Article

Mitosis: An expanded view of mitotic mechanisms that arose in evolution

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.
Article
Full-text available
Sexual reproduction is a key process influencing the evolution and adaptation of animals, plants, and many eukaryotic microorganisms, such as fungi. However, the sequential cell biology of fertilization and the associated nuclear dynamics after plasmogamy are poorly understood in filamentous fungi. Using histone-fluorescent parental isolates, we tracked male and female nuclei during fertilization in the model ascomycete Neurospora crassa using live-cell imaging. This study unravels the behavior of trichogyne resident female nuclei and the extraordinary manner in which male nuclei migrate up the trichogyne to the protoperithecium. Our observations raise new fundamental questions about the modus operandi of nucleus movements during sexual reproduction, male and female nuclear identity, guidance of nuclei within the trichogyne and, unexpectedly, the avoidance of "polyspermy" in fungi. The spatiotemporal dynamics of male nuclei within the trichogyne following plasmogamy are also described, where the speed and the deformation of male nuclei are of the most dramatic observed to date in a living organism. IMPORTANCE Using live-cell fluorescence imaging, for the first time we have observed live male and female nuclei during sexual reproduction in the model fungus Neurospora crassa. This study reveals the specific behavior of resident female nuclei within the trichogyne (the female organ) after fertilization and the extraordinary manner in which male nuclei migrate across the trichogyne toward their final destination, the protoperithecium, where karyogamy takes place. Importantly, the speed and deformation of male nuclei were found to be among the most dramatic ever observed in a living organism. Furthermore, we observed that entry of male nuclei into protoperithecia may block the entry of other male nuclei, suggesting that a process analogous to polyspermy avoidance could exist in fungi. Our live-cell imaging approach opens new opportunities for novel research on cell-signaling during sexual reproduction in fungi and, on a broader scale, nuclear dynamics in eukaryotes.
Article
Full-text available
Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom.
Article
Full-text available
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Article
Full-text available
The centrosome is the major microtubule organizing centre (MTOC) in animal cells. The canonical centrosome is composed of two centrioles surrounded by a pericentriolar matrix (PCM). In contrast, yeasts and amoebozoa have lost centrioles and possess acentriolar centrosomes—called the spindle pole body (SPB) and the nucleus-associated body (NAB), respectively. Despite the difference in their structures, centriolar centrosomes and SPBs not only share components but also common biogenesis regulators. In this review, we focus on the SPB and speculate how its structures evolved from the ancestral centrosome. Phylogenetic distribution of molecular components suggests that yeasts gained specific SPB components upon loss of centrioles but maintained PCM components associated with the structure. It is possible that the PCM structure remained even after centrosome remodelling due to its indispensable function to nucleate microtubules. We propose that the yeast SPB has been formed by a step-wise process; (1) an SPB-like precursor structure appeared on the ancestral centriolar centrosome; (2) it interacted with the PCM and the nuclear envelope; and (3) it replaced the roles of centrioles. Acentriolar centrosomes should continue to be a great model to understand how centrosomes evolved and how centrosome biogenesis is regulated.
Article
Full-text available
Eukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1–3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for “closed” mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs.
Article
Full-text available
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution - the evolution of a novel SLiM from "nothing" - adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Article
Full-text available
Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes.
Article
Full-text available
When the enigmatic fish pathogen, the rosette agent, was first found to be closely related to the choanoflagellates, no one anticipated finding a new group of organisms. Subsequently, a new group of microorganisms at the boundary between animals and fungi was reported. Several microbes with similar phylogenetic backgrounds were soon added to the group. Interestingly, these microbes had been considered to be fungi or protists. This novel phylogenetic group has been referred to as the DRIP clade (an acronym of the original members: Dermocystidium, rosette agent, Ichthyophonus, and Psorospermium), as the class Ichthyosporea, and more recently as the class Mesomycetozoea. Two orders have been described in the mesomycetozoeans: the Dermocystida and the Ichthyophonida. So far, all members in the order Dermocystida have been pathogens either of fish (Dermocystidium spp. and the rosette agent) or of mammals and birds (Rhinosporidium seeberi), and most produce uniflagellated zoospores. Fish pathogens also are found in the order Ichthyophonida, but so are saprotrophic microbes. The Ichthyophonida species do not produce flagellated cells, but many produce amoeba-like cells. This review provides descriptions of the genera that comprise the class Mesomycetozoea and highlights their morphological features, pathogenic roles, and phylogenetic relationships.
Article
Full-text available
Nuclear pore complexes (NPCs) are multisubunit protein entities embedded into the nuclear envelope (NE). Here, we examine the in vivo dynamics of the essential Drosophila nucleoporin Nup107 and several other NE-associated proteins during NE and NPCs disassembly and reassembly that take place within each mitosis. During both the rapid mitosis of syncytial embryos and the more conventional mitosis of larval neuroblasts, Nup107 is gradually released from the NE, but it remains partially confined to the nuclear (spindle) region up to late prometaphase, in contrast to nucleoporins detected by wheat germ agglutinin and lamins. We provide evidence that in all Drosophila cells, a structure derived from the NE persists throughout metaphase and early anaphase. Finally, we examined the dynamics of the spindle checkpoint proteins Mad2 and Mad1. During mitotic exit, Mad2 and Mad1 are actively imported back from the cytoplasm into the nucleus after the NE and NPCs have reformed, but they reassociate with the NE only later in G1, concomitantly with the recruitment of the basket nucleoporin Mtor (the Drosophila orthologue of vertebrate Tpr). Surprisingly, Drosophila Nup107 shows no evidence of localization to kinetochores, despite the demonstrated importance of this association in mammalian cells.
Article
Stem cell homeostasis requires nuclear lamina (NL) integrity. In Drosophila germ cells, compromised NL integrity activates the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 2 (Chk2) checkpoint kinases, blocking germ cell differentiation and causing germline stem cell (GSC) loss. Checkpoint activation occurs upon loss of either the NL protein emerin or its partner barrier-to-autointegration factor, two proteins required for nuclear reassembly at the end of mitosis. Here, we examined how mitosis contributes to NL structural defects linked to checkpoint activation. These analyses led to the unexpected discovery that wild-type female GSCs utilize a non-canonical mode of mitosis, one that retains a permeable but intact nuclear envelope and NL. We show that the interphase NL is remodeled during mitosis for insertion of centrosomes that nucleate the mitotic spindle within the confines of the nucleus. We show that depletion or loss of NL components causes mitotic defects, including compromised chromosome segregation associated with altered centrosome positioning and structure. Further, in emerin mutant GSCs, centrosomes remain embedded in the interphase NL. Notably, these embedded centrosomes carry large amounts of pericentriolar material and nucleate astral microtubules, revealing a role for emerin in the regulation of centrosome structure. Epistasis studies demonstrate that defects in centrosome structure are upstream of checkpoint activation, suggesting that these centrosome defects might trigger checkpoint activation and GSC loss. Connections between NL proteins and centrosome function have implications for mechanisms associated with NL dysfunction in other stem cell populations, including NL-associated diseases, such as laminopathies.
Article
A long-appreciated variation in fundamental cell biological processes between different species is becoming increasingly tractable due to recent breakthroughs in whole-genome analyses and genome editing techniques. However, the bulk of our mechanistic understanding in cell biology continues to come from just a few well-established models. In this Review, I use the highly diverse strategies of chromosome segregation in eukaryotes as an instrument for a more general discussion on phenotypic variation, possible rules underlying its emergence and its utility in understanding conserved functional relationships underlying this process. Such a comparative approach, supported by modern molecular biology tools, might provide a wider, holistic view of biology that is difficult to achieve when concentrating on a single experimental system.
Article
In eukaryotes, cellular genome is enclosed inside a membrane-bound organelle called the nucleus. The nucleus compartmentalizes genome replication, repair and expression, keeping these activities separated from protein synthesis and other metabolic processes. Each proliferative division, the duplicated chromosomes must be equipartitioned between the daughter cells and this requires precise coordination between assembly of the microtubule-based mitotic spindle and nuclear remodeling. Here we review a surprising variety of strategies used by modern eukaryotes to manage these processes and discuss possible mechanisms that might have led to the emergence of this diversity in evolution.
Article
The mechanisms that dictate nuclear shape are largely unknown. Here we screened the budding yeast deletion collection for mutants with abnormal nuclear shape. A common phenotype was the appearance of a nuclear extension, particularly in mutants in DNA repair and chromosome segregation genes. Our data suggest that these mutations led to the abnormal nuclear morphology indirectly, by causing a checkpoint-induced cell-cycle delay. Indeed, delaying cells in mitosis by other means also led to the appearance of nuclear extensions, whereas inactivating the DNA damage checkpoint pathway in a DNA repair mutant reduced the fraction of cells with nuclear extensions. Formation of a nuclear extension was specific to a mitotic delay, because cells arrested in S or G2 had round nuclei. Moreover, the nuclear extension always coincided with the nucleolus, while the morphology of the DNA mass remained largely unchanged. Finally, we found that phospholipid synthesis continued unperturbed when cells delayed in mitosis, and inhibiting phospholipid synthesis abolished the formation of nuclear extensions. Our data suggest a mechanism that promotes nuclear envelope expansion during mitosis. When mitotic progression is delayed, cells sequester the added membrane to the nuclear envelope associated with the nucleolus, possibly to avoid disruption of intranuclear organization.
Article
Mitosis is defined as all those types of nuclear division that produce two, or rarely more, daughter nuclei, each containing a chromosome complement approximately similar to that of the original nucleus. The greatest range of variations by which mitosis is accomplished, occurs in the protistan and fungal kingdoms, some members of which are probably most similar to the ancestors of higher plants and animals. The variations in the higher organisms are secondarily derived from the division patterns of typical plants and animals. This chapter discusses the characteristics and evolution of mitosis. The efficiency of mitosis consists of two basic components; the frequency with which each daughter nucleus receives the necessary complete genome complement (genetic efficiency) and the amount of energy and materials expended in the synthesis and operation of the mitotic apparatus. The chapter also discusses the use of mitosis as a phylogenetic marker. It is applicable to all eukaryotic cells and thus is valuable across boundaries where other structures are absent on one side and present in various forms on the other side.
Article
Photomicrographic evidence is presented of the difference in behavior of nuclear membranes during mitosis in amoebae, zygotes and plasmodia of Myxomycetes. One of the species was cultured on bacteria and possessed a normal cycle of plasmogamy and karyogamy between the amoebal and plasmodial phases. The second species was axenically grown in liquid media and had become highly heteroploid and lacked the ability to develop into plasmodia, existing only in the amoeboid form. The significance of the amoeboid form of mitosis in the heteroploid axenically cultured strain is discussed in relation to the difference in nuclear membrane behavior and the possible significance of such behavior.
Article
This chapter summarizes the biology of Physarum polycephalum and gives examples of how the organism has been utilized for analysis of patterns of inheritance, development, and the mitotic cycle. The chapter introduces recent advances in DNA transformation and gene targeting in the organism, and points to definitive experiments now possible using the new technology with the inveterate biology of this plasmodial slime mould. The phases of life cycle of P. polycephalum are amoeba1 phase, plasmodial phase, the sexual cycle, and inheritance. The chapter focuses on genome organization and cytoskeletal organization. The plasmodial mitotic cycle differs from the amoebal cycle in its absence of cytokinesis, and occurrence of mitosis within the nuclear membrane, orchestrated by intranuclear microtubule-organizing centers (MTOCs). This arrangement prevents nuclear fusion during mitosis that occurs in multinucleate amoebae. The molecular analysis in the plasmodium of P. polycephalum can be achieved by introduction of exogenous molecules. The expression of introduced molecules involves diffusion uptake, macroinjection, and DNA transformation. The sophisticated molecular approaches to cell-biological problems are possible in P. polycephalum and in other protists. Further studies will inevitably reveal more knowledge that has been awaiting discovery in these organisms for so many millennia.
Article
Exit from mitosis in animal cells is substantially delayed when spindle assembly is inhibited, spindle bipolarity is disrupted, or when a monopolar spindle is formed. These observations have led to the proposal that animal cells have a 'spindle assembly' checkpoint for the metaphase-anaphase transition that monitors bipolar spindle organization. However, the existence of such a checkpoint is uncertain because perturbations in spindle organization can produce unattached kinetochores, which by themselves are known to delay anaphase onset. In this study we have tested if cells monitor bipolar spindle organization, independent of kinetochore attachment, by analyzing the duration of mitosis in sea urchin zygotes and vertebrate somatic cells containing multipolar spindles in which all kinetochores are attached to spindle poles. We found that sea urchin zygotes containing tripolar or tetrapolar spindles progressed from nuclear envelope breakdown to anaphase onset with normal timing. We also found that the presence of supernumerary, unpaired spindle poles did not greatly prolong mitosis. Observation of untreated PtK1 cells that formed tripolar or tetrapolar spindles revealed that they progressed through mitosis, on average, at the normal rate. More importantly, the interval between the bipolar attachment of the last monooriented chromosome and anaphase onset was normal. Thus, neither of these cell types can detect the presence of gross aberrations in spindle architecture that inevitably lead to aneuploidy. We conclude that animal cells do not have a checkpoint for the metaphase-anaphase transition that monitors defects in spindle architecture independent of the checkpoint that monitors kinetochore attachment to the spindle. For dividing cells in which spindle microtubule assembly is not experimentally compromised, we propose that the completion of kinetochore attachment is the event which limits the time of the metaphase-anaphase transition.
Article
In this brief account we specifically address the question of how the plasma membrane-associated basal body/axoneme of the unicellular ancestor of eukaryotes has evolved into the centrosome organelle through the several attempts to multicellularity. We propose that the connection between the flagellar apparatus and the nucleus has been a critical feature for leading to the centriole-based centrosome of metazoa, the Spindle Pole Body of fungi, or to the absence of any centrosome in seed plants. We further suggest that the evolution of this connection could be reflected in the evolution of the centrin proteins. We then review evidence showing that the evolution of the centrosome-based tubulin network has been correlated with the evolution of the cortical actin-based cleavage apparatus. Finally we argue that this coevolution had a major impact on the cell individuation process and on the evolution of multicellular organisms. We conclude that only the metazoan lineage evolved multicellularity without loosing the ancestral association of three basic cellular functions of the basal body/axoneme or the derived centrosome organelle, namely sensation, motion and division.