Renterghem et al., 2013] Pieter Van Renterghem,
Pierre-Edouard Sottas, Martial Saugy, and Peter Van
Eenoo. Statistical discrimination of steroid profiles in
doping control with support vector machines. Analytica
Chimica Acta, 768:41-48, 2013.
[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
[WADA, 2005] WADA.
Anti-doping administration
management system (adams).
https://www.wadaama.org/en/what-we-do/adams, 2005. Accessed: 2023-11-07.
[WADA, 2021] WADA. Measurement and reporting of endogenous anabolic androgenic steroid (eaas) markers of
the urinary steroid profile. In WADA Technical Document
-TD2021EAAS, 2021.
[Wang et al., 2022] Wei-Yao Wang, Teng-Fong Chan, Wen-Chih Peng, Hui-Kuo Yang, Chih-Chuan Wang, and Yao-Chung Fan. How is the stroke? inferring shot influence
in badminton matches via long short-term dependencies.
ACM Transactions on Intelligent Systems and Technology,
14(1):1-22, 2022.
[Wilkes et al., 2018] Edmund H Wilkes, Gill Rumsby, and
Gary M Woodward. Using Machine Learning to Aid the
Interpretation of Urine Steroid Profiles. Clinical Chemistry, 64(11):1586-1595, 11 2018.
[Xu and Cai, 2019] Jingyun Xu and Yi Cai. Incorporating
context-relevant knowledge into convolutional neural networks for short text classification. Proceedings of the
AAAI Conference on Artificial Intelligence, 33(01):10067-10068, Jul. 2019.
[Zhang et al., 2020] Yanghao Zhang,
Wenjie Ruan,
Fu Wang, and Xiaowei Huang. Generalizing universal adversarial attacks beyond additive perturbations. In
2020 IEEE International Conference on Data Mining
(ICDM), pages 1412-1417, 2020.
[Zhao and Hryniewicki, 2018] Yue Zhao and Maciej K.
Hryniewicki. Xgbod: Improving supervised outlier detection with unsupervised representation learning. In
2018 International Joint Conference on Neural Networks
(IJCNN), pages 1-8, 2018.
[Zhao et al., 2019] Yue Zhao, Zain Nasrullah, Maciej K
Hryniewicki, and Zheng Li. LSCP: locally selective combination in parallel outlier ensembles. In Proceedings of
the 2019 SIAM International Conference on Data Mining,
SDM 2019, pages 585-593, May 2019.
[Zhao et al., 2021] Yue Zhao, Xiyang Hu, Cheng Cheng,
Changlin Wan, Wen Wang, Jianing Yang, Haoping Bai,
Zheng Li, Cao Xiao, Yunlong Wang, Zhi Qiao, J. Sun, and
Leman Akoglu. Suod: Accelerating large-scale unsupervised heterogeneous outlier detection. 01 2021.