ArticlePDF Available

Impacts of management practices on habitat selection during juvenile mountain lion dispersal

Wiley
Ecology and Evolution
Authors:

Abstract and Figures

Dispersal is a complex series of movements before an individual establishes a home range. Animals must travel and forage in unfamiliar landscapes that include anthropogenic risks such as road crossings, harvest, and urban landscapes. We compare dispersal behavior of juvenile mountain lions (Puma concolor) from two geographically distinct populations in California and Nevada, USA. These two sites are ecologically similar but have different management practices; hunting is permitted in Nevada, whereas mountain lions are protected in California. We used GPS‐collar data and net‐squared displacement analysis to identify three dispersal states: exploratory, departure, and transient home range. We then compared each dispersal state of the two mountain lion populations using an integrated step selection analysis (iSSA). The model included explanatory variables hypothesized to influence one or more dispersal states, including distance to forest, shrub, water, hay and crop, developed lands, and four‐wheel drive roads, as well as elevation and terrain ruggedness. Results revealed consistent habitat selection between sites across most landscape variables, with one notable exception: anthropogenic covariates, including distance to developed land, distance to hay and crop, and distance to four‐wheeled drive roads, were only statistically significant on modeled habitat selection during dispersal in the population subject to hunting (i.e., Nevada). Results suggest that hunting (pursuit with hounds resulting in harvest) and non‐lethal pursuit (pursuit with hounds but no harvest allowed) increase avoidance of anthropogenic landscapes during dispersal for juvenile mountain lions. By comparing populations, we provided valuable insights into the role of management in shaping dispersal behavior.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e70097. 
|
1 of 15
https://doi.org/10.1002/ece3.70097
www.ecolevol.org
Received:31May2024 
|
Revised:14July2024 
|
Accepted:19July2024
DOI: 10.1002/ece 3.70 097
RESEARCH ARTICLE
Impacts of management practices on habitat selection during
juvenile mountain lion dispersal
John F. Randolph1,2,3 | Julie K. Young1,2 | David C. Stoner1,2 | David K. Garcelon3
Thisisanop enaccessarticleundertheter msoftheCreativeCommonsAttributionLicense,whichpe rmitsuse,distributionandreproductioninanymedium,
provide d the original wor k is properly cited.
©2024TheAuthor(s).Eco logy an d EvolutionpublishedbyJohnW iley&SonsLtd.
1Depar tmentofWildlandResources,Ut ah
StateUniversit y,Logan,Utah,USA
2EcologyCenter,UtahStateUniversity,
Logan,Utah,USA
3InstituteforWildlifeStudies,Arcat a,
California,USA
Correspondence
JulieK.Young,DepartmentofWildland
Resources,UtahStateUniversity,Logan,
UT,USA.
Email:julie.young@usu.edu
Funding information
InstituteforWildlifeStudies(IWS);
CaliforniaDepartmentofFishandWildlife
(CDFW );NevadaDepar tmentofWildlife
(NDOW);K.SchoeneckerUSGSFtCollins
ScienceCenter
Abstract
Dispersal is a complex series of movements before an individual establishes a
homerange.Animalsmusttravelandforageinunfamiliar landscapes thatinclude
anthropogenic risks suc h as road crossings, har vest, and urban lan dscapes. We
compare dispersal behavior of juvenile mountain lions (Puma concolor) from two
geographicallydistinctpopulationsinCaliforniaandNevada,USA.Thesetwosites
areecologically similar but havedifferent management practices; hunting is per-
mitted in Ne vada, whereas mou ntain lions are protec ted in California . Weus ed
GPS-collardataandnet-squareddisplacementanalysisto identifythree dispersal
states:exploratory,departure,andtransienthomerange.Wethencomparedeach
dispersalstateofthetwo mountainlionpopulationsusinganintegratedstepse-
lection analysis(iSSA).Themodel includedexplanator yvariableshypothesizedto
influence one or more dispersal states,includingdistance toforest,shrub, water,
hay and crop, develo ped lands, and fou r-wheel drive roads, as wel l as elevation
and terrain ruggedness. Results revealed consistent habitat selection between
sitesacrossmostlandscapevariables,withonenotableexception:anthropogenic
covariates, in cluding distance to devel oped land, distan ce to hay and crop, and
distance to four-wheeled drive roads, were onlystatistically significant on mod-
eled habit at selection du ring dispersal i n the population sub ject to hunting (i.e. ,
Nevada). Result s suggest that hu nting (pursuit wit h hounds resulti ng in harvest)
andnon-lethalpursuit(pursuitwithhoundsbutnoharvestallowed)increaseavoid-
anceofanthropogeniclandscapesduringdispersalforjuvenilemountainlions.By
comparingpopulations,weprovidedvaluableinsightsintotheroleofmanagement
inshapingdispersalbehavior.
KEYWORDS
connectivity,cougar,human-wildlifeconflict,movementecology
TAXONOMY CLASSIFICATION
Appliedecology,Behaviouralecolog y,Lifehistor yecology,Movementecology
2 of 15 
|
   RANDOLPH et al.
1 | INTRODUC TION
Dispersalisthemovement of an animalfromits natalrangetothe
placewhereitreproducesifitsurvives(Howard,1960)andisacen-
tralcomponentofanindividual'sfitness.Benefitsfromdispersalin-
cludereducedcompetitionforresourcesandimprovedreproductive
success(e.g.,findingsuitablematesandreducedinbreedingdepres-
sion; Oliveira et al., 2022).Dispersalalsofacilitatesdemographicand
geneticconnectivitywithinmetapopulations,benefitingindividuals
andpopulations(Lowe&Allendorf,2010).
Despitethebenefitsofdispersal,italsoposesconsiderablerisks
(Bonte et al.,2012). Duringdispersal, individualsnavigate unfamil-
iar and lower-quality habitat s in search of vacancies to est ablish
home ran ges (Ander son et al., 2004; Huck et al ., 2010). Traveling
through fragmented and unfamiliar terrain increases vulnerability
tointraspecificstrife,predation,humanconflict,andhuman-related
mo rtal it y, inc lu din gvehi cleco llisi ons ,d epr eda tio n,and har ves tpr es-
sure (An drén et al., 2006; Johnso n et al., 2010 ; Riley et al., 20 14;
Soulsburyetal.,2008).Whilenavigatinginferiorormarginalhabitat,
dispersingjuvenilesalsofaceenergeticstrainfromalackofforaging
opportunitiesorpoorsuccessrates (Benoitetal.,2020;Palomares
et al., 2000;Smith,19 93),makingtheprocessrisky.
Dispersal canbe facilitatedor impeded by the degree of land-
scape connectivity (Tayloretal.,1993). Reduc tions in connectivity
stemming from habitat loss and fragmentation, often caused by
anthropogenic developmentand use, are problematic for juvenile
dispersal. Yet metapopulation studies have improved our under-
standing of theimpacts of fragmentation on wide-ranging species
and shown that juvenile dispersal is acriticallink connecting frag-
mented sub populations ( Anderson et a l., 2004). Larg e carnivores,
for examp le, require la rge home range s and can often t ravel long
distan ces daily (Git tleman & Ha rvey, 1982). Organisms withthese
trait s suffer mo st from habit at loss and fr agmenta tion due to low
populationdensitiesand high edge-arearatiosthatbring them into
contact with anthropogenic landscapes, and consequently with
humans. Encounters with anthropogenic landscapes may elevate
the risk of human-related mortality for large carnivores (Naude
et al., 2020; Wood roffe & Ginsbe rg, 1998). Decreased connectiv-
itycandirectlyimpactfitnessbyconstrainingjuveniledispersaland
indirectlyaffectgeneticdiversity,potentiallyleadingtoinbreeding
depression(Crooks,2002; Heim etal., 2019; Pelletier etal., 2012;
Riley et al., 2014 ),orlocalextirpations(Bensonetal.,20 19).
Mountainlions(Puma concolor)arelarge-bodied,obligatecarni-
voresfoundthroughouttheAmericas.Becauseoftheirlargebody
sizea ndhight ro phiclevel ,t heycomm onlyo cc urat lowd ensit ie s,ex-
hibitlargehomeranges,lackadistinctmatingseason,andrelymainly
on immigration as a source of recruitment (Hemker et al., 1984;
Lindstedt et al., 1986; Logan et al., 1986; Logan&Sweanor, 2001;
Robinetteetal.,1961).Theycanraiseyoungyear-roundwithanatal
period thattypically spans13–17 months beforejuvenilesdisperse
(Jansen&Jenks,2012).Uponreachingindependence,approximately
50%ofjuvenilefemalesexhibitphilopatry(establishmentofanadult
homerangenearoroverlappingtheirnatalrange;Stoneretal.,2013),
whereas themajorityof malesdisperse, andtravelsignificantlyfar-
ther from their natal home range than dispersing females (Choate
et al., 2018;Sweanor etal., 2000;Thompson & Jenks, 2010 ). This
behaviorisdrivenbyterritorialintoleranceofjuvenilemalesbyadult
malesalreadylivinginthenatal range,promptingjuvenilemales to
disperse(Sweanor etal., 2000).Newlyindependentjuvenilespos-
sess poorly developed hunting skills, which canlead them to seek
easily accessible resources, such as livestock, roadkill, or prey in
urbanareas(Stoneretal.,2021).Thisperiodofexplorator y,nomadic
movements coupled with poor hunting skills, means dispersing
juveniles are more likely to encounter human disturbance and an-
thropogenicbarriersthanresidents(Beier,1995; Dyke et al., 1986 ;
Riley et al., 2014).Yet, mountainlionsarepredominantly generalist
species capableof surviving acrossavarietyoflandscapes, ranging
fromremotewildernesstomoredevelopedareas(Coonetal.,2019),
anddispersingjuvenilescansurviveprovidingtheyobtainsufficient
food,avoidintraspecificstrife,navigatethecomplexgradientofan-
thropogenicobstacles,andminimizehumanconflictrisk.
Conflictwithhumans is one ofthe primary causesofcarnivore
mortality(Woodroffe&Ginsberg,1998).Sourcesofconflictconsist
primarilyof livestockorpetdepredation(i.e.,retaliatory killingof a
mountainlionthatkilledlivestockorapet;Torresetal.,1996),pub-
licsafety(i.e., lethalremoval of a mountain lion thatcauses riskto
thepublic;Mattson et al., 2011),ordepredationonsensitivewild-
lifespecies(Rominger,2018). The typical management responseto
theseconflictsisthelethalremovaloftheoffendinganimal.Human-
carnivore conflict isprevalent in areas of expandingurbanization,
whichdisrupts landscape connectivity and degrades suitable hab-
itat (Benson et al., 2023; Stoner et al., 2023; Vickers et al., 2015),
and in ruralareas where farmshouse small-hoofedstock (Mazzolli
et al., 2002;Weaver,1978).
Mountain lions are legally hu nted throughout most of their
range in the western USA, except for in California. Most of this
isconductedbypursuingmountainlionsintotrees orrockycliffs
wit ht he aidoftr ainedh ounds.Toacco mm odatet hisformofhunt-
ing,mostWesternst ateagenciesofferhunter stheopportunit yto
traintheirhoundsduring non-lethalpursuitseasons.Thisallows
hunters withhoundstotrack and pursuemountainlionswithout
harvesting. Although the termshunting and harvest are typically
usedinterchangeably,wedefine huntingasthepursuit orsearch
formountain lions,while harvestspecifically refers to thelethal
takeof amountainlion.Therehasbeenanoverallincreaseinju-
venileharvestreportedacrossthewesternUnitedSt ates(Elbroch
et al., 2022),whichinfluencesrecruitmentandimpactsapopula-
tion'sage structure(Cooley,Wielgus,Koehler,&Maletzke,2009;
Logan&Runge,2021;Newbyetal.,2013;Robinson etal.,2008;
Stoner et al ., 2006). Harvest pr essure and habita t quality have
also been shown to influence population dynamics (Andreasen
et al., 2012; Lindzey et al., 19 92). Harvest can influence post-
dispersalhabitatselection;mountainlionsdispersinginprotected
populations establish in lower-quality habitat while mountain
lions dispersing in a harvested population will move to equal-
qualityhabitat(Stoneretal., 2013).Thisdifferencelikelyreflects
   
|
3 of 15
RANDOLPH et al.
density-dependent habitat selection in protected populations
(Fretwell&Lucas,1969).
Becausedispersaldirectlybenefits individualsurvival, repro-
ductive success, a nd recruitment , as well as indirect ly benefits
population genetics and viability,itiscrucialto understandhow
different management practices may affec t this life stage (Nisi
et al., 2023).Yet, werarely havefine-scalehabitat selection data
to understand how differing anthropogenic pressures influence
dispersal behavior.Our goalwas to assess fine-scale habitat se-
lectionduringjuveniledispersalintwomountainlionpopulations
subjec ted to contrast ing managemen t regimes and leve ls of an-
thropogenicland uses. Wehypothesizedthat the hunted popu-
lation would avoid anthropogenic features, but the protected
populat ion would be indi fferent to th ese same feat ures as they
would not associate them withmortalityrisk(Smith et al.,2015;
Suraci e t al., 2019). By compar ing two popu lations subje cted to
dif feringmanagem entpract ices,weaimtounderstandtheef fe cts
of anthropogenic pressure on juvenile dispersal and shed light
onthe impactsofhuntingand non-lethal management practices
(non-lethal p ursuit seas ons) on animal be havior, as well as land-
scapeandpopulationconnectivity.
2 | MATERIALS AND METHODS
2.1  | Study area
We conducted this study in two sites within the Great Basin
ecoregion of the western United States—one in northeastern
California(hereafter,theprotectedsite)andthesecondinsouth-
easternNevada(hereafter,thehunted site;Figure 1).Whileboth
populationsares ub je cttoleth alremovalfordepredation,onlythe
huntedsiteisalsosubj ec ttorecrea tionalhunti ngandharvest .The
protect ed site was in Modoc Co unty, California , on the Modoc
Plateauandcovered10,890 km2( lat :41. 4945 0,lon g :−120 . 54262).
The region experiences temperatures ranging from −11°C in
FIGURE 1 Mapsof(a)theModoc
County,California,USA,protectedsite
and(b)asectionofLincolnCount y,
Nevada,USA,featuringthehuntedsite
outlinedbyawhitedashedpolygon.
4 of 15 
|
   RANDOLPH et al.
the winter m onths to 32°C in th e summer (Riegel e t al., 2006).
Elevation s vary from 1 219to 2973 m acr oss the count y.An nual
precipi tation can v ary, with a range b etween 17.8 and 121.9 cm
(Dalyetal.,19 94). The dominantvegetationin thearea wassage
steppe,juniper (Juniperus occidentalis)woodlands,coniferforest,
andagriculture(Riegel etal.,2006).In higher-elevation habitats,
thevegetationispredominantlyponderosapine(Pinus ponderosa)
andJ eff erypin e(Pinus jeffreyi), tra nsiti oning intojun ipe ra nds age-
brush steppe habitats within the plateaus. Located at the center
ofthe county is Alturas, California, a small town with a popula-
tio nof2658.Landown er sh ipacrossthep lateauwasprima rilyfed-
eral and s tate lands (US For est Serv ice Modoc Natio nal Forest,
BureauofLandManagement,U.S.FishandWildlife),interspersed
withprivatelands.Primar ymountainlionpreyconsistedof mule
deer(Odocoileus hemionus),feralhorse(Equus caballus),pronghorn
(Antilocapra americana),coyote (Canis latrans),andbeaver (Castor
canadensis). Mountain lions are the apex carnivore inhabiting
the protec ted site, with black bears (Ursus americanus) present
in some portions of the site. Mountainlion hunting was banned
inCalifornia in 1972,and in 1990 they became a protected spe-
cies under the California Wildlife Protect ionAc t. Nevertheless,
mountainlions are stilllethallyremoved through the issuance of
depredationpermitsinresponsetoverifiedcasesofpredationon
livestoc k or for public s afety. In 2017,Ca lifornia imp lemented a
thr ee -s tr ikeprocesstored ucethenumberofletha lpermitsiss ued
for depredations. Between 2018 and 2022, 15 mountain lions
wereremovedfromtheprotectedsite(0.01mountainliondepre-
dation/100 km2/year;CaliforniaDepartmentofFishandWildlife,
Unpublisheddata).
The hunted site was in the Delamar and Clover Mountain
ranges wi thin Lincoln Cou nty, Nevada, and covere d ~4995 km2.
Elevationsvary from 1371to 2449 m in theDelamarand Clover
ranges. T he site experien ces annual mean p recipitation r anging
betwee n 10.6 and 40.3 cm , and average temp eratures flu ctuate
from5. 2to22.5°C(PRISMClimateGroup,2023).Themostcom-
monvegetationtypesweresemi-aridpinyon-juniper(Pinus mono-
phylla, Juniperus osteosperma) woodland s and sagebrus h steppe.
Near the ce nter of this site lies C aliente, Neva da, a small town
withapopulationof 1009.TheBureauofLandManagementpri-
marily managed theseranges withminimal private and localmu-
nicipallandownership.The mountain lion prey base was similar
amongsites,consistingofmuledeer,feralhorses,deser tbighorn
sheep(Ovis canadensis),and pronghorn.Mountainlionswerethe
apexpredator,andbearswerenotpresent.Mountainlionsinthis
site can behunted year-round with no morethan two lions har-
vestedperpersonperyearusinghoundsoropportunistic ally.The
use of hounds is more frequent during the wintermonths when
persis tent snow cover facilit ates tracking . Harvesting m ountain
lionsthroughtrappingisillegal.From2018to2022,27mountain
lions were ha rvested in th e study site (0.05 m ountain lion har-
vest/100 km2/year; Game ManagementUnits 241,242, 243, and
223),andonemountainlionwasremovedduetolivestockdepre-
dation(0.0002mountainliondepredation/100 km2/year),givinga
totalof28individualsremovedfromthehuntedpopulation(0.06
mountain lion removals/100 km2/year; Nevada Department of
Wildlife,Unpublisheddata).
2.2  | Capture and collaring
From2016to2022,mountain lions intheprotectedsite werecap-
turedusingcagetraps andoccasionally hounds(Ewanyk,2020).All
animalswerefittedwithGPScollars(Vectronic,Lotek,andSirtrack),
program med at a 1- or 2-h fix r ates that upload ed approximate ly
every otherday.GPScollarswerefittedondispersal-age juveniles
(13–24 months; Beier,1995; Cooley,Wielgus, Koehler,Robinson, &
Maletzke, 2009), each equ ipped with a drop-of f mechanism. Th e
drop-offmechanism was programmed basedon the ageof the ju-
venile at th e time of capture a nd ranged from 8 m onths for juve-
nilesthatwerestill growingto 2 yearsfor juvenilesthatwereclose
to adult size. A nimal handling was approved by t wo Institutional
Animal Care and Use Committees (UC Davisprotocol #22408 and
USUprotocol#12972).
All data f rom the hunted site we re collected b etween 2018
and 2021 and p rovided by the Nevad a Department of W ildlife
(NDOW) for this study. Mountain lion captures began in the
Delamar M ountains as par t of a desert bigh orn sheep stud y in
2018,with capture effortsexpandingintothe CloverMountains
in2020. Hounds and foot snareswere usedtooppor tunistically
captur e and collar mount ain lions followin g methods by Janse n
and Jenks (2012). Mountain lions were fitted with GPS collars
(Vectronic)programmedat afour-hourfixrate.Capturemethods
and handl ing followed guide lines from the A merican Soc iety of
Mammologists (Sikes& Gannon, 2011), un der approval f rom an
NDOWveterinarian.
2.3  | Data analysis
2.3.1  |  Movementidentificationand
characterization
Sincesomejuvenileswerecapturedwiththeirmotherswhileoth-
erswerealreadyindependent,weconsideredall juveniles inde-
pendent a t the star t of a dispersa l event. To delineate dif fering
movementstatesfordispersingjuveniles,weusednetsquaredis-
placement(Bunnefeldetal.,2011) ,usingo neGPSlocationperd ay
foreachindividualinthenet-squareddisplacementplot.Wethen
usedthedefinitionsfromBunnefeldetal.(2011)toidentifythree
distinct movement states:explorator y, departure, and transient
homerange(definedinTable 1).Afteridentifyingeachmovement
state, we removed a three-daytransition period from thebegin-
ningofthestateandcreatedanewstepburst.Juvenilemountain
lions were co llared as both depe ndent (with mother) a nd inde-
pendent(withoutmother);weconsideredalldependentjuveniles
to be withi n their natal hom e range. For indepe ndent juvenile s
   
|
5 of 15
RANDOLPH et al.
whosebirthplacewasuncertain, we classified home-rangingbe-
havioraroundthecapturesiteforperiodslongerthanamonthas
theirnatalhomerange,similartoKarelusetal.(2021)(Bunnefeld
et al., 2011).Exploratorybehavioroccurswhentheanimalleaves
and then r eturns to its na tal range, t ypically d epicted as a lo ng
step leng th travel,while transienthome rangebehavior involves
attempt s to establ ish a new range tha t is ultimately ab andoned
(centralizedshortstep lengths; Beier,1995). For both behaviors,
asub-adult/adult home range is notestablished.Depar ture rep-
resents instances where the animal leaves its natal range and
doesnotreturn.Weestimatedwhenindividualsshiftedbetween
thesestates(Bunnefeldetal.,2 011)usingRpackageAMT(Signer
et al., 2019; Table 1). Dependingonthe number ofdispersal be-
haviors identified, weincludedoneormoremovementstatesfor
eachindividualinthesubsequenthabitatselectionanalysis.
2.3.2  |  Integratedstepselectionanalysis
Weexaminedjuvenilemountainliondispersalandhabitatselection
usingintegratedstepselectionanalysis(iSSA;Avgaretal.,2016).The
iSSAusesstraightlinesegmentsbetweentwoconsecutivelocations
(st artanden d),hereaf terr eferredtoasste ps ,astheu nitofobserva-
tion. We analyzedhabitat features at the start of each movement
segment tounderst andhow covariates influencemovement char-
acteristics,specificallyexaminingsteplength(thedistancebet ween
two GPS p oints) and turn ing angle (the ch ange in trajec tory from
thesecondtothirdGPSpoint).Weusedhabitatfeaturesassociated
withtheendlocationtoexaminehabitatselectionbytheindividual.
Toaccountfordifferentsamplingratesbetweensites,weresampled
GPS locations of mountainlions in the protected siteto four-hour
fixratestomatchthehuntedsite.Weuseda±10-minwindowfrom
thefixratetoaccountformissed or delayedfixes. Iftwolocations
were not within the 10-minwindow ofthe fix rate, they were not
considered consecutive locations and were excluded. We then re-
movednon-movementdatasuchaskill-siteGPSclustersusingrASF
in Progra m R (Mahoney & Young, 2017; R Core Team, 2022, ver-
sion4.2.2)toavoidselectionbiasduringnon-movementstates.Our
cluster i dentificat ion paramet ers include d a minimum fix co unt of
four loc ations, a spat ial buffe r of 150 m, and a temp oral buf fer of
24 h.WekeptthefirstGPSpointofanidentifiedclusterasthecon-
clusion of the incoming step andthefinal GPSpoint tocommence
ourdeparturestepfromtheidentifiedcluster.Togeneraterandom
steps,wecreatedasite-specificsteplengthdistributionandturning
angledistribution foreachmovementstate.Wethen generated20
randomstepsbasedonthesedistributionsforeachGPSlocationto
compareavailableandusedsteps(Nisietal.,2022).
We considered the influence of various selection and move-
ment covari ates identif ied in previou s mountain lio n habitat st ud-
ies(Bensonetal.,2023; Dellinger et al., 2020;Gigliottietal.,2019;
Nicholsonetal.,2014 ;Robinsonetal.,2015),andafterconductinga
correlationanalysisonthesecovariates,wethenremovedonevari-
ablefromeachpairwithcorrelationcoefficientsexceeding .60.The
covariates analyzed included topography (terrainruggedness index
and elevation; Table 2),distance toanthropogenic features(roads,
agriculture,andstructures;Table 2),anddistancetoselectlandcover
types(shrub,forest,andwater;Table 2).Wealsocalculatedthelogof
alldistance-tovariablestoallowmoresensitivitytodistancescloser
tothatlandcover(Ladleetal.,2019;Nisietal.,2022).Alldistance-to
variablesintheglobalmodeland results are log-transformed.We
ref or ma ttedco or di natereference sy stemsa ndresa mp ledr asterp ix-
elsto30 × 30 musingArcGISProV.3.1.1(ESRI,2023).
Weextracted habitat covariates at allused andavailablesteps
andfitaglobalstepselectionmodelforeachofthethreedispersal
behavioralstateswithprogramR(RCoreTeam,2022,version4.2.2)
package AMT (Signer et al., 2019) to estimate selection of habitat
variablesforeachindividual(Table 2).Becauseourstudy is explor-
atoryinscope,weonlyexamined theglobal model,whichincluded
TAB LE 1  DefinitionsofthethreedispersalbehaviorstatesfromBunnefeldetal.(2011)tocategorizestepdataobtainedfromGPS-collars
onjuvenilemountainlionsinaprotected(Modoc,California,USA)andhuntedpopulation(Lincoln,Nevada,USA).
Behavioral state Definition Net- squared displacement segmenting
Exploratory Departurefromnatalrangebutlaterreturns Nomadicmovementawayfromthenatalhome
rangebutultimatelyreturns.Similartoamigration
net-squareddisplacementplotbutonacompressed
timescale
Departure Departurefromnatalrangewithoutanyreturn Departurefromthenatalhomerangeinsearchof
establishinganadulthomerange.Thisisdepictedin
thedispersalnet-squareddisplacementplot
Transienthomerange Home-rangingbehaviortoexplorethequalityofhabitat Nomadicmovementfromnatalhomerangeand
displaysthehomerangenet-squareddisplacement
plotbeforelaterabandoningthatrange.Thisis
depictedinthemixednet-squareddisplacement
plot.Ifthecollardroppedwhendisplayinghome-
rangingbehavior,weclassifieditasatransienthome
rangeifdatawereobtainedfor<6 monthsand
asanestablishedrangeifdatawereobtainedfor
>6 months
6 of 15 
|
   RANDOLPH et al.
allvariableswehypothesizedtoinfluencemountainlionmovements
andhabitatselection(Table 2).Weconsideredinteractionsbetween
steplengthandturning anglewithallanthropogeniccovariates.To
obtainpopulation-levelparameters,weusedeachindividual'sbeta
estimat e to calculate an i nverse-varian ce weighted mea n for each
study site.Thisprovidedalog-relativeselectionstrength (log-RSS;
Avgaretal.,2 017)foreachcovariatebyeachpopulation.
3 | RESULTS
3.1  | Capture and collaring
Wecaptured and fittedGPS collars on 13 juvenile mountain lions
(2femalesand11males) intheprotectedsite.Ofthese,fivemales
andonefemalewerecapturedwithintheirmaternalrange,whereas
the others wereindependent at the time of capture (Table A1 in
Appendix 1). There were t wo mortalities; one died of star vation
(1 male), and one was lethally removed for depredation (1 male;
TableA1 in Appendix 1).GPScollarsprovidedanaverageof298 days
(SE±46 days)ofdataperjuvenileintheprotectedsite.Onthehunted
site,12juveniles(7females and 5 males)werecapturedandfitted
withGPScollars.Ofthese, seven were withintheirmaternalhome
range (3 mal es and 4 female s),o ne female was a lready inde pend-
ent,andfour were ofunknownstatus (1male,3females; TableA1
in Appendix 1).Werecordedeightmortalities;fourwereharvested
(2females, 2 males),one wasremoved for depredation (1female),
and threedied of unknown causes (2 females, 1 male; TableA1 in
Appendix 1).Theaveragedurationof datacollectedfromGPScol-
larsinourhuntedsitewas631 days(SE ±154 days)perjuvenile.All
individualsfromboth sites were included intheanalysisfromtheir
firstindependentmovementuntiltheirfinaldispersaleventortime
ofdeath.
3.2  | Movement identification and characterization
Three juvenile males in the protected site did not display any dis-
persalbehavior(Table 1)andwereconsequentlyremovedfrom the
study,resultinginasamplesizeof10individuals(2females,8males;
TableA1 in Appendix 1).Six individuals displayed exploratory be-
havior one ormore times, averaging 47 days(SE ±14 days)in dura-
tion,withanaveragetotaldistancetraveledof154 km(SE ±48 km;
TableA2 in Appendix 1).Ninejuvenilesexhibiteddeparturebehav-
iorbetweenFebruary and June, averaging50 days (SE ±14 days)in
durationand travelingameantotaldistance of188 km(SE±58 km;
Table A2 in Appendix 1). Eight juvenile mountain lions exhibited
transienthomerangebehavior,witheachjuvenilespendinganaver-
ageof38 days(SE±5 days)inthisbehavior(TableA2 in Appendix 1).
Theaveragedistancetraveledfromtheirnatalrangestoatransient
homerangewas52 km(SE±9 km).
In our hunte d site, one juvenil e male did not displ ay dispersal
behavior and wasremoved from the analysis( Table 1);11juveniles
(7 female s and 4 males) were reta ined (Table A1 in Appendix 1).
There were six juveniles that exhibited an exploratory state, aver-
aging66 days (SE ±24 days)withanaveragetotal distance traveled
of236 km (SE±64 km;TableA2 in Appendix 1).Departurewasob-
servedforeightjuvenilesbetweenFebruar yandDecember,lasting
an average of 45 days ( SE ±8 days) and travel ing a mean tota l dis-
tance of160 km(SE±32 km;TableA2 in Appendix 1).Sixjuveniles
Variable Definition Resource
Distance to developed
landcover
Open space, low
intensit y,medium
intensity, high intensity
NationalLandCoverDatabase
2021;Dewit z(2023)
Distance to hay and crop NationalLandCoverDatabase
2021;Dewit z(2023)
Distancetoforest Evergreen,mixed,
deciduous
NationalLandCoverDatabase
2021;Dewit z(2023)
Distancetoshrub Grassland,herbaceous NationalL andCoverDatabase
2021;Dewit z(2023)
Distance to water Openwater,emergent
herbaceouswetlands,
woody wetlands, linear
streams,andrivers
NationalLandCoverDatabase
2021;Dewit z(2023)and
UnitedStatesGeographical
SurveyNationalHydrography
Dataset(2023)
Distancetofour-wheeled
drive roads
UnitedStatesGeographical
SurveyNationalTransportation
Dataset(2023)
Elevation ElevatrRPackage;Hollister
etal.(20 17)
TerrainRuggednessIndex ElevatrRPackage;Hollister
etal.(20 17)
TAB LE 2  Overviewofvariables
sourcedataforselectedcovariatesin
the integrated step selection analysis to
comparedispersalmovementofjuvenile
mountainlionsfromprotectedandhunted
populations.Allunitswereinmeters.
   
|
7 of 15
RANDOLPH et al.
displayed transienthome ranges, averaging 150 days (SE±45 days)
and traveling an average distance of 99 km (SE ±11 km)from their
natal range.
3.3  | Integrated step selection analysis
3.3.1  |  Exploratorystate
We found nine cov ariates in the g lobal model f or the explo ratory
statethatexhibitedsignificance(Figure 2).Amongthem,sixcovari-
atesarerelatedtohabitat selection,whereas the remaining three
wereassociatedwithmovement.Intheexploratorystate,mountain
lions in bot h protected (P) and h unted (H) sites sele cted similarl y
forforest(P:β= −.582&H:β= −.496)and terrainruggednessindex
(P:β= .223& H: β= .316;Figure 2). The protected site mountain lions
selecteddistancesclosetoshrublandcover(P:β= −.409),whereas
thoseinthehuntedsiteselectedfartherdistancesfromdeveloped
landscapes(H:β= .169;Figure 2).Mountain lions inthehuntedsite
selected for higher elevations (H: β= .308) while those from the
protect ed site selected fo r elevations near a nd around the mean
(P:β= −.380;Figure 2).Inourhuntedsite,estimatesofsteplengths
(H: β= −.044) we re longer and t urning angl es were more tor tuous
in developed landscapes (H: β= .186) and exhibited more direct
movementswhen near or on four-wheel-driveroads(H:β= −.186;
Figure 2).
3.3.2  |  Departurestate
The global model for the departure state contained six significant
covariates(Figure 2).Ofthese,fourwerehabitatcovariatesandone
wasamovementcovariate.Mountainlionsinbothsitesselectedto
benearor withinforest(P:β= −.618&H:β= −.725)and shrubland
cover (P: β= −.493 & H: β= −.378; Figure 2). The pr otected mou n-
tainlionsselectedforhigherterrainruggedness(P:β= .221)andel-
evation near and around the mean (P: β= −.218; Figure 2).Hunted
mounta in lions selec ted for loc ations near or w ithin hay and cro p
(H:β= −.299)and turninganglesweremore tortuous withinand near
agriculturalareas(H:β= .335;Figure 2).
FIGURE 2 GlobalmodelofsignificantlogRelativeSelectionStrength(log-RSS),thatis,betacoefficient,and95%confidenceintervals
foraone-unitchangeinthecovariateforeachdispersalbehaviorbetweensites.Ifacovariateincludesan“x”,itindicatesaninteraction
termwitheitherTA(turningangle)orSL(steplength).Boldbarsrepresentsignificantcovariateswheretheestimateandconfidenceinterval
donotoverlapzero,whilefadedbarsoverlapzeroandarenotconsideredsignificant.Covariateswherebothstudysitesaresignificantare
markedwithanasterisk(*).
8 of 15 
|
   RANDOLPH et al.
3.4  | Transient home range state
Intheglobalmodelforthetransienthomerangestate,weidentified
five significant covariates, which were categorizedinto four habi-
tat and on e movement covari ate (Figure 2). Mountai n lions in the
transienthome range stateatboth sitesselected for morerugged
terrain (P:β= .264 & H: β= .162), with elevations around themean
(P:β= −.815&H:β= −.141),andforforestlandcover(P:β= −.469&
H:β= −.525;Figure 2).Themountain lions attheprotectedsitese-
lectedforshrubhabitat(P:β= −.348)andatthehuntedsiteselected
for water fe atures (H: β= −.109; Figure 2). Hunted mou ntain lions
had longerstep lengthsnear andwithindeveloped landscapes(H:
β= −.045;Figure 2).
4 | DISCUSSION
Mountainlions have thelargestlatitudinal distribution of any spe-
cies of wild cat (Kitchener, 1991) and the largest distribution of
any wild ter restrial mam mal in the wester n hemisphere (Su nquist
&Sunquist,2002). Wherepreviouslystudied, juveniledispersal by
mountainlions has beenconfinedtosingle or neighboringpopula-
tions(Beier,1995; Morrison et al., 2015;Newbyetal.,2013).Making
meaningfulcomparisonsacrosspopulations can be difficult dueto
differ ences in habitat s, weather patter ns, and methodo logies. By
comparing juvenile dispersal behaviors bet ween two populations
inhabitingsimilar basin-and-rangehabitatsover the same timepe-
riod,butwithdifferentwildlifemanagementpractices,wewereable
toexplorehowthose managementpracticesmay influencemove-
mentandhabitatselectionbehaviors.Wefoundminimaldifferences
inhabitat selection between our two study sites and across three
dispers al states; h owever, the differ ences that we fo und were as-
sociatedwithanthropogeniccovariates.Aswehypothesized,moun-
tainlionsinthehuntedsiteavoideddevelopedlandscapeswhereas
thejuvenilesdispersingfromtheprotectedsitedidnotselectforor
against developed landscapes.
Duetothechallenges incapturingandcollaringjuvenilemoun-
tainlions,weconsideredsomecaveats in interpreting our results.
Differ ences we obser ved may be inf luenced by var ying sex r atios
anddifferentageclasses(i.e.,dependentandindependent)ofjuve-
nilescollaredbetweensites,whichalsoresultedindifferentnum-
bers ofearlyandlatedispersal statesbetweensites. Thatsaid, we
observedarange of dispersalcharacteristics within both sitesand
identifiedallmovementstateswithinbothageclasses. Wealsoac-
knowledgethatour broaddefinitionsfor classifying diverse move-
ments,whichexhibithighvariabilitybetweenindividuals,mayhave
led to misid entified state s. Specifical ly, our assumpt ion regarding
natalrangesofindependentindividuals,inferredfromhome-ranging
behavior around the capture site for longer than 1 month, may al-
ternatively reflect a transienthome range. Yet these broad defini-
tionsenabledustosegmentdispersalmovementsintothreestates,
whichallowedusto focusouranalysison similarstates.Across the
three dispersal states, juveniles selected habitats similar to that
used by adult mountain lions in other studies, including forest,
shrub, increased terrain ruggedness, and higherelevation(Gigliotti
et al., 2019;Nicholsonetal.,2014;Robinsonetal.,2015).Theseco-
variates are alsoimportanttoherbivoresthataretheprimary prey
ofmountain lions(Morano et al., 2019; VanBeestet al.,2014) and
may facilitate hunting opportunities(Kunkel etal., 1999). As such,
our data su ggest that disp ersing mount ain lions predic ate habitat
selectiononthegeneralhabitatassociationsoftheirprimaryprey.
The response to anthropogenic covariates differed between
thetwofocalpopulations.Modelsofmountainlionsinthehunted
siteindicatedhabitatselectionandavoidancerelatedtoanthropo-
genicfactors.Duringexploratoryandtransienthomerangestates,
wefound evidence ofavoidanceof developed landcover,accom-
panied by varying movement behaviors. Conversely, during the
depar ture state , there was sele ction for hay a nd crop landcove r.
During the exploratory state, mountain lions in the hunted site
exhibited increased step length and more torturous movements
observednearorwithindevelopedlandscapes,potentiallydriven
byperceivedrisk or hindrance to movement (Dickie et al., 2020).
Mountain lions have previously been shown to select areas in
proximitytofour-wheeldriveanddirtroadsforeasiermovement
(Dellingeretal.,2020),su g ge s tin gth ato urobs e r ve din cre a sedste p
lengthcouldalsorelateto four-wheel drive and dirt roads facili-
tatingmovementofdispersingmountainlions(Dickieetal.,2020).
Duringthetransienthomerangestate,juvenilesinthehuntedsite
exhibited straighter movement when near or within developed
landscapes. Moststudiesshowmountainlionstypically avoid de-
veloped l andscape s (Riley et al., 2021; Robi nson et al., 2015), so
itislikely that straightmovement (i.e.,increased step length) is a
behavior exhibitedby mountainlions attempting to quickly move
pastdevelopedareas,areasofhighexposure,orthoselandscapes
withlittlehabitatvalue.
Althoughjuvenilesfromthehuntedpopulationgenerallyavoided
deve lopedlandscapes,theyselec tedforhayandcropduri ngt hede-
parturestate.Thismostlikelyrelatestoresourceavailability(Tucker
et al., 2021),as theirprimarypreyspecies, mule deer,aredrawnto
agricultural landscapes due to the increased availability and pre-
dictability of resources (Anderson et al., 2012). Our study sites
experience dramatic seasonal shif ts in environmental conditions
throughout the year; however, human-modified agricultural land-
scapesprovideamorepredictableandreadilyavailableresourcefor
wildlife (Oro etal., 2013; Sih etal.,2011).Theselectionofhay and
cropalongwithtortuousmovementswithinthesehabitatssuggest s
that mount ain lions could be usi ng these habitat s for hunting or
scavengingroadkill(Dickieetal.,2020;Stoneretal.,2021).Hayand
crop land scapes are ty pically priv ately owned and not co mmonly
accessibleto hunters,andmightalsoserveasrefugiafrom humans
or adultmountain lions (Harden et al., 2005; Proffit t et al., 2013).
Established adult mountain lions are also unlikelytoregularly use
agriculturallandscapes(Dickson&Beier,2002),potentiallyoffering
juvenile mountain lions refuge from intraspecific st rife (Morrison
et al., 2015).Similarly,brownbears(Ursus arctos)useanthropogenic
landsc apes to reduce se xually selec ted infantici de, as adult male s
   
|
9 of 15
RANDOLPH et al.
were less in clined to use th ese habitat t ypes in the ir home range
(Steyaertetal.,2016).
During the exploratory and transient home range states
(segment events = 19), we observed avoidance of developed
landsc apes and altere d movements wit hin them. The avoi dance
obser ved during the ex ploratory s tate may be attri buted to ju-
veniles seeking habitat that reflects their natal homerange, and
therefore maternal preferences (Davis & Stamps, 2004; Riley
et al., 2021; Robinso n et al., 2015; Stam ps & Swaisgood, 2007).
Theylikelytransitiontousingotherhabitatfeaturesastheylearn
to find areas with increased prey availability, providing more
oppor tunities as t hey better d evelop their h unting skills . This is
supported by our departure state, wherein dispersing juvenile
mountainlions selecthayandcropareas.Thedifferencesinhab-
itatselectionbetweenmovementstatescouldsuggest thatjuve-
nile dispersal is a lengthy learning process.
Develop ed landscap es represent t he most intense f orm of an-
thropogenic influence and are often avoided by large carnivores
(Boydston et al., 2003; Dickson et al., 2005; Støen et al., 2015).
For dispersing juvenile mountain lions, human-carnivore conflict
is unpred ictable in tim e, space, and magnit ude, exposing t hem to
risks suc h as vehicle collisi ons, public sa fety concern s, and depre-
dation control(Dellingeretal.,2021;Kertson et al., 2013; Mattson
et al., 2011;Thompsonetal.,2014).Inourstudy,onlymountainlions
from the huntedpopulation showed avoidance of developed land-
scapes,whiletheprotectedpopulationdidnotshowselectionforor
avoidance of any anthropogenic covariates. Mostofthedeveloped
landscapewithinthehuntedsiteis situatedin andaround thetown
ofCaliente,which is completely surrounded byotherwise suitable
mountainlionhabitat.Additionally,the townattractsungulates be-
cause it isconcentrated aroundperennialwatersources.This com-
binationofsuitablehabitatandincreasedresourceavailabilitycould
attractdispersingmountainlions.However,ourobservedresponse
to develop ed lands might imp ly that hunting p ressure and pur suit
causejuvenilemountainlionstoavoidthisotherwisesuitablehabitat.
Thiscouldsuggestalearnedavoidanceofdevelopedlandscapes,
potentially influenced by negative interactions with hounds and
hunting. Unlike other carnivores that adjust their habitat selection
and moveme nt in response to pe rceived risk durin g specific hunt-
ingseasons(Basille etal.,2013;Lodberg-Holmetal.,2019;Stillfried
et al., 2015), mountain lionsin the huntedsite consistently avoided
developed landscapes during dispersal. The year-round avoidance
behaviorobservedinhuntedmountainlionscouldstemfromseveral
factors.First,itmay beattributed totheextendeddurationof both
pursuitandharvestseasonsannually,renderingitchallengingforthe
animalstoavoidhumanactivit y.Thepresenceofhuntersandhounds
duringtheseseasonscouldleadindividualmountainlionstoencoun-
terthesethreatsmultiple timesthroughout theyear without being
harve sted, fur ther reinforci ng avoidance behav iors. This avoid ance
behaviormayalsobeinfluencedbymaternalexperience,withyoung
mountainlionslearningavoidancetac ticsfromtheirmothers.
Theuseofdogsasatoolinwildlifemonitoringandmanagement
is diverse . Scat detectio n dogs are employed across the western
regions fo r noninvasive geneti c sampling (McKeag ue et al., 2024;
Wasser et al. , 2004) and lives tock guardia n dogs are used to m it-
igate human-carnivore conflict through livestock protection
(Andelt& Hopper,2000;Young& Sarmento, 2024).Dogs arealso
used for hazing nuisance black bears in urbansettings (Beckmann
et al., 2004). However, the use of d ogs for hazing mo untain lions
hasreceivedrelativelylittlescientificattention.Ourstudyfoundan
increas ed avoidance of devel oped landsc apes by anima ls exposed
tonon-lethal hunting pressure, suggesting mountain lions may se-
lectagainstlandscapefeaturescorrelatedwithhighhumanactivity
includingareaswithdogs.Becausehunting andpursuingmountain
lionswithhoundsoftenoccursinthesespaces,pursuitwithhounds
could provide wildlife managers with a previously underutilized
method forreducinghuman–mountain lionconflicts. However,we
canonlyspeculateonthepotentialimpactswithourdata.Gathering
additional data on specific interactions, including catch-per-unit-
effort,sexandageclassofanimalspursued,hunterencounterrates,
andchasedistancesandreturntimesofmountainlionssubjectedto
pursuitmaybeavaluablefirststepinevaluatingtheefficacyofdogs
asanon-lethalmanagementinter vention.
Inthisstudy,weleveragedGPS-collardatafromtwostudysites
tocompare juvenile dispersal betweenhunted and protectedpop-
ulations ofmountainlions.Harvestof mountainlionsiscommonin
most of the w estern United St ates and ser ves multiple pu rposes,
including managing mountain lion populations, mitigating human-
carnivore conflicts, minimizing livestock depredation, reducing
predationon ungulate populations, and providingrecreational op-
portunities.However,har vestalsoinfluencesthesuccessofdisper-
sal and mo difies the sp atial behavior of ha rvested sp ecies (Logan
& Runge, 2021; Newby et al ., 2013; Robinso n et al., 2008; Smi th
et al., 2022).Ourfindingsexpandourunderstandingoftheinfluence
of hunting on j uvenile disper sal movement s and habitat se lection
bymountainlions. We identifiedsimilarities in selectionwith hab-
itat covar iates commonly c orrelated wit h mountain lio ns (Gigliotti
et al., 2019; Nicholson et al., 20 14; Riley et al., 2021; Robinson
et al., 2015), exce pt that we found ou r two sites dif fered in thei r
responsetoanthropogeniclandscapes.Theseselectiondifferences
highlighttheimportanceforwildlifemanagersdealingwithimperiled
populations,habitatloss,andfragmentationtoconsidertheimpacts
ofhuntingpressureondispersingindividuals andtheirrecruitment
into the pop ulation. Wildlife agencies a cross the western United
States shouldconsiderhowmanagementpractices affect boththe
focalpopulationandthemetapopulation.Ourresults contributeto
thegrowingbodyof evidencethatmanagementpracticescanhave
behavioraleffects on themovement and habitat selectionofjuve-
nile mount ain lions during disp ersal (Cooley, Wielgus, Koehler, &
Maletzke,2009;Logan&Runge,2021;Newbyetal.,2013;Robinson
et al., 2008).
AUTHOR CONTRIBUTIONS
John F. Randolph: Conceptualization (equal); data curation (lead);
formalanalysis(lead);writing–originaldraft(lead);writing–review
andediting(equal).Julie K. Young:Conceptualization(equal);formal
10 of 15 
|
   RANDOLPH et al.
analysis(suppor ting);resources(equal);supervision(lead);writing–
original draft (supporting); writing – review and editing (equal).
David C. Stoner: Conceptualization (equal); resources (equal);
writing – o riginal draft (su pporting) ; writing – review an d editing
(equal).David K. Garcelon:Conceptualization(equal);fundingacqui-
sition(lead);resources(equal);writing–reviewandediting(equal).
ACKNOWLEDGMENTS
We thank the Institute for Wildlife Studies (IWS), the California
Department ofFish and Wildlife(CDFW ),theNevadaDepartment
ofWildlife (NDOW ), and K. Schoenecker USGS Ft Collins Science
Centerforfundingandsupportthroughoutthisproject.Additionally,
wewouldliketothanktheAfricanSafariClubofFlorida,theEcology
CenteratUtahStateUniversity,andthe$3predatorfeeinNevada
forfunding.Wewanttoextend our appreciationto the many peo-
plewhocollecteddataforthisproject,includingNDOWemployees,
BrianJansenandRuthPassernigforcapturingandcollaringNevada
mountain lions, and IWS employees and Jeff Davis for collaring
mounta in lions in Califor nia. We thank Pat Jacks on, Jon Ewanyk,
PeterIacono,JuliaFreimuth,andNorah Saarmanfor theirconcep-
tualassistanceandColtonWise,BrianSmith,andMitchParsonsfor
their coding andstatistical assistance. NorahSaarmanreviewedan
earlierdraftofthismanuscript.ThisisUAESpaper#9808.
CONFLICT OF INTEREST STATEMENT
Nonedeclared.
DATA AVAIL AB ILI T Y STAT E MEN T
DatafromCaliforniacanbeaccessedonDryad: https:// doi. org/ 10.
5061/dryad.hdr7sqvrw.PrivatePeerReviewlink:https:// datad ryad.
o r g / s t a s h / s h a r e / j R F 6 s s H T U g g m V C Y S r U H A g _ 7 Y Y o G q 6 0 b h Y 3 t w x
zDjpBQ.
Nevada mountain lions are a protected game species under
Nevada AdministrativeCode(NAC)502.370. As such,rawlocation
dataofmountainlionsareconsideredproprietaryandcannotbere-
leasedwithoutwrittenpermissionfromtheNevadaDepartmentof
Wildlife.DatainquiriescanbeaddressedtoPatrickJackson[pjack-
son@ndow.org].
ORCID
John F. Randolph https://orcid.org/0009-0008-2876-579X
Julie K. Young https://orcid.org/0000-0003-4522-0157
David C. Stoner https://orcid.org/0000-0001-7420-2949
REFERENCES
An del t ,W.F. ,& Hop p er,S .N . (2 0 0 0). Liv est ock gua rdd ogs red uce pre da-
tionon domesticsheepinColorado.Journal of Range Management,
53, 2 59–2 67.
Anderson, C. R., Lindzey, F. G., & McDonald, D. B. (20 04). Genetic
struc ture of cougar populations across the Wyoming basin:
Metapopulation or megapopulation. Journal of Mammalogy, 85,
1207–1214.
Anderson,E.D.,Long,R.A.,Atwood,M.P.,Kie,J.G.,Thomas,T.R.,Zager,
P.,&Bowyer,R.T.(2012).Winterresourceselectionbyfemalemule
deer Odocoileus hemionus:Functionalresponsetospatio-temporal
changesinhabitat.Wildlife Biology, 18, 153–163.
Andreasen, A . M., Stewart, K. M., Longland, W. S., Beckmann, J. P.,
& Forister, M. L. (2012). Identification of source-sink dynam-
ics in mountain lions of the Great Basin. Molecular Ecology, 21,
568 9–5701.
Andrén, H., Linnell, J. D. C ., Liberg, O., Andersen, R., Danell, A.,
Karlsson, J., Odden, J., Moa,P.F.,Ahlqvist, P.,Kvam, T., Franzén,
R., & Seg erström , P.(20 06). Surv ival rates a nd causes of m ortal -
ity in Eur asian lynx (Lynx lynx) in multi-use landscapes. Biological
Conservation, 131, 23–32.
Avgar,T.,Lele,S.R.,Keim,J.L.,&Boyce,M.S.(2017).Relativeselection
streng th:Quantifyingef fect size inhabitat-and step-selec tion in-
ference.Ecology and Evolution, 7, 5322–5330.
Avgar,T.,Potts,J.R.,Lewis,M.A .,&Boyce,M.S.(2016).Integratedstep
selectionanalysis:Bridgingthegapbetweenresourceselec tionand
animalmovement.Methods in Ecology and Evolution, 7, 619–63 0.
Basille , M., Van Moorter, B., H erfindal, I ., Martin, J. , Linnell, J. D. C. ,
Odden,J., Andersen,R .,&Gaillard, J.-M. (2013). Selectinghabitat
tosur vive: The impactof road densityonsurvivalin alargecarni-
vore. PLoS ONE, 8, e65493.
Beckma nn, J. P., Lackey, C. W., & Berger, J. (20 04). Evaluati on of de-
terrent techniques and dogs to alter behaviorof“nuisance”black
bears.Wildlife Society Bulletin, 32, 1141–1146.
Beier,P.(1995).Dispersalofjuvenilecougarsinfragmentedhabitat.The
Journal of Wildlife Management, 59, 228.
Benoit, L., Hewison, A . J. M., Coulon, A ., Debeffe, L ., Grémillet, D.,
Ducros, D., Cargnelutti, B., Chaval, Y., & Morellet, N. (2020).
Acceleratingacrosst helands cape:Theenergeticcostsofnataldis-
persalinalargeherbivore.Journal of Animal Ecology, 89, 17 3 –185 .
Benson , J. F.,Do ughert y,K . D., Beier, P.,B oyce, W. M., Criste scu, B.,
Gammons,D. J., Garcelon, D.K .,Higley,J. M., Mar tins,Q. E., Nisi,
A.C., Riley,S.P.D.,Sikich, J. A., Stephenson,T.R., Vickers,T.W.,
Wengert,G. M., Wilmers,C. C.,Wittmer,H. U., & Dellinger,J.A.
(2023). The e cology of human- ca used mortal ity for a protec ted
large carnivore. Proceedings of the National Academy of Science s of
the United States of America, 120, e2220030120.
Benson,J.F.,Mahoney,P.J.,Vickers,T.W.,Sikich,J.A.,Beier,P.,Riley,S.
P.D. ,Er nes t ,H. B .,&Bo yce ,W.M .(2 019).E x t inc t ion vo r tex dyna m-
icsoftoppredatorsisolatedbyurbanization.Ecological Applications,
29(3),e01868.https:// doi. org/ 10. 1002/ eap. 1868
Bonte, D., VanDyck, H., Bullock, J. M., Coulon, A.,Delgado, M.,Gibbs,
M., Lehouck, V., Matthysen, E., Mustin, K., Saast amoinen, M.,
Schtick zelle,N.,Stevens, V.M., Vandewoestijne,S., Baguette, M.,
Barton,K.,Benton,T.G.,Chaput-Bardy,A.,Clobert,J.,Dytham,C.,
…Travis,J. M. J. (2012).Costs of dispersal. Biological Reviews, 87,
290–312.
Boydston,E.E.,Kapheim,K.M.,Watts,H.E.,Szykman,M.,&Holekamp,
K.E.(2003).A lteredbehaviourin spotted hyenasassociatedwith
increasedhumanactivity.Animal Conservation, 6, 2 07–219.
Bunnefeld,N.,Börger,L.,Van Moor ter,B.,Rolandsen, C. M.,Dettki,H.,
Solber g, E. J., & Eri csson, G . (2011). A model-d riven app roach to
quantif ymigration patterns: Individual,regionaland yearlydiffer-
ences: Quantifying migrationpatterns. Journal of Animal Ecology,
80, 46 6–476.
Choate,D.M.,Longshore,K.M.,&Thompson,D.B.(2018).Cougardis-
persa l and natal ho ming in a deser t environme nt. Western Nor th
American Naturalist, 78, 221–235.
Cooley,H .S.,Wielgus, R. B., Koehler,G., &Maletzke,B.(20 09).Source
populations in carnivore management: Cougar demography and
emigrationina lightlyhuntedpopulation. Animal Conservation, 12,
321–328.
Cooley,H.S.,Wielgus,R.B.,Koehler,G.M.,Robinson,H.S.,&Maletzke,
B.T.(20 09). Doeshuntingregulate cougar populations?A test of
thecompensator ymor talityhypothesis.Ecology, 90, 2913–2921.
   
|
11 of 15
RANDOLPH et al.
Coon,C.A.C.,Nichols,B.C.,McDonald,Z.,&Stoner,D.C.(2019).Effects
ofland-usechangeandpreyabundanceonthebodyconditionofan
obligatecarnivoreatthe wildland-urbaninterface. Landscape and
Urban Planning, 192, 10364 8.
Crooks, K. R. (2002). Relative sensitivities of mammalian carnivores to
habitatfragmentation.Conservation Biology, 16, 488–502.
Daly,C.,Neilson,R .P.,& Phillips, D.L. (1994).Astatistical-topographic
modelfor mapping climatological precipitation overmountainous
terrain. Journal of Applied Meteorology, 33, 14 0–158.
Davis,J.,&Stamps,J.A.(2004).Theeffectofnatalexperienceonhabitat
preferences.Trends in Ecology & Evolution, 19, 411–416 .
Dellinger,J.A.,Cordova,R.,Macon,D.K.,&Rudd,J.L.(2021).Temporal
trendsanddriver sofmountainliondepredationinCalifornia,USA.
Human- Wildlife Interactions, 15(1),1–16.
Dellinger,J. A.,Cristescu, B., Ewanyk, J., Gammons, D.J., Garcelon, D.,
Johnston,P.,Martins,Q.,Thompson,C.,Vickers,T.W.,Wilmers,C.
C.,Wittmer,H.U.,&Torres,S.G.(2020).Usingmountainlionhab-
itatselectioninmanagement.The Journal of Wildlife Management,
84, 359–371.
Dewit z, J. (2023). National Land Cover Database (NLCD) 2021 Products:
U.S. Geological Survey data release. https:// doi. org/ 10. 5066/
P9J Z 7AO 3
Dickie,M.,McNay,S.R.,Sutherland,G.D.,Cody,M.,&Avgar,T.(2020).
Corridorsorrisk?Movementalong,anduseof,linearfeaturesvar-
ies pred ictably am ong large mamma l predator and pr ey species.
Journal of Animal Ecology, 89, 623–634.
Dickso n, B. G., & Beier, P. (2002). Hom e-r ange and habita t selection
by adult cougars in southern California. The Journal of Wildlife
Management, 66, 1235.
Dickson,B.G.,Jenness,J.S.,&Beier,P.(2005).Influenceofvegetation,
topography,androadsoncougarmovementinsouthernCalifornia.
Journal of Wildlife Management, 69, 26 4–276 .
Dyke, F.G. V.,Brocke,R. H., Shaw,H. G.,Ackerman, B. B.,Hemker, T.
P.,& Lindzey,F.G. (1986).Reactions of mountain lions to logging
andhumanactivity.The Journal of Wildlife Management, 50, 95–102.
Elbroch, L. M., Petracca, L. S., O'Malley, C., & Robinson, H. (2022).
Analysesofnationalmountainlionharvestindicesyieldambiguous
interpretations. Ecological Solutions and Evidence, 3, e12150.
ESRI.(2023).Ar cGIS P ro 3.1.1.EnvironmentalSystemsResearchInstitute.
Ewanyk, J. (2020). Habitat use and prey selection by mountain lions in an
altered sagebrush steppe environment. Cal Poly H umboldt These s
andProjects368.h t t p s : / / d i g i t a l c o m m o n s . h u m b o l d t . e d u / e t d / 3 6 8
Fretwell,S. D., & Lucas, H.L. (1969).Onterritorial behavior and other
factorsinfluencinghabitatdistributioninbirds.Acta Biotheoretica,
19, 16–36.
Gigliotti,L.C.,Matchett,M.R.,&Jachowski,D.S.(2019).Mountainlions
ontheprairie:Habitat selectionby recolonizingmountainlionsat
theedgeoftheirrange.Restoration Ecology, 27, 1032–1040.
Gittleman,J.L.,&Harvey,P.H.(1982).Carnivorehome-rangesize,met-
abolic needs and ecology.Behavioral Ecology and Sociobiology, 10,
57–63.
Harden, C. D., Woolf, A., & Roseberry, J. (20 05). Influence of exurban
developmentonhuntingopportunity,hunterdistribution,andhar-
vest efficiency of white-tailed deer. Wildlife Society Bulletin, 33,
23 3–2 42 .
Heim,N.,Fisher,J.T.,Volpe,J.,Clevenger,A.P.,&Pac zkowski,J.(2019).
Carnivore community response to anthropogenic landscape
change:Species-specificityfoilsgeneralizations.Landscape Ecology,
34, 2 49 3–2507.
Hemker,T.P.,Lindzey,F.G.,&Ackerman,B.B.(1984).Populationcharac-
teristicsandmovement patternsofcougars insouthernUtah. The
Journal of Wildlife Management, 48, 1275.
Hollister,J.,Shah,T.,Robitaille,A.,Beck,M.,&Johnson,M.(2017).elevatr:
access elevation data from various APIs.RPackageVersion0.1,3.
Howard, W. E. (1960).Innate and environmental dispersalof individual
vertebrates.American Midland Naturalist, 63, 152.
Huck, M., Jędr zejewski, W., Borowik , T., Miłosz-C ielma, M., Schmidt,
K.,Jędrzejewska,B.,Nowak, S., &Mysłajek,R.W.(2010). Habitat
suitability,corridors and dispersal barriers for largecarnivoresin
Poland.Acta Theriologica, 55, 17 7–192 .
Jansen,B .D.,&Jenk s,J.A.(2012).Bir thtimingformountainlions(Puma
concolor); testing the prey availability hypothesis. PLoS ONE, 7,
e44625.
Johnson, S. A ., Walker,H.D., & Hudson, C . M. (2010). Dispersal char-
acteristicsof juvenile bobcats insouth-central Indiana. Journal of
Wildlife Management, 74, 379–3 85.
Karelus,D.L .,Gear y,B. W., Harveson,L .A., & Harveson, P.M.(2021).
Movementecologyandspace-usebymountainlionsinWestTexas.
Global Ecology and Conservation, 31, e0 18 59.
Kertson,B.N .,Spencer,R. D.,& Grue,C.E.(2013).Demographicinflu-
ences on co ugar resident ial use and intera ctions with pe ople in
westernWashington.Journal of Mammalogy, 94, 26 9–2 81 .
Kitchener,A. (1991).The Natural History of the Wild Cats. Natural history
of mammals series, Comstock Pub. Associates. https://books.google.
c o m / b o o k s ? i d =8dhFAAAAYAAJ
Ku nke l,K . E., Rut h ,T.K . ,P l etsc h er,D .H . ,&H orn o cke r,M.G .(19 99).W i nte r
prey sele ction by wol ves and couga rs in and near g lacier Nati onal
ParkMontana.The Journal of Wildlife Management, 63, 901–910.
Ladle , A., Avgar, T., Wheatley, M., Ste nhouse, G. B. , Nielsen, S. E. , &
Boyce,M.S.(2019).Grizzlybearresponsetospatio-temporalvari-
abilityinhumanrecreationalactivity.Journal of Applied Ecology, 56,
375–386.
Lindstedt, S. L., Miller,B. J., &Buskirk, S.W.(1986).Homerange, time,
andbodysizeinmammals.Ecology, 67, 413–418.
Lindzey, F. G., Van Sickl e, W. D., Laing, S . P., & Mecha m, C. S. (1992).
Cougar population response to manipulation in southern Utah.
Wildlife Society Bulletin, 20, 224–227.
Lodberg-Holm, H. K., Gelink, H. W., Hertel, A. G., Swenson, J. E.,
Domevs cik, M., & Steya ert, S. M . J. G. (2019). A human-in duced
landscape of fear influences foraging behavior of brown bears.
Basic and Applied Ecology, 35, 18–27.
Logan,K .A.,Ir win,L .L.,&Skinner,R.(1986).Charac teristicsofahunted
mountain lion population in Wyoming. The Journal of Wildlife
Management, 50, 648–654.
Logan,K.A.,&Runge,J.P.(2021).Effectsofhuntingonapumapopula-
tion in Colorado. Wildlife Monographs, 209, 1–35 .
Logan, K.A .,&Sweanor,L .L .(2001). Desert puma: Evolutionary ecology
and conservation of an enduring carnivore.IslandPress.
Lowe,W.H., &Allendorf,F.W.(2010).Whatcangeneticstellusabout
populationconnectivity?:Geneticanddemographicconnectivity.
Molecular Ecology, 19, 3038–3051.
Mahoney,P.J.,&Young,J.K.(2017).Uncoveringbehaviouralstatesfrom
animal activity and sitefidelity patterns. Methods in Ecology and
Evolution, 8, 174–18 3.
Mattson, D., Logan, K.,& Sweanor,L. (2011). Factors governing risk of
cougarattacksonhumans.Human- Wildlife Interactions, 5, 135–158.
Maz zol li,M.,Gr aipel,M .E. ,&D unsto ne,N.(20 02).Moun tainliondepre -
dationinsouthernBrazil.Biological Conservation, 105, 43 –51 .
McKeague,B., Finlay,C., & Rooney,N. (2024). Conservation detection
dogs: A cr itical revi ew of effic acy and met hodolog y.Ecology and
Evolution, 14, e10866.
Morano,S.,Stewart,K.M.,Dilts,T.,Ellsworth,A.,&Bleich,V.C.(2019).
Resource selection of mule deer in a shrub-steppe ecosystem:
Influenceofwoodlanddis tributionandanimalbehavior.Ecosphere,
10, e 02811.
Morrison,C.D.,Boyce,M. S., &Nielsen,S. E.(2015).Space-use,move-
mentanddispersalofsub-adultcougarsinageographicallyisolated
population.Pee rJ, 3, e1118.
Naude, V. N., B alme, G. A., O 'Riain, J., Hunt er, L. T. B., Fatte bert, J.,
Dickerson,T.,&Bishop,J.M.(2020).Unsustainableanthropogenic
mortalitydisruptsnataldispersalandpromotesinbreedinginleop-
ards. Ecology and Evolution, 10, 3605–3619.
12 of 15 
|
   RANDOLPH et al.
Newby, J. R., S cott Mills, L ., Ruth, T. K., P letscher, D. H., M itchell, M .
S.,Quigley,H. B., Murphy,K.M.,&DeSimone,R.(2013). Human-
caused mort ality influences spatial population dynamics: Pumas
inlandscapes withvaryingmortalityrisks. Biological Conservation,
159, 230 –239.
Nicholson,K.L.,Krausman,P.R.,Smith,T.,Ballard,W.B.,&McKinney,T.
(2014).MountainlionhabitatselectioninArizona.The Southwestern
Naturalist, 59, 372–380.
Nisi,A.C.,Benson,J.F.,King, R., &Wilmers,C.C.(2023).Habitatfrag-
mentationreduces sur vival and drivessource–sinkdynamics for a
large carnivore. Ecological Applications, 33, e2822.
Nisi,A.C.,Suraci,J.P.,Ranc,N.,Frank,L.G.,Oriol-Cotterill,A.,Ekwanga,
S.,Williams,T.M.,&Wilmers,C.C.(2022).Temporalscaleofhab-
itat sel ection for la rge carnivo res: Balanci ng energetic s, risk and
findingprey.Journal of Animal Ecology, 91, 1 8 2–1 95.
Oliveira,M.E.,Saranholi,B.H.,Dirzo,R.,&Galetti,P.M.(2022).Areview
ofphilopatr yanddispersalinfelids livingin ananthropisedworld.
Mammal Review, 52, 208–220.
Oro,D.,Genovar t,M.,Tavecchia,G.,Fowler,M.S.,&Martínez-Abraín,A.
(2013).Ecological and evolutionary implications of food subsidies
fromhumans.Ecology Letters, 16, 1501–1514.
Palomares, F., Delibes, M., Ferreras, P., Fedriani, J. M ., Calzada, J.,
& Revilla, E. (200 0). Iberian lynx in a fragmented landscape:
Predispersal, dispersal, and postdispersal habitats. Conservation
Biology, 14, 80 9–818.
Pelletier,A.,Obbard,M.E.,Mills,K.,Howe,E.J.,Burrows, F.G.,White,
B.N., &Kyle,C.J.(2012).Delineatinggeneticgroupingsincontin-
uouslydistributedspeciesacrosslargelyhomogeneouslandscapes:
A study of American black bears (Ursus americanus) in Ontario,
Canada. Canadian Journal of Zoology, 90, 999–1014.
PRISM Climate Group.(2023). Time series values for individual locations.
OregonStateUniversity.h t t p s : // w w w . p r i s m . o r e g o n s t a t e . e d u /
Proffitt,K .M.,G ude,J.A.,Hamlin,K .L.,&Messer,M.A.(2013).Effec ts
of hunter ac cess and habit at securit y on elk habita t selection i n
landsc apes with a publ ic and private la nd matrix. The Journal of
Wildlife Management, 77, 514–524 .
RCoreTeam.(2022).R: A language and environment for statistical comput-
ing.RFoundation for Statistical Computing. https:// www. R- proje
c t . o r g / .
Riegel, G . M., Miller, R. F., Skinner, C. N., & Smith, S. E. (2006).
Nort heastern p lateaus bio region. In Fire in California's ecosystems
(pp. 225–263). Unive rsity of C alifornia Pr ess. Retri eved April 16,
2023, from, h t t p s : / / a c a d e m i c . o u p . c o m / c a l i f o r n i a - s c h o l a r s h i p - o n -
l i n e / b o o k / 2 0 6 0 0 / c h a p t e r/ 1 7 9 9 0 0 6 3 4
Riley,S. P.D., Serieys, L . E. K.,Pollinger,J. P.,Sikich,J. A., Dalbeck,L.,
Wayne,R.K .,&Ernest,H.B.(2014).Individualbehaviorsdominate
the dynamics of an urban mountain lion population isolated by
roads. Current Biology, 24, 1989–1994.
Riley, S. P. D., Sikich, J. A ., & Benson , J. F.(20 21). Big cats in th e big
city: Spatialecologyof mountain lions ingreaterLos Angeles. The
Journal of Wildlife Management, 85, 1527–15 42.
Robinette,W.L.,Gashwiler,J.S.,&Morris,O.W.(1961).Notesoncougar
produc tivit yandlifehistor y.Journal of Mammalogy, 42, 20 4–2 17.
Robinson, H. S., Ruth, T., Gude, J. A., Choate, D., DeSimone, R.,
Hebblewhite, M., Kunkel, K ., Matchett, M. R., Mitchell, M. S.,
Murphy, K., & W illiams, J . (2015). Linki ng resource s electio n and
mortalitymodeling for populationestimationofmountainlionsin
Montana. Ecological Modelling, 312, 1125.
Robinson,H. S., Wielgus, R.B., Cooley,H. S.,& Cooley,S. W.(2008).Sink
populationsincarnivoremanagement:Cougardemographyandimmi-
grationinahuntedpopulation.Ecological Applications, 18, 1028–1037.
Rominger,E.M.(2018).Thegordianknotofmount ainlionpredationand
bighornsheep.The Journal of Wildlife Management, 82, 19–31.
Signer,J.,Fieberg,J.,&Avgar,T.(2019).Animalmovementtools(AMT ):R
package for managingtrackingdata and conducting habitatselec-
tion analyses. Ecology and Evolution, 9, 880–890.
Sih,A.,Ferrari,M.C.O.,&Harris,D.J.(2011).Evolutionandbehavioural
responses to human-induced rapid environmental change.
Evolutionary Applications, 4, 3 67–3 87.
Sikes,R .S.,&Gannon,W.L .(2011).GuidelinesoftheAmericanSociety
ofMammalogistsfortheuse ofwildmammals inresearch.Journal
of Mammalogy, 92, 235–253.
Smith, J. A., Wang,Y.,& Wilmers, C.C.(2015).Topcarnivoresincrease
their kill rates on prey as a response to human-induced fear.
Proceedi ngs of the Royal Soci ety B: Biologic al Sciences, 282, 20 142711.
Smith, J.B., Spit z, D. B., Brown, C.L., Wisdom, M.J., Rowland, M. M.,
Forres ter,T. D., Joh nson, B. K ., & Clark , D. A. (2022). B ehaviora l
responses of male elk to hunting risk. The Journal of Wildlife
Management, 86, 833–852.
Smith, J. L. D.(1993).The role of dispersal in structuring the Chitwan
tigerpopulation.Behaviour, 124, 165–195.
Soulsbury,C.D., Baker,P.J., Iossa,G.,& Harris,S.(20 08). Fitnesscosts
of dispersal in red foxes (Vulpes vulpes). Behavioral Ecology and
Sociobiology, 62, 1289–1298.
Stamps, J. A., & Swaisgood, R. R. (2007). Someplace like home:
Experience, habitat selection and conservation biology. Applied
Animal Behaviour Science, 102, 392–409.
Steyaer t, S. M. J. G., L eclerc, M., Pe lletier, F., Kindberg , J., Brunberg ,
S., Swenson,J.E., & Zedrosser,A . (2016). Humanshields mediate
sexual conflictin atop predator.Proceedings of the Royal Society B:
Biological Sciences, 283, 20160906.
Stillfried,M.,Belant,J.L.,Svoboda,N.J.,Beyer,D.E.,&Kramer-Schadt,
S. (2015). When top predators become prey: Black bears alter
movement behaviourinresponsetohuntingpressure. Behavioural
Processes, 120, 3 0–39.
Støen,O.-G.,Ordiz,A.,Evans,A.L.,Laske,T.G.,Kindberg,J.,Fröber t,O.,
Swenson,J.E.,&Arnemo, J.M.(2015).Physiological evidencefor
ahuman-induced landscape of fear in brownbears (Ursus arctos).
Physiology & Behavior, 152, 24 4–248.
Stoner, D. C., Di tmer, M. A., M itchell, D. L ., Young, J. K., & Wolf e, M.
L. (2021). Conflict, coexistence, or both? Cougar habitat selec-
tion, prey composition,and mortalit yinamultiple-use landscape.
California Fish and Wildlife Journal, 107, 147–172.
Stoner,D.C.,McDonald,Z.,&Coon,C.A.C .(2023).Steppingstonesto
extirpation:Pumapatchoccupancythresholdsinanurban-wildland
matrix.Ecology and Evolution, 13, e103 81.
Stoner, D. C., Wolf e, M. L., & Cho ate, D. M. (200 6).C ougar expl oita-
tion level s in Utah: Imp lications f or demogra phic stru cture, po p-
ulationrecovery,andmetapopulationdynamics.Journal of Wildlife
Management, 70, 1588–1600.
Stoner,D. C.,Wolfe,M .L .,Mecham,C., Mecham,M.B.,Durham,S.L .,
&Choate, D. M. (2013). Dispersalbehaviourofa polygynous car-
nivore: Do cougars Puma concolorfollow source-sinkpredictions?
Wildlife Biology, 19, 289–301.
Sunquis t,M.,&Sunquist,F.(2002). Wild cats of the world.Universityof
Chicago Press. h t t p : / / w w w . b i b l i o v a u l t . o r g / B V . l a n d i n g . e p l ? I S B N =
978 0 2 2651 82 37
Suraci,J. P.,Clinchy,M., Zanette, L. Y.,& Wilmers, C. C. (2019).Fearof
humansasapexpredatorshaslandscape-scaleimpactsfrommoun-
tainlionstomice.Ecology Letters, 22, 1578–1586.
Sweanor, L. L ., Logan, K . A., & Hornoc ker,M . G. (2000 ). Cougar dis-
persal patterns, metapopulation dynamics, and conservation.
Conservation Biology, 14, 798–808.
Taylor,P.D.,Fahrig,L.,Henein,K.,&Merriam,G.(1993).Connectivityis
avitalelementoflandscapestructure.Oikos, 68, 571.
Thompson,D.J.,&Jenks,J.A.(2010).Dispersalmovementsofsubadult
cougarsfromthe BlackHills: The notions ofrange expansion and
recolonization.Ecosphere, 1, 1–11.
Thomps on, D. J., Jenks, J. A ., & Fecske, D. M. (2014). Prevalence of
human-caused mortality in an unhunted cougar population and
potential impacts to management. Wildlife Society Bulletin, 38,
341–347.
   
|
13 of 15
RANDOLPH et al.
Torres,S.,Mansfield,T.M.,Foley,J.E.,Lupo,T.,&Brinkhaus, A.(1996).
Mounta in lion and huma n activit y in Californ ia: Testing specul a-
tions. Wildlife Society Bulletin, 24, 4 51–460 .
Tucker, M. A., Sant ini, L., Car bone, C., & Mue ller, T. (2021). Mamma l
populationdensitiesataglobalscalearehigherinhuman-modified
areas. Ecography, 44, 1–13 .
U.S. GeologicalSurvey.(2023).NationalHydrographyDataset(NHD)–
USGSnationalmapdownloadabledatacollec tion:USGS–National
GeospatialTechnicalOperationsCenter(NGTOC).
U.S.GeologicalSurvey,NationalGeospatialTechnicalOperationsCenter.
(2023). USG S National Transpor tation Data set (NTD) downloa d-
abledatacollection:U.S.GeologicalSurvey.
VanBeest,F.M.,McLoughlin,P.D.,VanderWal,E.,&Brook,R.K.(2014).
Density-dependenthabitatselectionandpartitioningbetweentwo
sympatricungulates.Oecologia, 175, 1155–1165.
Vickers,T.W.,Sanchez, J.N.,Johnson,C.K., Morrison, S. A., Bot ta, R.,
Smith, T.,Cohen, B. S., Huber,P.R., Ernest, H. B., &Boyce, W.M.
(2015). Survival andmortalityof pumas (Puma concolor) in a frag-
mented,urbanizinglandscape.PLoS ONE, 10, e0131490.
Wasser, S. K., Davenpor t, B., Ramage, E. R., Hunt, K. E ., Parker, M.,
Clarke, C.,& Stenhouse, G. (20 04). Scatdetectiondogs inwildlife
research and management: Application to grizzly and black bears
intheyellowheadecosystem,Alber ta,C anada.Canadian Journal of
Zoology, 82, 475–492.
Weaver, R. A. (1978). Changing status of mountain lion in California and
livestock depredation problems.Proceedings:EighthVertebratePest
Conference.
Woodroffe, R., & G insberg, J. R. (1998). Edge ef fects and t he ex-
tinction of populations inside protected areas. Science, 280,
2126–2128.
Young,J. K.,& Sarmento, W.(2024).Canan old dog learna new trick?:
Effic acy of livesto ck guardian dog s at keeping an apex pr edator
awayfrompeople.Biological Conservation, 292, 11055 4.
How to cite this article: Randolph,J.F.,Young,J.K.,Stoner,D.
C.,&Garcelon,D.K.(2024).Impactsofmanagementpractices
onhabitatselectionduringjuvenilemountainliondispersal.
Ecology and Evolution, 14, e70097. https://doi.org/10.1002/
ece3.70097
14 of 15 
|
   RANDOLPH et al.
APPENDIX 1
TABLE A1 DetailedinformationoneachjuvenilemountainlionfittedwithaGPScollar,includingID,sex,age,totalmonitoringduration,anddurationwithineachbehavioralstate
(exploratory,depar ture,andtransienthomerange).
Study site Lion ID Sex Age
Days
collared
Cause of
mortality Exploratory events
Total No. of
days
Departure
events
Total No. of
days
Transient home
range events
Total No. of
days
Protected M168 Male 15 months 386 1 141 157
M176* Male 16 months 109 Starvation 218 122 121
M197* Male 19 months 365 1 48
M198 Male 12 months 300 1 35 1 41
M200 Male 17 months 365 2 112 169
M202* Male 15 months 10 8 Depredation 1 11 134
F20 6* Female 14 months 176 1 17 118 155
M208 Male 22 months 299 1 46 115 122
M28 1* Male 19 months 205 1 52 192 236
F286 Female 16 months 224 1 30 139
M341 Male 18 months 223 Didnotdisplayanydispersalbehavior
M282 Male 19 months 223 Didnotdisplayanydispersalbehavior
M280* Male 16 months 224 Didnotdisplayanydispersalbehavior
Hunted DF 06* Female Sub-adult 114 6 1 23 144 3421
DF07 Female Sub-adult 633 Harvested 291
DF08* Female Sub-adult 2232 1 172 162 5234
DF10 Female Sub-adult 82 Depredation 132
DM12* Male Sub-adult 5 47 Harvested 1 11
DF13* Female Sub-adult 939 Unknown 160 1 53
DF20 Female Sub-adult 154 Unknown 1 46 157
DM21* Male Sub-adult 555 Harvested 1 30
DF24* Female Sub-adult 403 Harvested 118 176 110 4
DM33 Male Sub-adult 116 Unknown 1 24 130
DM35* Male Sub-adult 1319 1 68
DM17 Male Sub-adult 115 Didnotdisplayanydispersalbehavior
Note:Mountainlionswithanasterisk(*)bytheirIDwerecapturedintheirmother'shomerange.
   
|
15 of 15
RANDOLPH et al.
TAB LE A 2  Dataonthebehavioralstatesofeachcollaredmountainlion,includingthenumberofdayswithineachstateandthetotaldistancetraveled(km)forexploratory,departure,and
transienthomerangestates.
Study site Lion ID
Exploratory state Departure state Transient home range state
Events
Total number of
days Total distance (km) Events
Total number of
days Total distance (km) Events
Total number of
days
Total distance
(km)
Protected M168 1 141 403.64 157 328.32
M176 218 46.36 122 24.06 121 4 4.47
M197 1 48 174.43
M198 135 39.92 1 41 48.33
M200 2112 222.87 169 273.67
M202 1 11 35.87 134 93.01
F206 117 61. 03 118 32.48 155 116.26
M208 146 30 8.14 115 90.17 122 133.87
M281 152 244 .66 192 506.3 236 116. 42
F286 1 30 149.7 9 139 132.34
M280 Didnotdisplayanydispersalbehavior
M282 Didnotdisplayanydispersalbehavior
M341 Didnotdisplayanydispersalbehavior
Hunted DF06 123 1 27.1 144 216.53 3421 1 75 7. 1
DF07 291 482.7
DF08 1172 254.87 162 122.81 523 4 477.64
DF10 132 133.13
DM12 1 11 101 .18
DF13 160 1 53 106.17
DF20 1 46 146.38 157 128.11
DM21 1 30 11 7. 8 2
DF24 118 75. 21 176 323.47 110 4 180 .59
DM33 1 24 35.03 130 5 7.1 8
DM35 1 68 215 .19
DM17 Didnotdisplayanydispersalbehavior
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Conservation detection dogs (CDD) use their exceptional olfactory abilities to assist a wide range of conservation projects through the detection of target specimens or species. CDD are generally quicker, can cover wider areas and find more samples than humans and other analytical tools. However, their efficacy varies between studies; methodological and procedural standardisation in the field is lacking. Considering the cost of deploying a CDD team and the limited financial resources within conservation, it is vital that their performance is quantified and reliable. This review aims to summarise what is currently known about the use of scent detection dogs in conservation and elucidate which factors affect efficacy. We describe the efficacy of CDD across species and situational contexts like training and fieldwork. Reported sensitivities (i.e. the proportion of target samples found out of total available) ranged from 23.8% to 100% and precision rates (i.e. proportion of alerts that are true positives) from 27% to 100%. CDD are consistently shown to be better than other techniques, but performance varies substantially across the literature. There is no consistent difference in efficacy between training, testing and fieldwork, hence we need to understand the factors affecting this. We highlight the key variables that can alter CDD performance. External effects include target odour, training methods, sample management, search methodology, environment and the CDD handler. Internal effects include dog breed, personality, diet, age and health. Unfortunately, much of the research fails to provide adequate information on the dogs, handlers, training, experience and samples. This results in an inability to determine precisely why an individual study has high or low efficacy. It is clear that CDDs can be effective and applied to possibly limitless conservation scenarios, but moving forward researchers must provide more consistent and detailed methodologies so that comparisons can be conducted, results are more easily replicated and progress can be made in standardising CDD work.
Article
Full-text available
Habitat loss and fragmentation are the leading causes of species range contraction and extirpation, worldwide. Factors that predict sensitivity to fragmentation include high trophic level, large body size, and extensive spatial requirements. Pumas (Puma concolor) exemplify these qualities, making them particularly susceptible to fragmentation and subsequent reductions in demographic connectivity. The chaparral-dominated ecosystems surrounding the greater San Francisco Bay Area encompass over 10,000 km 2 of suitable puma habitat, but inland waterways, croplands, urban land uses, and extensive transportation infrastructure have resulted in widespread habitat fragmentation. Pumas in this region now exist as a metapopulation marked by loss of genetic diversity, collisions with vehicles, and extensive human-puma conflict. Given these trends, we conducted a photo survey from 2017 to 2021 across 19 patches of predicted habitat and compiled a dataset of >6584 puma images. We used a logistic regression analytical framework to evaluate the hypothesis that puma patch occupancy would exhibit a threshold response explained by patch size, isolation , and habitat quality. Contrary to predictions, only variables related to patch size demonstrated any power to explain occupancy. On average, occupied patches were 18× larger than those where they were not detected (825 ± 1238 vs. 46 ± 101 km 2). Although we observed pumas in patches as small as 1 km 2 , logistic regression models indicated a threshold occupancy probability between 300 and 400 km 2 , which is remarkably close to the mean male puma home range size in coastal California (~381 km 2). Puma populations dependent on habitats below this value may be susceptible to inbreeding depression and human-wildlife conflict, and therefore vulnerable to extirpation. For species conservation, we suggest conflicts might be ameliorated by identifying the largest, isolated patches for public education campaigns with respect to management of domestic animals, and remaining connective parcels be identified, mapped, and prioritized for targeted mitigation.
Article
Full-text available
Rigorous understanding of how environmental conditions impact population dynamics is essential for species conservation, especially in mixed‐use landscapes where source–sink dynamics may be at play. Conservation of large carnivore populations in fragmented, human‐dominated landscapes is critical for their long‐term persistence. However, living in human‐dominated landscapes comes with myriad costs, including direct anthropogenic mortality and sublethal energetic costs. How these costs impact individual fitness and population dynamics are not fully understood, partly due to the difficulty in collecting long‐term demographic data for these species. Here, we analyzed an 11‐year dataset on puma (Puma concolor) space use, mortality, and reproduction in the Santa Cruz Mountains, California, USA, to quantify how living in a fragmented landscape impacts individual survival and population dynamics. Long‐term exposure to housing density drove mortality risk for female pumas, resulting in an 18‐percentage‐point reduction in annual survival for females in exurban versus remote areas. While the overall population growth rate appeared stable, reduced female survival in more developed areas resulted in source–sink dynamics across the study area, with 42.1% of the Santa Cruz Mountains exhibiting estimated population growth rates <1. Since habitat selection is often used as a proxy for habitat quality, we also assessed whether puma habitat selection predicted source and sink areas. Patterns of daytime puma habitat selection predicted source areas, while time‐of‐day‐independent habitat selection performed less well as a proxy. These results illuminate the individual‐ and population‐level consequences of habitat fragmentation for large carnivores, illustrating that habitat fragmentation can produce source–sink dynamics that may not be apparent from other metrics of habitat quality. Locally, conserving high‐quality source habitat within the Santa Cruz Mountains is necessary to support long‐term puma population persistence. More broadly, source–sink dynamics may at play for other carnivore populations in similar fragmented systems, and linking landscape conditions to population dynamics is essential for effective conservation. Caution should be used in inferring habitat quality from habitat selection alone, but these results shed light on metrics of selection that may be better or worse proxies to identify source areas for large carnivores.
Article
Full-text available
Wildlife managers make difficult decisions about how best to ensure sustainable wildlife populations. This is especially contentious in the absence of accurate abundance data. Currently, many managers rely upon harvest metrics to monitor mountain lion abundance and to set management objectives. We analysed mountain lion harvest data from 2005 to 2016 across 10 U.S. states to determine mountain lion metapopulation trends. Our results were ambiguous and suggested conflicting population trends. Three hunting metrics indicated that the metapopulation was declining, two metrics could be interpreted as support for either an increasing or decreasing metapopulation and one metric indicated that the mountain lion metapopulation was stable. This ambiguity may indicate that some metrics better reflect carnivore abundance than others or that harvest metrics are a poor method for monitoring carnivore abundance. This is a concern because ambiguity in population trends may also fuel conflict between different stakeholder groups with different views of mountain lions. To avoid future ambiguity and to mitigate dissension among stakeholders, state agencies might consider a collaborative integrated population model to monitor mountain lions at a national scale.
Article
Full-text available
Prey respond to predation risk with a range of behavioral tactics that can vary based on space use and hunting mode of the predator. Unlike other predators, human hunters are often more spatially and temporally restricted, which creates a period of short-duration, high-intensity predation risk for prey. Consequently , identifying the roles different hunting modes (i.e., archery and rifle), hunts for targeted and non-targeted species, and landscape features play in altering spatial and temporal responses of prey to predation risk by humans is important for effective management of harvested populations. From 2009 to 2016, we used a large-scale experiment including 50 animal-years of location data from 38 unique male elk (Cervus canadensis) to quantify changes in movement and resource selection in response to hunters during 3 separate 5-day controlled hunts for antlered males (elk archery, deer [Odocoileus spp.] rifle, and elk rifle) at the Starkey Experimental Forest and Range in northeast Oregon, USA. We evaluated competing hypotheses regarding elk responses to varying levels of prey risk posed by the different hunt types. We predicted that the strength of elk behavioral responses would increase with perceived hunter lethality (i.e., weak response to elk archery but similar response to elk and deer rifle hunts) and that prey response would be closely associated with hunter activity within the diel cycle (greater during diurnal than nocturnal hours) and across hunting seasons. Elk responses were J Wildl Manag. 2022;1-19. wileyonlinelibrary.com/journal/jwmg | 1 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Article
Full-text available
Western North America is experiencing remarkable human population growth and land-use change. Irrigation and associated cultivation have led to colonization of urban-wildland interface (UWI) environments by mule deer (Odocoileus hemionus), and consequently, cougars (Puma concolor). In the wake of these changes, human-wildlife conflicts have increased in tandem with questions about long-term species conservation. To address these concerns, we fit 79 cougars with radio-telemetry collars in the Oquirrh Mountains near Salt Lake City, Utah (2002–2010). Our goal was to evaluate variation in cougar habitat selection, diet, and cause-specific mortality in a landscape dominated by urban, military, and industrial activities. We used radio-telemetry data in concert with Resource Selection Functions to address three hypotheses: (1) that cougars would select wildland over UWI land-uses; (2) prey composition would reflect differences in land-use; and (3) mortality would be predominantly human-caused. Cougars largely selected wildland habitats associated with seasonal mule deer presence, but contrary to expectation, they also selected habitats closer to urban and mined areas. Prey composition in the UWI did not differ from wildland habitats. Domestic ungulates represented only 2% of 540 recovered prey items and were found primarily in wildlands. Native ungulates comprised > 90% of the total kill, irrespective of season or land-use, suggesting that use of UWI habitats was linked to mule deer presence. Cougar mortality was disproportionately due to natural causes in wildlands, but individuals that died of human causes in UWI habitats were more likely to be inexperienced hunters, supporting young kittens, or compromised by physical handicaps. In general, presence of mule deer was the key predictor of cougar habitat use, even in this highly disturbed, anthropogenically altered landscape. As such, management designed to reduce conflict and ensure conservation will need to focus on urban deer, land-use planning, and targeted education campaigns to reduce food subsidies.
Article
Full-text available
When navigating heterogeneous landscapes, large carnivores must balance trade‐offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited. Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human‐dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions. We used high‐resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lions Panthera leo in Laikipia, Kenya and pumas Puma concolor in the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk. For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade‐off between energetically efficient movement and avoiding anthropogenic risk. Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain‐dependent patterns can reflect meaningful behavioural processes, including how fitness‐relevant goals influence behaviour over different periods of time. In applying multi‐scale analysis to fine‐resolution data, we showed that two large carnivore species in very different human‐dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.
Article
Mitigating human-caused mortality for large carnivores is a pressing global challenge for wildlife conservation. However, mortality is almost exclusively studied at local (within-population) scales creating a mismatch between our understanding of risk and the spatial extent most relevant to conservation and management of wide-ranging species. Here, we quantified mortality for 590 radio-collared mountain lions statewide across their distribution in California to identify drivers of human-caused mortality and investigate whether human-caused mortality is additive or compensatory. Human-caused mortality, primarily from conflict management and vehicles, exceeded natural mortality despite mountain lions being protected from hunting. Our data indicate that human-caused mortality is additive to natural mortality as population-level survival decreased as a function of increasing human-caused mortality and natural mortality did not decrease with increased human-caused mortality. Mortality risk increased for mountain lions closer to rural development and decreased in areas with higher proportions of citizens voting to support environmental initiatives. Thus, the presence of human infrastructure and variation in the mindset of humans sharing landscapes with mountain lions appear to be primary drivers of risk. We show that human-caused mortality can reduce population-level survival of large carnivores across large spatial scales, even when they are protected from hunting.
Article
Typically, males of polygamous mammals are responsible for population connectivity and gene flow via dispersal, whereas females, showing stronger philopatry, strengthen local population stability and growth. These expectations can be disrupted by human disturbances; however, this possibility has been poorly examined in wide-ranging mammals that are important targets for conservation. By reviewing philopatry and dispersal in felids, we aimed to evaluate: 1) whether the sex-related patterns of philopatry and dispersal predicted for polygamous mammals are prevalent in felids, 2) possible major causes underlying each of these behaviours, and 3) if, and to what extent, anthropogenic disturbances can alter patterns of philopatry and dispersal in this animal lineage. We synthesised the available literature (n = 55 papers) comprising 12 species. Puma concolor was the most-studied species, followed by other large species. Both philopatry and dispersal were heterogeneously defined, depending on the study aim and the method employed (telemetry, camera trapping or molecular tools). Most species followed the predicted philopatric and dispersal patterns, and most study areas (76%) were under some type of anthropogenic disturbance drivers. Philopatry was linked to females’ higher dependency on the quality and availability of resources, and to their social dynamics, higher reproductive success, inclusive fitness and demographic aspects of population. Dispersal was frequently linked to competition for mates and resources, and inbreeding avoidance. However, some plasticity was observed in both philopatry and dispersal, especially under the presence of anthropogenic drivers. For example, hunting can create open territories, increasing the number of philopatric females and opportunistic philopatric males. Habitat fragmentation can increase population isolation and male dispersal distance, and the presence of anthropogenic or natural barriers can result in unsuccessful dispersal attempts. We postulate that human activities affect long-term population persistence in the Felidae, via disruption of sex-related patterns of spatial dynamics.