Access to this full-text is provided by Wiley.
Content available from Ecology and Evolution
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e70097.
|
1 of 15
https://doi.org/10.1002/ece3.70097
www.ecolevol.org
Received:31May2024
|
Revised:14July2024
|
Accepted:19July2024
DOI: 10.1002/ece 3.70 097
RESEARCH ARTICLE
Impacts of management practices on habitat selection during
juvenile mountain lion dispersal
John F. Randolph1,2,3 | Julie K. Young1,2 | David C. Stoner1,2 | David K. Garcelon3
Thisisanop enaccessarticleundertheter msoftheCreativeCommonsAttributionLicense,whichpe rmitsuse,distributionandreproductioninanymedium,
provide d the original wor k is properly cited.
©2024TheAuthor(s).Eco logy an d EvolutionpublishedbyJohnW iley&SonsLtd.
1Depar tmentofWildlandResources,Ut ah
StateUniversit y,Logan,Utah,USA
2EcologyCenter,UtahStateUniversity,
Logan,Utah,USA
3InstituteforWildlifeStudies,Arcat a,
California,USA
Correspondence
JulieK.Young,DepartmentofWildland
Resources,UtahStateUniversity,Logan,
UT,USA.
Email:julie.young@usu.edu
Funding information
InstituteforWildlifeStudies(IWS);
CaliforniaDepartmentofFishandWildlife
(CDFW );NevadaDepar tmentofWildlife
(NDOW);K.SchoeneckerUSGSFtCollins
ScienceCenter
Abstract
Dispersal is a complex series of movements before an individual establishes a
homerange.Animalsmusttravelandforageinunfamiliar landscapes thatinclude
anthropogenic risks suc h as road crossings, har vest, and urban lan dscapes. We
compare dispersal behavior of juvenile mountain lions (Puma concolor) from two
geographicallydistinctpopulationsinCaliforniaandNevada,USA.Thesetwosites
areecologically similar but havedifferent management practices; hunting is per-
mitted in Ne vada, whereas mou ntain lions are protec ted in California . Weus ed
GPS-collardataandnet-squareddisplacementanalysisto identifythree dispersal
states:exploratory,departure,andtransienthomerange.Wethencomparedeach
dispersalstateofthetwo mountainlionpopulationsusinganintegratedstepse-
lection analysis(iSSA).Themodel includedexplanator yvariableshypothesizedto
influence one or more dispersal states,includingdistance toforest,shrub, water,
hay and crop, develo ped lands, and fou r-wheel drive roads, as wel l as elevation
and terrain ruggedness. Results revealed consistent habitat selection between
sitesacrossmostlandscapevariables,withonenotableexception:anthropogenic
covariates, in cluding distance to devel oped land, distan ce to hay and crop, and
distance to four-wheeled drive roads, were onlystatistically significant on mod-
eled habit at selection du ring dispersal i n the population sub ject to hunting (i.e. ,
Nevada). Result s suggest that hu nting (pursuit wit h hounds resulti ng in harvest)
andnon-lethalpursuit(pursuitwithhoundsbutnoharvestallowed)increaseavoid-
anceofanthropogeniclandscapesduringdispersalforjuvenilemountainlions.By
comparingpopulations,weprovidedvaluableinsightsintotheroleofmanagement
inshapingdispersalbehavior.
KEYWORDS
connectivity,cougar,human-wildlifeconflict,movementecology
TAXONOMY CLASSIFICATION
Appliedecology,Behaviouralecolog y,Lifehistor yecology,Movementecology
2 of 15
|
RANDOLPH et al.
1 | INTRODUC TION
Dispersalisthemovement of an animalfromits natalrangetothe
placewhereitreproducesifitsurvives(Howard,1960)andisacen-
tralcomponentofanindividual'sfitness.Benefitsfromdispersalin-
cludereducedcompetitionforresourcesandimprovedreproductive
success(e.g.,findingsuitablematesandreducedinbreedingdepres-
sion; Oliveira et al., 2022).Dispersalalsofacilitatesdemographicand
geneticconnectivitywithinmetapopulations,benefitingindividuals
andpopulations(Lowe&Allendorf,2010).
Despitethebenefitsofdispersal,italsoposesconsiderablerisks
(Bonte et al.,2012). Duringdispersal, individualsnavigate unfamil-
iar and lower-quality habitat s in search of vacancies to est ablish
home ran ges (Ander son et al., 2004; Huck et al ., 2010). Traveling
through fragmented and unfamiliar terrain increases vulnerability
tointraspecificstrife,predation,humanconflict,andhuman-related
mo rtal it y, inc lu din gvehi cleco llisi ons ,d epr eda tio n,and har ves tpr es-
sure (An drén et al., 2006; Johnso n et al., 2010 ; Riley et al., 20 14;
Soulsburyetal.,2008).Whilenavigatinginferiorormarginalhabitat,
dispersingjuvenilesalsofaceenergeticstrainfromalackofforaging
opportunitiesorpoorsuccessrates (Benoitetal.,2020;Palomares
et al., 2000;Smith,19 93),makingtheprocessrisky.
Dispersal canbe facilitatedor impeded by the degree of land-
scape connectivity (Tayloretal.,1993). Reduc tions in connectivity
stemming from habitat loss and fragmentation, often caused by
anthropogenic developmentand use, are problematic for juvenile
dispersal. Yet metapopulation studies have improved our under-
standing of theimpacts of fragmentation on wide-ranging species
and shown that juvenile dispersal is acriticallink connecting frag-
mented sub populations ( Anderson et a l., 2004). Larg e carnivores,
for examp le, require la rge home range s and can often t ravel long
distan ces daily (Git tleman & Ha rvey, 1982). Organisms withthese
trait s suffer mo st from habit at loss and fr agmenta tion due to low
populationdensitiesand high edge-arearatiosthatbring them into
contact with anthropogenic landscapes, and consequently with
humans. Encounters with anthropogenic landscapes may elevate
the risk of human-related mortality for large carnivores (Naude
et al., 2020; Wood roffe & Ginsbe rg, 1998). Decreased connectiv-
itycandirectlyimpactfitnessbyconstrainingjuveniledispersaland
indirectlyaffectgeneticdiversity,potentiallyleadingtoinbreeding
depression(Crooks,2002; Heim etal., 2019; Pelletier etal., 2012;
Riley et al., 2014 ),orlocalextirpations(Bensonetal.,20 19).
Mountainlions(Puma concolor)arelarge-bodied,obligatecarni-
voresfoundthroughouttheAmericas.Becauseoftheirlargebody
sizea ndhight ro phiclevel ,t heycomm onlyo cc urat lowd ensit ie s,ex-
hibitlargehomeranges,lackadistinctmatingseason,andrelymainly
on immigration as a source of recruitment (Hemker et al., 1984;
Lindstedt et al., 1986; Logan et al., 1986; Logan&Sweanor, 2001;
Robinetteetal.,1961).Theycanraiseyoungyear-roundwithanatal
period thattypically spans13–17 months beforejuvenilesdisperse
(Jansen&Jenks,2012).Uponreachingindependence,approximately
50%ofjuvenilefemalesexhibitphilopatry(establishmentofanadult
homerangenearoroverlappingtheirnatalrange;Stoneretal.,2013),
whereas themajorityof malesdisperse, andtravelsignificantlyfar-
ther from their natal home range than dispersing females (Choate
et al., 2018;Sweanor etal., 2000;Thompson & Jenks, 2010 ). This
behaviorisdrivenbyterritorialintoleranceofjuvenilemalesbyadult
malesalreadylivinginthenatal range,promptingjuvenilemales to
disperse(Sweanor etal., 2000).Newlyindependentjuvenilespos-
sess poorly developed hunting skills, which canlead them to seek
easily accessible resources, such as livestock, roadkill, or prey in
urbanareas(Stoneretal.,2021).Thisperiodofexplorator y,nomadic
movements coupled with poor hunting skills, means dispersing
juveniles are more likely to encounter human disturbance and an-
thropogenicbarriersthanresidents(Beier,1995; Dyke et al., 1986 ;
Riley et al., 2014).Yet, mountainlionsarepredominantly generalist
species capableof surviving acrossavarietyoflandscapes, ranging
fromremotewildernesstomoredevelopedareas(Coonetal.,2019),
anddispersingjuvenilescansurviveprovidingtheyobtainsufficient
food,avoidintraspecificstrife,navigatethecomplexgradientofan-
thropogenicobstacles,andminimizehumanconflictrisk.
Conflictwithhumans is one ofthe primary causesofcarnivore
mortality(Woodroffe&Ginsberg,1998).Sourcesofconflictconsist
primarilyof livestockorpetdepredation(i.e.,retaliatory killingof a
mountainlionthatkilledlivestockorapet;Torresetal.,1996),pub-
licsafety(i.e., lethalremoval of a mountain lion thatcauses riskto
thepublic;Mattson et al., 2011),ordepredationonsensitivewild-
lifespecies(Rominger,2018). The typical management responseto
theseconflictsisthelethalremovaloftheoffendinganimal.Human-
carnivore conflict isprevalent in areas of expandingurbanization,
whichdisrupts landscape connectivity and degrades suitable hab-
itat (Benson et al., 2023; Stoner et al., 2023; Vickers et al., 2015),
and in ruralareas where farmshouse small-hoofedstock (Mazzolli
et al., 2002;Weaver,1978).
Mountain lions are legally hu nted throughout most of their
range in the western USA, except for in California. Most of this
isconductedbypursuingmountainlionsintotrees orrockycliffs
wit ht he aidoftr ainedh ounds.Toacco mm odatet hisformofhunt-
ing,mostWesternst ateagenciesofferhunter stheopportunit yto
traintheirhoundsduring non-lethalpursuitseasons.Thisallows
hunters withhoundstotrack and pursuemountainlionswithout
harvesting. Although the termshunting and harvest are typically
usedinterchangeably,wedefine huntingasthepursuit orsearch
formountain lions,while harvestspecifically refers to thelethal
takeof amountainlion.Therehasbeenanoverallincreaseinju-
venileharvestreportedacrossthewesternUnitedSt ates(Elbroch
et al., 2022),whichinfluencesrecruitmentandimpactsapopula-
tion'sage structure(Cooley,Wielgus,Koehler,&Maletzke,2009;
Logan&Runge,2021;Newbyetal.,2013;Robinson etal.,2008;
Stoner et al ., 2006). Harvest pr essure and habita t quality have
also been shown to influence population dynamics (Andreasen
et al., 2012; Lindzey et al., 19 92). Harvest can influence post-
dispersalhabitatselection;mountainlionsdispersinginprotected
populations establish in lower-quality habitat while mountain
lions dispersing in a harvested population will move to equal-
qualityhabitat(Stoneretal., 2013).Thisdifferencelikelyreflects
|
3 of 15
RANDOLPH et al.
density-dependent habitat selection in protected populations
(Fretwell&Lucas,1969).
Becausedispersaldirectlybenefits individualsurvival, repro-
ductive success, a nd recruitment , as well as indirect ly benefits
population genetics and viability,itiscrucialto understandhow
different management practices may affec t this life stage (Nisi
et al., 2023).Yet, werarely havefine-scalehabitat selection data
to understand how differing anthropogenic pressures influence
dispersal behavior.Our goalwas to assess fine-scale habitat se-
lectionduringjuveniledispersalintwomountainlionpopulations
subjec ted to contrast ing managemen t regimes and leve ls of an-
thropogenicland uses. Wehypothesizedthat the hunted popu-
lation would avoid anthropogenic features, but the protected
populat ion would be indi fferent to th ese same feat ures as they
would not associate them withmortalityrisk(Smith et al.,2015;
Suraci e t al., 2019). By compar ing two popu lations subje cted to
dif feringmanagem entpract ices,weaimtounderstandtheef fe cts
of anthropogenic pressure on juvenile dispersal and shed light
onthe impactsofhuntingand non-lethal management practices
(non-lethal p ursuit seas ons) on animal be havior, as well as land-
scapeandpopulationconnectivity.
2 | MATERIALS AND METHODS
2.1 | Study area
We conducted this study in two sites within the Great Basin
ecoregion of the western United States—one in northeastern
California(hereafter,theprotectedsite)andthesecondinsouth-
easternNevada(hereafter,thehunted site;Figure 1).Whileboth
populationsares ub je cttoleth alremovalfordepredation,onlythe
huntedsiteisalsosubj ec ttorecrea tionalhunti ngandharvest .The
protect ed site was in Modoc Co unty, California , on the Modoc
Plateauandcovered10,890 km2( lat :41. 4945 0,lon g :−120 . 54262).
The region experiences temperatures ranging from −11°C in
FIGURE 1 Mapsof(a)theModoc
County,California,USA,protectedsite
and(b)asectionofLincolnCount y,
Nevada,USA,featuringthehuntedsite
outlinedbyawhitedashedpolygon.
4 of 15
|
RANDOLPH et al.
the winter m onths to 32°C in th e summer (Riegel e t al., 2006).
Elevation s vary from 1 219to 2973 m acr oss the count y.An nual
precipi tation can v ary, with a range b etween 17.8 and 121.9 cm
(Dalyetal.,19 94). The dominantvegetationin thearea wassage
steppe,juniper (Juniperus occidentalis)woodlands,coniferforest,
andagriculture(Riegel etal.,2006).In higher-elevation habitats,
thevegetationispredominantlyponderosapine(Pinus ponderosa)
andJ eff erypin e(Pinus jeffreyi), tra nsiti oning intojun ipe ra nds age-
brush steppe habitats within the plateaus. Located at the center
ofthe county is Alturas, California, a small town with a popula-
tio nof2658.Landown er sh ipacrossthep lateauwasprima rilyfed-
eral and s tate lands (US For est Serv ice Modoc Natio nal Forest,
BureauofLandManagement,U.S.FishandWildlife),interspersed
withprivatelands.Primar ymountainlionpreyconsistedof mule
deer(Odocoileus hemionus),feralhorse(Equus caballus),pronghorn
(Antilocapra americana),coyote (Canis latrans),andbeaver (Castor
canadensis). Mountain lions are the apex carnivore inhabiting
the protec ted site, with black bears (Ursus americanus) present
in some portions of the site. Mountainlion hunting was banned
inCalifornia in 1972,and in 1990 they became a protected spe-
cies under the California Wildlife Protect ionAc t. Nevertheless,
mountainlions are stilllethallyremoved through the issuance of
depredationpermitsinresponsetoverifiedcasesofpredationon
livestoc k or for public s afety. In 2017,Ca lifornia imp lemented a
thr ee -s tr ikeprocesstored ucethenumberofletha lpermitsiss ued
for depredations. Between 2018 and 2022, 15 mountain lions
wereremovedfromtheprotectedsite(0.01mountainliondepre-
dation/100 km2/year;CaliforniaDepartmentofFishandWildlife,
Unpublisheddata).
The hunted site was in the Delamar and Clover Mountain
ranges wi thin Lincoln Cou nty, Nevada, and covere d ~4995 km2.
Elevationsvary from 1371to 2449 m in theDelamarand Clover
ranges. T he site experien ces annual mean p recipitation r anging
betwee n 10.6 and 40.3 cm , and average temp eratures flu ctuate
from5. 2to22.5°C(PRISMClimateGroup,2023).Themostcom-
monvegetationtypesweresemi-aridpinyon-juniper(Pinus mono-
phylla, Juniperus osteosperma) woodland s and sagebrus h steppe.
Near the ce nter of this site lies C aliente, Neva da, a small town
withapopulationof 1009.TheBureauofLandManagementpri-
marily managed theseranges withminimal private and localmu-
nicipallandownership.The mountain lion prey base was similar
amongsites,consistingofmuledeer,feralhorses,deser tbighorn
sheep(Ovis canadensis),and pronghorn.Mountainlionswerethe
apexpredator,andbearswerenotpresent.Mountainlionsinthis
site can behunted year-round with no morethan two lions har-
vestedperpersonperyearusinghoundsoropportunistic ally.The
use of hounds is more frequent during the wintermonths when
persis tent snow cover facilit ates tracking . Harvesting m ountain
lionsthroughtrappingisillegal.From2018to2022,27mountain
lions were ha rvested in th e study site (0.05 m ountain lion har-
vest/100 km2/year; Game ManagementUnits 241,242, 243, and
223),andonemountainlionwasremovedduetolivestockdepre-
dation(0.0002mountainliondepredation/100 km2/year),givinga
totalof28individualsremovedfromthehuntedpopulation(0.06
mountain lion removals/100 km2/year; Nevada Department of
Wildlife,Unpublisheddata).
2.2 | Capture and collaring
From2016to2022,mountain lions intheprotectedsite werecap-
turedusingcagetraps andoccasionally hounds(Ewanyk,2020).All
animalswerefittedwithGPScollars(Vectronic,Lotek,andSirtrack),
program med at a 1- or 2-h fix r ates that upload ed approximate ly
every otherday.GPScollarswerefittedondispersal-age juveniles
(13–24 months; Beier,1995; Cooley,Wielgus, Koehler,Robinson, &
Maletzke, 2009), each equ ipped with a drop-of f mechanism. Th e
drop-offmechanism was programmed basedon the ageof the ju-
venile at th e time of capture a nd ranged from 8 m onths for juve-
nilesthatwerestill growingto 2 yearsfor juvenilesthatwereclose
to adult size. A nimal handling was approved by t wo Institutional
Animal Care and Use Committees (UC Davisprotocol #22408 and
USUprotocol#12972).
All data f rom the hunted site we re collected b etween 2018
and 2021 and p rovided by the Nevad a Department of W ildlife
(NDOW) for this study. Mountain lion captures began in the
Delamar M ountains as par t of a desert bigh orn sheep stud y in
2018,with capture effortsexpandingintothe CloverMountains
in2020. Hounds and foot snareswere usedtooppor tunistically
captur e and collar mount ain lions followin g methods by Janse n
and Jenks (2012). Mountain lions were fitted with GPS collars
(Vectronic)programmedat afour-hourfixrate.Capturemethods
and handl ing followed guide lines from the A merican Soc iety of
Mammologists (Sikes& Gannon, 2011), un der approval f rom an
NDOWveterinarian.
2.3 | Data analysis
2.3.1 | Movementidentificationand
characterization
Sincesomejuvenileswerecapturedwiththeirmotherswhileoth-
erswerealreadyindependent,weconsideredall juveniles inde-
pendent a t the star t of a dispersa l event. To delineate dif fering
movementstatesfordispersingjuveniles,weusednetsquaredis-
placement(Bunnefeldetal.,2011) ,usingo neGPSlocationperd ay
foreachindividualinthenet-squareddisplacementplot.Wethen
usedthedefinitionsfromBunnefeldetal.(2011)toidentifythree
distinct movement states:explorator y, departure, and transient
homerange(definedinTable 1).Afteridentifyingeachmovement
state, we removed a three-daytransition period from thebegin-
ningofthestateandcreatedanewstepburst.Juvenilemountain
lions were co llared as both depe ndent (with mother) a nd inde-
pendent(withoutmother);weconsideredalldependentjuveniles
to be withi n their natal hom e range. For indepe ndent juvenile s
|
5 of 15
RANDOLPH et al.
whosebirthplacewasuncertain, we classified home-rangingbe-
havioraroundthecapturesiteforperiodslongerthanamonthas
theirnatalhomerange,similartoKarelusetal.(2021)(Bunnefeld
et al., 2011).Exploratorybehavioroccurswhentheanimalleaves
and then r eturns to its na tal range, t ypically d epicted as a lo ng
step leng th travel,while transienthome rangebehavior involves
attempt s to establ ish a new range tha t is ultimately ab andoned
(centralizedshortstep lengths; Beier,1995). For both behaviors,
asub-adult/adult home range is notestablished.Depar ture rep-
resents instances where the animal leaves its natal range and
doesnotreturn.Weestimatedwhenindividualsshiftedbetween
thesestates(Bunnefeldetal.,2 011)usingRpackageAMT(Signer
et al., 2019; Table 1). Dependingonthe number ofdispersal be-
haviors identified, weincludedoneormoremovementstatesfor
eachindividualinthesubsequenthabitatselectionanalysis.
2.3.2 | Integratedstepselectionanalysis
Weexaminedjuvenilemountainliondispersalandhabitatselection
usingintegratedstepselectionanalysis(iSSA;Avgaretal.,2016).The
iSSAusesstraightlinesegmentsbetweentwoconsecutivelocations
(st artanden d),hereaf terr eferredtoasste ps ,astheu nitofobserva-
tion. We analyzedhabitat features at the start of each movement
segment tounderst andhow covariates influencemovement char-
acteristics,specificallyexaminingsteplength(thedistancebet ween
two GPS p oints) and turn ing angle (the ch ange in trajec tory from
thesecondtothirdGPSpoint).Weusedhabitatfeaturesassociated
withtheendlocationtoexaminehabitatselectionbytheindividual.
Toaccountfordifferentsamplingratesbetweensites,weresampled
GPS locations of mountainlions in the protected siteto four-hour
fixratestomatchthehuntedsite.Weuseda±10-minwindowfrom
thefixratetoaccountformissed or delayedfixes. Iftwolocations
were not within the 10-minwindow ofthe fix rate, they were not
considered consecutive locations and were excluded. We then re-
movednon-movementdatasuchaskill-siteGPSclustersusingrASF
in Progra m R (Mahoney & Young, 2017; R Core Team, 2022, ver-
sion4.2.2)toavoidselectionbiasduringnon-movementstates.Our
cluster i dentificat ion paramet ers include d a minimum fix co unt of
four loc ations, a spat ial buffe r of 150 m, and a temp oral buf fer of
24 h.WekeptthefirstGPSpointofanidentifiedclusterasthecon-
clusion of the incoming step andthefinal GPSpoint tocommence
ourdeparturestepfromtheidentifiedcluster.Togeneraterandom
steps,wecreatedasite-specificsteplengthdistributionandturning
angledistribution foreachmovementstate.Wethen generated20
randomstepsbasedonthesedistributionsforeachGPSlocationto
compareavailableandusedsteps(Nisietal.,2022).
We considered the influence of various selection and move-
ment covari ates identif ied in previou s mountain lio n habitat st ud-
ies(Bensonetal.,2023; Dellinger et al., 2020;Gigliottietal.,2019;
Nicholsonetal.,2014 ;Robinsonetal.,2015),andafterconductinga
correlationanalysisonthesecovariates,wethenremovedonevari-
ablefromeachpairwithcorrelationcoefficientsexceeding .60.The
covariates analyzed included topography (terrainruggedness index
and elevation; Table 2),distance toanthropogenic features(roads,
agriculture,andstructures;Table 2),anddistancetoselectlandcover
types(shrub,forest,andwater;Table 2).Wealsocalculatedthelogof
alldistance-tovariablestoallowmoresensitivitytodistancescloser
tothatlandcover(Ladleetal.,2019;Nisietal.,2022).Alldistance-to
variablesintheglobalmodeland results are log-transformed.We
ref or ma ttedco or di natereference sy stemsa ndresa mp ledr asterp ix-
elsto30 × 30 musingArcGISProV.3.1.1(ESRI,2023).
Weextracted habitat covariates at allused andavailablesteps
andfitaglobalstepselectionmodelforeachofthethreedispersal
behavioralstateswithprogramR(RCoreTeam,2022,version4.2.2)
package AMT (Signer et al., 2019) to estimate selection of habitat
variablesforeachindividual(Table 2).Becauseourstudy is explor-
atoryinscope,weonlyexamined theglobal model,whichincluded
TAB LE 1 DefinitionsofthethreedispersalbehaviorstatesfromBunnefeldetal.(2011)tocategorizestepdataobtainedfromGPS-collars
onjuvenilemountainlionsinaprotected(Modoc,California,USA)andhuntedpopulation(Lincoln,Nevada,USA).
Behavioral state Definition Net- squared displacement segmenting
Exploratory Departurefromnatalrangebutlaterreturns Nomadicmovementawayfromthenatalhome
rangebutultimatelyreturns.Similartoamigration
net-squareddisplacementplotbutonacompressed
timescale
Departure Departurefromnatalrangewithoutanyreturn Departurefromthenatalhomerangeinsearchof
establishinganadulthomerange.Thisisdepictedin
thedispersalnet-squareddisplacementplot
Transienthomerange Home-rangingbehaviortoexplorethequalityofhabitat Nomadicmovementfromnatalhomerangeand
displaysthehomerangenet-squareddisplacement
plotbeforelaterabandoningthatrange.Thisis
depictedinthemixednet-squareddisplacement
plot.Ifthecollardroppedwhendisplayinghome-
rangingbehavior,weclassifieditasatransienthome
rangeifdatawereobtainedfor<6 monthsand
asanestablishedrangeifdatawereobtainedfor
>6 months
6 of 15
|
RANDOLPH et al.
allvariableswehypothesizedtoinfluencemountainlionmovements
andhabitatselection(Table 2).Weconsideredinteractionsbetween
steplengthandturning anglewithallanthropogeniccovariates.To
obtainpopulation-levelparameters,weusedeachindividual'sbeta
estimat e to calculate an i nverse-varian ce weighted mea n for each
study site.Thisprovidedalog-relativeselectionstrength (log-RSS;
Avgaretal.,2 017)foreachcovariatebyeachpopulation.
3 | RESULTS
3.1 | Capture and collaring
Wecaptured and fittedGPS collars on 13 juvenile mountain lions
(2femalesand11males) intheprotectedsite.Ofthese,fivemales
andonefemalewerecapturedwithintheirmaternalrange,whereas
the others wereindependent at the time of capture (Table A1 in
Appendix 1). There were t wo mortalities; one died of star vation
(1 male), and one was lethally removed for depredation (1 male;
TableA1 in Appendix 1).GPScollarsprovidedanaverageof298 days
(SE±46 days)ofdataperjuvenileintheprotectedsite.Onthehunted
site,12juveniles(7females and 5 males)werecapturedandfitted
withGPScollars.Ofthese, seven were withintheirmaternalhome
range (3 mal es and 4 female s),o ne female was a lready inde pend-
ent,andfour were ofunknownstatus (1male,3females; TableA1
in Appendix 1).Werecordedeightmortalities;fourwereharvested
(2females, 2 males),one wasremoved for depredation (1female),
and threedied of unknown causes (2 females, 1 male; TableA1 in
Appendix 1).Theaveragedurationof datacollectedfromGPScol-
larsinourhuntedsitewas631 days(SE ±154 days)perjuvenile.All
individualsfromboth sites were included intheanalysisfromtheir
firstindependentmovementuntiltheirfinaldispersaleventortime
ofdeath.
3.2 | Movement identification and characterization
Three juvenile males in the protected site did not display any dis-
persalbehavior(Table 1)andwereconsequentlyremovedfrom the
study,resultinginasamplesizeof10individuals(2females,8males;
TableA1 in Appendix 1).Six individuals displayed exploratory be-
havior one ormore times, averaging 47 days(SE ±14 days)in dura-
tion,withanaveragetotaldistancetraveledof154 km(SE ±48 km;
TableA2 in Appendix 1).Ninejuvenilesexhibiteddeparturebehav-
iorbetweenFebruary and June, averaging50 days (SE ±14 days)in
durationand travelingameantotaldistance of188 km(SE±58 km;
Table A2 in Appendix 1). Eight juvenile mountain lions exhibited
transienthomerangebehavior,witheachjuvenilespendinganaver-
ageof38 days(SE±5 days)inthisbehavior(TableA2 in Appendix 1).
Theaveragedistancetraveledfromtheirnatalrangestoatransient
homerangewas52 km(SE±9 km).
In our hunte d site, one juvenil e male did not displ ay dispersal
behavior and wasremoved from the analysis( Table 1);11juveniles
(7 female s and 4 males) were reta ined (Table A1 in Appendix 1).
There were six juveniles that exhibited an exploratory state, aver-
aging66 days (SE ±24 days)withanaveragetotal distance traveled
of236 km (SE±64 km;TableA2 in Appendix 1).Departurewasob-
servedforeightjuvenilesbetweenFebruar yandDecember,lasting
an average of 45 days ( SE ±8 days) and travel ing a mean tota l dis-
tance of160 km(SE±32 km;TableA2 in Appendix 1).Sixjuveniles
Variable Definition Resource
Distance to developed
landcover
Open space, low
intensit y,medium
intensity, high intensity
NationalLandCoverDatabase
2021;Dewit z(2023)
Distance to hay and crop NationalLandCoverDatabase
2021;Dewit z(2023)
Distancetoforest Evergreen,mixed,
deciduous
NationalLandCoverDatabase
2021;Dewit z(2023)
Distancetoshrub Grassland,herbaceous NationalL andCoverDatabase
2021;Dewit z(2023)
Distance to water Openwater,emergent
herbaceouswetlands,
woody wetlands, linear
streams,andrivers
NationalLandCoverDatabase
2021;Dewit z(2023)and
UnitedStatesGeographical
SurveyNationalHydrography
Dataset(2023)
Distancetofour-wheeled
drive roads
UnitedStatesGeographical
SurveyNationalTransportation
Dataset(2023)
Elevation ElevatrRPackage;Hollister
etal.(20 17)
TerrainRuggednessIndex ElevatrRPackage;Hollister
etal.(20 17)
TAB LE 2 Overviewofvariables
sourcedataforselectedcovariatesin
the integrated step selection analysis to
comparedispersalmovementofjuvenile
mountainlionsfromprotectedandhunted
populations.Allunitswereinmeters.
|
7 of 15
RANDOLPH et al.
displayed transienthome ranges, averaging 150 days (SE±45 days)
and traveling an average distance of 99 km (SE ±11 km)from their
natal range.
3.3 | Integrated step selection analysis
3.3.1 | Exploratorystate
We found nine cov ariates in the g lobal model f or the explo ratory
statethatexhibitedsignificance(Figure 2).Amongthem,sixcovari-
atesarerelatedtohabitat selection,whereas the remaining three
wereassociatedwithmovement.Intheexploratorystate,mountain
lions in bot h protected (P) and h unted (H) sites sele cted similarl y
forforest(P:β = −.582&H:β = −.496)and terrainruggednessindex
(P:β = .223& H: β = .316;Figure 2). The protected site mountain lions
selecteddistancesclosetoshrublandcover(P:β = −.409),whereas
thoseinthehuntedsiteselectedfartherdistancesfromdeveloped
landscapes(H:β = .169;Figure 2).Mountain lions inthehuntedsite
selected for higher elevations (H: β = .308) while those from the
protect ed site selected fo r elevations near a nd around the mean
(P:β = −.380;Figure 2).Inourhuntedsite,estimatesofsteplengths
(H: β = −.044) we re longer and t urning angl es were more tor tuous
in developed landscapes (H: β = .186) and exhibited more direct
movementswhen near or on four-wheel-driveroads(H:β = −.186;
Figure 2).
3.3.2 | Departurestate
The global model for the departure state contained six significant
covariates(Figure 2).Ofthese,fourwerehabitatcovariatesandone
wasamovementcovariate.Mountainlionsinbothsitesselectedto
benearor withinforest(P:β = −.618&H:β = −.725)and shrubland
cover (P: β = −.493 & H: β = −.378; Figure 2). The pr otected mou n-
tainlionsselectedforhigherterrainruggedness(P:β = .221)andel-
evation near and around the mean (P: β = −.218; Figure 2).Hunted
mounta in lions selec ted for loc ations near or w ithin hay and cro p
(H:β = −.299)and turninganglesweremore tortuous withinand near
agriculturalareas(H:β = .335;Figure 2).
FIGURE 2 GlobalmodelofsignificantlogRelativeSelectionStrength(log-RSS),thatis,betacoefficient,and95%confidenceintervals
foraone-unitchangeinthecovariateforeachdispersalbehaviorbetweensites.Ifacovariateincludesan“x”,itindicatesaninteraction
termwitheitherTA(turningangle)orSL(steplength).Boldbarsrepresentsignificantcovariateswheretheestimateandconfidenceinterval
donotoverlapzero,whilefadedbarsoverlapzeroandarenotconsideredsignificant.Covariateswherebothstudysitesaresignificantare
markedwithanasterisk(*).
8 of 15
|
RANDOLPH et al.
3.4 | Transient home range state
Intheglobalmodelforthetransienthomerangestate,weidentified
five significant covariates, which were categorizedinto four habi-
tat and on e movement covari ate (Figure 2). Mountai n lions in the
transienthome range stateatboth sitesselected for morerugged
terrain (P:β = .264 & H: β = .162), with elevations around themean
(P:β = −.815&H:β = −.141),andforforestlandcover(P:β = −.469&
H:β = −.525;Figure 2).Themountain lions attheprotectedsitese-
lectedforshrubhabitat(P:β = −.348)andatthehuntedsiteselected
for water fe atures (H: β = −.109; Figure 2). Hunted mou ntain lions
had longerstep lengthsnear andwithindeveloped landscapes(H:
β = −.045;Figure 2).
4 | DISCUSSION
Mountainlions have thelargestlatitudinal distribution of any spe-
cies of wild cat (Kitchener, 1991) and the largest distribution of
any wild ter restrial mam mal in the wester n hemisphere (Su nquist
&Sunquist,2002). Wherepreviouslystudied, juveniledispersal by
mountainlions has beenconfinedtosingle or neighboringpopula-
tions(Beier,1995; Morrison et al., 2015;Newbyetal.,2013).Making
meaningfulcomparisonsacrosspopulations can be difficult dueto
differ ences in habitat s, weather patter ns, and methodo logies. By
comparing juvenile dispersal behaviors bet ween two populations
inhabitingsimilar basin-and-rangehabitatsover the same timepe-
riod,butwithdifferentwildlifemanagementpractices,wewereable
toexplorehowthose managementpracticesmay influencemove-
mentandhabitatselectionbehaviors.Wefoundminimaldifferences
inhabitat selection between our two study sites and across three
dispers al states; h owever, the differ ences that we fo und were as-
sociatedwithanthropogeniccovariates.Aswehypothesized,moun-
tainlionsinthehuntedsiteavoideddevelopedlandscapeswhereas
thejuvenilesdispersingfromtheprotectedsitedidnotselectforor
against developed landscapes.
Duetothechallenges incapturingandcollaringjuvenilemoun-
tainlions,weconsideredsomecaveats in interpreting our results.
Differ ences we obser ved may be inf luenced by var ying sex r atios
anddifferentageclasses(i.e.,dependentandindependent)ofjuve-
nilescollaredbetweensites,whichalsoresultedindifferentnum-
bers ofearlyandlatedispersal statesbetweensites. Thatsaid, we
observedarange of dispersalcharacteristics within both sitesand
identifiedallmovementstateswithinbothageclasses. Wealsoac-
knowledgethatour broaddefinitionsfor classifying diverse move-
ments,whichexhibithighvariabilitybetweenindividuals,mayhave
led to misid entified state s. Specifical ly, our assumpt ion regarding
natalrangesofindependentindividuals,inferredfromhome-ranging
behavior around the capture site for longer than 1 month, may al-
ternatively reflect a transienthome range. Yet these broad defini-
tionsenabledustosegmentdispersalmovementsintothreestates,
whichallowedusto focusouranalysison similarstates.Across the
three dispersal states, juveniles selected habitats similar to that
used by adult mountain lions in other studies, including forest,
shrub, increased terrain ruggedness, and higherelevation(Gigliotti
et al., 2019;Nicholsonetal.,2014;Robinsonetal.,2015).Theseco-
variates are alsoimportanttoherbivoresthataretheprimary prey
ofmountain lions(Morano et al., 2019; VanBeestet al.,2014) and
may facilitate hunting opportunities(Kunkel etal., 1999). As such,
our data su ggest that disp ersing mount ain lions predic ate habitat
selectiononthegeneralhabitatassociationsoftheirprimaryprey.
The response to anthropogenic covariates differed between
thetwofocalpopulations.Modelsofmountainlionsinthehunted
siteindicatedhabitatselectionandavoidancerelatedtoanthropo-
genicfactors.Duringexploratoryandtransienthomerangestates,
wefound evidence ofavoidanceof developed landcover,accom-
panied by varying movement behaviors. Conversely, during the
depar ture state , there was sele ction for hay a nd crop landcove r.
During the exploratory state, mountain lions in the hunted site
exhibited increased step length and more torturous movements
observednearorwithindevelopedlandscapes,potentiallydriven
byperceivedrisk or hindrance to movement (Dickie et al., 2020).
Mountain lions have previously been shown to select areas in
proximitytofour-wheeldriveanddirtroadsforeasiermovement
(Dellingeretal.,2020),su g ge s tin gth ato urobs e r ve din cre a sedste p
lengthcouldalsorelateto four-wheel drive and dirt roads facili-
tatingmovementofdispersingmountainlions(Dickieetal.,2020).
Duringthetransienthomerangestate,juvenilesinthehuntedsite
exhibited straighter movement when near or within developed
landscapes. Moststudiesshowmountainlionstypically avoid de-
veloped l andscape s (Riley et al., 2021; Robi nson et al., 2015), so
itislikely that straightmovement (i.e.,increased step length) is a
behavior exhibitedby mountainlions attempting to quickly move
pastdevelopedareas,areasofhighexposure,orthoselandscapes
withlittlehabitatvalue.
Althoughjuvenilesfromthehuntedpopulationgenerallyavoided
deve lopedlandscapes,theyselec tedforhayandcropduri ngt hede-
parturestate.Thismostlikelyrelatestoresourceavailability(Tucker
et al., 2021),as theirprimarypreyspecies, mule deer,aredrawnto
agricultural landscapes due to the increased availability and pre-
dictability of resources (Anderson et al., 2012). Our study sites
experience dramatic seasonal shif ts in environmental conditions
throughout the year; however, human-modified agricultural land-
scapesprovideamorepredictableandreadilyavailableresourcefor
wildlife (Oro etal., 2013; Sih etal.,2011).Theselectionofhay and
cropalongwithtortuousmovementswithinthesehabitatssuggest s
that mount ain lions could be usi ng these habitat s for hunting or
scavengingroadkill(Dickieetal.,2020;Stoneretal.,2021).Hayand
crop land scapes are ty pically priv ately owned and not co mmonly
accessibleto hunters,andmightalsoserveasrefugiafrom humans
or adultmountain lions (Harden et al., 2005; Proffit t et al., 2013).
Established adult mountain lions are also unlikelytoregularly use
agriculturallandscapes(Dickson&Beier,2002),potentiallyoffering
juvenile mountain lions refuge from intraspecific st rife (Morrison
et al., 2015).Similarly,brownbears(Ursus arctos)useanthropogenic
landsc apes to reduce se xually selec ted infantici de, as adult male s
|
9 of 15
RANDOLPH et al.
were less in clined to use th ese habitat t ypes in the ir home range
(Steyaertetal.,2016).
During the exploratory and transient home range states
(segment events = 19), we observed avoidance of developed
landsc apes and altere d movements wit hin them. The avoi dance
obser ved during the ex ploratory s tate may be attri buted to ju-
veniles seeking habitat that reflects their natal homerange, and
therefore maternal preferences (Davis & Stamps, 2004; Riley
et al., 2021; Robinso n et al., 2015; Stam ps & Swaisgood, 2007).
Theylikelytransitiontousingotherhabitatfeaturesastheylearn
to find areas with increased prey availability, providing more
oppor tunities as t hey better d evelop their h unting skills . This is
supported by our departure state, wherein dispersing juvenile
mountainlions selecthayandcropareas.Thedifferencesinhab-
itatselectionbetweenmovementstatescouldsuggest thatjuve-
nile dispersal is a lengthy learning process.
Develop ed landscap es represent t he most intense f orm of an-
thropogenic influence and are often avoided by large carnivores
(Boydston et al., 2003; Dickson et al., 2005; Støen et al., 2015).
For dispersing juvenile mountain lions, human-carnivore conflict
is unpred ictable in tim e, space, and magnit ude, exposing t hem to
risks suc h as vehicle collisi ons, public sa fety concern s, and depre-
dation control(Dellingeretal.,2021;Kertson et al., 2013; Mattson
et al., 2011;Thompsonetal.,2014).Inourstudy,onlymountainlions
from the huntedpopulation showed avoidance of developed land-
scapes,whiletheprotectedpopulationdidnotshowselectionforor
avoidance of any anthropogenic covariates. Mostofthedeveloped
landscapewithinthehuntedsiteis situatedin andaround thetown
ofCaliente,which is completely surrounded byotherwise suitable
mountainlionhabitat.Additionally,the townattractsungulates be-
cause it isconcentrated aroundperennialwatersources.This com-
binationofsuitablehabitatandincreasedresourceavailabilitycould
attractdispersingmountainlions.However,ourobservedresponse
to develop ed lands might imp ly that hunting p ressure and pur suit
causejuvenilemountainlionstoavoidthisotherwisesuitablehabitat.
Thiscouldsuggestalearnedavoidanceofdevelopedlandscapes,
potentially influenced by negative interactions with hounds and
hunting. Unlike other carnivores that adjust their habitat selection
and moveme nt in response to pe rceived risk durin g specific hunt-
ingseasons(Basille etal.,2013;Lodberg-Holmetal.,2019;Stillfried
et al., 2015), mountain lionsin the huntedsite consistently avoided
developed landscapes during dispersal. The year-round avoidance
behaviorobservedinhuntedmountainlionscouldstemfromseveral
factors.First,itmay beattributed totheextendeddurationof both
pursuitandharvestseasonsannually,renderingitchallengingforthe
animalstoavoidhumanactivit y.Thepresenceofhuntersandhounds
duringtheseseasonscouldleadindividualmountainlionstoencoun-
terthesethreatsmultiple timesthroughout theyear without being
harve sted, fur ther reinforci ng avoidance behav iors. This avoid ance
behaviormayalsobeinfluencedbymaternalexperience,withyoung
mountainlionslearningavoidancetac ticsfromtheirmothers.
Theuseofdogsasatoolinwildlifemonitoringandmanagement
is diverse . Scat detectio n dogs are employed across the western
regions fo r noninvasive geneti c sampling (McKeag ue et al., 2024;
Wasser et al. , 2004) and lives tock guardia n dogs are used to m it-
igate human-carnivore conflict through livestock protection
(Andelt& Hopper,2000;Young& Sarmento, 2024).Dogs arealso
used for hazing nuisance black bears in urbansettings (Beckmann
et al., 2004). However, the use of d ogs for hazing mo untain lions
hasreceivedrelativelylittlescientificattention.Ourstudyfoundan
increas ed avoidance of devel oped landsc apes by anima ls exposed
tonon-lethal hunting pressure, suggesting mountain lions may se-
lectagainstlandscapefeaturescorrelatedwithhighhumanactivity
includingareaswithdogs.Becausehunting andpursuingmountain
lionswithhoundsoftenoccursinthesespaces,pursuitwithhounds
could provide wildlife managers with a previously underutilized
method forreducinghuman–mountain lionconflicts. However,we
canonlyspeculateonthepotentialimpactswithourdata.Gathering
additional data on specific interactions, including catch-per-unit-
effort,sexandageclassofanimalspursued,hunterencounterrates,
andchasedistancesandreturntimesofmountainlionssubjectedto
pursuitmaybeavaluablefirststepinevaluatingtheefficacyofdogs
asanon-lethalmanagementinter vention.
Inthisstudy,weleveragedGPS-collardatafromtwostudysites
tocompare juvenile dispersal betweenhunted and protectedpop-
ulations ofmountainlions.Harvestof mountainlionsiscommonin
most of the w estern United St ates and ser ves multiple pu rposes,
including managing mountain lion populations, mitigating human-
carnivore conflicts, minimizing livestock depredation, reducing
predationon ungulate populations, and providingrecreational op-
portunities.However,har vestalsoinfluencesthesuccessofdisper-
sal and mo difies the sp atial behavior of ha rvested sp ecies (Logan
& Runge, 2021; Newby et al ., 2013; Robinso n et al., 2008; Smi th
et al., 2022).Ourfindingsexpandourunderstandingoftheinfluence
of hunting on j uvenile disper sal movement s and habitat se lection
bymountainlions. We identifiedsimilarities in selectionwith hab-
itat covar iates commonly c orrelated wit h mountain lio ns (Gigliotti
et al., 2019; Nicholson et al., 20 14; Riley et al., 2021; Robinson
et al., 2015), exce pt that we found ou r two sites dif fered in thei r
responsetoanthropogeniclandscapes.Theseselectiondifferences
highlighttheimportanceforwildlifemanagersdealingwithimperiled
populations,habitatloss,andfragmentationtoconsidertheimpacts
ofhuntingpressureondispersingindividuals andtheirrecruitment
into the pop ulation. Wildlife agencies a cross the western United
States shouldconsiderhowmanagementpractices affect boththe
focalpopulationandthemetapopulation.Ourresults contributeto
thegrowingbodyof evidencethatmanagementpracticescanhave
behavioraleffects on themovement and habitat selectionofjuve-
nile mount ain lions during disp ersal (Cooley, Wielgus, Koehler, &
Maletzke,2009;Logan&Runge,2021;Newbyetal.,2013;Robinson
et al., 2008).
AUTHOR CONTRIBUTIONS
John F. Randolph: Conceptualization (equal); data curation (lead);
formalanalysis(lead);writing–originaldraft(lead);writing–review
andediting(equal).Julie K. Young:Conceptualization(equal);formal
10 of 15
|
RANDOLPH et al.
analysis(suppor ting);resources(equal);supervision(lead);writing–
original draft (supporting); writing – review and editing (equal).
David C. Stoner: Conceptualization (equal); resources (equal);
writing – o riginal draft (su pporting) ; writing – review an d editing
(equal).David K. Garcelon:Conceptualization(equal);fundingacqui-
sition(lead);resources(equal);writing–reviewandediting(equal).
ACKNOWLEDGMENTS
We thank the Institute for Wildlife Studies (IWS), the California
Department ofFish and Wildlife(CDFW ),theNevadaDepartment
ofWildlife (NDOW ), and K. Schoenecker USGS Ft Collins Science
Centerforfundingandsupportthroughoutthisproject.Additionally,
wewouldliketothanktheAfricanSafariClubofFlorida,theEcology
CenteratUtahStateUniversity,andthe$3predatorfeeinNevada
forfunding.Wewanttoextend our appreciationto the many peo-
plewhocollecteddataforthisproject,includingNDOWemployees,
BrianJansenandRuthPassernigforcapturingandcollaringNevada
mountain lions, and IWS employees and Jeff Davis for collaring
mounta in lions in Califor nia. We thank Pat Jacks on, Jon Ewanyk,
PeterIacono,JuliaFreimuth,andNorah Saarmanfor theirconcep-
tualassistanceandColtonWise,BrianSmith,andMitchParsonsfor
their coding andstatistical assistance. NorahSaarmanreviewedan
earlierdraftofthismanuscript.ThisisUAESpaper#9808.
CONFLICT OF INTEREST STATEMENT
Nonedeclared.
DATA AVAIL AB ILI T Y STAT E MEN T
DatafromCaliforniacanbeaccessedonDryad: https:// doi. org/ 10.
5061/dryad.hdr7sqvrw.PrivatePeerReviewlink:https:// datad ryad.
o r g / s t a s h / s h a r e / j R F 6 s s H T U g g m V C Y S r U H A g _ 7 Y Y o G q 6 0 b h Y 3 t w x
zDjpBQ.
Nevada mountain lions are a protected game species under
Nevada AdministrativeCode(NAC)502.370. As such,rawlocation
dataofmountainlionsareconsideredproprietaryandcannotbere-
leasedwithoutwrittenpermissionfromtheNevadaDepartmentof
Wildlife.DatainquiriescanbeaddressedtoPatrickJackson[pjack-
son@ndow.org].
ORCID
John F. Randolph https://orcid.org/0009-0008-2876-579X
Julie K. Young https://orcid.org/0000-0003-4522-0157
David C. Stoner https://orcid.org/0000-0001-7420-2949
REFERENCES
An del t ,W.F. ,& Hop p er,S .N . (2 0 0 0). Liv est ock gua rdd ogs red uce pre da-
tionon domesticsheepinColorado.Journal of Range Management,
53, 2 59–2 67.
Anderson, C. R., Lindzey, F. G., & McDonald, D. B. (20 04). Genetic
struc ture of cougar populations across the Wyoming basin:
Metapopulation or megapopulation. Journal of Mammalogy, 85,
1207–1214.
Anderson,E.D.,Long,R.A.,Atwood,M.P.,Kie,J.G.,Thomas,T.R.,Zager,
P.,&Bowyer,R.T.(2012).Winterresourceselectionbyfemalemule
deer Odocoileus hemionus:Functionalresponsetospatio-temporal
changesinhabitat.Wildlife Biology, 18, 153–163.
Andreasen, A . M., Stewart, K. M., Longland, W. S., Beckmann, J. P.,
& Forister, M. L. (2012). Identification of source-sink dynam-
ics in mountain lions of the Great Basin. Molecular Ecology, 21,
568 9–5701.
Andrén, H., Linnell, J. D. C ., Liberg, O., Andersen, R., Danell, A.,
Karlsson, J., Odden, J., Moa,P.F.,Ahlqvist, P.,Kvam, T., Franzén,
R., & Seg erström , P.(20 06). Surv ival rates a nd causes of m ortal -
ity in Eur asian lynx (Lynx lynx) in multi-use landscapes. Biological
Conservation, 131, 23–32.
Avgar,T.,Lele,S.R.,Keim,J.L.,&Boyce,M.S.(2017).Relativeselection
streng th:Quantifyingef fect size inhabitat-and step-selec tion in-
ference.Ecology and Evolution, 7, 5322–5330.
Avgar,T.,Potts,J.R.,Lewis,M.A .,&Boyce,M.S.(2016).Integratedstep
selectionanalysis:Bridgingthegapbetweenresourceselec tionand
animalmovement.Methods in Ecology and Evolution, 7, 619–63 0.
Basille , M., Van Moorter, B., H erfindal, I ., Martin, J. , Linnell, J. D. C. ,
Odden,J., Andersen,R .,&Gaillard, J.-M. (2013). Selectinghabitat
tosur vive: The impactof road densityonsurvivalin alargecarni-
vore. PLoS ONE, 8, e65493.
Beckma nn, J. P., Lackey, C. W., & Berger, J. (20 04). Evaluati on of de-
terrent techniques and dogs to alter behaviorof“nuisance”black
bears.Wildlife Society Bulletin, 32, 1141–1146.
Beier,P.(1995).Dispersalofjuvenilecougarsinfragmentedhabitat.The
Journal of Wildlife Management, 59, 228.
Benoit, L., Hewison, A . J. M., Coulon, A ., Debeffe, L ., Grémillet, D.,
Ducros, D., Cargnelutti, B., Chaval, Y., & Morellet, N. (2020).
Acceleratingacrosst helands cape:Theenergeticcostsofnataldis-
persalinalargeherbivore.Journal of Animal Ecology, 89, 17 3 –185 .
Benson , J. F.,Do ughert y,K . D., Beier, P.,B oyce, W. M., Criste scu, B.,
Gammons,D. J., Garcelon, D.K .,Higley,J. M., Mar tins,Q. E., Nisi,
A.C., Riley,S.P.D.,Sikich, J. A., Stephenson,T.R., Vickers,T.W.,
Wengert,G. M., Wilmers,C. C.,Wittmer,H. U., & Dellinger,J.A.
(2023). The e cology of human- ca used mortal ity for a protec ted
large carnivore. Proceedings of the National Academy of Science s of
the United States of America, 120, e2220030120.
Benson,J.F.,Mahoney,P.J.,Vickers,T.W.,Sikich,J.A.,Beier,P.,Riley,S.
P.D. ,Er nes t ,H. B .,&Bo yce ,W.M .(2 019).E x t inc t ion vo r tex dyna m-
icsoftoppredatorsisolatedbyurbanization.Ecological Applications,
29(3),e01868.https:// doi. org/ 10. 1002/ eap. 1868
Bonte, D., VanDyck, H., Bullock, J. M., Coulon, A.,Delgado, M.,Gibbs,
M., Lehouck, V., Matthysen, E., Mustin, K., Saast amoinen, M.,
Schtick zelle,N.,Stevens, V.M., Vandewoestijne,S., Baguette, M.,
Barton,K.,Benton,T.G.,Chaput-Bardy,A.,Clobert,J.,Dytham,C.,
…Travis,J. M. J. (2012).Costs of dispersal. Biological Reviews, 87,
290–312.
Boydston,E.E.,Kapheim,K.M.,Watts,H.E.,Szykman,M.,&Holekamp,
K.E.(2003).A lteredbehaviourin spotted hyenasassociatedwith
increasedhumanactivity.Animal Conservation, 6, 2 07–219.
Bunnefeld,N.,Börger,L.,Van Moor ter,B.,Rolandsen, C. M.,Dettki,H.,
Solber g, E. J., & Eri csson, G . (2011). A model-d riven app roach to
quantif ymigration patterns: Individual,regionaland yearlydiffer-
ences: Quantifying migrationpatterns. Journal of Animal Ecology,
80, 46 6–476.
Choate,D.M.,Longshore,K.M.,&Thompson,D.B.(2018).Cougardis-
persa l and natal ho ming in a deser t environme nt. Western Nor th
American Naturalist, 78, 221–235.
Cooley,H .S.,Wielgus, R. B., Koehler,G., &Maletzke,B.(20 09).Source
populations in carnivore management: Cougar demography and
emigrationina lightlyhuntedpopulation. Animal Conservation, 12,
321–328.
Cooley,H.S.,Wielgus,R.B.,Koehler,G.M.,Robinson,H.S.,&Maletzke,
B.T.(20 09). Doeshuntingregulate cougar populations?A test of
thecompensator ymor talityhypothesis.Ecology, 90, 2913–2921.
|
11 of 15
RANDOLPH et al.
Coon,C.A.C.,Nichols,B.C.,McDonald,Z.,&Stoner,D.C.(2019).Effects
ofland-usechangeandpreyabundanceonthebodyconditionofan
obligatecarnivoreatthe wildland-urbaninterface. Landscape and
Urban Planning, 192, 10364 8.
Crooks, K. R. (2002). Relative sensitivities of mammalian carnivores to
habitatfragmentation.Conservation Biology, 16, 488–502.
Daly,C.,Neilson,R .P.,& Phillips, D.L. (1994).Astatistical-topographic
modelfor mapping climatological precipitation overmountainous
terrain. Journal of Applied Meteorology, 33, 14 0–158.
Davis,J.,&Stamps,J.A.(2004).Theeffectofnatalexperienceonhabitat
preferences.Trends in Ecology & Evolution, 19, 411–416 .
Dellinger,J.A.,Cordova,R.,Macon,D.K.,&Rudd,J.L.(2021).Temporal
trendsanddriver sofmountainliondepredationinCalifornia,USA.
Human- Wildlife Interactions, 15(1),1–16.
Dellinger,J. A.,Cristescu, B., Ewanyk, J., Gammons, D.J., Garcelon, D.,
Johnston,P.,Martins,Q.,Thompson,C.,Vickers,T.W.,Wilmers,C.
C.,Wittmer,H.U.,&Torres,S.G.(2020).Usingmountainlionhab-
itatselectioninmanagement.The Journal of Wildlife Management,
84, 359–371.
Dewit z, J. (2023). National Land Cover Database (NLCD) 2021 Products:
U.S. Geological Survey data release. https:// doi. org/ 10. 5066/
P9J Z 7AO 3
Dickie,M.,McNay,S.R.,Sutherland,G.D.,Cody,M.,&Avgar,T.(2020).
Corridorsorrisk?Movementalong,anduseof,linearfeaturesvar-
ies pred ictably am ong large mamma l predator and pr ey species.
Journal of Animal Ecology, 89, 623–634.
Dickso n, B. G., & Beier, P. (2002). Hom e-r ange and habita t selection
by adult cougars in southern California. The Journal of Wildlife
Management, 66, 1235.
Dickson,B.G.,Jenness,J.S.,&Beier,P.(2005).Influenceofvegetation,
topography,androadsoncougarmovementinsouthernCalifornia.
Journal of Wildlife Management, 69, 26 4–276 .
Dyke, F.G. V.,Brocke,R. H., Shaw,H. G.,Ackerman, B. B.,Hemker, T.
P.,& Lindzey,F.G. (1986).Reactions of mountain lions to logging
andhumanactivity.The Journal of Wildlife Management, 50, 95–102.
Elbroch, L. M., Petracca, L. S., O'Malley, C., & Robinson, H. (2022).
Analysesofnationalmountainlionharvestindicesyieldambiguous
interpretations. Ecological Solutions and Evidence, 3, e12150.
ESRI.(2023).Ar cGIS P ro 3.1.1.EnvironmentalSystemsResearchInstitute.
Ewanyk, J. (2020). Habitat use and prey selection by mountain lions in an
altered sagebrush steppe environment. Cal Poly H umboldt These s
andProjects368.h t t p s : / / d i g i t a l c o m m o n s . h u m b o l d t . e d u / e t d / 3 6 8
Fretwell,S. D., & Lucas, H.L. (1969).Onterritorial behavior and other
factorsinfluencinghabitatdistributioninbirds.Acta Biotheoretica,
19, 16–36.
Gigliotti,L.C.,Matchett,M.R.,&Jachowski,D.S.(2019).Mountainlions
ontheprairie:Habitat selectionby recolonizingmountainlionsat
theedgeoftheirrange.Restoration Ecology, 27, 1032–1040.
Gittleman,J.L.,&Harvey,P.H.(1982).Carnivorehome-rangesize,met-
abolic needs and ecology.Behavioral Ecology and Sociobiology, 10,
57–63.
Harden, C. D., Woolf, A., & Roseberry, J. (20 05). Influence of exurban
developmentonhuntingopportunity,hunterdistribution,andhar-
vest efficiency of white-tailed deer. Wildlife Society Bulletin, 33,
23 3–2 42 .
Heim,N.,Fisher,J.T.,Volpe,J.,Clevenger,A.P.,&Pac zkowski,J.(2019).
Carnivore community response to anthropogenic landscape
change:Species-specificityfoilsgeneralizations.Landscape Ecology,
34, 2 49 3–2507.
Hemker,T.P.,Lindzey,F.G.,&Ackerman,B.B.(1984).Populationcharac-
teristicsandmovement patternsofcougars insouthernUtah. The
Journal of Wildlife Management, 48, 1275.
Hollister,J.,Shah,T.,Robitaille,A.,Beck,M.,&Johnson,M.(2017).elevatr:
access elevation data from various APIs.RPackageVersion0.1,3.
Howard, W. E. (1960).Innate and environmental dispersalof individual
vertebrates.American Midland Naturalist, 63, 152.
Huck, M., Jędr zejewski, W., Borowik , T., Miłosz-C ielma, M., Schmidt,
K.,Jędrzejewska,B.,Nowak, S., &Mysłajek,R.W.(2010). Habitat
suitability,corridors and dispersal barriers for largecarnivoresin
Poland.Acta Theriologica, 55, 17 7–192 .
Jansen,B .D.,&Jenk s,J.A.(2012).Bir thtimingformountainlions(Puma
concolor); testing the prey availability hypothesis. PLoS ONE, 7,
e44625.
Johnson, S. A ., Walker,H.D., & Hudson, C . M. (2010). Dispersal char-
acteristicsof juvenile bobcats insouth-central Indiana. Journal of
Wildlife Management, 74, 379–3 85.
Karelus,D.L .,Gear y,B. W., Harveson,L .A., & Harveson, P.M.(2021).
Movementecologyandspace-usebymountainlionsinWestTexas.
Global Ecology and Conservation, 31, e0 18 59.
Kertson,B.N .,Spencer,R. D.,& Grue,C.E.(2013).Demographicinflu-
ences on co ugar resident ial use and intera ctions with pe ople in
westernWashington.Journal of Mammalogy, 94, 26 9–2 81 .
Kitchener,A. (1991).The Natural History of the Wild Cats. Natural history
of mammals series, Comstock Pub. Associates. https://books.google.
c o m / b o o k s ? i d =8dhFAAAAYAAJ
Ku nke l,K . E., Rut h ,T.K . ,P l etsc h er,D .H . ,&H orn o cke r,M.G .(19 99).W i nte r
prey sele ction by wol ves and couga rs in and near g lacier Nati onal
ParkMontana.The Journal of Wildlife Management, 63, 901–910.
Ladle , A., Avgar, T., Wheatley, M., Ste nhouse, G. B. , Nielsen, S. E. , &
Boyce,M.S.(2019).Grizzlybearresponsetospatio-temporalvari-
abilityinhumanrecreationalactivity.Journal of Applied Ecology, 56,
375–386.
Lindstedt, S. L., Miller,B. J., &Buskirk, S.W.(1986).Homerange, time,
andbodysizeinmammals.Ecology, 67, 413–418.
Lindzey, F. G., Van Sickl e, W. D., Laing, S . P., & Mecha m, C. S. (1992).
Cougar population response to manipulation in southern Utah.
Wildlife Society Bulletin, 20, 224–227.
Lodberg-Holm, H. K., Gelink, H. W., Hertel, A. G., Swenson, J. E.,
Domevs cik, M., & Steya ert, S. M . J. G. (2019). A human-in duced
landscape of fear influences foraging behavior of brown bears.
Basic and Applied Ecology, 35, 18–27.
Logan,K .A.,Ir win,L .L.,&Skinner,R.(1986).Charac teristicsofahunted
mountain lion population in Wyoming. The Journal of Wildlife
Management, 50, 648–654.
Logan,K.A.,&Runge,J.P.(2021).Effectsofhuntingonapumapopula-
tion in Colorado. Wildlife Monographs, 209, 1–35 .
Logan, K.A .,&Sweanor,L .L .(2001). Desert puma: Evolutionary ecology
and conservation of an enduring carnivore.IslandPress.
Lowe,W.H., &Allendorf,F.W.(2010).Whatcangeneticstellusabout
populationconnectivity?:Geneticanddemographicconnectivity.
Molecular Ecology, 19, 3038–3051.
Mahoney,P.J.,&Young,J.K.(2017).Uncoveringbehaviouralstatesfrom
animal activity and sitefidelity patterns. Methods in Ecology and
Evolution, 8, 174–18 3.
Mattson, D., Logan, K.,& Sweanor,L. (2011). Factors governing risk of
cougarattacksonhumans.Human- Wildlife Interactions, 5, 135–158.
Maz zol li,M.,Gr aipel,M .E. ,&D unsto ne,N.(20 02).Moun tainliondepre -
dationinsouthernBrazil.Biological Conservation, 105, 43 –51 .
McKeague,B., Finlay,C., & Rooney,N. (2024). Conservation detection
dogs: A cr itical revi ew of effic acy and met hodolog y.Ecology and
Evolution, 14, e10866.
Morano,S.,Stewart,K.M.,Dilts,T.,Ellsworth,A.,&Bleich,V.C.(2019).
Resource selection of mule deer in a shrub-steppe ecosystem:
Influenceofwoodlanddis tributionandanimalbehavior.Ecosphere,
10, e 02811.
Morrison,C.D.,Boyce,M. S., &Nielsen,S. E.(2015).Space-use,move-
mentanddispersalofsub-adultcougarsinageographicallyisolated
population.Pee rJ, 3, e1118.
Naude, V. N., B alme, G. A., O 'Riain, J., Hunt er, L. T. B., Fatte bert, J.,
Dickerson,T.,&Bishop,J.M.(2020).Unsustainableanthropogenic
mortalitydisruptsnataldispersalandpromotesinbreedinginleop-
ards. Ecology and Evolution, 10, 3605–3619.
12 of 15
|
RANDOLPH et al.
Newby, J. R., S cott Mills, L ., Ruth, T. K., P letscher, D. H., M itchell, M .
S.,Quigley,H. B., Murphy,K.M.,&DeSimone,R.(2013). Human-
caused mort ality influences spatial population dynamics: Pumas
inlandscapes withvaryingmortalityrisks. Biological Conservation,
159, 230 –239.
Nicholson,K.L.,Krausman,P.R.,Smith,T.,Ballard,W.B.,&McKinney,T.
(2014).MountainlionhabitatselectioninArizona.The Southwestern
Naturalist, 59, 372–380.
Nisi,A.C.,Benson,J.F.,King, R., &Wilmers,C.C.(2023).Habitatfrag-
mentationreduces sur vival and drivessource–sinkdynamics for a
large carnivore. Ecological Applications, 33, e2822.
Nisi,A.C.,Suraci,J.P.,Ranc,N.,Frank,L.G.,Oriol-Cotterill,A.,Ekwanga,
S.,Williams,T.M.,&Wilmers,C.C.(2022).Temporalscaleofhab-
itat sel ection for la rge carnivo res: Balanci ng energetic s, risk and
findingprey.Journal of Animal Ecology, 91, 1 8 2–1 95.
Oliveira,M.E.,Saranholi,B.H.,Dirzo,R.,&Galetti,P.M.(2022).Areview
ofphilopatr yanddispersalinfelids livingin ananthropisedworld.
Mammal Review, 52, 208–220.
Oro,D.,Genovar t,M.,Tavecchia,G.,Fowler,M.S.,&Martínez-Abraín,A.
(2013).Ecological and evolutionary implications of food subsidies
fromhumans.Ecology Letters, 16, 1501–1514.
Palomares, F., Delibes, M., Ferreras, P., Fedriani, J. M ., Calzada, J.,
& Revilla, E. (200 0). Iberian lynx in a fragmented landscape:
Predispersal, dispersal, and postdispersal habitats. Conservation
Biology, 14, 80 9–818.
Pelletier,A.,Obbard,M.E.,Mills,K.,Howe,E.J.,Burrows, F.G.,White,
B.N., &Kyle,C.J.(2012).Delineatinggeneticgroupingsincontin-
uouslydistributedspeciesacrosslargelyhomogeneouslandscapes:
A study of American black bears (Ursus americanus) in Ontario,
Canada. Canadian Journal of Zoology, 90, 999–1014.
PRISM Climate Group.(2023). Time series values for individual locations.
OregonStateUniversity.h t t p s : // w w w . p r i s m . o r e g o n s t a t e . e d u /
Proffitt,K .M.,G ude,J.A.,Hamlin,K .L.,&Messer,M.A.(2013).Effec ts
of hunter ac cess and habit at securit y on elk habita t selection i n
landsc apes with a publ ic and private la nd matrix. The Journal of
Wildlife Management, 77, 514–524 .
RCoreTeam.(2022).R: A language and environment for statistical comput-
ing.RFoundation for Statistical Computing. https:// www. R- proje
c t . o r g / .
Riegel, G . M., Miller, R. F., Skinner, C. N., & Smith, S. E. (2006).
Nort heastern p lateaus bio region. In Fire in California's ecosystems
(pp. 225–263). Unive rsity of C alifornia Pr ess. Retri eved April 16,
2023, from, h t t p s : / / a c a d e m i c . o u p . c o m / c a l i f o r n i a - s c h o l a r s h i p - o n -
l i n e / b o o k / 2 0 6 0 0 / c h a p t e r/ 1 7 9 9 0 0 6 3 4
Riley,S. P.D., Serieys, L . E. K.,Pollinger,J. P.,Sikich,J. A., Dalbeck,L.,
Wayne,R.K .,&Ernest,H.B.(2014).Individualbehaviorsdominate
the dynamics of an urban mountain lion population isolated by
roads. Current Biology, 24, 1989–1994.
Riley, S. P. D., Sikich, J. A ., & Benson , J. F.(20 21). Big cats in th e big
city: Spatialecologyof mountain lions ingreaterLos Angeles. The
Journal of Wildlife Management, 85, 1527–15 42.
Robinette,W.L.,Gashwiler,J.S.,&Morris,O.W.(1961).Notesoncougar
produc tivit yandlifehistor y.Journal of Mammalogy, 42, 20 4–2 17.
Robinson, H. S., Ruth, T., Gude, J. A., Choate, D., DeSimone, R.,
Hebblewhite, M., Kunkel, K ., Matchett, M. R., Mitchell, M. S.,
Murphy, K., & W illiams, J . (2015). Linki ng resource s electio n and
mortalitymodeling for populationestimationofmountainlionsin
Montana. Ecological Modelling, 312, 11–25.
Robinson,H. S., Wielgus, R.B., Cooley,H. S.,& Cooley,S. W.(2008).Sink
populationsincarnivoremanagement:Cougardemographyandimmi-
grationinahuntedpopulation.Ecological Applications, 18, 1028–1037.
Rominger,E.M.(2018).Thegordianknotofmount ainlionpredationand
bighornsheep.The Journal of Wildlife Management, 82, 19–31.
Signer,J.,Fieberg,J.,&Avgar,T.(2019).Animalmovementtools(AMT ):R
package for managingtrackingdata and conducting habitatselec-
tion analyses. Ecology and Evolution, 9, 880–890.
Sih,A.,Ferrari,M.C.O.,&Harris,D.J.(2011).Evolutionandbehavioural
responses to human-induced rapid environmental change.
Evolutionary Applications, 4, 3 67–3 87.
Sikes,R .S.,&Gannon,W.L .(2011).GuidelinesoftheAmericanSociety
ofMammalogistsfortheuse ofwildmammals inresearch.Journal
of Mammalogy, 92, 235–253.
Smith, J. A., Wang,Y.,& Wilmers, C.C.(2015).Topcarnivoresincrease
their kill rates on prey as a response to human-induced fear.
Proceedi ngs of the Royal Soci ety B: Biologic al Sciences, 282, 20 142711.
Smith, J.B., Spit z, D. B., Brown, C.L., Wisdom, M.J., Rowland, M. M.,
Forres ter,T. D., Joh nson, B. K ., & Clark , D. A. (2022). B ehaviora l
responses of male elk to hunting risk. The Journal of Wildlife
Management, 86, 833–852.
Smith, J. L. D.(1993).The role of dispersal in structuring the Chitwan
tigerpopulation.Behaviour, 124, 165–195.
Soulsbury,C.D., Baker,P.J., Iossa,G.,& Harris,S.(20 08). Fitnesscosts
of dispersal in red foxes (Vulpes vulpes). Behavioral Ecology and
Sociobiology, 62, 1289–1298.
Stamps, J. A., & Swaisgood, R. R. (2007). Someplace like home:
Experience, habitat selection and conservation biology. Applied
Animal Behaviour Science, 102, 392–409.
Steyaer t, S. M. J. G., L eclerc, M., Pe lletier, F., Kindberg , J., Brunberg ,
S., Swenson,J.E., & Zedrosser,A . (2016). Humanshields mediate
sexual conflictin atop predator.Proceedings of the Royal Society B:
Biological Sciences, 283, 20160906.
Stillfried,M.,Belant,J.L.,Svoboda,N.J.,Beyer,D.E.,&Kramer-Schadt,
S. (2015). When top predators become prey: Black bears alter
movement behaviourinresponsetohuntingpressure. Behavioural
Processes, 120, 3 0–39.
Støen,O.-G.,Ordiz,A.,Evans,A.L.,Laske,T.G.,Kindberg,J.,Fröber t,O.,
Swenson,J.E.,&Arnemo, J.M.(2015).Physiological evidencefor
ahuman-induced landscape of fear in brownbears (Ursus arctos).
Physiology & Behavior, 152, 24 4–248.
Stoner, D. C., Di tmer, M. A., M itchell, D. L ., Young, J. K., & Wolf e, M.
L. (2021). Conflict, coexistence, or both? Cougar habitat selec-
tion, prey composition,and mortalit yinamultiple-use landscape.
California Fish and Wildlife Journal, 107, 147–172.
Stoner,D.C.,McDonald,Z.,&Coon,C.A.C .(2023).Steppingstonesto
extirpation:Pumapatchoccupancythresholdsinanurban-wildland
matrix.Ecology and Evolution, 13, e103 81.
Stoner, D. C., Wolf e, M. L., & Cho ate, D. M. (200 6).C ougar expl oita-
tion level s in Utah: Imp lications f or demogra phic stru cture, po p-
ulationrecovery,andmetapopulationdynamics.Journal of Wildlife
Management, 70, 1588–1600.
Stoner,D. C.,Wolfe,M .L .,Mecham,C., Mecham,M.B.,Durham,S.L .,
&Choate, D. M. (2013). Dispersalbehaviourofa polygynous car-
nivore: Do cougars Puma concolorfollow source-sinkpredictions?
Wildlife Biology, 19, 289–301.
Sunquis t,M.,&Sunquist,F.(2002). Wild cats of the world.Universityof
Chicago Press. h t t p : / / w w w . b i b l i o v a u l t . o r g / B V . l a n d i n g . e p l ? I S B N =
978 0 2 2651 82 37
Suraci,J. P.,Clinchy,M., Zanette, L. Y.,& Wilmers, C. C. (2019).Fearof
humansasapexpredatorshaslandscape-scaleimpactsfrommoun-
tainlionstomice.Ecology Letters, 22, 1578–1586.
Sweanor, L. L ., Logan, K . A., & Hornoc ker,M . G. (2000 ). Cougar dis-
persal patterns, metapopulation dynamics, and conservation.
Conservation Biology, 14, 798–808.
Taylor,P.D.,Fahrig,L.,Henein,K.,&Merriam,G.(1993).Connectivityis
avitalelementoflandscapestructure.Oikos, 68, 571.
Thompson,D.J.,&Jenks,J.A.(2010).Dispersalmovementsofsubadult
cougarsfromthe BlackHills: The notions ofrange expansion and
recolonization.Ecosphere, 1, 1–11.
Thomps on, D. J., Jenks, J. A ., & Fecske, D. M. (2014). Prevalence of
human-caused mortality in an unhunted cougar population and
potential impacts to management. Wildlife Society Bulletin, 38,
341–347.
|
13 of 15
RANDOLPH et al.
Torres,S.,Mansfield,T.M.,Foley,J.E.,Lupo,T.,&Brinkhaus, A.(1996).
Mounta in lion and huma n activit y in Californ ia: Testing specul a-
tions. Wildlife Society Bulletin, 24, 4 51–460 .
Tucker, M. A., Sant ini, L., Car bone, C., & Mue ller, T. (2021). Mamma l
populationdensitiesataglobalscalearehigherinhuman-modified
areas. Ecography, 44, 1–13 .
U.S. GeologicalSurvey.(2023).NationalHydrographyDataset(NHD)–
USGSnationalmapdownloadabledatacollec tion:USGS–National
GeospatialTechnicalOperationsCenter(NGTOC).
U.S.GeologicalSurvey,NationalGeospatialTechnicalOperationsCenter.
(2023). USG S National Transpor tation Data set (NTD) downloa d-
abledatacollection:U.S.GeologicalSurvey.
VanBeest,F.M.,McLoughlin,P.D.,VanderWal,E.,&Brook,R.K.(2014).
Density-dependenthabitatselectionandpartitioningbetweentwo
sympatricungulates.Oecologia, 175, 1155–1165.
Vickers,T.W.,Sanchez, J.N.,Johnson,C.K., Morrison, S. A., Bot ta, R.,
Smith, T.,Cohen, B. S., Huber,P.R., Ernest, H. B., &Boyce, W.M.
(2015). Survival andmortalityof pumas (Puma concolor) in a frag-
mented,urbanizinglandscape.PLoS ONE, 10, e0131490.
Wasser, S. K., Davenpor t, B., Ramage, E. R., Hunt, K. E ., Parker, M.,
Clarke, C.,& Stenhouse, G. (20 04). Scatdetectiondogs inwildlife
research and management: Application to grizzly and black bears
intheyellowheadecosystem,Alber ta,C anada.Canadian Journal of
Zoology, 82, 475–492.
Weaver, R. A. (1978). Changing status of mountain lion in California and
livestock depredation problems.Proceedings:EighthVertebratePest
Conference.
Woodroffe, R., & G insberg, J. R. (1998). Edge ef fects and t he ex-
tinction of populations inside protected areas. Science, 280,
2126–2128.
Young,J. K.,& Sarmento, W.(2024).Canan old dog learna new trick?:
Effic acy of livesto ck guardian dog s at keeping an apex pr edator
awayfrompeople.Biological Conservation, 292, 11055 4.
How to cite this article: Randolph,J.F.,Young,J.K.,Stoner,D.
C.,&Garcelon,D.K.(2024).Impactsofmanagementpractices
onhabitatselectionduringjuvenilemountainliondispersal.
Ecology and Evolution, 14, e70097. https://doi.org/10.1002/
ece3.70097
14 of 15
|
RANDOLPH et al.
APPENDIX 1
TABLE A1 DetailedinformationoneachjuvenilemountainlionfittedwithaGPScollar,includingID,sex,age,totalmonitoringduration,anddurationwithineachbehavioralstate
(exploratory,depar ture,andtransienthomerange).
Study site Lion ID Sex Age
Days
collared
Cause of
mortality Exploratory events
Total No. of
days
Departure
events
Total No. of
days
Transient home
range events
Total No. of
days
Protected M168 Male 15 months 386 – – – 1 141 157
M176* Male 16 months 109 Starvation 218 122 121
M197* Male 19 months 365 – – – 1 48 – –
M198 Male 12 months 300 – 1 35 – – 1 41
M200 Male 17 months 365 – 2 112 169 – –
M202* Male 15 months 10 8 Depredation – – 1 11 134
F20 6* Female 14 months 176 – 1 17 118 155
M208 Male 22 months 299 – 1 46 115 122
M28 1* Male 19 months 205 – 1 52 192 236
F286 Female 16 months 224 – – – 1 30 139
M341 Male 18 months 223 –Didnotdisplayanydispersalbehavior
M282 Male 19 months 223 –Didnotdisplayanydispersalbehavior
M280* Male 16 months 224 –Didnotdisplayanydispersalbehavior
Hunted DF 06* Female Sub-adult 114 6 – 1 23 144 3421
DF07 Female Sub-adult 633 Harvested 291 – – – –
DF08* Female Sub-adult 2232 – 1 172 162 5234
DF10 Female Sub-adult 82 Depredation 132 – – – –
DM12* Male Sub-adult 5 47 Harvested – – 1 11 – –
DF13* Female Sub-adult 939 Unknown 160 – – 1 53
DF20 Female Sub-adult 154 Unknown – – 1 46 157
DM21* Male Sub-adult 555 Harvested – – 1 30 – –
DF24* Female Sub-adult 403 Harvested 118 176 110 4
DM33 Male Sub-adult 116 Unknown – – 1 24 130
DM35* Male Sub-adult 1319 – – – 1 68 – –
DM17 Male Sub-adult 115 –Didnotdisplayanydispersalbehavior
Note:Mountainlionswithanasterisk(*)bytheirIDwerecapturedintheirmother'shomerange.
|
15 of 15
RANDOLPH et al.
TAB LE A 2 Dataonthebehavioralstatesofeachcollaredmountainlion,includingthenumberofdayswithineachstateandthetotaldistancetraveled(km)forexploratory,departure,and
transienthomerangestates.
Study site Lion ID
Exploratory state Departure state Transient home range state
Events
Total number of
days Total distance (km) Events
Total number of
days Total distance (km) Events
Total number of
days
Total distance
(km)
Protected M168 – – – 1 141 403.64 157 328.32
M176 218 46.36 122 24.06 121 4 4.47
M197 – – – 1 48 174.43 – – –
M198 135 39.92 – – – 1 41 48.33
M200 2112 222.87 169 273.67 – – –
M202 – – – 1 11 35.87 134 93.01
F206 117 61. 03 118 32.48 155 116.26
M208 146 30 8.14 115 90.17 122 133.87
M281 152 244 .66 192 506.3 236 116. 42
F286 – – – 1 30 149.7 9 139 132.34
M280 Didnotdisplayanydispersalbehavior
M282 Didnotdisplayanydispersalbehavior
M341 Didnotdisplayanydispersalbehavior
Hunted DF06 123 1 27.1 144 216.53 3421 1 75 7. 1
DF07 291 482.7 – – – – – –
DF08 1172 254.87 162 122.81 523 4 477.64
DF10 132 133.13 – – – – – –
DM12 – – – 1 11 101 .18 – – –
DF13 160 – – – – 1 53 106.17
DF20 – – – 1 46 146.38 157 128.11
DM21 – – – 1 30 11 7. 8 2 – – –
DF24 118 75. 21 176 323.47 110 4 180 .59
DM33 – – – 1 24 35.03 130 5 7.1 8
DM35 – – – 1 68 215 .19 – – –
DM17 Didnotdisplayanydispersalbehavior