Available via license: CC BY
Content may be subject to copyright.
Article Not peer-reviewed version
A Model for Determining the
Dependability of Continuous
Subsystems in Coal Mines Using the
Fuzzy Logic Approach
Nikola Stanic * , Miljan Gomilanovic , Petar Markovic , Daniel Kr
ž
anovi
ć
, Aleksandar Doderovic ,
Sasa Stepanovic
Posted Date: 24 July 2024
doi: 10.20944/preprints202407.1952.v1
Keywords: fuzzy logic; max-min composition; continuous part of combined system (CCS); open pit; mining;
dependability
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Article
AModelforDeterminingtheDependabilityof
ContinuousSubsystemsinCoalMinesUsingthe
FuzzyLogicApproach
NikolaStanic1*,MiljanGomilanovic1,PetarMarkovic2,DanielKrzanovic1,
AleksandarDoderovic1andSasaStepanovic1
1MiningandMetallurgyInstituteBor
2FacultyofMiningandGeology,UniversityofBelgrade
*Correspondence:Author:NikolaStanic;E‐mail:nikola.stanic@irmbor.co.rs
Abstract:Thisstudypresentsauniquemodelforassessingthedependabilityofcontinuouspartsof
combinedsystemsinopen‐pitminingthroughtheapplicationoffuzzylogic.Continuoussub‐
systemsaspartofthecombinedsystemofcoalexploitationinsurfacemineshavethebasicfunction
ofensuringsafeoperation,highcapacitywithhighreliabilityandlowcosts.Thesesubsystemsare
usuallypartofthethermalpowerplantʹscoalsupplysystemandensurestablefuelsupply.The
modelintegratesvariousindependentpartialindicatorsofdependabilityintoanexpertsystem
specificallydesignedforevaluatingthesesystems.Itdeconstructsthecomplexparameterofsystem
dependabilityintodistinctpartialindicators:reliability,maintainability,andlogisticalsupport.
Theseindicatorsarethenintegratedusingfuzzycomposition(max‐mincomposition).Historical
datafrom2018to2023isutilizedalongsidethefuzzymodeltoprovidearetrospectiveanalysisof
systemdependability,servingtovalidatethemodelʹseffectiveness.Whatsetsthismodelapartfrom
conventionalapproachesisitsconsiderationofpracticaldependabilityindicators,therebyobviating
theneedforextensivelong‐termmonitoringanddatacollectiontoportraythesystemʹsstatus
accuratelyovertime.Thismodelservesasavaluabletoolforassistingdecision‐makersinopen‐pit
miningoperations,facilitatingplanning,exploitationcontrol,andtheselectionofmaintenance
strategiestoensureconsistentproductionandcostreduction.Designedforquickassessment,the
modelreliesonexpertjudgmentsandassessmentstodeterminesystemdependabilityefficiently.
Keywords:fuzzylogic;max‐mincomposition;continuouspartofcombinedsystem(CCS);openpit;
mining;dependability
1.Introduction
Miningoperations,crucialtonumerouseconomiesworldwide,areundergoingatransformative
phase,markedbyheightenedenvironmentalconcerns,technologicaladvancements,andagrowing
emphasisonoperationalefficiency[1,2].Theseoperationsincludeawiderangeofactivities,from
excavationandmaterialextractiontotransportationandprocessing.Withinthecomplexstructureof
miningactivities,transportsystemsareoneofthekeycomponents,enablingthesmoothmovement
ofmaterialsacrosslargeminingsites[3].
Materialtransportationisacriticalaspectofminingoperations,significantlyinfluencingcosts,
efficiency,safety,andenvironmentalimpact[4,5].Consideringthatloadingandtransportationcosts
amountto60%ofthetotaloperatingcosts,itisessentialthatthesesystemsareefficientandreliable
[6].Theenvironmentalfootprintoftraditionaldiesel‐poweredtransportmethodsnecessitates
researchintosustainablealternativeslikeelectricandautonomousvehicles[7,8].Moreover,safety
andriskmanagementareparamount,withadvancedtechnologiessuchasautomationandreal‐time
monitoringofferingnewopportunitiesforoptimizingtransportroutesandenhancingdecision‐
making[9].Giventhecomplexandvariableconditionsofminingenvironments,tailoredsolutions
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
2
areessential,makingcontinuousresearchinthisareacrucialforachievinggreatersustainability,
operationalexcellence,andeconomicviabilityintheminingindustry.
Variousmethodsandmodelsareusedforthepurposesofthisresearchinthefieldofmining,
whichprovidethepossibilityofdealingwiththecomplexandchangingconditionsofthemining
environment.Oneofthemostwidelyappliedmathematicalapproachesisthetheoryoffuzzysets,
whichissuitablefortheanalysisofprocessesinwhichuncertainty,ambiguity,subjectivity,and
indeterminacyprevail[10].
Theapplicationofthismethodenablestheaforementionedproblemtobesuccessfullyanalyzed,
andtheanalysisresultsreflectthepreviousexpertexperiencesandresultsofexperimental
measurementsinagoodway.Toassessthesuccessofusingthismethod,priorknowledgeofthe
behavioroftheanalyzedsystemsandprocessesisnecessary.Bycomparingtheexperienceand
experimentaldatawiththeanalysisresultsofthefuzzylogicmethod,itsverificationiscarriedout.
Belowisanoverviewofworkswiththeapplicationoffuzzylogicinminingandsimilartopics.
Thelargestnumberofworksisrelatedtothefieldofmechanizationinmining,wherefuzzylogic
wasusedtoevaluatetheperformanceofminingequipmentunderdifferentoperatingconditions.
Theapproachtakesintoaccountmultiplecriteriasuchasreliability,efficiencyandmaintenancecosts
[10–14].Thismathematicalapproachhasalsofoundapplicationinvariouspartsoftheproduction
processinsurfaceandundergroundmines,whereprocessessuchasloading,transportation,drilling
andblastingareadequatelyoptimized[15–19].Thescientificliteraturealsohighlightsthepervasive
natureofriskinminingoperations[20–24],emphasizingtheneedforrobustriskmanagement
strategiestomitigatetheimpactofpotentialfailures,whereriskassessmentmethodologiessuchas
failuremodeandeffectsanalysis(FMEA)andriskprioritynumber(RPN)calculationsareusedvery
effectivelyincombinationwithfuzzylogic[25].Fuzzylogiccanalsobeappliedtoanalyze
environmentaldatacollectedfromminingsitestoassesstheimpactofminingactivitiesonairand
waterquality,soilstability,andbiodiversity.Thisinformationcanhelpindevelopingstrategiesto
minimizeenvironmentaldegradationandcomplywithregulatoryrequirements[26–28].
Whenitcomestotransportsystems,theevolutionofminingpracticeshaswitnessedachange
thathasentailedtheadoptionofcontinuoushaulagesystems,markingadeparturefrom
conventionaldiscontinuousmethods.Whiletraditionaltransportationsystemsthatrelyontrucks
andloadersstillpredominateincertaincontexts,theadventofcontinuoussystemsusheredinanew
eraofefficiencyandproductivity.Continuousconveyorsystems,characterizedbycrushers,
conveyorbelts,andintegratedautomationtechnologies,offercountlessadvantagesover
discontinuoustechnologies[29].
Giventheevolvingchallengesofenvironmentalsustainability,safetyandcostoptimization,the
roleofcontinuoustransportsystemsisgainingincreasingimportanceinminingoperations.These
systems,characterizedbytheirabilitytooperate24/7withoutinterruption,offerapathtowards
sustainableandresponsibleminingpractices.Byminimizingenergyconsumption,reducingcarbon
emissionsandincreasingworkersafety,continuoustransportsystemssupporttransformative
changesintheminingindustry[30].
ThecontinuouspartofthecombinedsystemisusedatthecoalopenpitGacko,RepublicSrpska.
Thispaperpresentsamodelthatpredictsthedependabilityofthecontinuouspartofthecombined
system(CCSsystem)attheopenpitGackoapplyingthefuzzytheory.Moreprecisely,thispaper
dealswiththedevelopmentofamodelforpredictingthedependabilityofthecontinuouspartofthe
combinedsystemattheopenpitusingthemax‐mincomposition.Thebasicideaofthispaperisan
expertassessmentofpartialindicatorsthataffectthedependabilityandtheirsynergyinorderto
determinethedependabilityoftheCCSsystemswiththehelpoffuzzymodels.Inadditiontothe
fuzzymodel,ahistoricaloverview(period2018‐2023)ofdatarelatedtothedependabilityofthese
systemsisgiven.Thesehistoricaldataservedtoverifythefuzzymodel.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
3
2.ContinuousPartsoftheCombinedSystem
TheCCSsystem(crusher‐beltconveyors‐landfill)consistsoftwosemi‐mobileprimary
crushersSB1315andSB1515,beltconveyorsTU‐3,TU‐2,TU‐1,andPTU.Coalbroughtbytruckto
theSB1515crusherisdirectlyshakenontothesamerake,andthatbroughttotheSB1315crusheris
depositedatthelandfillanddosedtotherakeusingaloader,whereaftercrushingandpulverization
bytheconveyorsystem,itishandedovertopowerplant.Figure1showsaviewoftheopenpit
Gacko.Figure2showsthepositionoftheCCSsystemattheopenpitGacko.
Figure1.Gackoopenpit(photographedbytheauthorofthearticle:N.S.).
Figure2.ViewoftheCCSsystem(SourceGoogleEarth).
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
4
Figure3.PartsofCCSsystemattheopenpitGacko(privatearchive).
3.Dependability
Dependabilityisacommontermusedtodescribetheavailabilityandfactorsaffectingit:
reliability,maintainability,andlevelofmaintainability[31,32].Thetermavailabilityiscommonly
usedasameasureofoperationalsafety[31,33].Theavailabilityisexpressedinquantitative
indicators,andassuchrepresentsameasureofoperationalsafetyandthusameasureofqualityin
use[34].Theperformanceofavailabilityhasadecisiveeffectonoperationalsafetyandqualityinuse
duetothewell‐knownfactthatthemachineshouldfirstofallbeavailableforwork,inordertorealize
theotherperformancesaswell[31,34].
Dependabilityisacomplexfunctionthatdependsonthefollowingperformances[35]:
performancesofreliability
performancesofmaintainability
performancesoflogisticsupportformaintenance
Operationalsafety:ʺAcollectivetermusedtodescribetheavailabilityperformanceandfactors
thatdeterminetheseperformances:reliabilityperformances,maintainabilityperformances,and
logisticssupportperformancesʺ[35]
ThedependabilityoftechnicalsystemsisconceptuallystipulatedbyISO‐IECstandards[36,37].
4.MaterialsandMethods
4.1.DevelopmentFuzzyModel
Thefirststepwhencreatingafuzzymodelisthedefinitionoflinguisticvariablesthatreferto
thepartialindicatorsofdependability,namely:
Reliabilityrepresentstheprobability,atacertainlevelofconfidence,thatthesystem(machine)
willsuccessfullyperformthefunctionforwhichitisintended,withoutfailureandwithinthe
specifiedperformancelimits,takingintoaccounttheprevioustimeofsystemuse,duringthe
specifieddurationofatask.Whenitisusedintheprescribedmannerandforthepurposeforwhich
itisintended,underthespecifiedloadlevels.[11]
Maintainabilityasasetofstructuralcharacteristicsthataffectthetimetoeliminatefailuresor
thetimeofperformingothermaintenanceprocedures,isaninternalpropertyoftheobserved
technicalsystem,thereforeitiscalledstructuralmaintainability.Thefollowingparametersaffectthe
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
5
maintainability:t‐technology,e‐toolsandequipment,u‐ unification,d‐diagnostics,m‐
manipulativeness,s‐standardization[11,38].
Forthetechnicalsystemtosuccessfullyperformthesettasks,itisnecessarytoprovidelogistical
supportandnumerousconditions.Thelogisticsupportcombinesthemanagementprocesswith
appropriatetechnicalmeasurestodefinethenecessarysupportandcreateconditionsforthe
realizationofthegivenfunctionofthetechnicalsystemgoal.
LogisticalsupportperformancesaccordingtotheISO‐IECStandardaredefinedas:ʺTheability
ofmaintenancesystem,i.e.theorganizationthatperformsmaintenance,toprovideundergiven
conditionstherequiredmaintenanceofthetechnicalsysteminaccordancewiththemaintenance
policy[35,36]theStandardsoftheIEC300seriesdealwiththeconceptoflogisticsupportfor
maintenance[37].
D‐Dependability
R‐Reliability M‐Maintainability F‐Logisticalsupport
t‐Technological
e‐Toolsandequipment
u‐Unific ation
d‐Diagnostic
m‐Manipulativness
s‐Standardization
Figure5.Presentationofpartialindicatorsofdependability.
Intermsofthenumberoflinguisticvariables,itcanbeinferredthatsevenisthemaximumcount
ofvariablesthatapersoncanrationallyrecognizesimultaneouslywhileretainingthesamemeaning
[39].
Takingthisstatementintoaccount,thefiveratings(linguisticvariables),definedasfollows:
excellent(exc),good(good),average(aver),adequate(adeq),andpoor(poor),willbeconsideredin
thispaper.Linguisticvariables(ratings)aregivenintheformoftriangularfuzzynumbers,andtheir
graphicrepresentationispresentedinthefollowingfigure.
Correspondingfuzzynumbersofthementionedlinguisticvariablesaredefinedby(according
toFigure6):𝜇1, 0.25, 0, 0, 0,
𝜇0.25, 1, 0.25, 0, 0,
𝜇0, 0.25, 1, 0.25, 0,
𝜇0, 0, 0.25, 1, 0.25,
(1)
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
6
𝜇0, 0, 0, 0.25, 1.
Partialindicatorst,e,u,d,m,smorecloselydeterminesthepartialindicatorM‐maintenance
convenience,whileM–maintainabilitytogetherwithR‐reliabilityandF‐logisticsupportdetermine
theD‐dependabilityofthesystem.ItwillbeshowninthefollowinghowthedependabilityDis
determinedbasedonindicatorsofmaintainabilityM,reliabilityRandlogisticalsupportF,whilethe
maintenanceconvenienceMisobtainedsimilarlybasedonpartialindicatorst,e,u,d,m,s.
Figure6.Fuzzysets.
TheideaofthisworkistoobtainamoreaccurateassessmentofthedependabilityofCCS
systemsattheopenpitGacko.Thisassessmentwasidentifiedasthebestpossibleamongtheworst
expectedratingsofthepartialavailabilityindicators(R,M,andF).LetthepartialindicatorsR,M,F
beshownintheformofthefollowingtriangularfuzzynumbers
𝜇𝜇
,𝜇
,𝜇,
𝜇
,𝜇
, 𝜇𝜇
,𝜇
,𝜇,
𝜇
,𝜇
,𝜇𝜇
,𝜇
,𝜇,
𝜇
,𝜇
. (2)
Inthenextstep,themax‐mincompositionisperformedonthem.Ifthementionedpartial
indicatorsR,M,Fareobserved,itispossibletomake𝐶5125combinationsofcorresponding
membershipfunctions,whichwillbefurtherdenotedwith
𝜇 𝜇
, 𝜇
,𝜇
),𝑖,
𝑗
,𝑘 ∈1, 2, 3, 4, 5(3)
Eachofthesecombinationsrepresentsonepossibleassessmentofthedependabilityandthe
followingtwovaluescanbeassociatewithit
Ω
(4)
and𝑚min𝜇
,𝜇
, 𝜇
(5)
Ωtakesvaluesfromtheset1, 2, 3, 4, 5,andeachofthementionedvaluescanbeassociated
withthenumber𝜇whichrepresentsthemaximumvalueof
𝑚 of all those combinations for which Ωisequalto𝑙,za𝑙∈1, 2, 3, 4, 5,thatis
𝜇min𝑚∶ Ω𝑙.(6)
Inthisway,aratingforthedependabilityof𝐷isobtained
𝜇𝜇,𝜇,𝜇,𝜇,𝜇(7)
Usingthebest‐fitmethod,see[11],totransformtheobtainedratingsintobelongingtothefuzzy
set,determinedby(2),thedistanceisusedthatisdefinedby
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
7
𝑑𝑑𝜇,𝜇
𝜇 𝜇,
, 𝜇𝜇,,𝜇,,𝜇,,𝜇,,𝜇,,(8)
For𝜇∈𝜇,𝜇 , 𝜇,𝜇 , 𝜇 .Smallvalues𝑑indicateproximitytothelinguistic
variable𝜇 .Accordingly,let𝑑betheminimumvalueoftheobtaineddistances𝑑,𝑑,𝑑,𝑑,𝑑,
thenthereciprocalvalueoftherelativedistancescanbeassociatedtoeachofthemthatisdetermined
by:𝛼𝑑
𝑑, 𝑖∈1, 2, 3, 4, 5.(9)
Ifforsomeithedistancevalue 𝑑isequalto0,thenthecorrespondingvalueofthereciprocal
valueofrelativedistanceis𝛼1, whiletheothervaluesofthereciprocalrelativedistancesare
equalto0.Thenormalizedvaluesofthusobtainedreciprocalvaluesoftherelativedistancesare
determinedby:𝛽𝛼
𝛼𝛼𝛼𝛼𝛼,𝑖∈1, 2, 3, 4, 5(10)
andpresentbelongingtotheappropriaterating:
𝐴𝛽,"excʺ,𝛽,"goodʺ,𝛽,"averʺ,𝛽,"adeqʺ,𝛽,"poorʺ(11)
Intheend,theappropriatelinguisticratingisobtainedasfollows:
𝑍5𝛽4𝛽3𝛽2𝛽1𝛽
𝛽𝛽𝛽𝛽𝛽 (12)
Inasimilarway,aratingformaintainabilityMisobtainedfromthelinguisticvariablest,e,u,d,
m,swhichislaterusedtodeterminethedependabilityD.
Figure7showsthefuzzymodelalgorithmfordependabilityevaluation.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
8
Start
Exp ert
evaluation
(Questionnaire)
Statistical processing
Fuzz y propos ition
Fuzz y composition
Best-fit m ethod
Data classification
Fuzzification
Fuzzy inference model
Identifica tion
Evaluation of
dependability
End
Situation analysis
Input- numerica l
values
Inpu t – fuz zy values
Output –fuzzy
values
Numerical value
Figure7.Algorithmoffuzzymodelforevaluationthedependability[11].
4.2.CaseStudy–OpenPitGacko
4.2.1.ResultsofExpertEvaluation
Determinationofthedependabilityofthesystemanditspartialindicatorswasprocessed
throughtheresultsobtainedthroughquestionnairesrelatedtotheexpertevaluationofthepartial
indicatorsofoperationalsafety.Thequestionnairecontaineddetaileddescriptionsofthepartial
indicatorsthemselves.Intheexpertevaluation,10expertsweresurveyed.Thefirst5expertsare
representativesoftheGackoMine(expertsfromthisfieldwithmanyyearsofworkonthesesystems
‐minimum10yearsofworkexperience),andtheother5expertsareexternalexpertswithmanyyears
ofexperienceinthefieldofopenpitmining.Ratingsareexpressedusingmembershipfunctions
representingpredefinedlinguisticvariablesrangingfromʹpoorʹtoʹexcellentʹwithinascaleof0to1.
Additionally,aparametercanbeassociatedwithmultiplelinguisticvariablessimultaneously,
ensuringthatthetotalsumofratingsequals1.Thefollowingtablesgivetheresultsofexpert
evaluationforeachpartoftheCCSsystem.ThelayoutofonequestionnaireisgiveninFigure8.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
9
Figure8.Layoutofquestionnaire.
Table1.ResultsofexpertevaluationforCrusherSB1515.
ExpertTypepooradeqavergoodexcExpertTypepooradeqavergoodexc
1
R00.50.500
6
R0000.60.4
t00.20.800t00.40.600
e00.60.400e00.20.800
u0.20.8000u00.10.900
d00.50.500d00.40.600
m00.30.700m00.30.700
s00.10.900s00.70.300
F0.40.6000F0.20.8000
2
R000.30.70
7
R000.30.70
t000.350.650t000.20.80
e000.20.80e0000.40.6
u000.60.40u00.40.600
d0.20.8000d0000.60.4
m0.50.5000m000.20.80
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
10
s00.70.300s000.30.70
F00.30.700F00.40.600
3
R000.30.70
8
R0000.80.2
t000.40.60t00.40.600
e000.450.550e00.30.700
u00.250.7500u00.60.400
d00.10.900d000.20.80
m0.40.6000m000.70.30
s00.60.400s00.40.600
F00.30.700F00.10.900
4
R000.10.90
9
R0000.90.1
t000.20.80t00.30.700
e00.50.500e000.20.80
u0.40.6000u000.40.60
d00.40.600d000.20.80
m0.30.7000m000.70.30
s0.250.75000s00.30.700
F0.150.85000F0.20.8000
5
R000.30.70
10
R000.60.40
t00.30.700t00.30.700
e00.70.300e00.40.600
u00.40.600u00.60.400
d0.30.7000d00.10.900
m00.60.400m00.70.300
s0.30.7000s00.20.800
F00.30.700F00.40.600
Table2.ResultsofexpertevaluationforCrusherSB1315.
ExpertTypepooradeqavergoodexcExpertTypepooradeqavergoodexc
1
R0000.60.4
6
R0000.60.4
t000.20.80t00.40.600
e0000.70.3e00.20.800
u0.450.55000u00.10.900
d000.10.90d00.40.600
m00.30.700m00.30.700
s00.20.800s00.70.300
F000.40.60F0.20.8000
2
R000.30.70
7
R000.30.70
t0000.30.7t000.20.80
e0000.40.6e0000.40.6
u000.20.80u00.40.600
d000.40.60d0000.60.4
m0.50.5000m000.20.80
s000.80.20s000.30.70
F000.20.80F00.40.600
3
R000.30.70
8
R0000.80.2
t000.40.60t00.40.600
e000.450.550e00.30.700
u00.250.7500u00.60.400
d00.10.900d000.20.80
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
11
m0.40.6000m000.70.30
s00.60.400s00.40.600
F00.30.700F00.10.900
4
R000.10.90
9
R0000.90.1
t000.20.80t00.30.700
e00.50.500e000.20.80
u0.40.6000u000.40.60
d00.40.600d000.70.30
m0.30.7000m000.40.60
s0.250.75000s00.30.700
F0.150.85000F0.20.8000
5
R000.30.70
10
R000.60.40
t00.30.700t00.30.700
e00.70.300e00.40.600
u00.40.600u00.60.400
d0.30.7000d00.10.900
m00.60.400m00.70.300
s0.30.7000s00.20.800
F00.30.700F00.40.600
Table3.Resultsofexpertevaluationforbeltconveyors.
ExpertTypepooradeqavergoodexcExpertTypepooradeqavergoodexc
1
R00.50.500
6
R0000.60.4
t00.20.800t00.40.600
e00.60.400e00.20.800
u0.20.8000u00.10.900
d00.50.500d00.40.600
m00.30.700m00.30.700
s00.10.900s00.70.300
F0.40.6000F0.20.8000
2
R000.30.70
7
R000.30.70
t000.350.650t000.20.80
e000.20.80e0000.40.6
u000.60.40u00.40.600
d0.20.8000d0000.60.4
m0.50.5000m000.20.80
s00.70.300s000.30.70
F00.30.700F00.40.600
3
R000.30.70
8
R0000.80.2
t000.40.60t00.40.600
e000.450.550e00.30.700
u00.250.7500u00.60.400
d00.10.900d000.20.80
m0.40.6000m000.70.30
s00.60.400s00.40.600
F00.30.700F00.10.900
4
R000.10.90
9
R0000.90.1
t000.20.80t00.30.700
e00.50.500e000.20.80
u0.40.6000u000.40.60
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
12
d00.40.600d000.70.30
m0.30.7000m000.40.60
s0.250.75000s00.30.700
F0.150.85000F0.20.8000
5
R000.30.70
10
R000.60.40
t00.30.700t00.30.700
e00.70.300e00.40.600
u00.40.600u00.60.400
d0.30.7000d00.10.900
m00.60.400m00.70.300
s0.30.7000s00.20.800
F00.30.700F00.40.600
4.3.DeterminationthePartialIndicatorofMaintainabilityM
Onthebasisofthesubmittedresults,thefollowingestimateswereobtainedforeachanalyzed
partoftheCCSsystem.
Table4.RatingsofmaintainabilityindicatorsforCrusherSB1515,CrusherSB1315andbelt
conveyors.
CrusherSB1515CrusherSB1315Beltconveyors
pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
t0.00000.28500.52500.19000.00000.13000.48000.32000.07000.00000.07000.35500.44500.13000.0000
e0.06000.25500.41500.27000.00000.34000.43000.20000.03000.00000.08000.38500.41500.12000.0000
u0.00000.10000.46500.37500.06000.00000.36000.35000.24500.04500.00000.14000.53000.33000.0000
d0.04000.17000.44000.30000.05000.12000.43000.35000.10000.00000.00400.22000.49000.25000.0000
m0.00000.17000.34000.37000.12000.07000.30000.33000.21000.09000.00700.18000.27000.37000.1100
s0.00000.07000.43000.44500.00550.00000.17000.45000.32500.05500.00000.08000.43000.46000.0300
Table5.Finalratingforpartialindicatorst,e,ud,m,s,forCrusherSB1515,CrusherSB1315andbelt
conveyorsintheformoffuzzynumber.
CrusherSB1515CrusherSB1315Beltconveyors
pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
t0.07130.41630.64380.32130.04750.25000.59250.45750.15000.01750.15880.48380.56630.24130.0325
e0.12380.37380.54630.37380.06750.44750.56500.31500.08000.00750.17630.50880.54130.22380.0300
u0.02500.21630.58380.50630.15380.09000.44750.50130.34380.10630.03500.27250.64750.46250.0825
d0.82500.29000.55750.42550.12500.22750.54750.48250.18750.02500.09500.35250.60750.37250.0625
m0.04250.25500.47500.48500.21250.14500.40000.45750.31500.14250.11500.26500.40750.46500.2025
s0.01750.17750.55880.56630.16630.04250.28250.57380.45130.13630.02000.18750.56500.57500.1450
Onthebasisoftheobtainedratingsintheformoffuzzynumbers,theratingsobtainedusingthe
max‐mincompositionforthespecifiedpartsofthesystemareshowninthefollowingtable.
Table6.Ratingsobtainedforthepartialindicatorofmaintainabilityusingthemax‐min
composition.
M‐maintainabilitypooradeqavergoodexc
CrusherSB15150.12500.48450.48500.41630.0713
CrusherSB13150.02500.31500.45750.45750.2275
Beltconveyors0.06250.46500.46500.46500.0950
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
13
Figure9.DistributionofoutputvaluesforindicatorMmaintainabilityforCrusherSB1515usingmax‐
mincomposition.
Figure10.DistributionofoutputvaluesforindicatorMmaintainabilityforCrusherSB1315using
max‐mincomposition.
Figure11.DistributionofoutputvaluesforindicatorMmaintainabilityforbeltconveyorsusingmax‐
mincomposition.
4.4.DeterminationofPartialIndicatorsofReliabilityandLogisticalSupportofPartsoftheContinuousPrats
ofCombinedSystem‐RandF
Onthebasisofthesubmittedresults,thefollowingestimateswereobtainedforeachanalyzed
partofthecontinuoussystemwhenthesetwopartialindicatorsareconcerned.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
14
Table9.RatingsofpartialreliabilityandlogisticalsupportforCrusherSB1515,CrusherSB1315and
beltconveyors.
CrusherSB1515 CrusherSB1315Beltconveyors
pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
R0.070
0
0.640
0
0.240
0
0.050
0
0.000
0
0.270
0
0.620
0
0.110
0
0.000
0
0.000
0
0.070
0
0.650
0
0.240
0
0.040
0
0.000
0
F
0.000
0
0.000
0
0.420
0
0.485
0
0.095
0
0.000
0
0.260
0
0.370
0
0.325
0
0.045
0
0.000
0
0.000
0
0.460
0
0.500
0
0.040
0
Usingtheestimatedvaluesforthepartialindicatorsforsystemmaintainability,thefinalratings
forthepartialindicatorsR,M,andFforCrusherSB1515,CrusherSB1315andbeltconveyorsinthe
fuzzynumberform.
Table10.CorrespondingfuzzynumbersforCrusherSB1515,CrusherSB1315andbeltconveyors.
CrusherSB1515CrusherSB1315Beltconveyors
pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
R0.230
0
0.717
5
0.412
5
0.110
0
0.125
0
0.425
0
0.715
0
0.265
0
0.027
5
0.000
0
0.232
5
0.727
5
0.412
5
0.100
0
0.010
0
M0.125
0
0.484
5
0.485
0
0.416
3
0.071
3
0.025
0
0.315
0
0.457
5
0.457
5
0.227
5
0.062
5
0.465
0
0.465
0
0.465
0
0.095
0
F0.000
0
0.105
0
0.541
3
0.613
8
0.216
3
0.065
0
0.352
5
0.516
3
0.428
8
0.126
3
0.000
0
0.115
0
0.585
0
0.625
0
0.165
0
Basedontheobtainedratingsintheformoffuzzynumber,theratingsobtainedusingthemax‐
mincompositionforthespecifiedpartsoftheCCSsystemareshowninthefollowingtable.
Table11.Obtainedratingsforoperationalsafetyusingthemax‐mincomposition.
D‐dependabilitypoo
r
adeqave
r
g
oodexc
CrusherSB15150.07130.41250.48500.48500.1050
CrusherSB13150.02750.26500.30330.30330.2478
Beltconveyors0.09500.41250.46500.46500.6250
Figure12.DistributionofoutputvaluesforDdependabilityforCrusherSB1515usingmax‐min
composition.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
15
Figure13.DistributionofoutputvaluesforDdependabilityforCrusherSB1315usingmax‐min
composition.
Figure14.DistributionofoutputvaluesforDdependabilityforbeltconveyorsusingmax‐min
composition.
4.5.DependabilityoftheCCSSystemattheOpenPitGacko
Onthebasisofobtainedratingsfordependabilityofthesystemparts,theoverallratingof
dependabilitywasobtainedusingthemax‐mincompositionandreadsasfollows:
(0.07125,0.3033,0.30333,0.30333,0.105).
Furtheranalysisshowsthatthecorrespondingvaluesobtainedbythebestfitmethodareequal
to:
(1.02977,0.78942,0.71215,0.77866,0.99645).
Thecorrespondingreciprocalvaluesoftherelativedistances𝛼are:
(0.69156,0.90211,1,0.91458,0.71468),
whilethevaluesofnormalizedreciprocalvalues𝛽areequalto:
(0.16376,0.21362,0.23680,0.21657,0.16923).
Appropriatelinguisticevaluation𝑍
2.9860.
Onascaleof1‐5,thementionedsysteminoperationhasacenterofgravityoflinguistic
assessmentforthemax‐mincompositionof2.9860.Dependabilityis59%.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
16
Figure15.DistributionofoutputvaluesforDdependabilityforCCSsystemusingmax‐min
composition.
5.VerificationofFuzzyModel
Theverificationmodelisbasedontheresultsofsystematicmonitoringoftheworkofthe
continuouspartofthecombinedsystem,whichiscarriedoutbyaspeciallydesignatedservicewithin
GackoMineandThermalPowerPlant.Theeffectivesystemoperatingtimerepresentsthetotal
operatingtimeintheobservedperiodandiscalculatedbysubtractingthetotaldowntime(failures)
fromthecalendarfund.Theoperationofeachsystemisaccompaniedbycertainfailuresthathavea
directimpactontheutilizationandreliabilityofthesystem.Thesefailurescanbeplannedor
unplanned.Planneddowntimereferstopredefinedtechnologicaloperationsandregularservice
maintenance.Unplannedfailuresareunpredictableandarenotanintegralpartofthesystemʹs
workinghours.Thedepartmentinchargeofmonitoringtheoperationoftheanalyzedsystemkeeps
recordsthatincludethebeginning,duration,andtypeoffailures.Theserecordsaremaintainedona
shiftordailybasis,andanofficialmonthlyreportisissuedontheoperationofthesystemasawhole,
includingthecontinuouspart.
Failuresarecategorizedintothefollowinggroups:
technologicalfailures,
electricalfailures,
mechanicalfailures,
shiftofworkers,
equipmentoverhaul,
dailyreview,
weatherconditions.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
17
Figure16.TheauthorsofthearticlewithrepresentativesoftheGackomineduringatourofthefield
(privatearchive).
ThefollowingfigureshowsthepercentageparticipationbytypesoffailuresfortheCCSsystem
byyear.
Figure17.ThepercentageoffailuresoftheCCSsystemintheperiodfrom2018‐2023.years.
Thisgraphshowsthepercentageparticipationofdifferenttypesoffailuresintheoperationof
theCCSsystemintheperiodfrom2018to2023.Thekeyindicatorsofthegraphareasfollows:
Technologicalfailuresareconsistentlyhighandvariesfrom20.1%to33.4%peryear,which
accountsforthelargestpartoftotaldowntime(29%foraperiodof6years).
Shiftofworkersandequipmentoverhaularealsosignificantdowntimefactorswithoverall
percentagesof23%and22%.
Electricalfailuresandmechanicalfailureshavearelativelysmallershare,butshowvariations
betweenyears.
Weatherconditionshavetheleastparticipationintotaldowntime(0.5%foraperiodof6years).
Dailyreviewvariesbyyear,butrecordsasignificantparticipationof17%fortheentireobserved
period.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
18
Overalldatashowthattechnologicalfailures,shiftofworkersandequipmentoverhaularethe
mostdominantfactorsintheoperationoftheCCSsystem,whileweatherconditionsaretheleast
significant.
DependabilityoftheCCSsystemintheperiod2018‐2023isshowninthefollowingfigure(Figure
18).
Figure18.DependabilityofthecontinuouspartoftheCCSsystemintheperiodfrom2018‐2023.
years.
DataonthedependabilityoftheCCSsysteminpercentagesfortheperiodfrom2018to2023
showslightvariations.In2018and2020,thesystemhadthehighestdependabilityof55%.In2019,
dependabilitywasthelowest,at46%.Thiswastheresultofasignificantpercentageoffailuresrelated
tothedailyinspectionofequipment,whichwassignificantlyhigherin2019comparedtoallothers
years.In2021and2022,dependabilitywasstableat53%,while2023sawaslightdropto51%.Overall,
systemdependabilityvariesbetween46%and55%overtheobservedperiod.Theaveragevalueof
dependabilityfortheperiodof6yearsis52.16%.
6.Conclusions
Thispaperpresentsamodelforevaluatingthedependabilityoftechnicalsystemsusingfuzzy
logic.Itbreaksdowndependabilityintodifferentindicatorsandcombinesthemusingthemax‐min
compositionmethod.
UnlikeconventionalmodelsthatrelyonITmonitoringsystems,thisapproachincorporates
expertassessmentsfromindividualsdirectlyinvolvedinmachineoperationandmaintenance.Its
simplicityandrelianceonexpertjudgmentmakeiteasytoimplementwithoutextensivedata
collection.
Thismodeloffersafastwaytoassesssystemsafetyandprovidesvaluableinsightsforenhancing
specificindicatorsandoveralldependability.Byfollowingthemodelʹsrecommendations,companies
canstreamlinemaintenanceactivities,analyzeworkflows,pinpointweaknesses,andoptimizethe
lifecyclesofmachinerytoloweroperationalexpenses.
Fieldexperienceconfirmsthatthemodelaccuratelyreflectsthedependabilityofanalyzed
systems,consideringfactorssuchassystemcomponents,structure,age,workingconditions,and
organizationalinfluences.Whencomparingthereliabilitydataobtainedthroughthefuzzylogic
modelwiththeactualfielddatacollectedovertheperiodfrom2018to2023,thereisastrong
correlation.Thedependabilityobtainedbythemodelis59%,andbasedonhistoricaldataforaperiod
of6years,theaveragevalueofdependabilityis52.6%.Thisconsistencyunderscoresthemodelʹs
effectivenessincapturingthereal‐worldperformanceanddependabilityoftheCCSsystems.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
19
Moreover,thehistoricaldataʹsalignmentwiththemodelʹsoutputvalidatestheuseoffuzzylogic
inpredictingandimprovingdependability.Thisapproachnotonlyfacilitatesproactivemaintenance
andriskmanagementbutalsosupportsstrategicdecision‐makingbyprovidingasophisticated
understandingofsystemvulnerabilities.Theadaptabilityofthemodeltodifferentminingcontexts
anditsrelianceonexpertknowledgefurtherenhanceitspracticalityandrobustness.Ultimately,this
modelservesasavaluabletoolforminingcompaniesaimingtoachievegreatersustainability,
efficiency,andcost‐effectivenessintheiroperations.
Futureresearchcouldexplorefurtherrefinementofthismodelbyintegratingitwithadvanced
dataanalyticsandmachinelearningtechniquestoenhancepredictiveaccuracyandadaptability.
Additionally,expandingtheapplicationofthismodeltootherindustriesbeyondminingcouldreveal
broaderinsightsandbenefits,establishingitasaversatiletoolfordependabilityassessmentacross
varioussectors.Thecontinuedevolutionandvalidationofthismodelwillensureitsrelevanceand
efficacyintheever‐changinglandscapeoftechnicalsystemmanagement.
AuthorContributions:Conceptualization,N.S.andM.G.;methodologyN.S.,M.G.andP.M..;Writing–review
andeditingN.S.,P.M.,D.K.,A.D.,andM.G.,supervisionS.S.,N.S.andM.G.Allauthorshavereadandagreed
tothepublishedversionofthemanuscript.
Funding:ThisworkwasfinanciallysupportedbytheMinistryofScience,TechnologicalDevelopmentand
InnovationoftheRepublicofSerbia,Contractonrealizationandfinancingthescientificresearchworkofthe
MiningandMetallurgyInstituteBorin2024,ContractNo.:451‐03‐66/2024‐03/200052.
Acknowledgments:
•GratitudetoMinistryofScience,TechnologicalDevelopmentandInnovationoftheRepublicofSerbia
•MiningandMetallurgyInstituteBor,Zelenibulevar35,Bor
•GackoMineandThermalPowerPlant
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Ali,S.,Giurco,D.,Arndt,N.etal.Mineralsupplyforsustainabledevelopmentrequiresresource
governance.Nature543,367–372(2017).https://doi.org/10.1038/nature21359
2. Dubiński,J.(2013).SustainableDevelopmentofMiningMineralResources.JournalofSustainableMining,
12(1),1–6.doi:10.7424/jsm130102
3. Purhamadani,E.,Bagherpour,R.,&Tudeshki,H.(2020).Energyconsumptioninopen‐pitmining
operationsrelyingonreducedenergyconsumptionforhaulageusingin‐pitcrushersystems.Journalof
CleanerProduction,125228.doi:10.1016/j.jclepro.2020.125228
4. Zhang,S.,&Xia,X.(2011).Modelingandenergyefficiencyoptimizationofbeltconveyors.AppliedEnergy,
88(9),3061–3071.doi:10.1016/j.apenergy.2011.03
5. Tabelin,C.B.,Dallas,J.,Casanova,S.,Pelech,T.,Bournival,G.,Saydam,S.,&Canbulat,I.(2021).Towards
alow‐carbonsociety:Areviewoflithiumresourceavailability,challengesandinnovationsinmining,
extractionandrecycling,andfutureperspectives.MineralsEngineering,163,106743.
doi:10.1016/j.mineng.2020.106743
6. Ercelebi,S.G.;Bascetin,A.Optimizationofshovel‐trucksystemforsurfacemining.J.South.Afr.Inst.Min.
Metall.2009,109,433–439.
7. Bao,H.;Knights,P.;Kizil,M.;Nehring,M.ElectrificationAlternativesforOpenPitMineHaulage.Mining
2023,3,1–25
8. MohamadIssa&AdrianIlinca&DanielR.Rousse&LoïcBoulon&PhilippeGroleau,2023.ʺRenewable
EnergyandDecarbonizationintheCanadianMiningIndustry:OpportunitiesandChallenges,ʺEnergies,
MDPI,vol.16(19),pages1‐22,October.
9. Kim,H.;Lee,W.‐H.;Lee,C.‐H.;Kim,S.‐M.DevelopmentofMonitoringTechnologyforMineHaulageRoad
throughSensor‐ConnectedDigitalDeviceandSmartphoneApplication.Appl.Sci.2022,12,12166
10. DejanV.Petrović,MilošTanasijević,SašaStojadinović,JelenaIvaz,PavleStojković.ʺFuzzyModelforRisk
AssessmentofMachineryFailuresʺinSymmetry,MDPIAG(2020).https://doi.org/10.3390/sym12040525
11. Gomilanovic,M.;Tanasijevic,M.;Stepanovic,S.DeterminingtheAvailabilityofContinuousSystemsat
OpenPitsApplyingFuzzyLogic.Energies2022,15,6786.https://doi.org/10.3390/en15186786
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
20
12. Djenadic,S.;Ignjatovic,D.;Tanasijevic,M.;Bugaric,U.;Jankovic,I.;Subaranovic,T.Developmentofthe
AvailabilityConceptbyUsingFuzzyTheorywithAHPCorrection,aCaseStudy:BulldozersintheOpen‐
PitLigniteMine.Energies2019,12,4044.https://doi.org/10.3390/en12214044
13. Gomilanovic,M.;Bugaric,U.;Bankovic,M.;Stanic,N.;Stepanovic,S.DeterminingtheAvailabilityof
ContinuousSystemsinOpenPitsUsingANFISandaSimulationModel.Energies2024,17,1138.
https://doi.org/10.3390/en17051138
14. Gomilanovic,M.;Tanasijevic,M.;Stepanovic,S.;Miletic,F.AModelforDeterminingFuzzyEvaluations
ofPartialIndicatorsofAvailabilityforHigh‐CapacityContinuousSystemsatCoalOpenPitsUsinga
Neuro‐FuzzyInferenceSystem.Energies2023,16,2958.https://doi.org/10.3390/en16072958
15. Čelebić,M.;Bajić,D.;Bajić,S.;Banković,M.;Torbica,D.;Milošević,A.;Stevanović,D.Developmentofan
IntegratedModelforOpen‐Pit‐MineDiscontinuousHaulageSystemOptimization.Sustainability2024,16,
3156.https://doi.org/10.3390/su16083156
16. Urošević,K.;Gligorić,Z.;Miljanović,I.;Beljić,Č.;Gligorić,M.NovelMethodsinMultipleCriteriaDecision‐
MakingProcess(MCRATandRAPS)—ApplicationintheMiningIndustry.Mathematics2021,9,1980.
https://doi.org/10.3390/math9161980
17. Halilović,D.;Gligorić,M.;Gligorić,Z.;Pamučar,D.AnUndergroundMineOrePassSystemOptimization
viaFuzzy0–1LinearProgrammingwithNovelTorricelli–SimpsonRanking
Function.Mathematics2023,11,2914.https://doi.org/10.3390/math11132914
18. Li,S.;Huang,Q.;Hu,B.;Pan,J.;Chen,J.;Yang,J.;Zhou,X.;Wang,X.;Yu,H.MiningMethodOptimization
ofDifficult‐to‐MineComplicatedOrebodyUsingPythagoreanFuzzySetsandTOPSIS
Method.Sustainability2023,15,3692.https://doi.org/10.3390/su15043692
19. Bajić,S.;Bajić,D.;Gluščević,B.;RistićVakanjac,V.ApplicationofFuzzyAnalyticHierarchyProcessto
UndergroundMiningMethodSelection.Symmetry2020,12,192.https://doi.org/10.3390/sym12020192
20. Jaderi,F.,Ibrahim,Z.Z.,&Zahiri,M.R.(2018).CriticalityAnalysisofPetrochemicalAssetsusingRisk
BasedMaintenanceandtheFuzzyInferenceSystem.ProcessSafetyandEnvironmentalProtection.
doi:10.1016/j.psep.2018.11.005
21. Bakhtavar,E.,Hosseini,S.,Hewage,K.etal.AirPollutionRiskAssessmentUsingaHybridFuzzy
IntelligentProbability‐BasedApproach:MineBlastingDustImpacts.NatResourRes30,2607–2627(2021).
https://doi.org/10.1007/s11053‐020‐09810‐4
22. Tubis,A.;Werbińska‐Wojciechowska,S.;Wroblewski,A.RiskAssessmentMethodsinMiningIndustry—
ASystematicReview.Appl.Sci.2020,10,5172.https://doi.org/10.3390/app10155172
23. Jiskani,I.M.,Cai,Q.,Zhou,W.,&Lu,X.(2020).Assessmentofrisksimpedingsustainableminingin
Pakistanusingfuzzysyntheticevaluation.ResourcesPolicy,69,101820.doi:10.1016/j.resourpol.2020.1018
24. Spanidis,P.‐M.;Roumpos,C.;Pavloudakis,F.AFuzzy‐AHPMethodologyforPlanningtheRisk
ManagementofNaturalHazardsinSurfaceMiningProjects.Sustainability2021,13,2369.
https://doi.org/10.3390/su13042369
25. Djenadic,S.;Tanasijevic,M.;Jovancic,P.;Ignjatovic,D.;Petrovic,D.;Bugaric,U.RiskEvaluation:Brief
ReviewandInnovationModelBasedonFuzzyLogicandMCDM.Mathematics2022,10,811.
https://doi.org/10.3390/math10050811
26. Dimitrijević,B.;Šubaranović,T.;Stević,Ž.;Kchaou,M.;Alqurashi,F.;Subotić,M.ANovelHybridFuzzy
Multiple‐CriteriaDecision‐MakingModelfortheSelectionoftheMostSuitableLandReclamationVariant
atOpen‐PitCoalMines.Sustainability2024,16,4424.https://doi.org/10.3390/su16114424
27. Ebrahimabadi,A.,Pouresmaieli,M.,Afradi,A.,Pouresmaeili,E.,&Nouri,S.(2018).ComparingTwo
MethodsofPROMETHEEandFuzzyTOPSISinSelectingtheBestPlantSpeciesfortheReclamationof
SarcheshmehCopperMine.AsianJournalofWater,EnvironmentandPollution,15(2),141–
152.doi:10.3233/ajw‐180026
28. Liang,W.;Dai,B.;Zhao,G.;Wu,H.AssessingthePerformanceofGreenMinesviaaHesitantFuzzy
ORESTE–QUALIFLEXMethod.Mathematics2019,7,788.https://doi.org/10.3390/math7090788
29. Nehring,M.,Knights,P.F.,Kizil,M.S.,&Hay,E.(2018).Acomparisonofstrategicmineplanning
approachesforin‐pitcrushingandconveying,andtruck/shovelsystems.InternationalJournalofMining
ScienceandTechnology,28(2),205–214.doi:10.1016/j.ijmst.2017.12.026
30. Zhang,S.,&Xia,X.(2011).Modelingandenergyefficiencyoptimizationofbeltconveyors.AppliedEnergy,
88(9),3061–3071.doi:10.1016/j.apenergy.2011.03
31. Jankovic,I.,(2020).Optimisationofthelifecycleconceptofauxiliarymachineryatligniteopen‐pitmines,
doctoraldissertation,FacultyofMiningandGeology,UniversityofBelgrade.
32. Todorovic,J.,(1993).TechnicalSystemsMaintenanceEngineering,YugoslavSocietyforEnginesand
Vehicles,Belgrade.
33. Tanaskovic,T.,(2001).Maintenanceofminingmachines,FacultyofMiningandGeology,Universityof
Belgrade,Belgrade.
34. Tanasijevic,M.,(2007).Dependabilityofthemechanicalcomponentsofbucketwheel,doctoraldissertation,
FacultyofMiningandGeology,UniversityofBelgrade.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
21
35. Krunic,D.J.,(2021)Developmentofqualityofservicemodelforauxiliaryequipmentinopenpitlignite
mines,doctoraldissertation,FacultyofMiningandGeology,UniversityofBelgrade.
36. Krunić,D.J.,Vujić,S.,Tanasijević,M.etal.ModelApproachestoLifeCycleAssessmentofAuxiliary
MachinesBasedonanExampleofaCoalMineinSerbia.JMinSci54,404–413(2018).
https://doi.org/10.1134/S1062739118033809
37. InternationalElectrotechnicalVocabulary,DependabilityandQualityofService,IECStandard,1990,no.
50(191)
38. JovancicP.(2014)MaintenanceofMiningMachines,FacultyofMiningandGeology,Universityof
Belgrade,Belgrade,2014,ISBN:978‐86‐7352‐250‐0
39. Wang,J.;Yang,J.B.;Sen,P.SafetyAnalysesandSynthesisUsingFuzzySetsandEvidentialReasoning.
Reliab.Eng.Syst.Saf.1995,47,103–118.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythose
oftheindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)
disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideas,methods,instructionsor
productsreferredtointhecontent.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1