof1.2
µm,onsteelplates.Thisimproveddetectioncapabilityiscrucialforidentifyingsmall-
scaledefectsassociatedwithSCC,whereearlydetectionisessentialforpreventingmate-
rialfailure[164].
Insummary,MPTremainsarobustandeffectivemethodfordetectingsurfaceand
near-surfacedefectsinferromagneticmaterials,withongoingadvancementsfurtheren-
hancingitseffectivenessinidentifyingcriticalflawsrelatedtoSCC.
6.4.PredictiveModelsforAssessingSCC
IncorporatingpredictivemodelingandsimulationtechniquesforSCCnotonlyen-
hancesthepracticalvalueofmanagingSCCbutalsobridgesthegapbetweentheoretical
understandingandreal-worldapplication.Moderncomputationalmethods,suchasthe
finiteelementmethod(FEM),moleculardynamics(MD),andmachinelearning,haverev-
olutionizedhowwepredictandmanageSCCincomplexsystems.
Surfaces2024,7620
6.4.1.FiniteElementMethod
Thefiniteelementmethod(FEM)isanadvancedcomputationaltechniqueusedto
simplifycomplexproblemsbybreakingthemintosmaller,moremanageablesub-regions.
ThismethodisparticularlyessentialforstudyingSCCinpipelines.Bydiscretizingpipe-
linestructuresintofiniteelements,theFEMenablesdetailedsimulationsofmechanical
stressesandtheirinteractionswithcorrosiveenvironments,whichiscrucialforunder-
standingSCC.SCCisinfluencedbymaterialproperties,stresslevels,andenvironmental
conditions[165,166].
SCCoccurswhenamaterialsubjectedtotensilestressisexposedtoacorrosiveenvi-
ronment.TheFEMisparticularlyvaluableinthiscontext,asitallowsfortheprecisemod-
elingandpredictionofhowstressconcentrationsimpactSCC.Forexample,Turnbullet
al.[167]utilizedtheFEMtoanalyzestress–straindistributionsaroundpiingpitsoncy-
lindricalspecimens.Theirresearchshowedthatstresswasconcentratedatthebasesofthe
pits,whilestrainwasmostsignificantatthepitshoulders.Thisinformationiscrucial,as
itindicatesthemostlikelysitesforcrackinitiationandpropagation.Adjustingthemesh
densityinsimulationsenabledtheaccuratemodelingofcorrosionprogressionanditsef-
fectonstressdistribution.
FEMsimulationshavealsobeenemployedtoinvestigatetheeffectsofhydrogendif-
fusiononcorrosion.Hydrogencandiffuseintometalsandexacerbatecracking,aphe-
nomenonextensivelystudiedusingtheFEM.Researchconfirmedthathydrogenatom
biasplaysasignificantroleintheinitiationandpropagationofintergranularcracks.Spe-
cifically,areductioningrainboundarybindingenergyincreasedthepercentageoffailure
cells,andhigherdisplacementunderconstantbindingenergyalsoraisedthefailureunit
percentage[168,169].Thesefindingssupporttraditionaltheoriesofhydrogen-inducedin-
tergranularcracking[170,171].SimulationsusingtheAbaqusmethodwithtwo-dimen-
sionallinearandsecondarybondingcellshavecontributedtodevelopingasystemfor
predictingcriticalinternalstressvaluesinhigh-strengthsteelswithspecificcorrosionde-
fectsizes,whichhasbeenappliedinpipelinesafetyassessmentsinCanada[172].
TheFEMisnotmerelyatheoreticaltoolbuthaspracticalapplicationsinpipeline
integritymanagement.Studieshaveshownthatstressconcentrations,suchasthose
causedbydeeperdents,leadtoincreasedcorrosionratesandacceleratedcrackinitiation
andpropagation.Thiseffectisparticularlypronouncedinhigh-pressuregastransmission
pipelines,whereinternalpressuresexacerbatestresslevelsandheightenSCCrisk[165].
Inpractice,theFEMhelpsengineersevaluatetheimpactofexternalloadsandinter-
nalpressuresonpipelineintegrity.Bysimulatingtheseconditions,engineerscanidentify
high-riskareasforSCCanddeveloptargetedmaintenanceandreinforcementstrategies.
Forexample,theFEMhasbeenusedextensivelyintheTransCanadapipelinesystemto
assessvariousstressorsimpactingpipelinesegmentsandguidemaintenanceandrein-
forcementefforts[165].
Furthermore,theFEMisinvaluableforanalyzingSCConcomplexsurfacesandir-
regularpiingcorrosionpaerns.Itprovidesinsightsintolocalizedcorrosionprocesses
andtheireffectsonmaterialintegrity.Thiscapabilityisessentialforestimatingpipeline
lifespan,evaluatingmaintenanceinterventions,andmakinginformeddecisionsaboutre-
inforcementmeasurestoenhancepipelinedurability[165].
Insummary,theFEMisapowerfultoolforunderstandingandmanagingSCCin
pipelines.Itallowsfordetailedsimulationsofstressandcorrosioninteractions,provides
insightsintotheeffectsofmaterialpropertiesandenvironmentalconditions,andsupports
practicalapplicationsinpipelineintegritymanagement.Thiscomprehensiveapproach
helpsengineerspredictandmitigatetherisksassociatedwithSCC,ensuringsaferand
morereliablepipelineoperations.
Surfaces2024,7621
6.4.2.MolecularDynamics
Moleculardynamics(MD)simulationsprovideavaluableapproachformodeling
atomicandmolecularinteractionsovertime,makingthemparticularlyeffectiveforstud-
yingSCC.Thesesimulationstrackthepositionsandvelocitiesofatomsbasedonclassical
mechanicsprinciples,enablingresearcherstoexploredynamicbehaviorsattheatomic
scale.MDsimulationsareprimarilydividedintotwotypes:abinitiomoleculardynamics
(AIMD)andclassicalmoleculardynamics(classicalMD).AIMDcombinesquantumme-
chanicalcalculationswithmoleculardynamicstoachievehighprecision,thoughitiscom-
putationallyexpensive,limitingitsapplicationtosmallersystemsandshortertimescales.
Incontrast,classicalMDusesempiricalforcefields,whicharelesscomputationallyde-
mandingandallowforthesimulationoflargersystemsandlongertimescales[165].
InSCCresearch,MDsimulationsareessentialforunderstandingphaseinterfaces,
corrosionmechanisms,andtheeffectivenessofcorrosioninhibitors.Forinstance,simula-
tionshavedemonstratedthatwaterdropletsongraphenecoatingsmaintainaconsistent
contactangle,withasinglegraphenelayerexhibitingsignificanthydrophobicproperties.
MDsimulationsalsoprovideinsightsintohowmetalsurfacesinteractwithcorrosive
agents,suchastheformationofanon-bondedwaternetworkongoldthataffectspas-
sivationstability[173].Furthermore,MDresearchhasbeenusedtoevaluatecorrosion
inhibitorslikeolmesartanandketosulfone,revealingtheireffectivenessundervarious
conditions[174,175].
MDsimulationsarealsovaluableforelucidatingfailuremechanismsassociatedwith
SCC.Studieshaveshownthatradiationdamageandstressconcentrationsfromvacancy
formationcontributetoSCC[176].Simulationsoffailureingalvanizedironandcopper
haverevealedthatstretchingofthezinclaiceandtheresistanceofspecificcopperinter-
facestotemperatureandloadchangesarekeyfactors[177,178].Despitetheiradvantages,
MDsimulationshavelimitations,suchasrelianceonempiricalforcefieldsandthehigh
computationalcostofAIMD.Nonetheless,theyremainapowerfultoolforadvancingour
understandingofSCCanddevelopingeffectivestrategiesforcorrosionmitigation.
6.4.3.MachineLearningforAssessingSCC
InthefieldofSCCgrowthestimation,ongoingresearchiscrucialfordevelopingre-
liablepredictivemodels.ThecomplexityandvariabilityofSCCprogressionhaveledto
increasinginterestinartificialintelligence(AI)asatoolforunderstandingandmanaging
SCCinpipelines.AIistransforminghowweassesscorrosionrisksincriticalinfrastruc-
ture.Forinstance,Zhangetal.haveemployedAImodels,suchasMultilayerPerceptron
(MLP)andLongShort-TermMemory(LSTM),toenhancepredictionaccuracybycorre-
latingSCC-inducedcrackwidthswithsteelweightlossinreinforcedconcrete(RC).Their
approach,whichincludesanalyzingreinforcementbarcross-sections,improvesevalua-
tionprecisionandcostefficiency[165].
AI’scapabilitiesextendtopredictingcorrosionratesandcrackgrowth.Advanced
techniqueslikePrincipalComponentAnalysis(PCA),ParticleSwarmOptimization(PSO),
Feed-ForwardArtificialNeuralNetworks(FFANNs),GradientBoostingMachine(GBM),
RandomForest(RF),andDeepNeuralNetworks(DNNs)havesignificantlyadvancedthe
estimationofSCCprogressioninaginginfrastructure.Bytrainingthesemodelsonhistor-
icalSCCdata,researcherscanforecastSCConsetandgrowthratesundervariouscondi-
tions[179,180].Forexample,AImethodshavebeenappliedtostudySCCincarbonsteel
andpipelines,withOssai’sanalysisofover8300recordsprovidingvaluableinsightsinto
estimatingtheSCCdepth[165,181].
Machinelearning(ML)involvesdevelopingsystemsthatimprovetheirperformance
overtimebasedondata-drivenlearning[22].Michieetal.[182]describeMLasaprocess
wherealgorithmslearnfromdatapaernsratherthanrelyingonexplicitprogramming
[182].TheeffectivenessofMLmodelsdependsondataqualityandtheextentofhuman
intervention,suchasprovidingaccuratelabelsorfeedback.Thechoiceofmethodology
Surfaces2024,7622
affectspredictionaccuracyandefficiency:PCAreducesdatadimensionalitybutmight
overlookimportantdetails[183],andPSOeffectivelyoptimizesmodelparameters[184],
whileFFANNsandDNNshandlecomplexrelationshipswithhighprecisionbutrequire
extensivedataandcomputationalresources[185].GBMandRFuseensemblelearningto
enhancestability,thoughtheymayencounterdifficultieswithvery-high-dimensional
data[186,187].ChoosingtherighttechniquedependsonspecificSCCassessmentneeds,
datacharacteristics,andavailablecomputationalresources.
MLmodelsalsoplayavitalroleinSCCprotectionandinhibitoroptimization.They
assistinmanagingcomplexprotectionstrategies,reducingpreparationandtestingcosts,
andpredictingoptimalinhibitorformulations[165].Additionally,deeplearning-based
imageprocessingtechniques,suchastheAccurateMetallicCorrosionDetector(AMCD)
developedbyYuetal.,areincreasinglyusedtoautomateSCCassessment[10].Forkan’s
imagerecognitionmodelhasachievedhighaccuracy[188],Ao’stoolforAl–Zn–Mgalloys
predictsmechanicalperformancechangeswithnotableprecision[189],andDogan’sdeep
transferlearningmodeleffectivelydistinguishesSCCdamagefromotherstructuralis-
sues,facilitatingtargetedrepairs[190].TheseadvancementsnotonlyimproveSCCdetec-
tionaccuracybutalsosignificantlyreducelaborcosts.AdvancedMLtechniquesaresetto
enhanceglobaleffortsinmanagingpipelineintegrityandpredictingSCC[22].
7.PreventionofSCC
Pipelinecompanies,industrygroups,andresearchersintheUnitedStatesandCan-
adahaveextensivelystudiedmethodstopreventormitigateSCCinpipelinespriorto
failures.ToaddressSCC,variouspreventionstrategiescanbeutilized,includingproper
materialselection,electrochemicalmethods,chemicalmethods,physicalmethods,and
thermalmethods.EffectivemanagementofSCCalsorequirestheintegrationofstress
managementandenvironmentalcontrols.Figure6illustratesthekeyfactorsinpreventing
bothinternalandexternalSCCinpipelines.
Figure6.FactorsthatmustbeconsideredtopreventSCCdevelopmentinpipelines.
7.1.MaterialSelection
PropermaterialselectionplaysacrucialroleinpreventingSCCinpipelines.Factors
toconsiderincludechoosingmaterialswithlowsusceptibilitytoSCC,highquality,ap-
propriatetoughness,andfavorablemicrostructures.Recentstudiesindicatethathigher
APIsteelgradesgenerallyexhibitincreasedstrengthbutalsohighersusceptibilitytoSCC.
Conversely,lower-carbonsteelsexhibitvaryinglevelsofsusceptibility,oftencorrelating
increasedsteelhardnesswithgreatervulnerabilitytoSCC.Steelsofhigherqualitytypi-
callydemonstratereducedsusceptibilitytoSCC.
Moreover,steelswithacicularferriteandbainitemicrostructuresgenerallyshow
lowersusceptibilitytoSCC.Single-phasemicrostructures,devoidofprecipitates,typi-
callyexhibitgreaterresistancetoSCCthanmultiphasicstructures.SCCoriginatespre-
dominantlyonthemetalsurfacefromexistingcracksorpiing,whileHEmanifestsat
cracktipsorbetweenareasofhydrogenaccumulation,primarilyalonggrainboundaries
anddefectivecrystallineregions.Themicrostructureandalloycomposition,influenced
significantlybyheattreatment,playcriticalrolesinSCCdevelopment.HEreducessteel
Surfaces2024,7623
strength,particularlyloweringthecriticalstressintensityfactor,whichacceleratesfrac-
turepropagation,especiallywithsmallercracksizes.
ThespecificalloyelementsincarbonsteelpipelinessignificantlyinfluenceSCC
mechanisms,evolvingovertimeduetomaterialaging.Afterapproximatelytwodecades
ofservicelife,carbonsteelpipelinestypicallyexhibitaferrite–pearlitemicrostructuresus-
ceptibletoSCC.Despitetheirsusceptibility,thesesteelsoftencontainsulfur,leadingto
MnSinclusionsandothertypes,suchascalciumsulfides,oxides,andaluminumoxides.
InclusionsenrichedinAl2O3andSiO2impartanincoherent,brilenaturetothemetal
matrix,promotingmicrocrackformationprimarilyatgrainboundariesandaroundinclu-
sions[70,191,192].
AstudybyLiuetal.[193]emphasizedthesignificanceofinclusionsastheprimary
sitesforcrackinitiation.Additionally,researchbyAsahietal.[191]indicatesthat
quenched-tempered(QT)andthermomechanicallycontrolledprocessing(TMCP)treat-
mentsonX52,X65,andX80steelsresultinmorehomogeneousmicrostructures,reducing
susceptibilitytoSCC.Themicrostructureofcarbonsteelpipelinesplaysapivotalrolein
SCCinitiationandpropagation.EliminatinginclusionsorprecipitatescanenhanceSCC
resistancebyremovingpotentialnucleationsitesforcorrosionpits[140,193,194].
EffectivesuppressionofIGCinhigh-chromiumsteelsinvolvesminimizingcarbon
contenttopreventcarbideprecipitation,enhancingcorrosionresistanceinweldedjoints
likethosemadeof03Cr18Ni11steel.Practicalstrengthrequirementsoftennecessitatecar-
boncontentbetween0.08%and0.12%,exceedingsolubilitylimits.Carbide-formingele-
mentssuchastitanium,niobium,andmolybdenum,withstrongercarbonaffinitythan
chromium,preventM23C6formation,retainingchromiuminsolidsolutionandpreserv-
ingcorrosionresistance,albeitattheexpenseofreducedductilityandincreasedstrength.
Experimentalstudiesonenhancingcorrosionresistanceviamolybdenumnanopowder
concentrationinweldpoolsduringarcweldingrevealvariedmicrostructuresdepending
ontheconcentration.Molybdenumandtungstennanopowdersyieldthemostcorrosion-
resistantsamples[53].
Formingafavorableweldmetalstructurebyintroducingferriticelementssignifi-
cantlymitigatesfracturesindual-phaseaustenitic–ferriticstructures.Primaryferritepres-
enceenhancesSCCresistancebyreplenishingchromium-depletedareaswithhighdiffu-
sionrates[195–197].Controllingweldmetalstructuresposeschallenges,especiallyin
weldingandsurfacingdissimilarmaterials.TheSchaefflerdiagramassistsindetermining
weldmetalstructures,especiallyforoverlayingcorrosion-resistantsteelontolow-carbon
orlow-alloysteelsubstrates.SelectingmaterialsandweldingregimeswithinspecificCreq
(18–24%)andNieq(7–18%)rangesensuresfavorableA+Fstructures,minimizingcrack
susceptibility[53].
Inweldingdissimilarmetalslikelow-carbonsteeltoAISI304corrosion-resistant
steel,AISI309steelwithhigheralloyingelements(25%Crand12%Ni)isrecommended
toachieveasimilarcompositionintheweldmetal.AISI309subcoatsareoftenusedfor
surfacingdissimilarmetals.Researchonenhancingsteel-gradeEP-302andweldingma-
terialsforpowerplantequipmentincludessilicondopingtoimproveheatandliquid
metalcorrosionresistance,whichiscriticalinenvironmentswithlead-bismuthcoolant
temperaturesupto450°C.MicrostructuralanalysisofCr–Ni–Nbaustenitic–ferritic
weldedjointscontainingsiliconunderscorestheimportanceoftheferritephasecontent
inoptimizingweldjointprocessability.Delta-ferritetransformationintothesigmaphase
afterprolongedagingat500–600°Chighlightsthenecessityoftemperature–timecontrol
formaintainingweldjointSCCresistance[53].Researchonlow-nickelausteniticsteel
08Cr18NNi5identifiesweldmetalcompositionsandtemperature–timeregionsresistant
toSCCduringweldingandemphasizesthatlowcarboncontentandhighchromium,
manganese,niobium,andnitrogenlevelscontributetominimizingmicrocracksuscepti-
bilityduringwelding[55].
Surfaces2024,7624
7.2.ElectrochemicalMethods
Electrochemicaltechniques,suchascathodicprotection,passivation,andanodiza-
tion,arehighlyeffectiveinmitigatingSCCinpipelines.Thesemethodsemployelectrical
currentsorpotentialdifferencestodrivechemicalreactionsonthemetal’ssurface,leading
toprotectivechangesthatimproveresistancetobothcorrosionandSCC.Implementing
thesetechniquesisessentialforpreservingthestructuralintegrityofmetallicsystemsin
corrosiveenvironments.
7.2.1. CathodicProtection
Cathodicprotectionsystemsareessentialforextendingthelifeofexternalcoatings
andmitigatingdamageusingeitherimpressedcurrentorsacrificialanodes.Theprimary
principlebehindcathodicprotectionistoreducetheelectrochemicalpotentialofthemetal
surface,therebysuppressingtheanodicreactionthatcausesmetaldissolution.Thisis
achievedbymakingthemetalstructurethecathodeofanelectrochemicalcell.Impressed
currentsystemsinvolveapplyinganexternalcurrentfromaninertanodetothemetal
structure,whilesacrificialanodesystemsusemorereactivemetals,suchaszincormag-
nesium,whichcorrodeinplaceoftheprotectedstructure.Acriticalaspectofcathodic
protectionisthepreventionofHE,aprocesswherehydrogenatomsdiffuseintothemetal
andcausebrileness,especiallyinhigh-strengthsteels.Thisriskisheightenedinenviron-
mentswherewatercandissociateundertheinfluenceoftheprotectivecurrent,releasing
hydrogen.Propercontroloftheappliedpotentialisessentialtominimizehydrogengen-
eration.
Theeffectivenessofcathodicprotectionsystemsisinfluencedbyseveralfactors,in-
cludingthenatureofthecoating,thesoilorseawatercomposition,andseasonalchanges
thataffecttemperatureandmoisturelevels.Forexample,highsoilresistivitycanreduce
thecurrentoutputfromsacrificialanodes,requiringcarefuldesignandmonitoring.The
NACESP0169standardprovidescomprehensiveguidelinesforthedesign,installation,
andmaintenanceofcathodicprotectionsystemsforburiedorsubmergedpipelines.Meth-
odssuchasASTMG95,ASTMG80,ASTMG42,andASTMG8areemployedtoassessthe
conditionandeffectivenessofthesesystems,particularlyindetectingcoatingdisbond-
mentthatcouldleadtolocalizedcorrosionandSCC.Regularmonitoringandmainte-
nancearecrucialtoensurethecontinuedeffectivenessofthesesystemsinpreventingcor-
rosionandSCC[5].
7.2.2.Passivation
Passivationisachemicalprocessdesignedtoenhancetheformationofathin,stable
oxidelayeronmetals,especiallystainlesssteel.Thispassivelayer,primarilyconsistingof
chromiumoxide,servesasaprotectivebarrieragainstoxygenandothercorrosiveagents,
effectivelymitigatingbothgeneralandlocalizedcorrosionthatcanleadtoSCC.Typically,
theprocessinvolvesimmersingthemetalinanacidicsolution,suchasnitricorcitricacid,
toremovecontaminantsandfacilitatethedevelopmentoftheoxidelayer.Thesuccessof
passivationisinfluencedbyvariousfactors,includingthetypeandconcentrationofpas-
sivatingagents,thetemperatureofthetreatmentsolution,andthedurationoftheprocess.
Forexample,higherconcentrationsofHNO3canresultinamoreuniformandthicker
oxidelayer,thoughexcessivetreatmentmaycauseundesirableetchingofthemetalsur-
face.
Inmarineenvironments,chlorideionscaninfiltrateweakpointsinthepassivefilm,
leadingtopiingandcrevicecorrosionthatprecedeSCC.Consequently,itisessentialto
monitorthequalityandintegrityofthepassivelayerinsuchconditions.Recentresearch
highlightsthatthecompositionandmicrostructureoftheoxidelayerarecriticaltoits
protectiveeffectiveness.Forinstance,chromium-richoxidesoffersuperiorresistanceto
chloride-inducedpiing.Advancesinsurfaceanalysistechniqueshaveallowedformore
Surfaces2024,7625
preciseinvestigationsofoxidelayers,contributingtotheoptimizationofpassivationpro-
cesses[198–200].
7.2.3.Anodization
Anodizationisanelectrochemicaltechniquecommonlyusedtoenhancethesurface
propertiesofaluminumanditsalloys.Inthisprocess,themetalissubmergedinanelec-
trolyticsolution,typicallysulfuricacid,andanelectriccurrentisapplied.Thisresultsin
theformationofathick,stableanodicoxidelayeronthemetal’ssurface,whichactsasa
protectivebarrieragainstenvironmentaldegradationandSCC.Theanodizedlayerisgen-
erallysignificantlythickerandmoredurablethannaturallyoccurringoxides.Itsproper-
tiescanbeadjustedbyvaryingfactorssuchasthecompositionoftheelectrolyte,temper-
ature,andcurrentdensity.Forexample,sulfuricacidgeneratesthicker,moreporouslay-
ersthatareidealfordyeing,whilechromicacidproducesthinner,denserlayerswithsu-
periorcorrosionresistance.Additionally,theanodizedlayercanbesealedwithhotwater
orsteamtohydratetheoxideandenhanceitsprotectivequalities.Anodizationnotonly
improvescorrosionresistancebutalsoincreasessurfacehardnessandwearresistance,
makingitvaluableforapplicationsrequiringrobustsurfacefinishes.However,chloride
ionscandegradetheprotectivelayer,leadingtopiingandSCCunderspecificcondi-
tions.Therefore,furthertreatments,suchassealingorapplyingorganiccoatings,maybe
necessarytoimprovethedurabilityoftheanodizedsurface[201,202].
BothpassivationandanodizationeffectivelypreventSCCbyformingstableprotec-
tiveoxidelayers.ThesemethodsaddresstherootcauseofSCC—localizedcorrosion—by
providingaresilientsurfacecapableofwithstandingsevereenvironmentalconditions.
Nevertheless,theeffectivenessoftheseelectrochemicalmethodscanbediminishedifthe
protectivelayersaremechanicallydamagedorexposedtohighlyaggressiveenviron-
ments.Hightemperatures,mechanicalstress,orcontactwithharshchemicalscandegrade
theseprotectivelayersandincreasetheriskofSCC[203,204].Insummary,thestrategic
useofelectrochemicalmethodssuchascathodicprotection,passivation,andanodization
representsacomprehensiveapproachtomitigatingSCCinvariousmetallicstructures.
Thesetechniquesenhancemetalsurfaceprotection,extendcomponentlifespan,anden-
surereliabilityinchallengingenvironments.Continuedresearchanddevelopmenttoop-
timizethesemethodsandexplorenewelectrochemicaltreatmentsarecrucialforadvanc-
ingcorrosionpreventionstrategiesandextendingtheservicelifeofcriticalinfrastructure.
7.3.ChemicalMethods
Chemicalapproaches,suchastheuseofinhibitorsandcoatings,areessentialforim-
provingthecorrosionresistanceofmetalsandpreventingSCC.Thesetechniquesinvolve
applyingchemicalsubstanceseitherdirectlytothemetalsurfaceortotheenvironment
surroundingittoreducethelikelihoodofcorrosionandSCC.Byimplementingthese
methods,researchersandengineerscansignificantlydecreasetheriskofcorrosion-in-
ducedfailuresinmetallicstructures,therebyenhancingtheirdurabilityandreliabilityin
demandingconditions[204].
7.3.1.Coatings
CoatingsarevitalforsafeguardingcarbonsteelpipelinesagainstSCC,asignificant
threattopipelineintegrity.Thesecoatingsactasphysicalbarriers,preventingdirectex-
posureofthemetalsurfacetocorrosiveelements,whichhelpsreducethelikelihoodof
SCC.ChoosingtherightcoatingiscrucialforeffectiveSCCprotection.Organiccoatings,
particularlyepoxyresincoatings,arewellresearchedfortheirdesirableaributes,includ-
ingminimalshrinkage,resistancetochemicals,andmechanicaldurability.Thesecoatings
arewidelyemployedinindustrialcontexts,suchasonmarinevesselsandburiedpipe-
Surfaces2024,7626
lines,tocombatcorrosionandlowertheriskofhydrogen-inducedSCC[205,206].Thepri-
maryfunctionofthesecoatingsistoestablishaprotectivelayerthatisolatesthemetal
fromexternalfactors,therebyminimizingSCCrisk[207–210].
Amongthecoatingsappliedtoexternalpipelinesurfaces,Fusion-BondedEpoxy
(FBE)isdistinguishedbyitsexceptionalmechanicalstrengthandadhesion,makingit
suitableforlarge-diameterpipelinesthatundergoconsiderablehandlingandinstallation
stresses.Despiteitseffectiveness,FBEcoatingscanbepronetoblisteringandshielding
effectswhenusedwithcathodicprotectionsystems.Liquidepoxyisnotedforitsrobust
corrosionprotectionandexcellentadhesion,makingitwidelyapplicableinvariousin-
dustrialenvironments.Urethaneandpolyurethanecoatingsofferflexibilityandimpact
resistance,whichhelpprotectagainstphysicaldamageandcorrosion.Historically,as-
phaltandcoaltarwereprizedfortheirdurabilityandwaterresistance;however,theiruse
hasdiminishedduetoenvironmentalconcerns.Polyethylene(PE)andpolyolefinresin
coatingsprovideadditionalprotectivebenefits,whileceramicandcompositecoatingsof-
ferhigh-temperatureresistanceanddurability,thoughtheycanbebrileandrequire
carefulapplication[207,208,211–213].
ThesuccessofcoatingsinpreventingSCCdependsonfactorssuchastheirmechan-
icalproperties,waterpermeability,electricalinsulation,andresistancetoenvironmental
degradation.Adequatesurfacepreparationisessentialtoachievetheoptimaladhesion
andlong-termeffectivenessofthecoatingsystem.Moreover,coatingsmustbecompatible
withpipelinematerialstoavoiddetrimentalinteractionsthatcouldcompromisetheirpro-
tectivecapabilities.Environmentalfactors,includingsoilandatmosphericconditions,as
wellasresidualstressesfrompipelineoperations,alsoinfluencecoatingperformanceand
SCCrisk.Ensuringthatcoatingsmeetthesecriteriaandareappliedproperlyiscriticalfor
maximizingtheirprotectiveefficacyandreducingSCCrisk[207].
7.3.2. NewTrendsinSCCPreventionbyCoatings
OrganicprotectivecoatingsareextensivelyusedtocombatSCC.Recentdevelop-
mentshaveledtothecreationofcoatingstailoredtoaddressthespecificchallengesposed
bySCC.Theseadvancedcoatingsenhancetheireffectivenessbysealingdefectsandpre-
ventingcorrosionreactions,therebyminimizingtheneedforexternalmaintenance[214].
Self-HealingCoatings
Self-healingmechanismsinsmartcoatingscanbecategorizedintoautonomousand
non-autonomoustypes,bothofwhicharecrucialforcombatingSCC.Autonomousself-
healinginvolvesintegratingpolymerizablehealingagentsorcorrosioninhibitorsintothe
coatingmatrix.Thesesubstancesareactivatedwhenthecoatingisdamaged,therebyre-
storingitsintegrityandpreventingSCC.Forinstance,encapsulatedagentssuchasisocy-
anates,epoxies,andcuringagentsliketetraethylenepentamine(TEPA)aretriggeredupon
damagetosealcracksandhaltfurthercorrosion[214].Conversely,non-autonomousself-
healingrequiresexternalstimuli,suchaschangesinpHorelectrochemicalsignals,toin-
itiatechemicalreactionsthatrepairthecoating.Conductivepolymers,includingpolypyr-
role(PPy)andpolyaniline(PANI),areutilizedfortheirabilitytoundergoredoxreactions,
whichhelpstopassivatethesteelsurfaceandreduceSCC[215,216].
AdvancedCoatingMaterials
Recentadvancementsinmaterialssciencefeatureself-healingpolymerssuchas
AQALICCS-7S,whichabsorbwaterandexpandtomendscratchesuponcontact,thereby
mitigatingSCCincoatingdefects.Additionally,metallic–polymericcoatings,suchas
thosecombiningzincwithpolyethyleneoxide-b-polystyrene(PEO113-b-PS218)nanoag-
gregates,exhibitself-healingpropertiesduetotheiramphiphilicnature,effectivelyserv-
ingasbarriersagainstenvironmentsthatpromoteSCC.Furthermore,ceramicmaterials,
Surfaces2024,7627
includingTiC/Al2O3andTi2AlC,demonstrateself-healingcapabilitiestriggeredbyoxida-
tion.Thesematerialsself-healwhenexposedtoelevatedtemperaturesandoxygen,re-
plenishingdefectswithprotectiveoxidesandthusloweringtheriskofSCC[217].
EnvironmentalSustainability
Environmentalsustainabilityandecologicalregulationsadvocatefortheincorpora-
tionofnaturalmacromoleculesandbiopolymers—suchaschitosan,lignin,cellulose,and
nanocellulose—incoatingengineering,whichcanalsoaidinthepreventionofSCC.When
chitosanisusedinconjunctionwithanepoxymatrix,itimpartscombinedanticorrosive
andantibacterialeffects,therebyenhancingtheintegrityofprotectivecoatingsandmiti-
gatingSCC[217].Ligninservesasanaturalultraviolet(UV)absorber,improvingUVsta-
bilityandprolongingthelifespanofcoatings,which,inturn,offersextendedprotection
againstSCC[218].Additionally,cellulosemicrofibersandnanofibers,wheninfusedwith
healingagents,canbeintegratedintopolymericmatricestocreateadvancedself-healing
epoxycoatings.Theseinnovativematerialsnotonlyrepairmechanicaldamagebutalso
bolsterthedefenseagainstSCCbymaintainingastrongbarrieragainstcorrosiveagents
[219,220].
NanomaterialAdditives
Integratingfunctionalnanomaterialsintocoatingformulationscangreatlyimprove
theirperformance,enhancingresistancetoSCC.Carbon-basednanomaterials,suchascar-
bonnanotubes(CNTs),graphene,andgrapheneoxide,enhancethemechanicalstability
ofepoxymatrices,therebydecreasingtheirvulnerabilitytostressandstrainthatcould
induceSCC.Additionally,nano-silicacontributestoimprovedcorrosionresistance,frac-
turetoughness,andtensilestrength,furtherincreasingthecoating’sresilienceagainst
SCC.Theincorporationofpolymericmatriceswithmetaloxidenanoparticles,nano-clays,
andnano-ceramicsresultsinnanocompositecoatingswithenhancedproperties,offering
superiorprotectionagainstSCCbyboostingbothmechanicalandchemicalresistance
[217,221,222].
SCC-SpecificStrategies
Advancedcoatingsthatfeatureself-healingandstimuli-responsivetechnologiesof-
ferapromisingapproachtoreducingSCC.Thesecoatingsaredesignedtoidentifythe
initialformationofcracksandeitherreleaserepairagentstoaddressthedamageormod-
ifytheirpropertiestohaltfurthercrackdevelopment.Byincorporatingcorrosioninhibi-
torssuchasphosphates,nitrites,andrare-earthmetalsalts,thesecoatingscancounteract
thecorrosiveelementsthatexacerbateSCC.Additionally,theintegrationofnanomaterials
intothesecoatingsenhancestheirmechanicalproperties,increasingtheirresistancetothe
stressesthatleadtoSCC[217,223].
Theadoptionofsuchadvancedself-healingandstimuli-responsivecoatingsinrefin-
erysystemsisexpectedtoimproveanticorrosiveperformanceandextendthelifespanof
protectivesystems,therebyreducingtheoccurrenceofSCCandprolongingtheservice
lifeofessentialinfrastructure.
7.3.3.Inhibitors
Corrosioninhibitorsarespecializedchemicalcompoundsintroducedinminimal
quantitiestocorrosiveenvironmentstoprotectmetallicmaterialsfromdeterioration.
Thesesubstancesfunctionbyeithercreatingaprotectivefilmonthemetalsurfaceorneu-
tralizingcorrosiveagentsintheenvironment.Theyareparticularlyeffectiveincontrolled
environmentssuchascoolingsystemsandoilpipelines.Corrosioninhibitorscanbeclas-
sifiedintoseveraltypes,includinganodic,cathodic,passivating,film-forming,vapor
phase,andadsorption-basedinhibitors.Amongthese,organicinhibitors,especiallythose
Surfaces2024,7628
containingpolarfunctionalgroupswithnitrogen,sulfur,and/oroxygen,haveprovenef-
fectiveinbothacidicandalkalineconditions.Theadsorptionoftheseinhibitorsonmetal
surfacesisinfluencedbyfactorssuchasfunctionalgroups,stericeffects,aromaticity,elec-
trondensity,andtheelectronicstructureoftheinhibitors.Thesecompoundsformapro-
tectiveadsorbatelayeronthemetal,therebyreducingcorrosionratesbyshieldingthe
surfacefromaggressivesolutions[224].
Additionally,inhibitorscaneffectivelypreventSCCinmetalsbyformingaprotective
layeronthemetalsurface.Organicinhibitorswithpolarfunctionalgroupscontainingni-
trogen,sulfur,and/oroxygenhaveshownsignificanteffectivenessagainstSCCinsteel
underbothacidicandalkalineconditions.Theefficiencyoftheseinhibitorsisaffectedby
severalfactors,includingtheirfunctionalgroups,stericeffects,aromaticity,electronden-
sity,andelectronicstructure,whichinfluencetheiradsorptiononthemetalsurface.By
alteringtheelectrodepotentialofthemetalorisolatingitfromthecorrosiveenvironment,
inhibitorscansubstantiallylowertheriskofSCC.Itisnoteworthythathigherconcentra-
tionsofinhibitorsmightberequiredtopreventSCCcomparedtothoseneededforgeneral
corrosioncontrol.Furthermore,paintsandcoatingscontaininginhibitorscanenhance
SCCresistancebypreventingcorrosivesolutionsfrompenetratingthecoatingandreach-
ingthemetalunderneath.Recentadvancementsinchemicaladditiveshavebeenspecifi-
callyaimedataddressingSCCinapplicationssuchasfuelethanolstorageanddistribu-
tionsystems[225,226].
Despiteextensiveresearchoncorrosioninhibitorsforgeneralcorrosioninacidicme-
dia,thereisasignificantlackofstudiesfocusingonSCC.Whileplantextractshaveshown
promiseasenvironmentallyfriendlycorrosioninhibitors,theireffectivenessagainstSCC
remainslargelyunexplored.Aprimarychallengeinthisareaistheinadequatemechanis-
ticunderstandingoftheseextracts,asmoststudiesusecrudeformulationswithoutade-
tailedanalysisofindividualcomponents.ThisgaphinderstheselectionofeffectiveSCC
inhibitors.Futureresearchshouldexploretheeffectsofsubstituentgroups,investigate
synergisticinteractionsamonginhibitors,andassessfactorsinfluencingSCCinhibition.
Additionally,analyzingcorrosionproductformationinthepresenceofinhibitorsandem-
ployingnanotechnology,suchasgraphene-basedcomposites,couldenhanceinhibition
strategies.Incorporatingquantumchemicalcalculationsandmolecularmechanicssimu-
lationswillaidinelucidatinginhibitionmechanisms.ByconcentratingonSCCandutiliz-
ingeco-friendlymaterials,researcherscandevelopeffectiveandcost-efficientsolutions
forpreventingSCCinstainlesssteelacrossvariousindustries.
7.4.PhysicalMethods
Physicalmethodsencompassmechanicalprocessesdesignedtomodifytheproper-
tiesofmetalsortheirsurfacestoimprovetheirresistancetoSCC.
7.4.1.PhysicalVap orDeposition
Physicalvapordeposition(PVD)isasophisticatedcoatingtechniquewidelyem-
ployedtomitigateSCCinmetalliccomponents.Thisprocessinvolvesthevaporizationof
asolidmaterial,whichisthendepositedontoasubstratetocreateathin,protectivefilm.
PVDisespeciallyeffectiveinenhancingthecorrosionresistanceofmaterials,makingita
preferredchoiceforapplicationsvulnerabletoSCC.ThecoatingsproducedbyPVDare
knownfortheirstrongadhesion,consistentthickness,anddurability,resultinginhard,
wear-resistantsurfaces.Thesecoatingsestablishadense,impermeablelayerthatshields
thesubstratefromcorrosiveagents,therebyloweringtheriskofbothcorrosionandSCC.
PVDcoatingscanbeappliedtoavarietyofsubstrates,includingmetals,ceramics,and
alloys,providingnotonlyenhancedcorrosionresistancebutalsoimprovedmechanical
properties.ResearchhasdemonstratedthatPVD-coatedtoolscansignificantlyinfluence
thesusceptibilityofmaterialstoSCC.Forexample,studieshaverevealedthatPVD-coated
cuingtoolscandiminishSCCriskinsuperduplexstainlesssteelduringmachiningop-
Surfaces2024,7629
erations.ThishighlightstheeffectivenessofPVDinreducingSCCbyimprovingthesur-
facecharacteristicsofthematerials.Inconclusion,PVDisahighlyeffectivemethodfor
applyingprotectivecoatingsthatenhancetheresistanceofmetalstocorrosionandSCC.
Bycreatingarobustbarrieronthesubstrate,PVDcoatingsplayacrucialroleinextending
thelifespanandreliabilityofmetallicstructuresinenvironmentssusceptibletoSCC
[227,228].
7.4.2.OtherPhysicalMethods
WhilePVDandthermalspraycoatingareamongthemostprevalentandeffective
methodsforpreventingSCC,theyarenottheonlytechniquesavailable.Otherphysical
approachescanalsocontributetoSCCprevention,thoughtheireffectivenessandappro-
priatenessmaydependonthespecificapplicationandenvironmentalconditions.
Chemicalvapordeposition(CVD)isatechniquethatdepositsthinfilmsontometal
surfacesviachemicalreactionswithvaporizedprecursorgases.Inthisprocess,precursor
gasescontainingthedesiredelementsareintroducedintoareactor,wheretheydecom-
poseonaheatedsubstrate,formingasolidcoatingwithacontrolledcomposition,thick-
ness,anduniformity[204].CVDcoatingsareespeciallyeffectiveinmitigatingSCC.These
coatingscreateadurableprotectivebarrierthatimprovesthemetal’sresistancetoSCC,
whichisessentialforuseincorrosiveenvironments.TheconformalnatureofCVDcoat-
ingsensurescomprehensivecoverage,preventingtheinitiationandpropagationofSCC.
Moreover,CVDcanalsobeusedtoapplyfunctionalcoatings,suchasprotective,wear-
resistant,orcatalyticfilms,furtherenhancingthesurfacepropertiesandperformanceof
metalsubstrates[229].
Plasmatreatmentshavegainedprominenceinsurfaceengineering,particularlyfor
electronicdevices.Techniqu essuchasplasmaetchinganddepositionofferprecisecontrol
oversurfacecharacteristics,includingroughness,weability,andchemicalcomposition.
Thesetreatmentsareeffectiveforremovingcontaminants,activatingsurfacestoimprove
adhesion,ormodifyingsurfaceenergytoenhancetheweingbehaviorofcoatingsorad-
hesives.Recentstudieshaveexploredplasmatreatmentswithvariousgascompositions
andprocessparameterstooptimizethesurfacepropertiesofelectroniccomponentsfor
specificapplications.Forinstance,plasmasurfacemodificationhasbeenutilizedtoim-
provetheadhesionofwirebondingandsolderingmaterialstoelectronicsubstrates,
therebyenhancingthereliabilityoftheseinterconnections[230,231].
Lasersurfaceengineeringencompassestechniquesthatuselaserstomodifythesur-
facepropertiesofmetals.Methodssuchaslasercladding,laseralloying,laserhardening,
andlasersurfacetexturingenableprecise,localizedtreatment,allowingcontroloverchar-
acteristicslikehardness,wearresistance,andthermalperformance.Thesetechniquesare
widelyusedintooling,automotivecomponents,andaerospacestructures.Regarding
SCC,lasersurfacetreatmentscansignificantlyenhanceresistance.Forexample,laserclad-
dingcanapplyprotectivecoatingsthatreducemetals’susceptibilitytoSCCbymodifying
theirsurfacechemistryandmicrostructure.Similarly,laserhardeningcanincreasesurface
hardnessanddiminishthelikelihoodofcrackpropagationincorrosiveenvironments
[232].
7.5.ThermalMethods
ThermalmethodsformitigatingSCCinvolvetheapplicationofprotectivecoatings
throughvariousthermalsprayingtechniques,eachofferingdistinctadvantagessuitedto
specificapplicationsandenvironments.Amongthesetechniques,high-velocityoxygen
fuel(HVOF)sprayingisparticularlyeffectiveinreducingSCC.
Thermalspraycoatingsareappliedtometalsurfacesusinghigh-velocitymethodsto
formaprotectivelayerthatshieldstheunderlyingmaterialfromcorrosiveconditions.The
HVOFsprayingtechniqueisespeciallynoteworthyinthisregard.Itemploysthecombus-
tionoffuelgasandoxygentogenerateahigh-velocityjetthatdepositsmoltenorsemi-
moltenparticlesontothesurfaceatsupersonicspeeds.Theresultingcoatingsaredense,
Surfaces2024,7630
havelowporosity,anddemonstrateexcellentadhesiontothesubstrate.Thisdenseand
well-adheredcoatingeffectivelyblockscorrosiveagentsthatcouldotherwisecauseSCC
[228,233].TheeffectivenessofHVOFsprayinginpreventingSCCislargelyduetoitsabil-
itytoproducedurablecoatingsthatresistcorrosionandremainintactunderseverecon-
ditions.Incomparisontootherthermalspraymethods,HVOFcoatingsprovidesuperior
protectionowingtotheirdensityandstrongadhesion,whichsignificantlydecreasesthe
likelihoodofcorrosionpathwayspenetratingtheprotectivelayer.
InadditiontoHVOF,aluminum-andzinc-basedthermalspraycoatingshaveshown
impressiveperformanceinSCCprevention.Thesecoatingsestablishaphysicalbarrier
thatisolatesthemetalfromthecorrosiveenvironment,effectivelyhinderingtheinitiation
andpropagationofstresscorrosioncracks.Theelectrochemicalpropertiesofaluminum
andzincfurtherenhancethecoatings’overallcorrosionresistance.Furthermore,thehigh-
velocityimpactofparticlesduringtheHVOFprocesscreatescompressiveresidual
stressesonthesurface,counteractingthetensilestressesthatcontributetocrackformation
[228].TheeffectivenessofthermalspraycoatingsinpreventingSCCdependsonseveral
factors,includingthecoatingthickness,porosity,andadhesiontothesubstrate.Thicker
coatingsgenerallyofferbeerprotection,whilecoatingswithlowerporosityandhigher
adhesionprovideimprovedintegrityanddurability.Optimalperformanceisachieved
throughacarefulselectionofcoatingmaterialsandtheprecisecontrolofsprayingparam-
eterstoalignwiththespecificenvironmentalconditionsandstressfactorsencountered
bythecomponents[228].
AdditiveManufacturing
Additivemanufacturing(AM),oftenknownas3Dprinting,isaprogressivetechnol-
ogythatfabricatesobjectslayerbylayerbasedondigital3Ddesigndata.AMencompasses
avarietyofprocesses,includingthosethatuselasers,electronbeams,orplasmatode-
posit,fuse,orsolidifymaterials.Thistechnologyofferssubstantialbenefitscomparedto
conventionalmanufacturingmethods,suchasthecapabilitytoproduceintricatecompo-
nentsdirectlyfromCADmodels,reducedmaterialwaste,andshorterproductiontimes.
Bytheendof2020,theAMmarketwasanticipatedtoreachUSD21billion,whichspurred
extensiveresearchaimedatimprovingAMprocesses,particularlyinaddressingSCC
[234].
Studiesonselectivelasermelting(SLM)haveexaminedhowdifferentprocesspa-
rameters—suchasscanningspeed,laserpower,andenergydensity—affectthemicro-
structureofASS,includingaspectslikegrainsizeandporosity.Thesemicrostructuralfea-
turesarecritical,astheyimpactthestabilityofthepassivefilm,whichisessentialfor
corrosionresistanceandSCCmitigation.Therefore,optimizingSLMparametersiscrucial
forenhancingcorrosionresistanceandreducingSCCvulnerability.Researchondirect
laserdeposition(DLD)hasexploredhowheattreatmentsandchromiumcontentinflu-
encepassivefilmformation.Heattreatmentissignificantforenhancingthedevelopment
ofprotectivepassivefilmsanddecreasingSCCsusceptibilitybyimprovingtheoverall
microstructure.NewAMtechnologies,includingadvanced3Dprintingtechniques,pro-
videinnovativesolutionsforreducingSCC.Thesetechnologiesallowfortheproduction
ofcomplexcomponentdesignsthatminimizestressconcentrations—akeyfactorinSCC.
Theyalsosupportthecreationofnovelmaterialsandcoatingsspecificallydesignedto
withstandcorrosiveenvironments.Additionally,AMenablestheintegrationofprotective
coatingsduringproductionandfacilitatesinsiturepairs,thusprolongingthelifespanof
componentsinharshconditions.Theintegrationofsensorswithincomponentsforthe
real-timemonitoringofenvironmentalconditionsandstructuralhealthaidsintheearly
detectionofSCC.Rapidprototypingacceleratesthedevelopmentofnewmaterialsand
designs,thushasteningtheapplicationofSCCpreventionmeasures.Nevertheless,chal-
lengesrelatedtomaterialperformance,manufacturingconsistency,andcostneedtobe
addressedtofullyrealizeAM’spotentialinSCCprevention.ResearchintootherAM
Surfaces2024,7631
methods,suchaswirearcadditivemanufacturing(WAAM)anddroplet-based3Dprint-
ing,isstillemerging.UnderstandingtheireffectsoncorrosionbehaviorandSCCislimited
butessentialforensuringthedurabilityofmetalpartsproducedbyAM[234,235].
7.6.EnvironmentalConsiderations
SCCisinfluencedbyvariousenvironmentalfactors,includingsoilcomposition,
transportedfluids,andexternalandinternalconditions,eachcontributingdistinctcorro-
sionmechanisms.SCCraisessubstantialeconomic,environmental,andsafetyconcerns,
necessitatingglobalmonitoring.OfparticularconcernareionssuchasCO2,H2S,temper-
ature,partialpressure,andnaphthenicacidcontent[42,236,237].
SCCpredominantlyoccursinenvironmentswithnearlyneutraltohighpHlevels,
characterizedbycarbonate-richconditionsinfluencedbyenvironmentalandphysico-
chemicalparameters[237].SusceptibilitytoSCCincreaseswithgreaterlevelsofcathodic
polarization,akintotheoverprotectioneffectobservedincarbonsteel[238–240].Forin-
stance,near-neutral-pHSCCincarbonsteelpipelinesislinkedtothebreakdownoftape
coatings,facilitatingcarbonateformationfromCO2[45,209,240,241].Conversely,elevated
pHlevelscontributetoSCCfailuresassociatedwithcarbonate(CO32−),bicarbonate
(HCO3−),andalkalineconditions[44,51].Additionally,dissolvedCO2inwaterformscor-
rosivecarbonicacid,impactingcarbonsteel[242].HICincarbonsteels,exacerbatedby
acidicsoilsolutionsorsulfate-reducingbacteria,alsoposesarisk[193,210,243].Damaged
pipelinecoatingsunderlieextremeconditions,particularlywithdefectivecoatingscom-
promisingcathodicprotection,compoundedbymechanicaldamageduringconstruction
[144,244].
EffectivecontroloftensilestressiscriticalinpreventingSCCinitiationandpropaga-
tioninsusceptiblematerials.Thismanagementinvolvesproperheattreatment,coldex-
pansiontechniques,andcontrolofpressurefluctuations.MitigatingSCCinvulnerable
materialsrequiresacomprehensiveassessmentofexternalandinternalenvironmental
factors.Keyconsiderationsincluderemovingcorrosivespeciesfromtransportedfluids
andpreventingstagnantpipelinewateraccumulation.Soilswithelevatedcarbonatelevels
areparticularlypronetoSCCandrequireappropriatepreventivemeasures[5].
Variationsinthephysicochemicalpropertiesofsoils,suchaswatercontent,oxygen
availability,air–solidinterfaces,andseasonalfluctuationsinspecificgeographicalre-
gions,createhighlycorrosiveenvironments[245].Thecorrosionbehaviorofcarbonsteel
surfacesisinfluencedbyabruptenvironmentalchanges,suchasseasonalvariationsand
alteredsoilproperties,andtheeffectivenessofcathodicprotectionsystems[5].Therefore,
electrochemicalinteractionsatthesoil–pipelinesteelinterface,mechanicalpropertyfluc-
tuations,andionconcentrationvariationswithinthesoilareanticipated.Ingeologicaland
scientificinvestigations,naturalsoilsamplesaretypicallycollectedapproximately1.2m
deepalongthepipelineright-of-way(ROW)toassesssignificantexternalcorrosiondam-
age[246].Romanoff’sstudyexaminedtheimpactofexternalcorrosiononvariousmetals
indifferentU.S.soils,whileColeandMarneyemphasizedtheinfluencesofelectrochem-
icalreactions,oxideformation,andfactorssuchastemperature,voidspaces,pH,salinity,
andmoistureoncorrosionprocessesinsoilenvironments[5,247].
Inpracticalapplications,preventingI-SCCincarbonsteelpipelinesofteninvolves
deployingfieldseparatorstoremovecorrosiveelementssuchasgases,hydrocarbons,
high-salinitywater(e.g.,oilfield-producedwater),solids,metals,andsedimentsfrom
sludge.Thisprocessincludesdesaltinganddehydrationprocedures[248].Fluidcompo-
sitionfactorslikedissolvedoxygen,organicacids,watercontent,gasandliquiddensities,
viscosity,microorganismpresence,suspendedsolids,fielddebris,CO2levels,andH2S
contentinfluenceI-SCCoccurrence.Additionally,pipelineoperationalconditionssuchas
innerwallandfluidtemperatures,gasandliquidflowrates,erosionanddepositionrates,
heattransfercharacteristics,surfaceshearstress,flowturbulenceintensity,andpressure
dynamicsduringhydrocarbonproduction,gathering,storage,andtransportationstages
Surfaces2024,7632
allplaycriticalroles.Foulingpropensitysignificantlyimpactspressuredynamics
throughoutthesestages,affectingoperationalcostsandproductyields.
Therefore,implementingcorrosionpreventionmeasuresisimperative.These
measuresincludechemicaltreatmentssuchascorrosioninhibitorprograms,directmeth-
odslikecorrosioncouponsandfailurefrequencyanalysis,andinlineinspectionusingUT,
RT,andsmartpigs.Indirecttechniquesencompassmonitoringwatercontent,pressure,
temperature,hydrogenflux,gascomposition,solidandliquidanalysis,inhibitorpres-
ence,andmicrobiologicalfactors[248].Inthecontextofoilpipelines,inlinecleaningsys-
temsemployingpigtoolsarecommonlyusedtoaddressfoulingtendencies,whilegas
pipelinesemployspheresforsimilarpurposes[5].
8.Conclusions
ThiscomprehensivereviewexaminesthecriticalissueofSCCintheoilandgasin-
dustry,focusingonCl-SCC.Thestudyhighlightstheintricateinterplaybetweenenviron-
mentalconditionsandmaterialpropertiescontributingtoSCC,emphasizingtheheight-
enedriskunderspecificoperationalscenarios.ThefindingsindicatethatSCCcaninitiate
atrelativelylowtemperatures,around20°C,withrapidcrackpropagationobservedas
temperaturesexceed60°C.Thepresenceofchlorideionsisparticularlydetrimental,with
concentrationsabove100ppmsignificantlyincreasingsusceptibilitytoSCC.Forinstance,
a100ppmincreaseinchlorideconcentrationcanelevatecrackgrowthratesbyapproxi-
mately40%,underscoringthecriticalroleofenvironmentalcontrolinmanagingSCC
risks.Mitigationstrategies,includingcorrosion-resistantalloysandprotectivecoatings,
haveproveneffectiveinreducingSCCincidencebyupto50%undercontrolledexperi-
mentalconditions.Cathodicprotectionandtargetedcorrosioninhibitorsfurthercontrib-
utetoriskreduction,decreasingSCCoccurrencesbyabout30%.Advancedmonitoring
techniquesplayavitalroleinearlydetectionandpreventativemaintenanceschedules.
ThestudyalsohighlightsthesignificanceofenvironmentalpHandtemperatureininflu-
encingSCCbehavior.EnvironmentswithapHlowerthan4werefoundtodoubletherate
ofSCCcomparedtothoseatneutralpH.Additionally,temperaturevariationsbetween50
°Cand100°Cinhigh-chlorideenvironments(over200ppm)werelinkedtoa60%increase
inSCCfrequency.Thisreviewemphasizestheimportanceofacomprehensiveapproach
toSCCmanagement,involvingstrategicmaterialselection,continuousenvironmental
monitoring,andproactivemaintenance.Byadoptingthisintegratedapproach,industry
stakeholderscansignificantlyenhancetheresilienceoftheirinfrastructure,reducingeco-
nomiclossesandenvironmentalhazards.Thefindingsprovidecompellingevidencethat
proactiveSCCmanagementisessentialformaintainingthestructuralintegrityandoper-
ationalreliabilityofassetsintheoilandgassector,therebysafeguardingagainstsignifi-
canteconomiclossesandenvironmentalhazards.
Aut ho rContributions:Conceptualization,M.V.,P.K.,J.K.andZ.G.;methodology,M.V.andP.K.;
software,M.V.andP.K.;validation,M.V.,P.K.,J.K.andZ.G.;formalanalysis,P.K.andJ.K.;investi-
gation,M.V.andP.K.;resources,M.V.andP.K.;datacuration,P.K.andJ.K.;writing—originaldraft
preparation,M.V.;writing—reviewandediting,M.V.,P.K.andJ.K.;visualization,M.V.;supervision,
M.V.andP.K.;projectadministration,P.K.andJ.K.;fundingacquisition,P.K.Allauthorshaveread
andagreedtothepublishedversionofthemanuscript.
Funding:Thispublicationisaresultoftheproject“Moderntrendsintheprocessingofenergyraw
materials”(8232201)carriedoutatORLENUniCREa.s.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Nonewdatawerecreatedoranalyzedinthisstudy
ConflictsofInterest:Theauthorsdeclarenoconflictsofinterest.
Surfaces2024,7633
References
1. Byun,T.S.;Garrison,B.E.;McAlister,M.R.;Chen,X.;Gussev,M.N.;Lach,T.G.;LeCoq,A.;Linton,K.;Joslin,C.B.;Carver,J.K.;
etal.Mechanicalbehaviorofadditivelymanufacturedandwrought316Lstainlesssteelsbeforeandafterneutronirradiation.
J.Nucl.Mater.2021,548,152849.hps://doi.org/10.1016/j.jnucmat.2021.152849.
2. Martin,M.L.;Dadfarnia,M.;Nagao,A.;Wang,S.;Sofronis,P.Enumerationofthehydrogen-enhancedlocalizedplasticity
mechanismforhydrogenembrittlementinstructuralmaterials.ActaMater.2018,165,734–750.
https://doi.org/10.1016/j.actamat.2018.12.014.
3. Parikin,P.;Dani,M.;Dimyati,A.;Purnamasari,N.D.;Sugeng,B.;Panitra,M.;Insani,A.;Priyanto,T.;Mustofa,S.;Syahbuddin,
S.;etal.EffectofArcPlasmaSinteringontheStructuralandMicrostructuralPropertiesofFe-Cr-NiAusteniticStainlessSteels.
MakaraJ.Technol.2021,25,71–78.https://doi.org/10.7454/mst.v25i2.3922.
4. Nuthalapati,S.;Kee,K.;Pedapati,S.R.;Jumbri,K.Areviewofchlorideinducedstresscorrosioncrackingcharacterizationin
austeniticstainlesssteelsusingacousticemissiontechnique.Nucl.Eng.Technol.2024,56,688–706.
https://doi.org/10.1016/j.net.2023.11.005.
5. Quej-Ake,L.M.;Rivera-Olvera,J.N.;Domínguez-Aguilar,Y.d.R.;Avelino-Jiménez,I.A.;Garibay-Febles,V.;Zapata-Peñasco,I.
AnalysisofthePhysicochemical,Mechanical,andElectrochemicalParametersandTheirImpactontheInternalandExternal
SCCofCarbonSteelPipelines.Materials2020,13,5771.https://doi.org/10.3390/ma13245771.
6. Muraleedharan,P.6—MetallurgicalInfluencesonStressCorrosionCracking.InCorrosionofAusteniticStainlessSteels;Khatak,
H.S.,Raj,B.,Eds.;WoodheadPublishing:Cambridgeshire,UK,2002;pp.139–165.
7. Serafim,F.M.;Alabi,W.O.;Oguocha,I.N.;Odeshi,A.G.;Evitts,R.;Gerspacher,R.J.;Ohaeri,E.G.Stresscorrosioncracking
behaviorofselectedstainlesssteelsinsaturatedpotashbrinesolutionatdifferenttemperatures.Corros.Sci.2020,178,109025.
https://doi.org/10.1016/j.corsci.2020.109025.
8. Alireza,K.StressCorrosionCrackingBehaviorofMaterials.InEngineeringFailureAnalysis;Kary,T.,Ed.;IntechOpen:Rijeka,
Croatia,2020;p.Ch.3.
9. Mohtadi-Bonab,M.A.EffectsofDifferentParametersonInitiationandPropagationofStressCorrosionCracksinPipelineSteels:
AReview.Metals2019,9,590.https://doi.org/10.3390/met9050590.
10. Galvão,T.L.P.;Novell-Leruth,G.;Kuznetsova,A.;Tedim,J.;Gomes,J.R.B.ElucidatingStructure–PropertyRelationshipsinAluminum
AlloyCorrosionInhibitorsbyMachineLearning.J.Phys.Chem.C2020,124,5624–5635.https://doi.org/10.1021/acs.jpcc.9b09538.
11. Yan,X.;Rong,H.;Fan,W.;Yang,J.;Zhou,C.;Li,S.;Zhao,X.Effectandsimulationoftensilestressoncorrosionbehaviorof
7050aluminumalloyinasimulatedharshmarineenvironment.Eng.Fail.Anal.2024,156,107843.
https://doi.org/10.1016/j.engfailanal.2023.107843.
12. Khodamorad,S.H.;Alinezhad,N.;Fatmehsari,D.H.;Ghahtan,K.StresscorrosioncrackinginType.316platesofaheat
exchanger.CaseStud.Eng.Fail.Anal.2016,5,59–66.
13. Zhang,W.;Dunbar,L.;Tice,D.Monitoringofstresscorrosioncrackingofsensitised304Hstainlesssteelinnuclearapplications
byelectrochemicalmethodsandacousticemission.EnergyMater.2008,3,59–71.
14. Beavers,J.;Bubenik,T.A.12—Stresscorrosioncracking.InTrendsinOilandGasCorrosionResearchandTechnologies;El-Sherik,
A.M.,Ed.;WoodheadPublishing:Boston,MA,USA,2017;pp.295–314.
15. Manfredi,C.;Otegui,J.FailuresbySCCinburiedpipelines.Eng.Fail.Anal.2002,9,495–509.https://doi.org/10.1016/s1350-
6307(01)00032-2.
16. Fang,B.Y.;Atrens,A.;Wang,J.Q.;Han,E.H.;Zhu,Z.Y.;Ke,W.Reviewofstresscorrosioncrackingofpipelinesteelsin“low”
and“high”pHsolutions.J.Mater.Sci.2003,38,127–132.
17. Shehata,M.T.;Elboujdaini,M.;Revie,R.W.InitiationofStressCorrosionCrackingandHydrogen‐InducedCrackinginOilandGas
Line‐PipeSteels;Springer:Dordrecht,TheNetherlands,2008.
18. Sen,R.R.F.M.Characteristics,causes,andmanagementofcircumferentialstress-corrosioncracking.InProceedingsofthe10th
InternationalPipelineConferenceIPC2014-33059,Calgary,AB,Canada,29September–3October2014.
19. Yahi,S.;Bensmaili,A.;Haddad,A.;Benmohamed,M.ExperimentalApproachtoMonitoringtheDegradationStatusof
PipelinesTransportingHydrocarbons.Eur.J.Eng.Sci.Technol.2021,4,34–44.https://doi.org/10.33422/ejest.v4i2.605.
20. Xie,M.;Tian,Z.Areviewonpipelineintegritymanagementutilizingin-lineinspectiondata.Eng.Fail.Anal.2018,92,222–239.
https://doi.org/10.1016/j.engfailanal.2018.05.010.
21. Khasanova,A.Corrosioncrackingundermainpipelinesstress.J.PhysicsConf.Ser.2022,2176,012051.
https://doi.org/10.1088/1742-6596/2176/1/012051.
22. Hussain,M.;Zhang,T.;Chaudhry,M.;Jamil,I.;Kausar,S.;Hussain,I.ReviewofPredictionofStressCorrosionCrackinginGas
PipelinesUsingMachineLearning.Machines2024,12,42.https://doi.org/10.3390/machines12010042.
23. Vanboven,G.;Chen,W.;Rogge,R.TheroleofresidualstressinneutralpHstresscorrosioncrackingofpipelinesteels.PartI:
Pittingandcrackingoccurrence.ActaMater.2007,55,29–42.https://doi.org/10.1016/j.actamat.2006.08.037.
24. Vakili,M.;Koutník,P.;Kohout,J.CorrosionbyPolythionicAcidintheOilandGasSector:ABriefOverview.Materials2023,
16,7043.https://doi.org/10.3390/ma16217043.
25. Vakili,M.;Koutník,P.;Kohout,J.AddressingHydrogenSulfideCorrosioninOilandGasIndustries:ASustainablePerspective.
Sustainability2024,16,1661.https://doi.org/10.3390/su16041661.
26. Withers,P.J.;Bhadeshia,H.Residualstress.Part1–measurementtechniques.Mater.Sci.Technol.2001,17,355–365.
Surfaces2024,7634
27. Freitas,V.L.d.A.;deAlbuquerque,V.H.C.;Silva,E.d.M.;Silva,A.A.;Tavares,J.M.R.Nondestructivecharacterizationof
microstructuresanddeterminationofelasticpropertiesinplaincarbonsteelusingultrasonicmeasurements.Mater.Sci.Eng.A
2010,527,4431–4437.https://doi.org/10.1016/j.msea.2010.03.090.
28. Beavers,J.A.;Johnson,J.T.;Sutherby,R.L.Materialsfactorsinfluencingtheinitiationofnear-neutralpHSCConunderground
pipelines.InInternationalPipelineConference;AmericanSocietyofMechanicalEngineers:NewYork,NY,USA,2000.
29. Chen,W.;Vanboven,G.;Rogge,R.TheroleofresidualstressinneutralpHstresscorrosioncrackingofpipelinesteels—PartII:
Crackdormancy.ActaMater.2007,55,43–53.https://doi.org/10.1016/j.actamat.2006.07.021.
30. Khalifeh,A.;Banaraki,A.D.;Daneshmanesh,H.;Paydar,M.Stresscorrosioncrackingofacirculationwaterheatertubesheet.
Eng.Fail.Anal.2017,78,55–66.https://doi.org/10.1016/j.engfailanal.2017.03.007.
31. Ghosh,S.;Rana,V.P.S.;Kain,V.;Mittal,V.;Baveja,S.Roleofresidualstressesinducedbyindustrialfabricationonstresscorrosion
crackingsusceptibilityofausteniticstainlesssteel.Mater.Des.2011,32,3823–3831.https://doi.org/10.1016/j.matdes.2011.03.012.
32. Kannan,M.B.;Shukla,P.Stresscorrosioncracking(SCC)ofcopperandcopper-basedalloys.InStressCorrosionCracking;
Elsevier:Amsterdam,TheNetherlands,2011;pp.409–426.
33. Alyousif,O.M.;Nishimura,R.TheEffectofAppliedStressonEnvironment-InducedCrackingofAluminumAlloy5052-H3in
0.5MNaClSolution.Int.J.Corros.2012,2012,894875.https://doi.org/10.1155/2012/894875.
34. Kan,W.;Pan,H.Failureanalysisofastainlesssteelhydrotreatingreactor.Eng.Fail.Anal.2011,18,110–116.
https://doi.org/10.1016/j.engfailanal.2010.08.010.
35. Alireza,K.StressCorrosionCrackingDamages.InFailureAnalysis;Huang,Z.-M.,Hemeda,S.,Eds.;IntechOpen:Rijeka,Croatia,
2019;p.Ch.3.
36. Fairweather,N.;Platts,N.;Tice,D.Stress-corrosioncrackinitiationoftype304stainlesssteelinatmosphericenvironments
containingchloride:Influenceofsurfacecondition,relativehumidity,temperatureandthermalsensitization.InNACE
Corrosion;NACE:NewOrleans,LA,USA,2008,.
37. Hayashibara,H.;Mayuzumi,M.;Mizutani,Y.;Tani,J.I.Effectsoftemperatureandhumidityonatmosphericstresscorrosion
crackingof304stainlesssteel.InNACECorrosion;NACE:Houston,TX,USA,2008.
38. Singh,P.M.;Ige,O.;Mahmood,J.Stresscorrosioncrackingof304Lstainlesssteelinsodiumsulfidecontainingcausticsolutions.
J.Corros.Sci.Eng.2003,59,843–850.
39. Rodrıguez,J.J.;Hernández,F.S.;González,J.E.Theeffectofenvironmentalandmeteorologicalvariablesonatmospheric
corrosionofcarbonsteel,copper,zincandaluminiuminalimitedgeographiczonewithdifferenttypesofenvironment.Corros.
Sci.2003,45,799–815.https://doi.org/10.1016/s0010-938x(02)00081-1.
40. Iakovleva,E.;Mäkilä,E.;Salonen,J.;Sitarz,M.;Sillanpää,M.Industrialproductsandwastesasadsorbentsforsulphateand
chlorideremovalfromsyntheticalkalinesolutionandmineprocesswater.Chem.Eng.J.2015,259,364–371.
https://doi.org/10.1016/j.cej.2014.07.091.
41. Liu,Y.;Wang,J.;Liu,L.;Wang,F.Studyofthefailuremechanismofanepoxycoatingsystemunderhighhydrostaticpressure.
Corros.Sci.2013,74,59–70.https://doi.org/10.1016/j.corsci.2013.04.012.
42. Arafin,M.;Szpunar,J.Effectofbainiticmicrostructureonthesusceptibilityofpipelinesteelstohydrogeninducedcracking.
Mater.Sci.Eng.A2011,528,4927–4940.https://doi.org/10.1016/j.msea.2011.03.036.
43. Mustapha,A.;Charles,E.;Hardie,D.Evaluationofenvironment-assistedcrackingsusceptibilityofagradeX100pipelinesteel.
Corros.Sci.2012,54,5–9.https://doi.org/10.1016/j.corsci.2011.08.030.
44. Oskuie,A.;Shahrabi,T.;Shahriari,A.;Saebnoori,E.ElectrochemicalimpedancespectroscopyanalysisofX70pipelinesteelstress
corrosioncrackinginhighpHcarbonatesolution.Corros.Sci.2012,61,111–122.https://doi.org/10.1016/j.corsci.2012.04.024.
45. Maocheng,Y.;Jin,X.;Libao,Y.;Tangqing,W.;Cheng,S.;Wei,K.EISanalysisonstresscorrosioninitiationofpipelinesteel
underdisbondedcoatinginnear-neutralpHsimulatedsoilelectrolyte.Corros.Sci.2016,110,23–34.
https://doi.org/10.1016/j.corsci.2016.04.006.
46. Kang,Y.;Chen,W.;Kania,R.;VanBoven,G.;Worthingham,R.Simulationofcrackgrowthduringhydrostatictestingof
pipelinesteelinnear-neutralpHenvironment.Corros.Sci.2011,53,968–975.https://doi.org/10.1016/j.corsci.2010.11.029.
47. Marshakov,A.;Ignatenko,V.;Bogdanov,R.;Arabey,A.Effectofelectrolytecompositiononcrackgrowthrateinpipelinesteel.
Corros.Sci.2014,83,209–216.https://doi.org/10.1016/j.corsci.2014.02.012.
48. Mohtadi-Bonab,M.A.;Eskandari,M.;Karimdadashi,R.;Szpunar,J.A.Effectofdifferentmicrostructuralparameterson
hydrogeninducedcrackinginanAPIX70pipelinesteel.Met.Mater.Int.2017,23,726–735.https://doi.org/10.1007/s12540-017-
6691-z.
49. Mohtadi-Bonab,M.;Eskandari,M.;Szpunar,J.Roleofcoldrolledfollowedbyannealingonimprovementofhydrogeninduced
crackingresistanceinpipelinesteel.Eng.Fail.Anal.2018,91,172–181.https://doi.org/10.1016/j.engfailanal.2018.04.044.
50. Fan,Z.;Hu,X.;Liu,J.;Li,H.;Fu,J.StresscorrosioncrackingofL360NSpipelinesteelinsulfurenvironment.Petroleum2017,3,
377–383.https://doi.org/10.1016/j.petlm.2017.03.006.
51. Wang,J.Q.;Atrens,A.SCCinitiationforX65pipelinesteelinthe“high”pHcarbonate/bicarbonatesolution.Corros.Sci.2003,
45,2199–2217.
52. Chen,W.30—Modelingandpredictionofstresscorrosioncrackingofpipelinesteels.InTrendsinOilandGasCorrosionResearch
andTechnologies;El-Sherik,A.M.,Ed.;WoodheadPublishing:Boston,MA,USA,2017;pp.707–748.
53. Krivonosova,E.A.AReviewofStressCorrosionCrackingofWeldedStainlessSteels.OALib2018,5,1.
https://doi.org/10.4236/oalib.1104568.
Surfaces2024,7635
54. Adair,S.T.;Attwood,P.A.In-servicestresscorrosioncrackingofAISI316LstainlesssteelinanH2Senvironment.Corros.Eng.
Sci.Technol.2014,49,396–400.https://doi.org/10.1179/1743278213y.0000000141.
55. Yazovskikh,V.M.;Krivonosova,E.K.StructureFormationandPropertiesofCorrosion-ResistantSteelwithTreatmentbya
HighlyConcentratedEnergySource.Metallurgist2016,59,912–916.https://doi.org/10.1007/s11015-016-0193-y.
56. Krivonosova,E.A.;Sinkina,E.A.;Gorchakov,A.I.Effectofthetypeofelectrodecoatingonthecorrosionresistanceofweld
metalin08Cr18Ni10Tisteel.Weld.Int.2013,27,489–492.https://doi.org/10.1080/09507116.2012.715938.
57. Ghosh,G.;Rostron,P.;Garg,R.;Panday,A.Hydrogeninducedcrackingofpipelineandpressurevesselsteels:Areview.Eng.
Fract.Mech.2018,199,609–618.https://doi.org/10.1016/j.engfracmech.2018.06.018.
58. Truman,J.E.Stress-corrosioncrackingofmartensiticandferriticstainlesssteels.Int.Met.Rev.1981,26,301–349.
59. Mohtadi-Bonab,M.;Szpunar,J.;Basu,R.;Eskandari,M.Themechanismoffailurebyhydrogeninducedcrackinginanacidic
environmentforAPI5LX70pipelinesteel.Int.J.HydrogenEnergy2015,40,1096–1107.https://doi.org/10.1016/j.ijhydene.2014.11.057.
60. Mohtadi-Bonab,M.;Eskandari,M.Afocusondifferentfactorsaffectinghydrogeninducedcrackinginoilandnaturalgas
pipelinesteel.Eng.Fail.Anal.2017,79,351–360.https://doi.org/10.1016/j.engfailanal.2017.05.022.
61. Mohtadi-Bonab,M.A.;Eskandari,M.;Ghaednia,H.;Das,S.EffectofMicrostructuralParametersonFatigueCrackPropagation
inanAPIX65PipelineSteel.J.Mater.Eng.Perform.2016,25,4933–4940.https://doi.org/10.1007/s11665-016-2335-6.
62. Mohtadi-Bonab,M.;Eskandari,M.;Sanayei,M.;Das,S.Microstructuralaspectsofintergranularandtransgranularcrackpropagation
inanAPIX65steelpipelinerelatedtofatiguefailure.Eng.Fail.Anal.2018,94,214–225.https://doi.org/10.1016/j.engfailanal.2018.08.014.
63. Shi,X.;Yan,W.;Wang,W.;Shan,Y.;Yang,K.NovelCu-bearinghigh-strengthpipelinesteelswithexcellentresistanceto
hydrogen-inducedcracking.Mater.Des.2016,92,300–305.https://doi.org/10.1016/j.matdes.2015.12.029.
64. Baba,K.;Mizuno,D.;Yasuda,K.;Nakamichi,H.;Ishikawa,N.EffectofCuAdditioninPipelineSteelsonPreventionof
HydrogenPermeationinMildlySourEnvironments.Corrosion2016,72,1107–1115.https://doi.org/10.5006/2013.
65. Zhu,M.;Du,C.;Li,X.;Liu,Z.;Wang,S.;Zhao,T.;Jia,J.EffectofStrengthandMicrostructureonStressCorrosionCracking
BehaviorandMechanismofX80PipelineSteelinHighpHCarbonate/BicarbonateSolution.J.Mater.Eng.Perform.2014,23,
1358–1365.https://doi.org/10.1007/s11665-014-0880-4.
66. González,J.;Gutiérrez-Solana,F.;Varona,J.M.Theeffectsofmicrostructure,strengthlevel,andcrackpropagationmodeon
stresscorrosioncrackingbehaviorof4135steel.Met.Mater.Trans.A1996,27,281–290.https://doi.org/10.1007/bf02648406.
67. Mohtadi-Bonab,M.;Eskandari,M.;Szpunar,J.Effectofarisendislocationdensityandtexturecomponentsduringcoldrolling
andannealingtreatmentsonhydrogeninducedcrackingsusceptibilityinpipelinesteel.J.Mater.Res.2016,31,3390–3400.
https://doi.org/10.1557/jmr.2016.357.
68. Fang,B.;Wang,J.;Xiao,S.;Han,E.-H.;Zhu,Z.;Ke,W.StresscorrosioncrackingofX-70pipelinesteelsbyeletropulsing
treatmentinnear-neutralpHsolution.J.Mater.Sci.2005,40,6545–6552.https://doi.org/10.1007/s10853-005-1813-2.
69. Lu,B.T.;Luo,J.L.CrackInitiationandEarlyPropagationofX70SteelinSimulatedNear-NeutralpHGroundwater.Corrosion
2006,62,723–731.https://doi.org/10.5006/1.3278297.
70. Contreras,A.;Hernández,S.;Orozco-Cruz,R.;Galvan-Martínez,R.Mechanicalandenvironmentaleffectsonstresscorrosioncracking
oflowcarbonpipelinesteelinasoilsolution.Mater.Des.2012,35,281–289.https://doi.org/10.1016/j.matdes.2011.09.011.
71. Hänninen,H.E.6.01—StressCorrosionCracking.InComprehensiveStructuralIntegrity;Milne,I.,Ritchie,R.O.,Karihaloo,B.,
Eds.;Pergamon:Oxford,UK,2003;pp.1–29.
72. El-Amoush,A.S.;Zamil,A.;Jaber,D.;Ismail,N.Stresscorrosioncrackingofthepre-immersedtinbrassheatexchangertubein
anammoniacalsolution.Mater.Des.2014,56,842–847.https://doi.org/10.1016/j.matdes.2013.09.015.
73. Popović,M.;Romhanji,E.StresscorrosioncrackingsusceptibilityofAl–MgalloysheetwithhighMgcontent.J.Mater.Process.
Technol.2002,125,275–280.https://doi.org/10.1016/s0924-0136(02)00398-9.
74. Jones,R.H.;Baer,D.R.;Danielson,M.J.;Vetrano,J.S.RoleofMginthestresscorrosioncrackingofanAl-Mgalloy.Met.Mater.
Trans.A2001,32,1699–1711.https://doi.org/10.1007/s11661-001-0148-0.
75. Rao,A.U.;Vasu,V.;Govindaraju,M.;Srinadh,K.S.Stresscorrosioncrackingbehaviourof7xxxaluminumalloys:Aliterature
review.Trans.NonferrousMet.Soc.China2016,26,1447–1471.https://doi.org/10.1016/s1003-6326(16)64220-6.
76. Pilchak,A.;Young,A.;Williams,J.StresscorrosioncrackingfacetcrystallographyofTi–8Al–1Mo–1V.Corros.Sci.2010,52,3287–
3296.
77. Parnian,N.Failureanalysisofausteniticstainlesssteeltubesinagasfiredsteamheater.Mater.Des.2012,36,788–795.
https://doi.org/10.1016/j.matdes.2011.12.027.
78. Pal,S.;Ibrahim;Raman,R.S.Studyingtheeffectofsensitizationonthethresholdstressintensityandcrackgrowthforchloride
stresscorrosioncrackingofausteniticstainlesssteelusingcircumferentialnotchtensiletechnique.Eng.Fract.Mech.2012,82,
158–171.https://doi.org/10.1016/j.engfracmech.2011.12.004.
79. Singh,R.;Sachan,D.;Verma,R.;Goel,S.;Jayaganthan,R.;Kumar,A.Mechanicalbehaviorof304Austeniticstainlesssteel
processedbycryogenicrolling.Mater.Today:Proc.2018,5,16880–16886.https://doi.org/10.1016/j.matpr.2018.04.090.
80. Kappes,M.A.Localizedcorrosionandstresscorrosioncrackingofstainlesssteelsinhalidesotherthanchloridessolutions:A
review.Corros.Rev.2020,38,1–24.https://doi.org/10.1515/corrrev-2019-0061.
81. Knyazeva,M.;Pohl,M.DuplexSteels.PartII:CarbidesandNitrides.Met.Microstruct.Anal.2013,2,343–351.
https://doi.org/10.1007/s13632-013-0088-2.
82. Rodríguez,M.A.Corrosioncontrolofnuclearsteamgeneratorsundernormaloperationandplant-outageconditions:Areview.
Corros.Rev.2020,38,195–230.https://doi.org/10.1515/corrrev-2020-0015.
Surfaces2024,7636
83. Féron,D.2—Overviewofnuclearmaterialsandnuclearcorrosionscienceandengineering.InNuclearCorrosionScienceand
Engineering;Féron,D.,Ed.;WoodheadPublishing:Cambridge,UK,2012;pp.31–56.
84. Shiwa,M.;Masuda,H.;Yamawaki,H.;Ito,K.;Enoki,M.Acousticemissionmonitoringofmicrocellcorrosiontestingintype
304stainlesssteels.StrengthFract.Complex.2011,7,71–78.https://doi.org/10.3233/SFC-2011-0125.
85. Mackey,E.D.;Seacord,T.F.GuidelinesforUsingStainlessSteelintheWaterandDesalinationIndustries.J.‐Am.WaterWork.
Assoc.2017,109,E158–E169.
86. Yoon,H.;Ha,H.-Y.;Lee,T.-H.;Kim,S.-D.;Jang,J.H.;Moon,J.;Kang,N.PittingCorrosionResistanceandRepassivation
BehaviorofC-BearingDuplexStainlessSteel.Metals2019,9,930.https://doi.org/10.3390/met9090930.
87. Maziasz,P.J.;Busby,J.T.2.09—PropertiesofAusteniticSteelsforNuclearReactorApplications.InComprehensiveNuclear
Materials;Konings,R.J.M.,Ed.;Elsevier:Oxford,UK,2012;pp.267–283.
88. Pal,S.;Bhadauria,S.S.;Kumar,P.PittingCorrosionBehaviorofF304StainlessSteelUndertheExposureofFerricChloride
Solution.J.Bio‐Tribo‐Corros.2019,5,91.https://doi.org/10.1007/s40735-019-0283-z.
89. Jung,R.-H.;Tsuchiya,H.;Fujimoto,S.XPScharacterizationofpassivefilmsformedonType304stainlesssteelinhumid
atmosphere.Corros.Sci.2012,58,62–68.https://doi.org/10.1016/j.corsci.2012.01.006.
90. Sastry,K.Y.;Narayanan,R.;Shamantha,C.R.;Sundaresan,S.;Seshadri,S.K.;Radhakrishnan,V.M.;Iyer,K.J.L.;Sundararajan,S.Stress
corrosioncrackingofmaragingsteelweldments.Mater.Sci.Technol.2003,19,375–381.https://doi.org/10.1179/026708303225010632.
91. Cui,C.;Ma,R.;Martínez-Pañeda,E.Aphasefieldformulationfordissolution-drivenstresscorrosioncracking.J.Mech.Phys.
Solids2021,147,104254.https://doi.org/10.1016/j.jmps.2020.104254.
92. Ahmad,Z.Chapter4—Typesofcorrosion:MaterialsandEnvironments.InPrinciplesofCorrosionEngineeringandCorrosion
Control;Ahmad,Z.,Ed.;Butterworth-Heinemann:Oxford,UK,2006;pp.120–270.
93. Nguyen,T.-T.;Bolivar,J.;Réthoré,J.;Baietto,M.-C.;Fregonese,M.Aphasefieldmethodformodelingstresscorrosioncrack
propagationinanickelbasealloy.Int.J.SolidsStruct.2017,112,65–82.https://doi.org/10.1016/j.ijsolstr.2017.02.019.
94. Jawan,H.A.SomeThoughtsonStressCorrosionCrackingof(7xxx)AluminumAlloys.Int.J.Mater.Sci.Eng.2019,7,40–51.
https://doi.org/10.17706/ijmse.2019.7.2.40-51.
95. Li,Z.;Lu,Y.;Wang,X.Modelingofstresscorrosioncrackinggrowthratesforkeystructuralmaterialsofnuclearpowerplant.
J.Mater.Sci.2020,55,439–463.https://doi.org/10.1007/s10853-019-03968-w.
96. Alkateb,M.;Tadić,S.;Sedmak,A.;Ivanović,I.;Marković,S.CrackGrowthRateAnalysisofStressCorrosionCracking.Teh.
Vjesn.‐Tech.Gaz.2021,28,240–247.https://doi.org/10.17559/tv-20201106131352.
97. Lynch,S.P.1—Mechanisticandfractographicaspectsofstress-corrosioncracking(SCC).InStressCorrosionCracking;Raja,V.S.,
Shoji,T.,Eds.;WoodheadPublishing:Cambridge,UK,2011;pp.3–89.
98. Zaferani,S.H.;Miresmaeili,R.;Pourcharmi,M.K.Mechanisticmodelsforenvironmentally-assistedcrackinginsourservice.
Eng.Fail.Anal.2017,79,672–703.https://doi.org/10.1016/j.engfailanal.2017.05.005.
99. Pereira,H.B.;Panossian,Z.;Baptista,I.P.;Azevedo,C.R.d.F.InvestigationofStressCorrosionCrackingofAustenitic,Duplex
andSuperDuplexStainlessSteelsunderDropEvaporationTestusingSyntheticSeawater.Mater.Res.2019,22,e20180211.
https://doi.org/10.1590/1980-5373-mr-2018-0211.
100. Galvele,J.Surfacemobilitymechanismofstress-corrosioncracking.Corros.Sci.1993,35,419–434.https://doi.org/10.1016/0010-
938x(93)90175-g.
101. Chatterjee,U.K.Stresscorrosioncrackingandcomponentfailure:Causesandprevention.Sadhana1995,20,165–184.
https://doi.org/10.1007/bf02747288.
102. Pal,S.;Bhadauria,S.S.;Kumar,P.StudiesonStressCorrosionCrackingofF304StainlessSteelinBoilingMagnesiumChloride
Solution.J.Bio‐Tribo‐Corros.2021,7,62.https://doi.org/10.1007/s40735-021-00498-4.
103. Almubarak,A.;Abuhaimed,W.;Almazrouee,A.CorrosionBehavioroftheStressedSensitizedAusteniticStainlessSteelsof
HighNitrogenContentinSeawater.Int.J.Electrochem.2013,2013,970835.https://doi.org/10.1155/2013/970835.
104. Wu,K.;Briffod,F.;Ito,K.;Shinozaki,I.;Chivavibul,P.;Enoki,M.In-SituObservationandAcousticEmissionMonitoringofthe
Initiation-to-PropagationTransitionofStressCorrosionCrackinginSUS420J2StainlessSteel.Mater.Trans.2019,60,2151–2159.
https://doi.org/10.2320/matertrans.mt-maw2019004.
105. Song,M.;Wang,M.;Lou,X.;Rebak,R.B.;Was,G.S.Radiationdamageandirradiation-assistedstresscorrosioncrackingof
additivelymanufactured316Lstainlesssteels.J.Nucl.Mater.2019,513,33–44.https://doi.org/10.1016/j.jnucmat.2018.10.044.
106. Zinkle,S.J.;Was,G.S.Materialschallengesinnuclearenergy.ActaMater.2013,61,735–758.
https://doi.org/10.1016/j.actamat.2012.11.004.
107. Mayuzumi,M.;Arai,T.;Hide,K.ChlorideInducedStressCorrosionCrackingofType304and304LStainlessSteelsinAir.
Zairyo‐Kankyo2003,52,166–170.https://doi.org/10.3323/jcorr1991.52.166.
108. Xie,X.;Ning,D.;Chen,B.;Lu,S.;Sun,J.Stresscorrosioncrackingbehaviorofcold-drawn316austeniticstainlesssteelsin
simulatedPWRenvironment.Corros.Sci.2016,112,576–584.https://doi.org/10.1016/j.corsci.2016.08.014.
109. Yeom,H.;Dabney,T.;Pocquette,N.;Ross,K.;Pfefferkorn,F.E.;Sridharan,K.Coldspraydepositionof304Lstainlesssteelto
mitigatechloride-inducedstresscorrosioncrackingincanistersforusednuclearfuelstorage.J.Nucl.Mater.2020,538,152254.
https://doi.org/10.1016/j.jnucmat.2020.152254.
110. Roffey,P.;Davies,E.Thegenerationofcorrosionunderinsulationandstresscorrosioncrackingduetosulphidestresscrackinginan
austeniticstainlesssteelhydrocarbongaspipeline.Eng.Fail.Anal.2014,44,148–157.https://doi.org/10.1016/j.engfailanal.2014.05.004.
Surfaces2024,7637
111. Shoji,T.;Lu,Z.;Peng,Q.Factorsaffectingstresscorrosioncracking(SCC)andfundamentalmechanisticunderstandingof
stainlesssteels.InStressCorrosionCracking;Elsevier:Amsterdam,TheNetherlands,2011;pp.245–272.
112. Caines,S.;Khan,F.;Shirokoff,J.Analysisofpittingcorrosiononsteelunderinsulationinmarineenvironments.J.LossPrev.
Process.Ind.2013,26,1466–1483.https://doi.org/10.1016/j.jlp.2013.09.010.
113. Al-Moubaraki,A.H.;Obot,I.B.Corrosionchallengesinpetroleumrefineryoperations:Sources,mechanisms,mitigation,and
futureoutlook.J.SaudiChem.Soc.2021,25,101370.https://doi.org/10.1016/j.jscs.2021.101370.
114. Hao,W.;Liu,Z.;Wu,W.;Li,X.;Du,C.;Zhang,D.ElectrochemicalcharacterizationandstresscorrosioncrackingofE690highstrength
steelinwet-drycyclicmarineenvironments.Mater.Sci.Eng.A2018,710,318–328.https://doi.org/10.1016/j.msea.2017.10.042.
115. Xie,Y.;Zhang,J.Chloride-inducedstresscorrosioncrackingofusednuclearfuelweldedstainlesssteelcanisters:Areview.J.
Nucl.Mater.2015,466,85–93.https://doi.org/10.1016/j.jnucmat.2015.07.043.
116. Mayuzumi,M.;Tani,J.;Arai,T.Chlorideinducedstresscorrosioncrackingofcandidatecanistermaterialsfordrystorageof
spentfuel.Nucl.Eng.Des.2008,238,1227–1232.https://doi.org/10.1016/j.nucengdes.2007.03.038.
117. Wataru,M.;Takeda,H.;Shirai,K.;Saegusa,T.Thermalhydraulicanalysiscomparedwithtestsoffull-scaleconcretecasks.Nucl.
Eng.Des.2008,238,1213–1219.https://doi.org/10.1016/j.nucengdes.2007.03.036.
118. Navidi,W.;Shayer,Z.AnapplicationofstochasticmodelingtopittingofSpentNuclearFuelcanisters.Prog.Nucl.Energy2018,
107,48–56.https://doi.org/10.1016/j.pnucene.2018.04.005.
119. Newman,R.C.2001W.R.WhitneyAwardLecture:UnderstandingtheCorrosionofStainlessSteel.Corrosion2001,57,1030–1041.
https://doi.org/10.5006/1.3281676.
120. Andresen,P.L.EffectsofTemperatureonCrackGrowthRateinSensitizedType304StainlessSteelandAlloy600.Corrosion
1993,49,714–725.
121. Truman,J.Theinfluenceofchloridecontent,pHandtemperatureoftestsolutionontheoccurrenceofstresscorrosioncracking
withausteniticstainlesssteel.Corros.Sci.1977,17,737–746.https://doi.org/10.1016/0010-938x(77)90069-5.
122. Akpanyung,K.;Loto,R.;Fajobi,M.Anoverviewofammoniumchloride(NH4Cl)corrosionintherefiningunit.InJournalof
Physics:ConferenceSeries;IOPPublishing:Bristol,UK,2019.https://doi.org/10.1088/1742-6596/1378/2/022089.
123. Ashida,Y.;Daigo,Y.;Sugahara,K.AnIndustrialPerspectiveonEnvironmentallyAssistedCrackingofSomeCommercially
UsedCarbonSteelsandCorrosion-ResistantAlloys.Jom2017,69,1381–1388.https://doi.org/10.1007/s11837-017-2403-x.
124. Fujisawa,R.;Nishimura,K.;Nishida,T.;Sakaihara,M.;Kurata,Y.;Watanabe,Y.Corrosionbehaviorofnibasealloysand316
stainlesssteelinlessoxidizingorreducingSCWcontainingHCl.Corrosion2006,62,270–274.
125. Ford,F.P.;Silverman,M.ThePredictionofStressCorrosionCrackingofSensitized304StainlessSteelin0.01MNa2SO4at97C.
Corrosion1980,36,558–565.https://doi.org/10.5006/0010-9312-36.10.558.
126. Tani,J.-I.;Mayuzumi,M.;Hara,N.Stresscorrosioncrackingofstainless-steelcanisterforconcretecaskstorageofspentfuel.J.
Nucl.Mater.2008,379,42–47.https://doi.org/10.1016/j.jnucmat.2008.06.005.
127. Matsumoto,S.;Uchiya,G.;Ozawa,M.;Kobayashi,Y.;Shirato,K.ResearchCommitteeonRutheniumandTechnetium
ChemistryinPUREXSystem,OrganizedbytheAtomicEnergySocietyofJapan.Radiochemistry2003,45,219–224.
https://doi.org/10.1023/a:1026047722973.
128. Turnbull,A.;Zhou,S.Impactoftemperatureexcursiononstresscorrosioncrackingofstainlesssteelsinchloridesolution.
Corros.Sci.2008,50,913–917.https://doi.org/10.1016/j.corsci.2008.01.020.
129. Oldfield,J.W.;Todd,B.Roomtemperaturestresscorrosioncrackingofstainlesssteelsinindoorswimmingpoolatmospheres.
Br.Corros.J.1991,26,173–182.https://doi.org/10.1179/000705991798269233.
130. Baker,H.R.;Bloom,M.C.;Bolster,R.N.;Singleterry,C.R.FilmandpHEffectsintheStressCorrosionCrackingofType304
StainlessSteel.Corrosion2013,26,420–426.
131. Korovin,Y.M.;Ulanovskii,I.B.EffectofOxygenConcentrationandpHonElectrodePotentialofStainlessSteelsandOperation
ofMicrocouples.Corrosion2013,22,16–20.
132. Tani,J.-I.;Mayuzumi,M.;Hara,N.InitiationandPropagationofStressCorrosionCrackingofStainlessSteelCanisterfor
ConcreteCaskStorageofSpentNuclearFuel.Corrosion2009,65,187–194.https://doi.org/10.5006/1.3319127.
133. Feliu,S.;Morcillo,M.;Feliu,S.Thepredictionofatmosphericcorrosionfrommeteorologicalandpollutionparameters—I.
Annualcorrosion.Corros.Sci.1993,34,403–414.
134. Kosaki,A.Evaluationmethodofcorrosionlifetimeofconventionalstainlesssteelcanisterunderoceanicairenvironment.Nucl.
Eng.Des.2008,238,1233–1240.https://doi.org/10.1016/j.nucengdes.2007.03.040.
135. Chen,P.C.-S.;Shinohara,T.;Tsujikawa,S.ApplicabilityoftheCompetitionConceptinDeterminingtheStressCorrosion
CrackingBehaviorofAusteniticStainlessSteelsinChlorideSolutions.Zair.‐Kankyo/Corros.Eng.1997,46,313–320.
https://doi.org/10.3323/jcorr1991.46.313.
136. Yu,H.;Na,E.;Chung,S.Assessmentofstresscorrosioncrackingsusceptibilitybyasmallpunchtest.FatigueFract.Eng.Mater.
Struct.1999,22,889–896.https://doi.org/10.1046/j.1460-2695.1999.00218.x.
137. Bruchhausen,M.;Altstadt,E.;Austin,T.;Dymacek,P.;Holmström,S.;Jeffs,S.;Lacalle,R.;Lancaster,R.;Matocha,K.;Petzova,
J.Europeanstandardonsmallpunchtestingofmetallicmaterials.InPressureVesselsandPipingConference;AmericanSocietyof
MechanicalEngineers:NewYork,NY,USA,2017.
138. Salazar,M.;Espinosa-Medina,M.A.;Hernández,P.;Contreras,A.EvaluationofSCCsusceptibilityofsupermartensiticstainless
steelusingslowstrainratetests.Corros.Eng.Sci.Technol.2011,46,464–470.https://doi.org/10.1179/147842209x12476568584412.
Surfaces2024,7638
139. Contreras,A.;Quej-Aké,L.M.;Lizárraga,C.R.;Pérez,T.TheRoleofCalcareousSoilsinSCCofX52PipelineSteel.MRSOnline
Proc.Libr.(OPL)2015,1766,95–106.https://doi.org/10.1557/opl.2015.416.
140. Velazquez,Z.;Guzman,E.;Espinosa-Medina,M.;Contreras,A.StressCorrosionCrackingBehaviorofX60PipeSteelinSoil
Environment.MRSOnlineProc.Libr.(OPL)2009,1242,S4-P131.https://doi.org/10.1557/proc-1242-s4-p131.
141. Contreras,A.;Salazar,M.;Albiter,A.;Galván,R.;Vega,O.Assessmentofstresscorrosioncrackingonpipelinesteelsweldments
usedinthepetroleumindustrybyslowstrainratetests.InArcWelding;Sudnik,W.,Ed.;IntechOpen:Zagreb,Croatia,2011,pp.
127–150.
142. Quej-Aké,L.M.;Galván-Martínez,R.;Contreras-Cuevas,A.ElectrochemicalandTensionTestsBehaviorofAPI5LX60Pipeline
SteelinaSimulatedSoilSolution.Mater.Sci.Forum2013,755,153–161.https://doi.org/10.4028/www.scientific.net/msf.755.153.
143. Cheng,Y.F.StressCorrosionCrackingofPipelines;JohnWiley&Sons:Hoboken,NJ,USA,2013.
144. Afanasyev,A.;Mel’nikov,A.A.;Konovalov,S.V.;Vaskov,M.I.TheAnalysisoftheInfluenceofVariousFactorsonthe
DevelopmentofStressCorrosionDefectsintheMainGasPipelineWallsintheConditionsoftheEuropeanPartoftheRussian
Federation.Int.J.Corros.2018,2018,1258379.https://doi.org/10.1155/2018/1258379.
145. KamachiMudali,U.;Jayaraj,J.;Raman,R.K.S.;Raj,B.Corrosion:AnOverviewofTypes,Mechanism,andRequisitesof
Evaluation.InNon‐DestructiveEvaluationofCorrosionandCorrosion‐AssistedCracking;Hoboken,NJ,USA:Wiley2019;pp.56–74.
146. Silva,M.I.;Malitckii,E.;Santos,T.G.;Vilaça,P.Reviewofconventionalandadvancednon-destructivetestingtechniquesfordetection
andcharacterizationofsmall-scaledefects.Prog.Mater.Sci.2023,138,101155.https://doi.org/10.1016/j.pmatsci.2023.101155.
147. Venkatraman,B.;Raj,B.NondestructiveTesting:AnOverviewofTechniquesandApplicationforQualityEvaluation.InNon‐
DestructiveEvaluationofCorrosionandCorrosion‐AssistedCracking;Hoboken,NJ,USA:Wiley2019;pp.1–55.
148. Reddy,M.S.B.;Ponnamma,D.;Sadasivuni,K.K.;Aich,S.;Kailasa,S.;Parangusan,H.;Ibrahim,M.;Eldeib,S.;Shehata,O.;Ismail,
M.;etal.Sensorsinadvancingthecapabilitiesofcorrosiondetection:Areview.SensorsActuatorsAPhys.2021,332,113086.
https://doi.org/10.1016/j.sna.2021.113086.
149. Atamturktur,H.S.;Gilligan,C.R.;Salyards,K.A.Detectionofinternaldefectsinconcretemembersusingglobalvibration
characteristics.ACIMater.J.2013,110,529–538.
150. Yi,D.;Pei,C.;Liu,T.;Chen,Z.Inspectionofcrackswithfocusedanglebeamlaserultrasonicwave.Appl.Acoust.2019,145,1–6.
https://doi.org/10.1016/j.apacoust.2018.09.012.
151. Howard,R.;Cegla,F.Detectabilityofcorrosiondamagewithcircumferentialguidedwavesinreflectionandtransmission.NDT
EInt.2017,91,108–119.https://doi.org/10.1016/j.ndteint.2017.07.004.
152. Demo,J.;Rajamani,R.CorrosionSensing.InCorrosionProcesses:Sensing,Monitoring,DataAnalytics,Prevention/Protection,
Diagnosis/PrognosisandMaintenanceStrategies;Vachtsevanos,G.,Natarajan,K.,Rajamani,R.,Sandborn,P.,Eds.;Springer
InternationalPublishing:Cham,Switzerland,2020;pp.83–104.
153. Megid,W.A.;Chainey,M.-A.;Lebrun,P.;Hay,D.R.Monitoringfatiguecracksoneyebarsofsteelbridgesusingacoustic
emission:Acasestudy.Eng.Fract.Mech.2019,211,198–208.https://doi.org/10.1016/j.engfracmech.2019.02.022.
154. Delaunois,F.;Tshimombo,A.;Stanciu,V.;Vitry,V.Monitoringofchloridestresscorrosioncrackingofausteniticstainlesssteel:
Identificationofthephasesofthecorrosionprocessanduseofamodifiedacceleratedtest.Corros.Sci.2016,110,273–283.
https://doi.org/10.1016/j.corsci.2016.04.038.
155. Mazille,H.;Rothea,R.;Tronel,C.Anacousticemissiontechniqueformonitoringpittingcorrosionofausteniticstainlesssteels.
Corros.Sci.1995,37,1365–1375.https://doi.org/10.1016/0010-938x(95)00036-j.
156. Jones,R.H.;Friesel,M.A.AcousticEmissionDuringPittingandTransgranularCrackInitiationinType304StainlessSteel.
Corrosion1992,48,751–758.https://doi.org/10.5006/1.3315996.
157. Kim,Y.;Fregonese,M.;Mazille,H.;Féron,D.;Santarini,G.Abilityofacousticemissiontechniquefordetectionandmonitoring
ofcrevicecorrosionon304Lausteniticstainlesssteel.NDTEInt.2003,36,553–562.https://doi.org/10.1016/s0963-8695(03)00065-
3.
158. Shaikh,H.;Amirthalingam,R.;Anita,T.;Sivaibharasi,N.;Jaykumar,T.;Manohar,P.;Khatak,H.Evaluationofstresscorrosion
crackingphenomenoninanAISItype316LNstainlesssteelusingacousticemissiontechnique.Corros.Sci.2007,49,740–765.
https://doi.org/10.1016/j.corsci.2006.06.007.
159. Light,G.Nondestructiveevaluationtechnologiesformonitoringcorrosion.InTechniquesforCorrosionMonitoring;Elsevier:
Amsterdam,TheNetherlands,2021;pp.285–304.
160. Sophian,A.;Tian,G.;Fan,M.PulsedEddyCurrentNon-destructiveTestingandEvaluation:AReview.Chin.J.Mech.Eng.2017.
30,500-514.
161. Kelidari,Y.;Kashefi,M.;Mirjalili,M.;Seyedi,M.;Krause,T.W.Eddycurrenttechniqueasanondestructivemethodfor
evaluatingthedegreeofsensitizationof304stainlesssteel.Corros.Sci.2020,173,108742.
https://doi.org/10.1016/j.corsci.2020.108742.
162. Mardaninejad,R.;Safizadeh,M.S.GasPipelineCorrosionMappingThroughCoatingUsingPulsedEddyCurrentTechnique.
Russ.J.Nondestruct.Test.2019,55,858–867.https://doi.org/10.1134/s1061830919110068.
163. Edalati,K.;Rastkhah,N.;Kermani,A.;Seiedi,M.;Movafeghi,A.Theuseofradiographyforthicknessmeasurementand
corrosionmonitoringinpipes.Int.J.Press.Vessel.Pip.2006,83,736–741.https://doi.org/10.1016/j.ijpvp.2006.07.010.
164. Vasylenko,I.V.;Kazakevych,M.L.;Pavlishchuk,V.V.DesignofFerrofluidsandLuminescentFerrofluidsDerivedfrom
CoFe2O4NanoparticlesforNondestructiveDefectMonitoring.Theor.Exp.Chem.2019,54,365–368.
https://doi.org/10.1007/s11237-019-09582-w.
Surfaces2024,7639
165. Li,S.;Li,C.;Wang,F.Computationalexperimentsofmetalcorrosionstudies:Areview.Mater.TodayChem.2024,37,101986.
https://doi.org/10.1016/j.mtchem.2024.101986.
166. Xu,D.;Pei,Z.;Yang,X.;Li,Q.;Zhang,F.;Zhu,R.;Cheng,X.;Ma,L.AReviewofTrendsinCorrosion-ResistantStructuralSteels
Research—FromTheoreticalSimulationtoData-DrivenDirections.Materials2023,16,3396.https://doi.org/10.3390/ma16093396.
167. Turnbull,A.;Wright,L.;Crocker,L.Newinsightintothepit-to-cracktransitionfromfiniteelementanalysisofthestressand
straindistributionaroundacorrosionpit.Corros.Sci.2010,52,1492–1498.https://doi.org/10.1016/j.corsci.2009.12.004.
168. Scheider,I.;Pfuff,M.;Dietzel,W.Simulationofhydrogenassistedstresscorrosioncrackingusingthecohesivemodel.Eng.
Fract.Mech.2008,75,4283–4291.https://doi.org/10.1016/j.engfracmech.2007.10.002.
169. Raykar,N.;Maiti,S.;Raman,R.S.Modellingofmode-Istablecrackgrowthunderhydrogenassistedstresscorrosioncracking.
Eng.Fract.Mech.2011,78,3153–3165.https://doi.org/10.1016/j.engfracmech.2011.07.013.
170. Wei,X.;Dong,C.;Chen,Z.;Xiao,K.;Li,X.Theeffectofhydrogenontheevolutionofintergranularcracking:Across-scalestudy
usingfirst-principlesandcohesivefiniteelementmethods.RSCAdv.2016,6,27282–27292.https://doi.org/10.1039/c5ra26061b.
171. Álvarez,D.;Blackman,B.;Guild,F.;Kinloch,A.ModeIfractureinadhesively-bondedjoints:Amesh-sizeindependent
modellingapproachusingcohesiveelements.Eng.Fract.Mech.2014,115,73–95.
https://doi.org/10.1016/j.engfracmech.2013.10.005.
172. Xu,L.;Cheng,Y.F.Adirectassessmentoffailurepressureofhigh-strengthsteelpipelineswithconsiderationsofthesynergism
ofcorrosiondefects,internalpressureandsoilstrain.InNACECorrosion;NACE:Orlando,FL,USA,2013.
173. Criscenti,L.J.;Cygan,R.T.;Kooser,A.S.;Moffat,H.K.WaterandHalideAdsorptiontoCorrosionSurfaces:Molecular
SimulationsofAtmosphericInteractionswithAluminumOxyhydroxideandGold.Chem.Mater.2008,20,4682–4693.
https://doi.org/10.1021/cm702781r.
174. Praveen,B.M.;Alhadhrami,A.;Prasanna,B.M.;Hebbar,N.;Prabhu,R.Anti-CorrosionBehaviorofOlmesartanforSoft-Cast
Steelin1moldm−3HCl.Coatings2021,11,965.https://doi.org/10.3390/coatings11080965.
175. Matad,P.B.;Mokshanatha,P.B.;Hebbar,N.;Venkatesha,V.T.;Tandon,H.C.KetosulfoneDrugasaGreenCorrosionInhibitor
forMildSteelinAcidicMedium.Ind.Eng.Chem.Res.2014,53,8436–8444.https://doi.org/10.1021/ie500232g.
176. Beyerlein,I.;Caro,A.;Demkowicz,M.;Mara,N.;Misra,A.;Uberuaga,B.Radiationdamagetolerantnanomaterials.Mater.
Today2013,16,443–449.https://doi.org/10.1016/j.mattod.2013.10.019.
177. Bhattacharya,B.;Kumar,G.D.;Agarwal,A.;Erkoç,.;Singh,A.;Chakraborti,N.AnalyzingFe–Znsystemusingmolecular
dynamics,evolutionaryneuralnetsandmulti-objectivegeneticalgorithms.Comput.Mater.Sci.2009,46,821–827.
https://doi.org/10.1016/j.commatsci.2009.04.023.
178. Wang,F.;Liu,Y.;Zhu,T.;Gao,Y.;Zhao,J.Nanoscaleinterfaceofmetalsforwithstandingmomentaryshocksofcompression.
Nanoscale2010,2,2818–2825.https://doi.org/10.1039/c0nr00333f.
179. Yan,L.;Diao,Y.;Lang,Z.;Gao,K.Corrosionratepredictionandinfluencingfactorsevaluationoflow-alloysteelsinmarine
atmosphereusingmachinelearningapproach.Sci.Technol.Adv.Mater.2020,21,359–370.
https://doi.org/10.1080/14686996.2020.1746196.
180. Salami,B.A.;Rahman,S.M.;Oyehan,T.A.;Maslehuddin,M.;AlDulaijan,S.U.Ensemblemachinelearningmodelforcorrosion
initiationtimeestimationofembeddedsteelreinforcedself-compactingconcrete.Measurement2020,165,108141.
https://doi.org/10.1016/j.measurement.2020.108141.
181. Ossai,C.I.AData-DrivenMachineLearningApproachforCorrosionRiskAssessment—AComparativeStudy.BigDataCogn.
Comput.2019,3,28.https://doi.org/10.3390/bdcc3020028.
182. Fulkerson,B.;Michie,D.;Spiegelhalter,D.J.;Taylor,C.C.MachineLearning,NeuralandStatisticalClassification.Technometrics
1995,37,459.https://doi.org/10.2307/1269742.
183. Polikreti,K.;Argyropoulos,V.;Charalambous,D.;Vossou,A.;Perdikatsis,V.;Apostolaki,C.Tracingcorrelationsofcorrosion
productsandmicroclimatedataonoutdoorbronzemonumentsbyPrincipalComponentAnalysis.Corros.Sci.2009,51,2416–
2422.https://doi.org/10.1016/j.corsci.2009.06.039.
184. Khayati,G.R.;Rajabi,Z.;Ehteshamzadeh,M.;Beirami,H.AHybridParticleSwarmOptimizationwithDragonflyforAdaptive
ANFIStoModeltheCorrosionRateinConcreteStructures.Int.J.Concr.Struct.Mater.2022,16,1–34.
https://doi.org/10.1186/s40069-022-00517-9.
185. Memon,A.M.;Imran,I.H.;Alhems,L.M.NeuralnetworkbasedcorrosionmodelingofStainlessSteel316Lelbowusingelectric
fieldmappingdata.Sci.Rep.2023,13,1–15.https://doi.org/10.1038/s41598-023-40083-y.
186. Li,Q.;Xia,X.;Pei,Z.;Cheng,X.;Zhang,D.;Xiao,K.;Wu,J.;Li,X.Long-termcorrosionmonitoringofcarbonsteelsand
environmentalcorrelationanalysisviatherandomforestmethod.npjMater.Degrad.2022,6,1.https://doi.org/10.1038/s41529-
021-00211-3.
187. Wei,B.;Xu,J.;Pang,J.;Huang,Z.;Wu,J.;Cai,Z.;Yan,M.;Sun,C.Predictionofelectrochemicalimpedancespectroscopyof
high-entropyalloyscorrosionbyusinggradientboostingdecisiontree.Mater.TodayCommun.2022,32,104047.
https://doi.org/10.1016/j.mtcomm.2022.104047.
188. Forkan,A.R.M.;Kang,Y.-B.;Jayaraman,P.P.;Liao,K.;Kaul,R.;Morgan,G.;Ranjan,R.;Sinha,S.CorrDetector:Aframework
forstructuralcorrosiondetectionfromdroneimagesusingensembledeeplearning.ExpertSyst.Appl.2022,193,116461.
https://doi.org/10.1016/j.eswa.2021.116461.
189. Ao,M.;Ji,Y.;Sun,X.;Guo,F.;Xiao,K.;Dong,C.ImageDeepLearningAssistedPredictionofMechanicalandCorrosion
BehaviorforAl-Zn-MgAlloys.IEEEAccess2022,10,35620–35631.https://doi.org/10.1109/access.2022.3161519.
Surfaces2024,7640
190. Dogan,G.;Arslan,M.H.;Ilki,A.DetectionofdamagescausedbyearthquakeandreinforcementcorrosioninRCbuildingswith
DeepTransferLearning.Eng.Struct.2023,279,115629.https://doi.org/10.1016/j.engstruct.2023.115629.
191. Asahi,H.;Kushida,T.;Kimura,M.;Fukai,H.;Okano,S.RoleofMicrostructuresonStressCorrosionCrackingofPipelineSteels
inCarbonate-BicarbonateSolution.Corrosion1999,55,644–652.https://doi.org/10.5006/1.3284018.
192. Gonzalez-Rodriguez,J.G.;Casales,M.;Salinas-Bravo,V.M.;Albarran,J.L.;Martinez,L.EffectofMicrostructureontheStress
CorrosionCrackingofX-80PipelineSteelinDilutedSodiumBicarbonateSolutions.Corrosion2002,58,584–590.
https://doi.org/10.5006/1.3277649.
193. Liu,Z.;Li,X.;Du,C.;Lu,L.;Zhang,Y.;Cheng,Y.EffectofinclusionsoninitiationofstresscorrosioncracksinX70pipelinesteel
inanacidicsoilenvironment.Corros.Sci.2009,51,895–900.https://doi.org/10.1016/j.corsci.2009.01.007.
194. Al-Mansour,M.;Alfantazi,A.;El-Boujdaini,M.SulfidestresscrackingresistanceofAPI-X100highstrengthlowalloysteel.
Mater.Des.2009,30,4088–4094.https://doi.org/10.1016/j.matdes.2009.05.025.
195. Lu,Z.P.;Shoji,T.;Takeda,Y.Effectsofwaterchemistryonstresscorrosioncrackingof316NGweldmetalsinhightemperature
water.Corros.Eng.Sci.Technol.2015,50,41–48.https://doi.org/10.1179/1743278214y.0000000186.
196. Honeycombe,J.;Gooch,T.G.CorrosionandStressCorrosionofArcWeldsin18%Chromium–2%Molybdenum–Titanium
StabilisedStainlessSteel.Br.Corros.J.1983,18,25–34.https://doi.org/10.1179/000705983798274119.
197. Kuroda,T.;Matsuda,F.;Bunno,K.Stresscorrosioncrackingofduplexstainlesssteelinhigh-temperature/high-pressurewater.
Weld.Int.1995,9,788–796.
198. Baroux,B.PassivationandlocalizedcorrosionofstainlesssteelS.InPassivityofMetalsandSemiconductors;Froment,M.,Ed.;
Elsevier:Amsterdam,TheNetherlands,1983;pp.531–545.
199. Kain,V.5—Stresscorrosioncracking(SCC)instainlesssteels.InStressCorrosionCracking;Raja,V.S.,Shoji,T.,Eds.;Woodhead
Publishing:Cambridge,UK,2011;pp.199–244.
200. Pan,Y.;Sun,B.;Liu,Z.;Wu,W.;Li,X.HydrogeneffectsonpassivationandSCCof2205DSSinacidifiedsimulatedseawater.
Corros.Sci.2022,208,110640.https://doi.org/10.1016/j.corsci.2022.110640.
201. Runge,J.M.;Runge,J.M.Abriefhistoryofanodizingaluminum.InTheMetallurgyofAnodizingAluminum:ConnectingScienceto
Practice;SpringerInternationalPublishing:Cham,Switzerland,2018,pp.65–148.
202. Zhu,H.;Li,J.Advancementsincorrosionprotectionforaerospacealuminumalloysthroughsurfacetreatment.Int.J.
Electrochem.Sci.2024,19,100487.https://doi.org/10.1016/j.ijoes.2024.100487.
203. Minagar,S.;Berndt,C.C.;Wang,J.;Ivanova,E.;Wen,C.Areviewoftheapplicationofanodizationforthefabricationof
nanotubesonmetalimplantsurfaces.ActaBiomater.2012,8,2875–2888.https://doi.org/10.1016/j.actbio.2012.04.005.
204. Rezayat,M.;Karamimoghadam,M.;Moradi,M.;Casalino,G.;Rovira,J.J.R.;Mateo,A.OverviewofSurfaceModification
StrategiesforImprovingthePropertiesofMetastableAusteniticStainlessSteels.Metals2023,13,1268.
https://doi.org/10.3390/met13071268.
205. Fürstner,R.;Barthlott,W.;Neinhuis,C.;Walzel,P.WettingandSelf-CleaningPropertiesofArtificialSuperhydrophobic
Surfaces.Langmuir2005,21,956–961.https://doi.org/10.1021/la0401011.
206. Bellido-Aguilar,D.A.;Zheng,S.;Huang,Y.;Zeng,X.;Zhang,Q.;Chen,Z.Solvent-FreeSynthesisandHydrophobizationof
BiobasedEpoxyCoatingsforAnti-IcingandAnticorrosionApplications.ACSSustain.Chem.Eng.2019,7,19131–19141.
https://doi.org/10.1021/acssuschemeng.9b05091.
207. Cheng,Y.Fundamentalsofhydrogenevolutionreactionanditsimplicationsonnear-neutralpHstresscorrosioncrackingof
pipelines.ElectrochimicaActa2007,52,2661–2667.https://doi.org/10.1016/j.electacta.2006.09.024.
208. Yan,M.;Wang,J.;Han,E.;Ke,W.Localenvironmentundersimulateddisbondedcoatingonsteelpipelinesinsoilsolution.
Corros.Sci.2008,50,1331–1339.https://doi.org/10.1016/j.corsci.2008.01.004.
209. Yan,M.;Sun,C.;Xu,J.;Wu,T.;Yang,S.;Ke,W.Stresscorrosionofpipelinesteelunderoccludedcoatingdisbondmentinared
soilenvironment.Corros.Sci.2015,93,27–38.https://doi.org/10.1016/j.corsci.2015.01.001.
210. Chen,X.;Wang,G.;Gao,F.;Wang,Y.;He,C.Effectsofsulphate-reducingbacteriaoncrevicecorrosioninX70pipelinesteel
underdisbondedcoatings.Corros.Sci.2015,101,1–11.https://doi.org/10.1016/j.corsci.2015.06.015.
211. Beavers,J.A.;Thompson,N.G.ExternalCorrosionofOilandNaturalGasPipelines.InASMHandbook;ASMInternational:
MaterialsPark,OH,USA,2006;pp.1015–1026.
212. Fu,A.;Tang,X.;Cheng,Y.CharacterizationofcorrosionofX70pipelinesteelinthinelectrolytelayerunderdisbondedcoating
byscanningKelvinprobe.Corros.Sci.2009,51,186–190.https://doi.org/10.1016/j.corsci.2008.10.018.
213. Quej,L.;Mireles,M.;Galván-Martínez,R.;Contreras,A.ElectrochemicalcharacterizationofX60steelexposedtodifferentsoils
fromSouthofMéxico.InMaterialsCharacterization;Springer:Berlin/Heidelberg,Germany,2015;pp.101–116.
214. Zhang,F.;Ju,P.;Pan,M.;Zhang,D.;Huang,Y.;Li,G.;Li,X.Self-healingmechanismsinsmartprotectivecoatings:Areview.
Corros.Sci.2018,144,74–88.https://doi.org/10.1016/j.corsci.2018.08.005.
215. Stankiewicz,A.;Szczygieł,I.;Szczygieł,B.Self-healingcoatingsinanti-corrosionapplications.J.Mater.Sci.2013,48,8041–8051.
https://doi.org/10.1007/s10853-013-7616-y.
216. Karpakam,V.;Kamaraj,K.;Sathiyanarayanan,S.;Venkatachari,G.;Ramu,S.Electrosynthesisofpolyaniline–molybdatecoating
onsteelanditscorrosionprotectionperformance.ElectrochimicaActa2011,56,2165–2173.
https://doi.org/10.1016/j.electacta.2010.11.099.
217. Solovyeva,V.A.;Almuhammadi,K.H.;Badeghaish,W.O.CurrentDownholeCorrosionControlSolutionsandTrendsinthe
OilandGasIndustry:AReview.Materials2023,16,1795.https://doi.org/10.3390/ma16051795.
Surfaces2024,7641
218. Nikafshar,S.;McCracken,J.;Dunne,K.;Nejad,M.ImprovingUV-Stabilityofepoxycoatingusingencapsulatedhalloysite
nanotubeswithorganicUV-Stabilizersandlignin.Prog.Org.Coat.2021,151,105843.
219. Nawaz,M.;Habib,S.;Khan,A.;Shakoor,R.A.;Kahraman,R.Cellulosemicrofibers(CMFs)asasmartcarrierforautonomous
self-healinginepoxycoatings.NewJ.Chem.2020,44,5702–5710.https://doi.org/10.1039/c9nj06436b.
220. Tanvir,A.;El-Gawady,Y.H.;Al-Maadeed,M.Cellulosenanofiberstoassistthereleaseofhealingagentsinepoxycoatings.
Prog.Org.Coatings2017,112,127–132.https://doi.org/10.1016/j.porgcoat.2017.07.008.
221. Rafiee,M.A.;Rafiee,J.;Wang,Z.;Song,H.;Yu,Z.-Z.;Koratkar,N.EnhancedMechanicalPropertiesofNanocompositesatLow
GrapheneContent.ACSNano2009,3,3884–3890.https://doi.org/10.1021/nn9010472.
222. Varzeghani,H.N.;Amraei,I.A.;Mousavi,S.R.DynamicCureKineticsandPhysical-MechanicalPropertiesof
PEG/Nanosilica/EpoxyComposites.Int.J.Polym.Sci.2020,2020,7908343.https://doi.org/10.1155/2020/7908343.
223. Ahmadi,Z.Epoxyinnanotechnology:Ashortreview.Prog.Org.Coatings2019,132,445–448.
https://doi.org/10.1016/j.porgcoat.2019.04.003.
224. Loto,R.T.;Leramo,R.;Oyebade,B.SynergisticCombinationEffectofSalviaofficinalisandLavandulaofficinalisonthe
CorrosionInhibitionofLow-CarbonSteelinthePresenceofSO42−-andCl−-ContainingAqueousEnvironment.J.Fail.Anal.Prev.
2018,18,1429–1438.https://doi.org/10.1007/s11668-018-0535-0.
225. Aslam,R.;Mobin,M.;Zehra,S.;Aslam,J.Acomprehensivereviewofcorrosioninhibitorsemployedtomitigatestainlesssteel
corrosionindifferentenvironments.J.Mol.Liq.2022,364,119992.https://doi.org/10.1016/j.molliq.2022.119992.
226. Zhang,Y.;Pan,Y.;Li,P.;Zeng,X.;Guo,B.;Pan,J.;Hou,L.;Yin,X.NovelSchiffbase-basedcationicGeminisurfactantsas
corrosioninhibitorsforQ235carbonsteelandprintedcircuitboards.ColloidsSurfacesA:Physicochem.Eng.Asp.2021,623,126717.
https://doi.org/10.1016/j.colsurfa.2021.126717.
227. Sivapragash,M.;Kumaradhas,P.;Vettivel,S.;Retnam,B.S.J.OptimizationofPVDprocessparameterforcoatingAZ91D
magnesiumalloybyTaguchigreyapproach.J.Magnes.Alloy.2018,6,171–179.https://doi.org/10.1016/j.jma.2018.02.004.
228. Daroonparvar,M.;Bakhsheshi-Rad,H.R.;Saberi,A.;Razzaghi,M.;Kasar,A.K.;Ramakrishna,S.;Menezes,P.L.;Misra,M.;
Ismail,A.F.;Sharif,S.;etal.Surfacemodificationofmagnesiumalloysusingthermalandsolid-statecoldsprayprocesses:
Challengesandlatestprogresses.J.Magnes.Alloy.2022,10,2025–2061.https://doi.org/10.1016/j.jma.2022.07.012.
229. Zhang,M.;Zhou,T.;Li,H.;Liu,Q.UV-durablesuperhydrophobicZnO/SiO2nanorodarraysonanaluminumsubstrateusing
catalyst-freechemicalvapordepositionandtheircorrosionperformance.Appl.Surf.Sci.2023,623,157085.
https://doi.org/10.1016/j.apsusc.2023.157085.
230. Deng,K.;Wang,X.;Huang,S.;Li,P.;Jiang,Q.;Yin,H.;Fan,J.;Wei,K.;Zheng,Y.;Shi,J.;etal.EffectiveSuppressionof
AmorphousGa2OandRelatedDeepLevelsontheGaNSurfacebyHigh-TemperatureRemotePlasmaPretreatmentsinGaN-
BasedMetal–Insulator–SemiconductorElectronicDevices.ACSAppl.Mater.Interfaces2023,15,25058–25065.
https://doi.org/10.1021/acsami.3c03094.
231. Kencana,S.D.;Kuo,Y.-L.;Yen,Y.-W.;Schellkes,E.;Chuang,W.Improvingthesolderwettabilityviaatmosphericplasma
technology.InProceedingsofthe2019IEEE69thElectronicComponentsandTechnologyConference(ECTC),LasVegas,NV,
USA,28–31May2019.
232. Ramezani,M.;Ripin,Z.M.;Pasang,T.;Jiang,C.-P.SurfaceEngineeringofMetals:Techniques,Characterizationsand
Applications.Metals2023,13,1299.https://doi.org/10.3390/met13071299.
233. Liu,B.;Xiao,F.;Zhu,H.;Tang,M.PromisingWC-30WB-10CoCementedCarbideCoatingwithImprovedDensityandHardness
DepositedbyHighVelocityOxy-FuelSpraying:MicrostructureandMechanicalProperties.J.Mater.Eng.Perform.2023,32,
6405–6411.https://doi.org/10.1007/s11665-022-07556-z.
234. Ko,G.;Kim,W.;Kwon,K.;Lee,T.-K.TheCorrosionofStainlessSteelMadebyAdditiveManufacturing:AReview.Metals2021,
11,516.https://doi.org/10.3390/met11030516.
235. Pasco,J.;Lei,Z.;Aranas,C.AdditiveManufacturinginOff-SiteConstruction:ReviewandFutureDirections.Buildings2022,12,
53.https://doi.org/10.3390/buildings12010053.
236. Kong,D.-J.;Wu,Y.-Z.;Long,D.StressCorrosionofX80PipelineSteelWeldedJointsbySlowStrainTestinNACEH2SSolutions.
J.IronSteelRes.Int.2013,20,40–46.https://doi.org/10.1016/s1006-706x(13)60042-4.
237. Javidi,M.;Horeh,S.B.Investigatingthemechanismofstresscorrosioncrackinginnear-neutralandhighpHenvironmentsfor
API5LX52steel.Corros.Sci.2014,80,213–220.https://doi.org/10.1016/j.corsci.2013.11.031.
238. Liu,Z.;Li,X.;Cheng,Y.Electrochemicalstateconversionmodelforoccurrenceofpittingcorrosiononacathodicallypolarized
carbonsteelinanear-neutralpHsolution.ElectrochimicaActa2011,56,4167–4175.https://doi.org/10.1016/j.electacta.2011.01.100.
239. Li,M.;Cheng,Y.Corrosionofthestressedpipesteelincarbonate–bicarbonatesolutionstudiedbyscanninglocalized
electrochemicalimpedancespectroscopy.ElectrochimicaActa2008,53,2831–2836.https://doi.org/10.1016/j.electacta.2007.10.077.
240. Liu,Z.;Li,X.;Cheng,Y.Mechanisticaspectofnear-neutralpHstresscorrosioncrackingofpipelinesundercathodic
polarization.Corros.Sci.2012,55,54–60.https://doi.org/10.1016/j.corsci.2011.10.002.
241. Fu,A.;Cheng,Y.ElectrochemicalpolarizationbehaviorofX70steelinthincarbonate/bicarbonatesolutionlayerstrappedunder
adisbondedcoatinganditsimplicationonpipelineSCC.Corros.Sci.2010,52,2511–2518.
https://doi.org/10.1016/j.corsci.2010.03.019.
242. Yin,Z.F.;Zhao,W.Z.;Feng,Y.R.;Zhu,S.D.CharacterisationofCO2corrosionscaleinsimulatedsolutionwithCl–ionunder
turbulentflowconditions.Corros.Eng.Sci.Technol.2009,44,453–461.
Surfaces2024,7642
243. Liu,Z.;Li,X.;Du,C.;Zhai,G.;Cheng,Y.StresscorrosioncrackingbehaviorofX70pipesteelinanacidicsoilenvironment.
Corros.Sci.2008,50,2251–2257.https://doi.org/10.1016/j.corsci.2008.05.011.
244. Dong,C.;Fu,A.;Li,X.;Cheng,Y.LocalizedEIScharacterizationofcorrosionofsteelatcoatingdefectundercathodicprotection.
ElectrochimicaActa2008,54,628–633.https://doi.org/10.1016/j.electacta.2008.07.016.
245. Quej-Ake,L.;Marín-Cruz,J.;Contreras,A.ElectrochemicalstudyofthecorrosionrateofAPIsteelsinclaysoils.Anti‐Corrosion
MethodsMater.2017,64,61–68.https://doi.org/10.1108/acmm-03-2015-1512.
246. Quej-Aké,L.;Nava,N.;Espinosa-Medina,M.A.;Liu,H.B.;Alamilla,J.L.;Sosa,E.Characterisationofsoil/pipeinterfaceata
pipelinefailureafter36yearsofserviceunderimpressedcurrentcathodicprotection.Corros.Eng.Sci.Technol.2015,50,311–
319.https://doi.org/10.1179/1743278214y.0000000226.
247. Cole,I.S.;Marney,D.Thescienceofpipecorrosion:Areviewoftheliteratureonthecorrosionofferrousmetalsinsoils.Corros.
Sci.2021,56,5–16.https://doi.org/10.1016/j.corsci.2011.12.001.
248. Liao,K.;Yao,Q.;Wu,X.;Jia,W.ANumericalCorrosionRatePredictionMethodforDirectAssessmentofWetGasGathering
PipelinesInternalCorrosion.Energies2012,5,3892–3907.https://doi.org/10.3390/en5103892.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual
author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjury
topeopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.