ArticlePDF Available

Hybrid FDG-PET/MRI for Diagnosis and Clinical Management of Patients with Suspected Perihilar Cholangiocarcinoma: A Feasibility Pilot Study

Authors:

Abstract and Figures

Recently introduced hybrid 2-[18 F]-fluoro-2-deoxy-D-glucose (18 F-FDG) Positron Emission Tomography (PET) combined with Magnetic Resonance Imaging (MRI) may aid in proper diagnosis and staging of perihilar cholangiocarcinoma (pCCA). The aim of this study is to assess the effect of 18 F-FDG PET/MRI on diagnosis and clinical decision making in the pre-operative work up of pCCA. In this single-centre pilot study patients with presumed resectable pCCA underwent state-of-the-art 18 F-FDG hybrid PET/MRI using digital silicone photomultiplier detectors integrated within a 3-Tesla bore. Data were collected on several baseline and imaging characteristics. The primary outcome measure was the added diagnostic information and the effect on clinical decision making. Secondary aim was to correlate quantitative PET signal intensity to patient- and tumour characteristics. High and low SUVmax subgroups related to the mean value were made. Significance of lesion- and patient characteristics with the high and low SUVmax subgroups, as well as TLR and TBR, was evaluated with Fisher’s exact test or Mann-Whitney-U test. In total 14 patients were included (mean age 62.4 years, 64% male). Final diagnosis was pCCA in 10 patients (71.4%), follicular lymphoma in one patient (7.1%) and benign disease in the remaining three patients. FDG-PET/MRI added valuable diagnostic information in six (43%) patients and affected clinical decision making in two of these patients (14%) by increasing confidence for malignancy which lead to the decision for surgery on short term. High SUVmax values were seen in half of cases with pCCA and half of cases with non-cancerous lesions. In addition, high SUVmax values were directly associated with primary sclerosing cholangitis when present (p = 0.03). Simultaneous 18 F-FDG-PET/MRI added diagnostic information in six of fourteen patients and influenced clinical decision making in two patients (14%) with presumed resectable pCCA.
Content may be subject to copyright.
ORIGINAL ARTICLE
Nuclear Medicine and Molecular Imaging
https://doi.org/10.1007/s13139-024-00873-2
Abbreviations
FDG 18F-uro-deoxy-glucose
PET PositronEmissionTomography
MRI MagneticResonanceImaging
MRCP MagneticResonance
Cholangio-Pancreatography
CT ComputedTomography
pCCA PerihilarCholangiocarcinoma
SUV StandardizedUptakeValue
PSC PrimarySclerosingCholangitis
EANM EuropeanAssociationofNuclearMedicine
R.S.Dwarkasing
r.s.dwarkasing@erasmusmc.nl
D.M.deJong
d.m.dejong@erasmusmc.nl
1 DepartmentofGastroenterologyandHepatology,Erasmus
MCUniversityMedicalCenter,Rotterdam,theNetherlands
2 DepartmentofRadiologyandNuclearMedicine,Erasmus
MCUniversityMedicalCenter,Rotterdam,theNetherlands
3 DepartmentofSurgery,ErasmusMCUniversityMedical
Center,Rotterdam,theNetherlands
Abstract
Purpose Recentlyintroducedhybrid2-[18F]-uoro-2-deoxy-D-glucose(18F-FDG)PositronEmissionTomography(PET)
combinedwithMagneticResonanceImaging(MRI)mayaidinproperdiagnosisandstagingofperihilarcholangiocarci-
noma(pCCA).Theaimofthisstudyistoassesstheeectof18F-FDGPET/MRIondiagnosisandclinicaldecisionmaking
inthepre-operativeworkupofpCCA.
Methods Inthissingle-centrepilot studypatientswithpresumed resectablepCCAunderwentstate-of-the-art18 F-FDG
hybridPET/MRIusingdigitalsiliconephotomultiplierdetectorsintegratedwithina3-Teslabore.Datawerecollectedon
severalbaselineandimagingcharacteristics.Theprimaryoutcomemeasurewastheaddeddiagnosticinformationandthe
eectonclinicaldecisionmaking.SecondaryaimwastocorrelatequantitativePETsignalintensitytopatient-andtumour
characteristics.HighandlowSUVmaxsubgroupsrelatedtothemeanvalueweremade.Signicanceoflesion-andpatient
characteristicswiththehighandlowSUVmaxsubgroups,aswellasTLRandTBR,wasevaluatedwithFisher’sexacttest
orMann-Whitney-Utest.
Results Intotal14patientswereincluded(meanage62.4years,64% male). Final diagnosis was pCCAin10patients
(71.4%),follicularlymphomainone patient (7.1%) andbenigndiseaseintheremaining three patients. FDG-PET/MRI
addedvaluablediagnosticinformationinsix(43%)patientsandaectedclinicaldecisionmakingintwoofthesepatients
(14%)byincreasingcondenceformalignancywhichleadtothedecisionforsurgeryonshortterm.HighSUVmaxvalues
wereseeninhalfofcaseswithpCCAandhalfofcaseswithnon-cancerouslesions.Inaddition,highSUVmaxvalueswere
directlyassociatedwithprimarysclerosingcholangitiswhenpresent(p =0.03).
Conclusion Simultaneous18F-FDG-PET/MRIaddeddiagnosticinformationinsixoffourteenpatientsandinuencedclini-
caldecisionmakingintwopatients(14%)withpresumedresectablepCCA.
Keywords HilarCholangiocarcinoma·PET/MRI·ClinicalDecisionMaking· BiliaryTractcancer
Received: 15 February 2024 / Revised: 14 June 2024 / Accepted: 8 July 2024
© The Author(s) 2024
Hybrid FDG-PET/MRI for Diagnosis and Clinical Management of
Patients with Suspected Perihilar Cholangiocarcinoma: A Feasibility
Pilot Study
D. M.deJong1· K.Chehin2· T. L.N.Meijering1· M.Segbers2· L. M.J.W.vanDriel1· M. J.Bruno1·
B.Groot Koerkamp3· J. N.M.IJzermans3· F. A.Verburg2· Q. G.de Lussanet de la Sabloniere2·
R. S.Dwarkasing2
1 3
Nuclear Medicine and Molecular Imaging
EARL EANMResearchLtd
TNM Tumour,Node,Metastasis
STROBE StrengtheningtheReportingofObservational
StudiesinEpidemiology
MDTB MultidisciplinaryTumourboard
BC Bismuth-Corlette
VOI Volumeofinterest
TLR Tumourtoliverratio
TBR Tumourtobackgroundratio
SD StandardDeviation
Introduction
Perihilar cholangiocarcinoma (pCCA) is an uncommon
malignancyandoftenpatients present atalatestage with
advanced disease [1]. Radical surgical resection or liver
transplantation are the only potential means of achiev-
ing long term survival [2, 3]. Many patients have locally
advanced disease with vascular encasement, positive
regionalorextraregionallymphnodes,ordistantmetastasis
uponrstpresentation [4].Additionally,upto 47%ofthe
eligiblepatientsarefoundtohaveunresectablediseasedur-
ingexplorativelaparotomy[3,5,6].
Incurrent clinicalpractice,computedtomography(CT)
andmagneticresonanceimaging (MRI)areusedtoevalu-
atelocaltumourextentandresectabilityofpCCA.CTwith
intravenous contrast is especially useful for determining
tumourextentandinparticularvascularinvolvementofthe
hepaticarteryandportalvein,includingdistantmetastases
[7]. MRI in combination with cholangiography (MRCP)
providesdetailedanatomicalinformationofthebiliarytree,
whichisimportantforsurgicalplanningduetoawidevari-
etyofanatomicalvariations[8,9].BothCTandMRI/MRCP
understageresectablepCCAoften,asunderlinedbythehigh
numberofpatientswithunresectablediseaseatexplorative
laparotomy[3,5,6].Pangetal.demonstratedthevalueof
dual-time point 18 F-uorodeoxyglucose (FDG) positron
emission tomography (PET) CT (PET/CT) for primary
tumour location(s), including lymph node metastases in
pCCA.Inaddition,theauthorsdescribedthatthemaximum
standardizeduptakevalue(SUVmax)maybeindicativefor
tumouraggressiveness[10].Thelastyears,moreevidence
hasbeenpublishedontheincorporationof2-[18F]-uoro-
2-deoxy-D-glucose(18F-FDG)PETimagingintothecur-
rentstandardofcareforbiliarytractcancerstaging,butthe
exactroleremainscontroversial[11].PrimarilyPET/CThas
notbeenthemajorbreakthroughashoped.
Recently, 18 F-FDG PET with MRI (PET/MRI) has
become available. FDG-PET/MRI has shown additional
value for pre-treatment work up in several malignan-
cies, such as breast- and pancreatic cancer [12, 13]. The
combinationoftheinformationonsoft-tissuesobtainedby
theMRIandmetabolicinformationofthePETcouldprove
a favourable utility. So far, small studies have been per-
formedinpatientswithhepatobiliaryneoplasms,including
pCCA.ItwasreportedthatsimultaneoushybridFDG-PET/
MRI has promising benets over conventional preopera-
tiveimaging with CT and MRI/MRCPorcombinedwith
PET/CT[1417].InthestudyofObmannetal.onsixteen
patientswithhepatobiliaryneoplasms,FDG-PET/MRIcor-
rectly changed the cTNM stage in 22% of patients with
consequentchangeinmanagementin11%ofpatientswith
extrahepaticcholangiocarcinoma[14].
WhenmeasuringSUVin additiontovisualassessment
ofPETimagesone should consider possible confounding
eectsowingtodierencesamongPETsystemsanddif-
ferencesinacquisitionandimagereconstructiontechniques
thatmaysubstantiallyaectthemeasuredSUVvalues[18].
Forthesereasons eortsaremade toharmonizeand stan-
dardizeSUVmeasurementsforPET/CTsuchastheEuro-
peanAssociation of Nuclear Medicine (EANM)Research
Ltd. (EARL) guidelines. These recommendations, named
theEARL2,recentlybecame availableforPET/MRI,that
also include the higher spatial resolution based EARL2
standard.AspCCAisoftentimesanon-bulkytumour with
linear tumour spread along the biliary tree, and conse-
quentlylikelysubject to partial-volumeeectsSUVmea-
surementsonEARL2 PETimagingreconstructions seems
mostappropriate.
Theaimof thisstudywasto assesstheaddedvalue of
FDG-PET/MRIfordiagnosisandclinicaldecisionmaking
inpatientswithsuspectpCCAoptingforsurgicalresection.
ThesecondaryaimwastomeasurequantitativePETsignal
intensityfeatureswiththeuseofEARL2onthelesion,liver
parenchyma,bloodpooland correlatethesemeasurements
topatient-andtumourcharacteristics.
Materials and methods
Patient Population
BetweenNovember2021andApril2022,a single-centre,
prospective, observational cohort study was conducted
(POELHtrial;NL9599).Eligiblepatientswerediscussedin
themultidisciplinarytumourboard (MDTB) andincluded
afterPET/MRIforworkupofsuspectedresectablepCCA,
regardlessof eventual histopathology results.The MDTB
approved the indication for PET/MRI when diagnosis
and staging was uncertain and deemed possible bene-
cial for clinical management. This study was conducted
in accordance with the Helsinki declaration and followed
theSTROBEguidelinesafterbeingapproved bythelocal
1 3
Nuclear Medicine and Molecular Imaging
ethicalreviewcommittee(MEC-2021-0524).Fivepatients
underwentPET/MRIshortlybeforethetrialformallystarted
andwereincludedretrospectivelyafterprovidinginformed
consent.TheindicationsandPET/MRIitselfwereidentical
to(therestof)thestudycohort.
Surgery Work-Up
AttheMDTB,comprisedofspecializedgastroenterologists,
oncologists,surgeons,radiologists,andnuclearphysicians,
allpatientswithsuspectedpCCAarediscussedtodetermine
thebestcourseofaction.All patients underwent a multi-
phase CT scan of the liver, including imaging of the full
abdomenandthorax,aswellasMRIoftheliver,including
MRCP,forinitialassessment.FindingsfromCTandMRI/
MRCParepresentedanddiscussedduringthemeeting,with
particularattentionpaidtolongitudinaltumourextent,vas-
cular invasion and suspect distant metastases. Suspected
pCCAisclassiedaccordingtotheBismuth-Corlette(BC)
classicationsystem.Positiveregionallymphnodeswere
notconsideredacontra-indicationforresection,exceptfor
livertransplantation.Inaddition,inthesurgeryworkupan
endoscopicbiliarydrainagewithplastic stentsisroutinely
performedinpatients.Giventhatjaundiceorcholestasisis
acommonpresentingsymptomofpCCA,preoperativebili-
arydrainageistypicallyperformedatourcentrewhenbili-
rubinlevelsriseabove70mmol/L.
Imaging Protocol for FDG-PET/MRI
Simultaneous PET/MR imaging was performed using a
General Electric Healthcare (GE) Signa PET/MR (GE
Healthcare, Waukesha, MI, USA). Median time intervals
between CT and PET/MRI were 1 week [IQR: 1–2] and
between MRI and PET/MRI were 2 weeks [IQR: 0.5–3].
Patient preparation and PET image acquisition was per-
formed in accordance with the European Association of
NuclearMedicine(EANM)ResearchLtd.(EARL2)guide-
lines[19].Preparationconsistsoffastingatleast6hbefore
thePET/MRI.Priortothescan,serumglucoselevelswere
measuredinmmol/L.Eachpatientunderwentwhole-body
hybrid PET/MRI at 60 (+/-5) minutes after injection of
18 F-FDG (weight 55–100 kg: 0.033 MBq * (kg)2, 101–
140kg:0.025MBq*(kg)2;maximumactivity:500MBq).
Three(55–100kg)tofourminutes(>100kg)perbedposi-
tion;vertex–mid-thigh.Directlyfollowing(approximately
120minafterinjection),hybridPET/MRIwasacquiredfor
onetableposition oftheupperabdomen, withafullMRI
of the liver including contrast- enhanced (Gadolinium-
chelates) series, and continuous PET acquisition for the
fulldurationoftheMRIliverprotocol.AllPETdatawere
reconstructedaccordingto therecentEARL2 standardfor
PET/MR [18]. Standard DIXON based attenuation cor-
rectionwasappliedusingafour tissueclasssegmentation
(water,fat,lung,air).
SUVmeanoftheliverwasmeasuredbya100mlspheri-
calvolumeofinterest(VOI)intherightupperrightlobeof
theliver(excludingmainvascularstructures)andSUVmean
ofthebackgroundwasmeasuredbya10mlsphericalVOI
intherightheartchamber.SUVpeak, dened by the hot-
test1mlspherical region intheVOI,and SUVmax were
measuredinsphericalVOI’saroundthepCCAlesions.The
highestSUVpeakandSUVmeanwerereportedforpatients
with multiple or extended pCCA lesions requiring mul-
tipleVOImeasurements. The tumourtoliverratio(TLR)
andtumourtobackground ratio(TBR)werecalculatedby
dividing the lesion SUVmax and SUVpeak with respec-
tivelytheliver SUVmean and background SUVmean. Of
note,aspCCAisoftentimesanon-bulkytumourwithlinear
tumourspreadalongthebiliarytree,it islikelythatSUV-
peakmeasurements willnotbepossibleand/orunreliable
insomepatients.AllSUVmeasurementswereperformedin
thePhilipsVUEPACSviewer(version12.2).
Outcome Measures
Theprimaryoutcomewasthe(1)addedvaluefordiagnosis
and(2) inuence on clinical decision making. The added
valuefornaldiagnosiswastwofold.Firstly,itwasbased
onchangesintheTNM stagingofPET/MRIcomparedto
CTandMRI/MRCP.Secondly,it wasbasedoncombined
expert opinion by the reporting radiologist (Dwarkasing)
andnuclearphysician(LussanetdelaSabloniere).Inuence
onclinicaldecisionmakingwasdenedasanadjustmentin
managementplanafterPET/MRI.Thiswasassessedretro-
spectivelybytheresearchteam(Meijering,deJong,Dwar-
kasing,LussanetdelaSabloniere)basedonthestructured
reports of MDTB before and after PET/MRI available in
patientsdigitalrecords.FindingsonPET/MRIthatshowed
additionalvalue,butdidnotaectclinicaldecisionmak-
ing,suchas increasingthesuspicion ofmetastaticdisease
orbenigndiseasewerereportedassuch,conformtworecent
studies[20,21].
Secondary outcomes were associations of SUVmax,
TLRandTBR,withpatientage,sex,histology,historyof
PrimarySclerosingCholangitis(PSC), CA19.9 levelsand
BCclassication.Finaldiagnosiswasbasedonhistopathol-
ogyprovendiseaseorclinicalmanagementwithlongterm
followup,includingconrmationbytheMDTB.
Statistical Analysis
Fornalanalysispatientswerecategorizedintotwosub-
groups based on the mean SUVmax of the (suspected)
1 3
Nuclear Medicine and Molecular Imaging
TNM Staging, Additional Value and Accuracy
Inhalfofthepatients(n =7,50%),PET/MRIdidnotpres-
entchangestotheTNMstagingcomparedtoCTandMRI/
MRCP.Intwocases(14%)theTstagewaschangedtoT2b
byPET/MRIinstead ofT3on CT(patient#4 &#9).In 7
cases(50%), regional lymph nodes were down staged by
PET/MRIduetothefollowingreasons:nonFDG-avidLN
with a FDG-avid tumour (from N1 to N0, (n =2) and in
another5patientsregionalLNidentiedonCTandMRI/
MRCPwerenotseenonPET/MRI:N2toN1(n =1);N2to
N0(n =1);andN1toN0(n =3)(Fig.1).PET/MRIdidnot
changeM-stage,asinallpatientsnoextrahepaticdisease
wasidentiedbyCT,MRI/MRCPandPET/MRIandclini-
calfollowup.Inonecase(14%)ofpCCABCclassication
waschangedfromtype2totype3A(patient#9)byPET/
MRI.
In most cases (n =11, 79%) PET/MRI did not present
additionaldiagnosticinformationtopreviousCTandMRI/
MRCP.Thesuspicionforprimarymalignancychangedafter
PET/MRIinthreecases(21%). In one case(7%),benign
diseasewasmoreprobablebasedonPET/MRIastherewas
noFDG-avidityofthelesion, noclearmassandno archi-
tecturedistortionofperihilaranatomy(patient#8).Intwo
cases,highFDG-avidityincreasedthecondenceformalig-
nancywithnotableFDG-avidityofa smalllesion(patient
#5&#11).
In11cases,asurgicalstagingprocedurewithorwithout
resection was performed. In two patients, no malignancy
wasidentiedandinone patient no pCCA,butafollicu-
larlymphomawasidentied.SurgicalassessedTstagewas
availablein5caseswithNstageavailablein8cases.Tstage
was correctly identied on CT (n =2, 40%); MRI/MRCP
(n =3, 60%); and PET/MRI (n =2, 40%) respectively. N
pCCAlesionswithhighandlowSUVmaxsubgroupswith
cut-ovalueequaltothemeanvalue.Signicanceofpatient
characteristicswiththehighandlowSUVmax subgroups,
aswellasTLRandTBR,wasevaluatedwithFisher’sexact
testor Mann-Whitney-U test. Other features were patient
age (older or younger than 65 years) and CA19.9-levels
(patientswithmoreoflessthan37kU/L).Inaddition,SUV-
maxwasrelatedtothepresenceofPSC,naldiagnosisand
totheBCclassicationincaseofpCCA.Alltestsweretwo-
sided,andaP-valueoflessthan0.05was consideredsta-
tisticallysignicant.IBMSPSSStatistics(Version27)was
usedtoperformallstatisticalanalyses.
Results
Baseline Characteristics
We included 14 patients (64% male, mean age 62.4
(Standard Deviation (SD) 13.5)). Median BMI was 25.3
[IQR: 23.3–26.7]. Elevated levels of CA19.9 were seen
in9patients(64%).Ahistory of PSCwaspresentinve
patients(36%) (Table1).FinaldiagnosiswaspCCAin10
patients (71%), intra-ductal papillary mucinous neoplasm
ofthebileductinonepatient(7.1%),follicularlymphoma
inonepatient (7%),IgG4-mediateddisease inonepatient
(7%),andunspeciedbenigndiseaseinonepatient(7%)
(Table2). In 12 patients (86%) nal diagnosis wasbased
onpatho-histologicalproof,intwopatients(14%)onlong
termclinicalfollow-up.InpCCApatients,BCclassication
basedonCTand MRI/MRCPweretype1(n =3); type 2
(n =3),type3A(n =3),type 3B(n =2),and type4(n =1)
respectively. Median serum glucose levels prior to PET
MRIwere6.1mmol/L[IQR:5.4–6.2].
Table 1 Baselinecharacteristicsofthestudypopulation
Patient# Sex Age(inyears) HistoryofPSC BMI CA19.9(inkU/L) Glucoselevels(mmol/L)*
1 F 81 - 27.9 183 6.1
2 M 69 -25.7 348 4.5
3 F 61 +25.1 111 6.2
4M74 -24.4 1096 5.3
5 M 79 +20.9 1987 6.2
6M69 - 25.3 99 7.2
7F68 -22.6 284 6.9
8 F 64 -26.9 < 2 5.7
9 M 52 - 26.2 6802 5.8
10 M61 +22.4 -6.3
11 M56 -23.4 11 5.1
12 M 50 +23.2 14 6.1
13 F 28 +28.4 159 5.3
14 M61 -28.6 < 2 6.0
BMI=BodyMassIndex,PSC=PrimarySclerosingCholangitis
* = Prior to PET/MRI
1 3
Nuclear Medicine and Molecular Imaging
Patient
#
CT MRI/MRCP PET/MRI Stentinsitu SUVmax TLR TBR Diagnosticvalue Eect
on
CDM
FinalDiagnosis Surgery
TNMaBC TNMaBC TNM BC TNM
1T2aN2M0 3a T2aN2M0 3a T2aN1M0 3A -3.7 1.09 2.18 PETMRImadelymphnodes
suspiciousformetastases
- apCCA,clinicalfollow-up X
2T2bN1M0 3b T2bN1M0 3b T2bN0M0 3B - 1.8 0.9 1.06 Noadditionalinformation -pCCA,resection
(path-proven)
T3N0Mx
3T2bN2M0 2T2bN2M0 2T2bN0M0 2 - 5.6 2.15 2.95 Noadditionalinformation -pCCA,biopsy
(path-proven)
X
4 T3N1M0 3a T3N1M0 3a T2bN1M0 3A PS + PTCD 4.2 1.75 2.21 Noadditionalinformation -UnresectablepCCA,DLS
(path-proven)
T4N1Mx
5T2aN1M0 1T2aN1M0 1T2aN1M0 1 - 6.2 2.58 4.77 Increasesuspicionofmalig-
nancycomparedtoprevious
imaging
+UnresectablepCCA,DLS
(path-proven)
TxN2Mx
6 T2aN1M0 3b T2aN1M0 3b T2aN1M0 3B -6.3 1.91 2.74 Noadditionalinformation -Intraductalhighgradedysplasia,
resection
(path-proven)
Tx/1N0Mxb
7 T2aN1M0 3a T2aN1M0 3a T2aN0M0 3A PS + 2
ucSEMS
2.9 1.26 1.71 Noadditionalinformation -pCCA,resection
(path-proven)
T2aN0Mx
8T2bN1M0 1T2bN1M0 1X X PS +fcSEMS 5.5 2.2 3.06 PETavidityaroundthe
plasticstentmostlikelydue
toreactiveorinammatory
changes
-Benignpathology,resection
(path-proven)
X
9T3N1Mx 2T3N1Mx 2T2bN0Mx 3A 2xPS 5.3 2.3 4.08 EnlargedregionalLNpos-
siblemalignantonCTand
MRI,notPETavidandnot
suspiciouswithPET
- cpCCA,resectionwithLNnegative
(path-proven)
T2aN0Mx
10 T2aN1M0 2T2aN1M0 2T2aN0M0 2 PS 6.9 3.45 3.14 Noadditionalinformation -pCCA,biopsy
(path-proven)
TxN1Mx
11 T1N0M0 1T1N0M0 1T1N0M0 1 - 3.1 1.41 2.07 Increasesuspicionofmalig-
nancycomparedtoprevious
imaging
+pCCA,resection
(path-proven)
T1N1Mx
12 X X X X X X - 5 2.5 3.33 Noadditionalinformation -Follicularlymphoma,resection
(path-proven)
X
Table 2 Cross-sectionalimaging,PET/MRIcharacteristicsandfollow-up
1 3
Nuclear Medicine and Molecular Imaging
stagewascorrectlyidentiedonCT,MRI/MRCP,andPET/
MRIin4cases(50%),respectively.
Inuence on Clinical Decision Making
PET/MRIaectedclinicaldecisionmakingintwopatients
(14%).Inthesetwopatients(patient#5&#11),PET/MRI
increasedthesuspicionofprimarymalignancysolelybased
onhightumourFDGaviditycomparedto theliver,which
resultedinadecisiontoperformsurgery,insteadofpossible
furtherinvasivediagnosticproceduresorconservativeman-
agement.BothpatientshadsurgicallyconrmedpCCA.In
theremaining12patients(85.7%),PET/MRIdidnotaect
clinicaldecisionmaking(Table2).
Measurement of SUVmax, Correlated with Patient
Characteristics
The mean SUVmax value for the PET/MRI of the liver
was4.59[95%CI:3.81–5.37].HighandlowSUVmaxsub-
groupswerecreatedrelativetothemeanSUVmaxvalueof
theliver(4.59);bothconsistedof7patientseach.Correla-
tionsofSUVmaxwithbaselineclinicalcharacteristicswas
evaluated(Table3).Inmostpatients(n =13)onespherical
VOI’saroundtheperihilarlesionwasappliedforSUVmax
measurement.Onepatienthadmeasurementswithmultiple
sphericalVOIsof thelesiondue totheextendedshape of
thetumour.
A signicant correlation was found for high SUVmax
andhistoryofPSC(p =0.03).Nosignicantcorrelationwas
foundbetweenSUVmaxandage(p =0.28),sex(p =0.99),
CA19.9 levels (p =0.99), histopathology proven cholan-
giocarcinoma (p =0.99), and BC type pCCA (p =0.99)
(Table 3). SUVmax threshold that could dierentiate
betweenbenignand malignantlesionswasnot achievable
mainlybecauseofthelimited number of non-CCAcases.
Cases with pCCA (n =10) showed either relatively high
SUVmax values (n =5) (Fig. 2) or low SUVmax values
(n =5)(Fig. 3).Furthermore,benignlesions demonstrated
bothlow(n =1)andhigh(n =1)SUVmaxvalues(Fig.4).
Measurements of TLR and TBR, Correlated with
Patient Characteristics
The mean TLR was 1.87 [95%CI: 1.51–2.23]; the mean
TBR was 2.63 [95%CI: 2.13–3.14]. There were no sig-
nicant associations between TLR and nal diagnosis
(p =0.67),norbetweenTBRandnaldiagnosis(p =0.89).
NosignicantcorrelationwasfoundwhenanalysingTLR
asdichotomousoutcomeswithcut-ovalueof1.3.
Patient
#
CT MRI/MRCP PET/MRI Stentinsitu SUVmax TLR TBR Diagnosticvalue Eect
on
CDM
FinalDiagnosis Surgery
TNMaBC TNMaBC TNM BC TNM
13 T4N1M0 4 T4N1M0 4 T4N0M0 4 - 5.1 1.59 2.68 EnlargedregionalLNpos-
siblemalignantonCTand
MRI,notPETavidandnot
suspiciouswithPET
-pCCA,brush
(path-proven)
TxN1Mx
14 X X X X X X -2.7 1.08 1.59 Noadditionalinformation -IgG4mediateddisease,prednisone
treatmentwithgoodeect.FUfor
9months
X
IgG4=ImmunoglobulinG4,SUV=StandardizedUptakeValue,TLR=TumourtoLiverRatio,TBR=TumourtoBloodpoolRatio,DLS=diagnosticlaparoscopy,LN=lymphnodes,path-
proven=histopathologyprovendisease,PS=plasticstent,PTCD=percutaneoustrans-hepaticcatheterdrainage,ucSEMS=uncoveredself-expandingmetalstent,fcSEMS=fullycovered
self-expandingmetalstent,BC=Bismuth-Corlette,CDM=ClinicalDecisionMaking,TNM=Tumour,Node,Metastasis
aPalliativetreatmentperrequestofthepatient
bIPNBwithoutinltrativegrowth
cRegardlessofsuspiciouslymphnodessurgery,thereforenoimpactonclinicaldecisionmaking
Table 2 (continued)
1 3
Nuclear Medicine and Molecular Imaging
estimatedtheTstageintwopatientsandincorrectlychanged
theNstagefromN1toN0intwopatients.Thesendings
alignwitha recentstudyofObman et al.,whichreported
thatFDG-PET/MRIcorrectly adjustedthecTNMstage in
22% of patients with various hepatobiliary malignancies
[14].RegardingchangesintheNstage,apotentialexplana-
tionmaybethatprominentlymphnodesaremoredistinctly
visualizedusingdedicatedCTandMRI/MRCPscans with
contrast.InPET/MRI,theselymphnodesareonlyidentied
whentheydemonstrateavidactivityonthePETimage,and
correlatedwiththeMRIimage.Normallymphnodeslack-
ingPETavidityarethereforenot visible on regular PET/
MRI,whiletheseareclearlydiscernibleondedicatedCT
andMRI/MRCP.ApotentialadvantageofPET/MRIcom-
pared to PET/CT has been described by Catalano et al.,
which found PET/MRI to characterize lymphadenopathy
Discussion
Our study found a notable disparity in TNM staging,
observedin50%ofpatients,betweenhybrid18-FDG-PET/
MRI and conventional cross-sectional imaging using CT
andMRI/MRCP.Theadditionaldiagnosticbenetprovided
byPET/MRIamountedto 21%, andPET/MRIinuenced
clinicalmanagementinmerely14%ofpatientswithsus-
pectedpCCAeligible for surgery.Furthermore, with PET
signalintensitymeasurementswefound a signicant cor-
relationbetweenahighlesionSUVmaxandhistoryofPSC
(p =0.03).
Among the eleven patients that underwent surgical
exploration or resection, PET/MRI accurately altered the
Nstageinthreepatients.Conversely,PET/MRIincorrectly
Fig. 1 PET/MRIofpatientwith pathologicallyconrmed pCCAand
negativeregionallymphnode(#9).Anillustrativecase ofa52-year-
oldmalewithpCCA (histopathologyproven).A,B) Small enhanc-
ingtumourmass(B,longarrow)islocatedatthehilumofthebiliary
treewithdilatation ofintrahepaticducts. Bismuth-CorletteII lesion.
Inaddition, enlargedloco regionallymph nodes(A, B,small arrow)
wereseeninthehepatoduodenalligament.TNMstagingbasedonCT
(A,axialcontras-enhancedCTimage)andMRI/MRCP(B,axialcon-
trast-enhancedT1-weightedMRimage)wasT3N1MxandT2aN1M0
respectively.C,D)AxialPET/MRIimage.Theprimarytumourdem-
onstratesFDG-avidity(C)withnoFDG-avidityoftheregionallymph
nodes(D).TNMstageafterPET/MRIwasT2bN0Mx(N-stagedown-
gradedfromN1toN0afterPET/MRI)
1 3
Nuclear Medicine and Molecular Imaging
mucinous neoplasms [29]. We were unable to reproduce
these ndings with pCCA both as a continuous variable
andasadichotomousvariableusingthesamecut-ovalue.
Twopatientswithnon-malignantdiseaseinourstudy,spe-
cically with high-grade dysplasia and unspecic benign
disease who underwent resection, had high TLR values.
Inclinicalpractice, itisgenerally assumedthatmalignant
lesions will display notable FDG-avidity with high TLR
value.Ourobservationdoesnotsupporttheseassumptions,
althoughourndingsarelimitedby the small number of
includedpatientswithbenigndisease.Inaddition,allcases
of pCCA in underlying PSC livers (n =5) demonstrated
high SUVmax values. This was a signicant nding and
may be an important imaging marker for pCCA in PSC
patients. Validation of this nding is warranted in larger
studypopulations.
Tomimaru et al. investigated the use of SUVmax val-
ues in dierentiating malignant from benign intraductal
papillary mucinous neoplasms (IPMNs) in 29 patients
[31]. The results showed that SUVmax values were sig-
nicantlyhigherinmalignantIPMNscompared tobenign
IPMNsandwerepositivelycorrelatedwiththehistopatho-
logicaltypesofIPMN.Thebestdiagnosticaccuracywas
achievedbyusingaSUVmaxcutovalueof2.5.Combin-
ingthiswiththedetectionofamuralnoduleonCToered
the most eective diagnosis of malignant IPMN. In our
studywecouldnotndatrendtodierentiatemalignancy
from benign disease based on SUVmax, TLR, and TBR.
Ontopofthat, we would liketoemphasizethata cut-o
valueforhighorlowSUVmaxthatcouldbeindicativefor
moreaccuratelythensame-dayPET/CT[20].Correctiden-
ticationoflymphnodesoncross-sectionalimagingmay
guidepreoperativeendoscopicultrasoundtotargetspecic
suspicious lymph nodes, which can preclude unnecessary
surgicalexploration[2225].
Correlation of our ndings to recent literature is chal-
lenging, as other studies primarily focused on dierent
types of hepatobiliary cancer [14, 20, 21, 26, 27]. For
instance,Obmanetal.reportedachangeinmanagementin
11%ofpatients[14].Inastudyinvolvingpatientswithcan-
cer (excluding pCCA) who underwent same-day PET/CT
and PET/MRI, PET/MRI inuenced clinical management
in18%ofpatientscomparedtoPET/CT[20].Thecriteria
forinuenceonclinicalmanagementin these papers was
similarasappliedinour study.Inanotherstudyinvolving
263patients,including threepatientswithcholangiocarci-
noma,PET/MRIinuencedmanagementin8%,although
notinthecholangiocarcinomapatients[21].Arecentstudy
offteenpatientswithhepatocellularcarcinomashowedno
impactof PET/MRIonclinicaldecisionmaking[28].Our
studyisthe rstexclusivelyfocused onpCCA,wherethe
roleofPET/MRIwasevaluated.Clinicaldecisionmaking
wasaectedintwopatients(14%),bothhadanincreased
suspicionofmalignancyduetohighSUVmaxofthepCCA
lesions.
PreviousstudiesonPET/MRIusing18-FDGhavesug-
gestedthathighvaluesofSUVmax,TLR,andTBRwould
favourmalignanttumours[29,30].Utsonomiyaetal.found
aTLR>1.3measuredonPET/CTtobeanindependentpre-
dictor of malignancy for pancreatic intra-ductal papillary
Table 3 CorrelationofbaselinecharacteristicsandSUVmax(Fisher’sexacttest)
Characteristic HighSUVmax(>4.59) LowSUVmax(<4.59) Total P-value
Ageinyears
- 65 24 6 0.28
- <65 62 8
Sex
-Male 5490.99
-Female 3 2 5
Histologya
-Malignant 5 5 6 1.00
-Benign 1 1 6
PSCdiagnosis
-Yes 5050.03
-No 369
CA19.9
- 37kU/L 63 9 0.99
- <37kU/L 2 2 4
BC-type
-I-IIIA 5490.99
-IIIB-IV 2 1 3
PSC =PrimarySclerosingCholangitis,SUV=StandardizedUptakeValue,BC=Bismuth-Corlette
aExcludingthepatientwithlymphomaandIPNB
1 3
Nuclear Medicine and Molecular Imaging
measurementaswasimplementedinourstudy.Ourresults
showthatPET/MRImayincreasethecondencelevelfor
malignancywhichmayspeeduptheclinicaldecisiontoper-
formsurgery.TheindicationforPET/MRIshouldtherefore
be considered on a case-by-case basis. PET/MRI may be
valuabletodemonstrate thefullextentof lesions(Fig.2),
assist in characterization of enlarged lymph nodes and
detectdistantmetastasesthatwerenotapparentonprevious
CTandMRI/MRCP.AnotheradvantageofPET/MRIcom-
paredtoPET/CTishighersensitivityforbonyandhepatic
metastases[20].Inourstudyhowever,wehadnocaseswith
distantmetastases.
Cholangiocarcinomaishistologicallyanadenocarcinoma
andtypically shows elevated FDG uptake. There are two
importantlimitationswithFDGuptakeincaseofpCCA:(1)
FDG-aviditymaybedecreased,duetoabundanceofbrotic
dierentiating malignancy from benign disease was not
achievedinourstudy.Webelieve,basedonourresults,that
SUVmaxshouldbeinterpretedasacontinuousvariableand
future(large)studiesshouldrevealthe truevalueofSUV-
max measurements for diagnosis and treatment outcome.
Consequently, one cannot rely solely on these quantita-
tiveparametersfordiagnosisandclinicalmanagementof
obstructiveperihilarbiliarylesions.Clinicalworkup,expert
readingofbaselineimaging(CTscanandMRI/MRCP)and
multidisciplinaryevaluationin expertisecentresisrecom-
mendedforthesepatients.FDG-PETimagingofpCCAis
challengingbecauseofthenon-bulky,lineartumourspread
alongthebiliarytreethatmaynegativelyaectvisiblePET
avidityowingtopartialvolumeeectsandmotionartefacts.
Forthisreason,wewelcomeeortstostandardizerepro-
ducibilityofPETimagingfeaturessuchasEARL2inSUV
Fig. 2 PET/MRIofpatientwithpathologicallyconrmedpCCA(#10).
ThePET/MRIshowsapCCA, BCtype IIIB.Measurementsshow a
SUVmaxof6.9,TLRof3.45andTBRof3.14.Anillustrativecaseof
a61-year-old malewith pCCA(histopathologyproven).Thetumour
is located in the perihilar region (A, arrow) and extending past the
rstbranchingofthelefthepaticmainduct(B,arrows),classiedas
a Bismuth-Corlette III-B tumour.A) With CT no obvious lesion is
discernibleintheperihilarregion.B)On contrast-enhancedMRIthe
tumourcanbeseenassubtleirregularthickenedbileductwallwithno
cleartumourmass(arrows).C,D)ClearFDG-avidlesionwithlimited
tumourvolume (segmented),includingROIplacement(C,arrow)to
measureliverbackgroundactivityandtumouractivity
1 3
Nuclear Medicine and Molecular Imaging
Tothebestofourknowledge,thisistherstprospective
studyontheaddedvalueofPET/MRIinpresumedresect-
able pCCA patients exclusively. Limitations include the
smallnumberofpatientsinthisstudy.Althoughourcentre
isoneofthelargestreferralcentresforcholangiocarcinoma
management in the Netherlands, the number of patients
presenting annually with potentially resectable pCCA is
low.Unfortunatelyduetothesmallnumberofpatientswe
wereunabletoperformadditionalanalyses,suchascorrela-
tionbetweenPET/MRIfeaturesandclinicaldata.Another
limitationmightbeselectionbias,whichmayhaveinu-
encedourresults.PatientswereincludedwhenpCCAwas
suggested on clinical grounds. Still three patients were
includedwithnomalignancy. Weconsider this nding in
linewithrealworlddata.Itisawell-knownfactthatbenign
biliaryobstructivelesions,especiallyinammatorydisease,
stromainpCCAand(2)FDGtracerenablesdetectionof
glycolysis,presentinthewholebody,andincreasedinareas
ofinfection andinammationwhichiscommonalongthe
biliarytreeafterstentplacementforpCCA.Itistherefore
recommended to perform PET/MRI before biliary stent
placement.Since2019,broblastactivationproteininhibi-
tor (FAPI) is being investigated in the setting of cholan-
giocarcinomaasanewPET-tracer[32].Cancer-associated
broblastsshowahigh expressionofbroblastactivation
protein,whichcanbebetterdemonstratedbyusingFAPI-
tracer,whileexpressionlevelsinnormalhuman tissueare
generallyverylow[33].Arecentsystematicreviewshows
thepotentialthatFAPIPET/MRIholdsforpCCApatients
[34].FuturestudieswithFAPIPET/MRImayshowhigher
specicityfordiagnosisandstagingofpCCA.
Fig. 3 PET/MRIofpatientwithpathologicallyconrmedpCCA(#2).
An illustrative case of a 69-year-old male with pCCA(histopathol-
ogyproven).Smalltumourmassislocatedatthehilumofthebiliary
treewithmarkeddilatationofthelefthepaticducts,includingatrophy
oftheleftliverlobe,Bismuth-CorletteIIlesion. A)CoronalCTiage
witha smallobstructive tumourin thebiliary hilum(arrow), includ-
ing proximal intrahepatic bile duct dilatation. B) On axial contrast-
enhanced MRI the lesion can be appreciated as a small localized
enhancingtumour(arrow).C,D)AxialandcoronoalPET/MRIimages
showasmallpCCA,BCtypeIwithlowPETavidity(arrows),includ-
ingrelativelylowSUVmax(1.8),TLR(0.9),andTBR(1.06)
1 3
Nuclear Medicine and Molecular Imaging
selectivelyonacase-by-casebasis.Prospectivemulticentre
trialsonhybridPET/MRIwithmoresensitivetracers(e.g.
FAPI) and standardized evaluation methods (e.g. EARL2
basedSUV)inthesettingofpCCAarewarranted.
Acknowledgements Notapplicable.
Author Contributions Allauthorscontributedtothestudyconception
and design. Material preparation, data collection and analysis were
performedbyD.M.deJong,K. Chehin, T.L.N.Meijering, Q.G. de
LussanetdelaSabloniere,andR.S.Dwarkasing.Therstdraftofthe
manuscriptwaswritten byD.M.de JongandR.S. Dwarkasing,and
allauthorscommentedonpreviousversionsofthemanuscript.Allau-
thorsreadandapprovedthenalmanuscript.
Funding Thereisnosourceoffunding.
Data Availability Thedatasets analysedduringthe currentstudy are
availablefromthecorrespondingauthoruponreasonablerequest.
may mimic pCCA [35].Another limitation might be that
the inuence on clinical decision making was not clearly
denedinadvancebutwasinterpretedretrospectively.Our
patientshavestructureddocumentationontheMDTBdeci-
sionandrecommendationforclinicalmanagementintheir
electronicmedicalles.Inaddition,theinuenceonclini-
caldecisionmaking was basedongroupdiscussions with
fourmembersofourresearchteamonMDTBreportsbefore
andafterPET/MRI.
Conclusions
In summary, 18 F-FDG-PET/MRI has limited value for
diagnosisofpCCAandinuencedclinicaldecisionmaking
in14%ofpCCApatientsoptingforsurgery.Theindication
for 18 F-FDG-PET/MRI should therefore be considered
Fig. 4 PET/MRIofpatientwithpathologicallyconrmedintra-ductal
tubulopapillary neoplasm with dysplastic cells (#6). An illustrative
caseofa69-year-oldmalewithintra-ductaltubulopapillaryneoplasm
withdysplasticcells (histopathologyproven),noinltrative growth.
A,B)CTimages demonstrate awell-denedintra-ductal obstructive
mass lesion with contrast enhancement (arrows) similar to the sur-
roundingliverparenchyma.C)AxialContrast-enhancedT1-weighted
MRIimagewithno additional ndingscomparedtoCT (A,B),D)
AxialPET/MRIshowsanobviousFDG-avidlesion(arrow)
1 3
Nuclear Medicine and Molecular Imaging
7. ZhangH,ZhuJ,KeF,WengM,WuX,LiM,etal.Radiological
imagingforassessingtherespectabilityofHilarCholangiocarci-
noma:asystematic reviewandMeta-analysis. BiomedRes Int.
2015;2015:497942.
8. Masselli G, Gualdi G. Hilar cholangiocarcinoma: MRI/
MRCP in staging and treatment planning. Abdom Imaging.
2008;33:444–51.
9. KimDW,KimSY,YooC,HwangDW.UpdateonbiliaryCancer
imaging.RadiolClinNorthAm.2022;60:825–42.
10. PangL, BoX,WangJ,WangC, WangY,LiuG,et al.Role of
dual-timepoint18F-FDGPET/CTimagingintheprimarydiag-
nosis and staging of hilar cholangiocarcinoma.Abdom Radiol.
2021;46:4138–47.
11. Lamarca A, Barriuso J, ChanderA, McNamara MG, Hubner
RA,ÓReillyD,etal.18F-uorodeoxyglucosepositronemission
tomography(18FDG-PET)forpatientswithbiliarytractcancer:
systematicreviewandmeta-analysis.JHepatol.2019;71:115–29.
12. FowlerAM,StrigelRM.ClinicaladvancesinPET-MRIforbreast
cancer.LancetOncol.2022;23:e32–43.
13. Mallak N, Hope TA, Guimaraes AR. PET/MR Imaging of the
Pancreas.MagnResonImagingClinNAm.2018;26:345–62.
14. ObmannVC,Grosse-HokampN,AlbertsI,FultonN,RassouliN,
SiegelC,etal.Diagnosisandstagingofhepatobiliarymalignan-
cies:potentialincrementalvalueof (18)F-FDG-PET/MRIcom-
paredtoMRIoftheliver.Nuklearmedizin.2021;60:355–67.
15. CelebiF,YaghoutiK,CindilE,DogusoyGB,TokatY,BalciC.
The role of 18F-FDG PET/MRI in theAssessment of primary
intrahepaticneoplasms.AcadRadiol.2021;28:189–98.
16. Yoo J, Lee JM, Yoon JH, Joo I, Lee DH. Additional value of
Integrated(18)F-FDGPET/MRIforevaluatingbiliaryTractCan-
cer: comparison with contrast-enhanced CT. Korean J Radiol.
2021;22:714–24.
17. Guniganti P, Kierans AS. PET/MRI of the hepatobiliary sys-
tem: review of techniques and applications. Clin Imaging.
2021;71:160–9.
18. BoellaardR,RauschI,BeyerT,DelsoG,YaqubM,QuickHH,et
al.Qualitycontrolforquantitativemulticenterwhole-bodyPET/
MRstudies:aNEMA imagequalityphantomstudy with three
currentPET/MRsystems.MedPhys.2015;42:5961–9.
19. BoellaardR,Delgado-BoltonR,OyenWJ,GiammarileF,Tatsch
K,EschnerW,etal.FDGPET/CT:EANMprocedureguidelines
fortumourimaging:version2.0. EurJNuclMedMol Imaging.
2015;42:328–54.
20. CatalanoOA, RosenBR,SahaniDV,Hahn PF,GuimaraesAR,
VangelMG,etal.ClinicalimpactofPET/MRimaginginpatients
withCancerundergoingsame-dayPET/CT:initialexperiencein
134Patients—Ahypothesis-generatingexploratorystudy.Radi-
ology.2013;269:857–69.
21. MayerhoeferME,ProschH,BeerL,TamandlD,BeyerT,Hoeller
C,etal.PET/MRIversusPET/CTinoncology:aprospectivesin-
gle-centerstudyof330examinationsfocusingonimplicationsfor
patientmanagementandcostconsiderations.EurJNuclMedMol
Imaging.2020;47:51–60.
22. GleesonFC, RajanE, LevyMJ,ClainJE,TopazianMD,Hare-
woodGC,etal. EUS-guided FNAofregionallymph nodes in
patientswithunresectablehilarcholangiocarcinoma.Gastrointest
Endosc.2008;67:438–43.
23. Malikowski T, Levy MJ, Gleeson FC, Storm AC, Vargas EJ,
TopazianMD,etal.EndoscopicUltrasound/Fineneedleaspira-
tioniseectiveforLymphNodestaginginpatientswithCholan-
giocarcinoma.Hepatology.2020;72:940–8.
24. de Jong DM, van de Vondervoort S, Dwarkasing RS, Doukas
M,VoermansRP,VerdonkRC,etal.Endoscopic ultrasoundin
patientswithresectableperihilarcholangiocarcinoma:impacton
clinicaldecision-making.EndoscIntOpen.2023;11:E162–8.
Declarations
Ethics Approval This study was conducted in accordance with the
HelsinkideclarationandfollowedtheSTROBEguidelinesafterbeing
approvedbythelocalethicalreviewcommittee(ErasmusMC,MEC-
2021-0524).Fivepatientsunderwenta PET/MRI shortly beforethe
trialformallystartedandwereincludedretrospectivelyafterproviding
informedconsent.TheindicationsandPET/MRIitselfwereidentical
to(therestofthe)studycohort.
Consent for Publication The participants signed consent regarding
publishingtheirdataandphotographs.
Competing Interests M.J.BrunoreceivedresearchfundingfromBos-
tonScientic,CookMedical,PentaxMedical,InterScope,andMylan;
he is a consultant to Boston Scientic, Cook Medical, and Pentax
Medical. The remaining authors (D.M. de Jong, K. Chehin, T.L.N.
Meijering, M. Segbers, L.M.J.W. van Driel, B. Groot Koerkamp,
J.N.M.IJzermans,F.A.Verburg,Q.G. deLussanetde laSabloniere,
R.S.Dwarkasing)declarethattheyhavenotconictsofinterest.
Declaration of Generative AI in Scientic Writing Duringtheprepara-
tionofthisworktheauthorsdidnotusegenerativeAIandAI-assisted
technologies. The authors take full responsibility for the content of
thispublication.
Preprint sharing Notapplicable.
Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
aslongasyougiveappropriatecredittotheoriginalauthor(s)andthe
source,providealinktotheCreativeCommonslicence,andindicate
ifchangesweremade.Theimagesorotherthirdpartymaterialinthis
articleareincludedinthearticle’sCreativeCommonslicence,unless
indicatedotherwise inacreditlineto thematerial.Ifmaterialisnot
includedinthearticle’sCreativeCommonslicenceandyourintended
useis notpermittedbystatutoryregulationorexceedsthepermitted
use,youwillneed to obtain permissiondirectlyfromthe copyright
holder.Toview acopyof thislicence, visithttp://creativecommons.
org/licenses/by/4.0/.
References
1. BlechaczB,KomutaM,RoskamsT,GoresGJ.Clinicaldiagnosis
andstagingofcholangiocarcinoma.NatRevGastroenterolHepa-
tol.2011;8:512–22.
2. RadtkeA,KönigsrainerA.SurgicalTherapyofCholangiocarci-
noma.ViscMed.2016;32:422–6.
3. van Keulen A-M, Franssen S, van der Geest LG, de Boer
MT, Coenraad M, van Driel LMJW, et al. Nationwide treat-
mentandoutcomesof perihilar cholangiocarcinoma. LiverInt.
2021;41:1945–53.
4. BlechaczB,Cholangiocarcinoma.Currentknowledge andNew
Developments.GutLiver.2017;11:13–26.
5. ItoF,AgniR,RettammelRJ,BeenMJ,ChoCS,MahviDM,etal.
Resectionofhilarcholangiocarcinoma:concomitant liverresec-
tiondecreaseshepaticrecurrence.AnnSurg.2008;248:273–9.
6. MatsuoK,RochaFG,ItoK,D’AngelicaMI,AllenPJ,FongY,et
al.TheBlumgartpreoperativestagingsystemforhilarcholangio-
carcinoma:analysisofresectabilityandoutcomesin380patients.
JAmCollSurg.2012;215:343–55.
1 3
Nuclear Medicine and Molecular Imaging
31. Tomimaru Y, Takeda Y, Tatsumi M, Kim T, Kobayashi S,
MarubashiS, etal. Utilityof 2-[18F]uoro-2-deoxy-D-glucose
positronemissiontomographyindierentialdiagnosisofbenign
and malignant intraductal papillary-mucinous neoplasm of the
pancreas.OncolRep.2010;24:613–20.
32. ChenH,ZhaoL,RuanD,PangY,HaoB,DaiY,etal.Usefulness
of[68Ga]Ga-DOTA-FAPI-04PET/CTinpatientspresentingwith
inconclusive[18F]FDG PET/CTndings. EurJNuclMedMol
Imaging.2021;48:73–86.
33. DendlK,KoerberSA,KratochwilC,CardinaleJ,FinckR,Dabir
M,etal.FAPandFAPI-PET/CTinmalignantandnon-malignant
diseases:aperfectsymbiosis?Cancers.2021;13:4946.
34. vanVeldhuijzenSEM,PietermanKJ,WijnhovenBPL,PruisIJ,
Groot Koerkamp B, van Driel LMJW, et al. FAPI PETversus
FDGPET,CTorMRIforstagingPancreatic-,gastric-andChol-
angiocarcinoma: systematic review and head-to-head compari-
sonsofDiagnosticperformances.Diagnostics.2022;12:1958.
35. FranssenS,deJongDM,vanDrielLMJW,GrootKoerkampB.
Challengesin diagnosingCholangiocarcinoma:pullingtogether
biochemical, radiological, and Cytopathological Data. In:
Tabibian JH, editor Diagnosis and management of Cholangio-
carcinoma:aMultidisciplinaryApproach.Cham:SpringerInter-
nationalPublishing,2021.p^pp.229–49.
Publisher’s Note SpringerNatureremainsneutralwithregardtojuris-
dictionalclaimsinpublishedmapsandinstitutionalaliations.
25. deJongDM,denHoedCM,WillemssenF,ThomeerMGJ,Bruno
MJ,KoerkampBG,etal.ImpactofEUSinlivertransplantation
workupforpatientswithunresectable perihilar cholangiocarci-
noma.GastrointestEndosc.2024;99:548–56.
26. Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S,
Grueneisen J, Demircioglu A, et al. PET/MRIVersus PET/CT
for whole-body staging: results from a single-Center Obser-
vational Study on 1,003 sequential examinations. J Nucl Med.
2020;61:1131–6.
27. Spick C, Herrmann K, Czernin J. <sup>18F-FDG PET/
CT and PET/MRI perform equally well in Cancer: evidence
fromstudieson more than2,300Patients</sup>.J NuclMed.
2016;57:420–30.
28. Hectors SJ, Wagner M, Besa C, Huang W,Taouli B. Multipa-
rametric FDG-PET/MRI of Hepatocellular Carcinoma: initial
experience.Volume2018.ContrastMedia&MolecularImaging;
2018.p.5638283.
29. UtsunomiyaT,OgawaK,FunamizuN,SakamotoK,WatanabeJ,
OtaniH,etal.Thetumor-to-liverratioofthestandardizeduptake
valueisa usefulFDG-PET/CTparameter forpredicting malig-
nant intraductal papillary mucinous neoplasm of the pancreas.
AnnGastroenterolSurg.2022;6:695–703.
30. KimTH,JiYB,SongCM,KimJY,ChoiYY,ParkJS,etal.SUV-
maxof18F-FDGPET/CTinthedierentialdiagnosisofbenign
andmalignantthyroidnodulesaccordingtotumorvolume.World
JSurgOncol.2015;13:217.
1 3
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Background and study aims Accurate assessment of the lymph node (LN) status is crucial in resectable perihilar cholangiocarcinoma (pCCA) to prevent major surgery in patients with extraregional metastatic LNs (MLNs). This study investigates the added value of preoperative endoscopic ultrasound (EUS) with or without tissue acquisition (TA) for the detection of MLNs in patients with resectable pCCA. Patients and methods In this retrospective, multicenter cohort study, patients with potentially resectable pCCA who underwent EUS preoperatively between 2010–2020, were included. The clinical impact of EUS-TA was defined as the percentage of patients who did not undergo surgical resection due to MLNs found with EUS-TA. Findings of cross-sectional imaging were compared with EUS-TA findings and surgery. Results EUS was performed on 141 patients, of whom 107 (76 %) had suspicious LNs on cross-sectional imaging. Surgical exploration was prevented in 20 patients (14 %) because EUS-TA detected MLNs, of which 17 (85 %) were extraregional. Finally, 74 patients (52 %) underwent surgical exploration followed by complete resection in 40 (28 %). MLNs were identified at definitive pathology in 24 (33 %) patients, of which 9 (38 %) were extraregional and 15 (63 %) regional. Conclusions EUS-TA may be of value in patients with potentially resectable pCCA based on preoperative cross-sectional imaging, regardless of lymphadenopathy at cross-sectional imaging. A prospective study in which a comprehensive EUS investigation with LN assessment and EUS-TA of LNs is performed routinely should confirm this promise.
Article
Full-text available
Introduction: There is a pressing demand for the development of cancer-specific diagnostic imaging tools, particularly for staging of pancreatic-, gastric- or cholangiocarcinoma, as current diagnostic imaging techniques, including CT, MRI and PET using FDG, are not fully adequate. The novel PET-tracer "FAPI" has the potential to visualize even small tumour deposits employing the tumour-specific expression of fibroblast-activating protein (FAP) in malignant cells. Methods: We performed a systematic review to select studies investigating the use of FAPI PET for staging pancreatic-, gastric- and cholangiocarcinoma (PROSPERO CRD42022329512). Patient-wise and lesion-wise comparisons were performed for primary tumour (T), lymph nodes (N), organ metastases (M) and peritoneal carcinomatosis (PC). Maximum standardized uptake values (SUVmax) and tumour-to-background ratios (TBR) were compared between PET using FAPI versus FDG (if reported). Results: Ten articles met the inclusion criteria. In all studies, FAPI PET showed superiority over FDG-PET/CT/MRI for the detection of T, N, M and PC, both in the patient-wise and in lesion-wise comparisons (when performed). Additionally, higher SUVmax and TBRmax values were reported for use of FAPI compared to FDG. Conclusions: The positive results of this review warrant prospective clinical studies to investigate the accuracy and clinical value of FAPI PET for diagnosing and staging patients with pancreatic-, gastric- and cholangiocarcinoma.
Article
Full-text available
Background: The present study aimed to investigate the efficacy of positron emission tomography with 18Fluoro-deoxyglucose (FDG-PET/CT) for predicting malignant intraductal papillary mucinous neoplasm (IPMN). Methods: The records of 88 patients pathologically diagnosed with IPMN after surgery at Ehime University Hospital and Ehime Prefectural Central Hospital from April 2009 to December 2020 were retrospectively reviewed. The patients' characteristics, blood chemistry, and imaging examinations were evaluated as potential predictors of malignant IPMN. Of the PET/CT results, the maximum standardized uptake value (SUVmax) of the tumor, the tumor-to-blood pool ratio of the SUV (TBR), and the tumor-to-liver ratio of the SUV (TLR) were compared. Results: On pathology, the diagnosis was adenoma (IPMA) in 40 patients, high-grade dysplasia (HGD) in 26 patients, and carcinoma (IPMC) in 22 patients. HGD and IPMC were defined as malignant IPMN. On multivariate analyses, TLR ≥ 1.3 and high-risk stigmata were independent predictors of malignant IPMN (P = .001 and P = .007, respectively). When both HRS and TLR ≥ 1.3 were present, the positive predictive value for malignancy was 88.2%. Furthermore, TLR was significantly higher for patients with IPMC than with HGD (P = .039). Conclusion: TLR can be a useful predictor for differentiating benign from malignant IPMN and may be associated with postoperative outcomes.
Article
Full-text available
A fibroblast activation protein (FAP) is an atypical type II transmembrane serine protease with both endopeptidase and post-proline dipeptidyl peptidase activity. FAP is overexpressed in cancer-associated fibroblasts (CAFs), which are found in most epithelial tumors. CAFs have been implicated in promoting tumor cell invasion, angiogenesis and growth and their presence correlates with a poor prognosis. However, FAP can generally be found during the remodeling of the extracellular matrix and therefore can be detected in wound healing and benign diseases. For instance, chronic inflammation, arthritis, fibrosis and ischemic heart tissue after a myocardial infarction are FAP-positive diseases. Therefore, quinoline-based FAP inhibitors (FAPIs) bind with a high affinity not only to tumors but also to a variety of benign pathologic processes. When these inhibitors are radiolabeled with positron emitting radioisotopes, they provide new diagnostic and prognostic tools as well as insights into the role of the microenvironment in a disease. In this respect, they deliver additional information beyond what is afforded by conventional FDG PET scans that typically report on glucose uptake. Thus, FAP ligands are considered to be highly promising novel tracers that offer a new diagnostic and theranostic potential in a variety of diseases.
Article
Biliary cancer, also known as cholangiocarcinoma, is a primary malignant epithelial neoplasm arising in the bile duct. Cholangiocarcinoma can be classified into intrahepatic, perihilar, and distal cholangiocarcinoma according to anatomic location. Multiphase thin-section computed tomography is the primary imaging modality for diagnosis and treatment planning. MR imaging with magnetic resonance cholangiopancreatography provides additional information for differential diagnosis, complex biliary anatomy, and tumor extent. For preoperative assessment of extrahepatic cholangiocarcinoma, longitudinal tumor extent, vascular involvement, lymph node and distant metastasis, and remnant liver volume are the key features. The adoption of recent advances in imaging techniques enables enhanced image quality and helps to offer optimal treatment options.
Article
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET–MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET–MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET–MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET–MRI to provide added value for breast cancer imaging and patient care.
Article
Objective The purpose of the study was to investigate the potential added value of 18F-FDG-PET/MRI (functional information derived from PET) over standard diagnostic liver MRI (excellent soft tissue characterization) in diagnosing and staging suspected primary hepatobiliary malignancies including extrahepatic cholangiocarcinoma (ECC), intrahepatic cholangiocellular carcinoma (ICC) and gallbladder cancer (GBCA). Methods Twenty consecutive patients with suspected hepatobiliary malignancy were included in this retrospective study. All patients underwent combined whole-body (WB) 18F-FDG-PET/MRI including contrast-enhanced MRI of the liver, contrast-enhanced WB-MRI and WB 18F-FDG-PET. Two experienced readers staged hepatobiliary disease using TNM criteria: first based on MRI alone and then based on combined 18F-FDG-PET/MRI. Subsequently, the impact of FDG-PET/MRI on clinical management compared to MRI alone was recorded. Histopathologic proof served as the reference standard. Results Hepatobiliary neoplasms were present in 16/20 patients (ECC n = 3, ICC n = 8, GBCA n = 5), two patients revealed benign disease, two were excluded. TNM staging with 18F-FDG-PET/MRI was identical to MRI alone in 11/18 (61.1 %) patients and correctly changed the stage in 4/18 (22.2 %), resulting in a change in management for 2/4 patients (11.1 %). 18F-FDG-PET/MRI was false-positive in 3/18 cases (16.7 %). Both MRI and 18F-FDG-PET/MRI were falsely positive in 1 case without malignancy. Conclusions A small incremental benefit of 18F-FDG-PET/MRI over standard MRI of the liver was observed. However, in some cases 18F-FDG-PET/MRI may lead to false-positive findings. Overall there is seemingly limited role of 18F-FDG-PET/MRI in patients with suspected hepatobiliary malignancy.
Chapter
The aim of the diagnostic work-up of cholangiocarcinoma (CCA) is diagnosis and staging of the disease as (borderline) resectable, locally advanced (i.e., unresectable), or metastatic. The focus of this chapter is on the various challenges often encountered in this diagnostic work-up. For instance, one major challenge is that CCA involves three disease entities that differ in genomic alterations, signs, and symptoms: intrahepatic (iCCA), perihilar (pCCA), and distal cholangiocarcinoma (dCCA). A second challenge is that it is frequently difficult to obtain adequate tissue for a definitive diagnosis. A third challenge is that several nonmalignant diseases can masquerade as CCA. These and other challenges are illustrated herein with a series of case presentations which also help highlight the importance of a multidisciplinary effort of gastroenterologists, surgeons, medical oncologists, radiologists, and pathologists. In some cases, despite a meticulous patient history, physical examination, and evaluation of imaging and laboratory tests by multidisciplinary experts, a diagnosis cannot be established with absolute certainty, and treatment may sometimes be started based on CCA being the most likely diagnosis.