PreprintPDF Available

A Model for Determining the Dependability of Continuous Subsystems in Coal Mines Using the Fuzzy Logic Approach

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract

This study presents a unique model for assessing the dependability of continuous parts of combined systems in open-pit mining through the application of fuzzy logic. Continuous sub-systems as part of the combined system of coal exploitation in surface mines have the basic function of ensuring safe operation, high capacity with high reliability and low costs. These subsystems are usually part of the thermal power plant's coal supply system and ensure stable fuel supply. The model integrates various independent partial indicators of dependability into an expert system specifically designed for evaluating these systems. It deconstructs the complex parameter of system dependability into distinct partial indicators: reliability, maintainability, and logistical support. These indicators are then integrated using fuzzy composition (max-min composition). Historical data from 2018 to 2023 is utilized alongside the fuzzy model to provide a retrospective analysis of system dependability, serving to validate the model's effectiveness. What sets this model apart from conventional approaches is its consideration of practical dependability indicators, thereby obviating the need for extensive long-term monitoring and data collection to portray the system's status accurately over time. This model serves as a valuable tool for assisting decision-makers in open-pit mining operations, facilitating planning, exploitation control, and the selection of maintenance strategies to ensure consistent production and cost reduction. Designed for quick assessment, the model relies on expert judgments and assessments to determine system dependability efficiently.
Article Not peer-reviewed version
A Model for Determining the
Dependability of Continuous
Subsystems in Coal Mines Using the
Fuzzy Logic Approach
Nikola Stanic * , Miljan Gomilanovic , Petar Markovic , Daniel Kr
ž
anovi
ć
, Aleksandar Doderovic ,
Sasa Stepanovic
Posted Date: 24 July 2024
doi: 10.20944/preprints202407.1952.v1
Keywords: fuzzy logic; max-min composition; continuous part of combined system (CCS); open pit; mining;
dependability
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Article
AModelforDeterminingtheDependabilityof
ContinuousSubsystemsinCoalMinesUsingthe
FuzzyLogicApproach
NikolaStanic1*,MiljanGomilanovic1,PetarMarkovic2,DanielKrzanovic1,
AleksandarDoderovic1andSasaStepanovic1
1MiningandMetallurgyInstituteBor
2FacultyofMiningandGeology,UniversityofBelgrade
*Correspondence:Author:NikolaStanic;Email:nikola.stanic@irmbor.co.rs
Abstract:Thisstudypresentsauniquemodelforassessingthedependabilityofcontinuouspartsof
combinedsystemsinopenpitminingthroughtheapplicationoffuzzylogic.Continuoussub
systemsaspartofthecombinedsystemofcoalexploitationinsurfacemineshavethebasicfunction
ofensuringsafeoperation,highcapacitywithhighreliabilityandlowcosts.Thesesubsystemsare
usuallypartofthethermalpowerplantʹscoalsupplysystemandensurestablefuelsupply.The
modelintegratesvariousindependentpartialindicatorsofdependabilityintoanexpertsystem
specificallydesignedforevaluatingthesesystems.Itdeconstructsthecomplexparameterofsystem
dependabilityintodistinctpartialindicators:reliability,maintainability,andlogisticalsupport.
Theseindicatorsarethenintegratedusingfuzzycomposition(maxmincomposition).Historical
datafrom2018to2023isutilizedalongsidethefuzzymodeltoprovidearetrospectiveanalysisof
systemdependability,servingtovalidatethemodelʹseffectiveness.Whatsetsthismodelapartfrom
conventionalapproachesisitsconsiderationofpracticaldependabilityindicators,therebyobviating
theneedforextensivelongtermmonitoringanddatacollectiontoportraythesystemʹsstatus
accuratelyovertime.Thismodelservesasavaluabletoolforassistingdecisionmakersinopenpit
miningoperations,facilitatingplanning,exploitationcontrol,andtheselectionofmaintenance
strategiestoensureconsistentproductionandcostreduction.Designedforquickassessment,the
modelreliesonexpertjudgmentsandassessmentstodeterminesystemdependabilityefficiently.
Keywords:fuzzylogic;maxmincomposition;continuouspartofcombinedsystem(CCS);openpit;
mining;dependability
1.Introduction
Miningoperations,crucialtonumerouseconomiesworldwide,areundergoingatransformative
phase,markedbyheightenedenvironmentalconcerns,technologicaladvancements,andagrowing
emphasisonoperationalefficiency[1,2].Theseoperationsincludeawiderangeofactivities,from
excavationandmaterialextractiontotransportationandprocessing.Withinthecomplexstructureof
miningactivities,transportsystemsareoneofthekeycomponents,enablingthesmoothmovement
ofmaterialsacrosslargeminingsites[3].
Materialtransportationisacriticalaspectofminingoperations,significantlyinfluencingcosts,
efficiency,safety,andenvironmentalimpact[4,5].Consideringthatloadingandtransportationcosts
amountto60%ofthetotaloperatingcosts,itisessentialthatthesesystemsareefficientandreliable
[6].Theenvironmentalfootprintoftraditionaldieselpoweredtransportmethodsnecessitates
researchintosustainablealternativeslikeelectricandautonomousvehicles[7,8].Moreover,safety
andriskmanagementareparamount,withadvancedtechnologiessuchasautomationandrealtime
monitoringofferingnewopportunitiesforoptimizingtransportroutesandenhancingdecision
making[9].Giventhecomplexandvariableconditionsofminingenvironments,tailoredsolutions
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
2
areessential,makingcontinuousresearchinthisareacrucialforachievinggreatersustainability,
operationalexcellence,andeconomicviabilityintheminingindustry.
Variousmethodsandmodelsareusedforthepurposesofthisresearchinthefieldofmining,
whichprovidethepossibilityofdealingwiththecomplexandchangingconditionsofthemining
environment.Oneofthemostwidelyappliedmathematicalapproachesisthetheoryoffuzzysets,
whichissuitablefortheanalysisofprocessesinwhichuncertainty,ambiguity,subjectivity,and
indeterminacyprevail[10].
Theapplicationofthismethodenablestheaforementionedproblemtobesuccessfullyanalyzed,
andtheanalysisresultsreflectthepreviousexpertexperiencesandresultsofexperimental
measurementsinagoodway.Toassessthesuccessofusingthismethod,priorknowledgeofthe
behavioroftheanalyzedsystemsandprocessesisnecessary.Bycomparingtheexperienceand
experimentaldatawiththeanalysisresultsofthefuzzylogicmethod,itsverificationiscarriedout.
Belowisanoverviewofworkswiththeapplicationoffuzzylogicinminingandsimilartopics.
Thelargestnumberofworksisrelatedtothefieldofmechanizationinmining,wherefuzzylogic
wasusedtoevaluatetheperformanceofminingequipmentunderdifferentoperatingconditions.
Theapproachtakesintoaccountmultiplecriteriasuchasreliability,efficiencyandmaintenancecosts
[10–14].Thismathematicalapproachhasalsofoundapplicationinvariouspartsoftheproduction
processinsurfaceandundergroundmines,whereprocessessuchasloading,transportation,drilling
andblastingareadequatelyoptimized[15–19].Thescientificliteraturealsohighlightsthepervasive
natureofriskinminingoperations[20–24],emphasizingtheneedforrobustriskmanagement
strategiestomitigatetheimpactofpotentialfailures,whereriskassessmentmethodologiessuchas
failuremodeandeffectsanalysis(FMEA)andriskprioritynumber(RPN)calculationsareusedvery
effectivelyincombinationwithfuzzylogic[25].Fuzzylogiccanalsobeappliedtoanalyze
environmentaldatacollectedfromminingsitestoassesstheimpactofminingactivitiesonairand
waterquality,soilstability,andbiodiversity.Thisinformationcanhelpindevelopingstrategiesto
minimizeenvironmentaldegradationandcomplywithregulatoryrequirements[26–28].
Whenitcomestotransportsystems,theevolutionofminingpracticeshaswitnessedachange
thathasentailedtheadoptionofcontinuoushaulagesystems,markingadeparturefrom
conventionaldiscontinuousmethods.Whiletraditionaltransportationsystemsthatrelyontrucks
andloadersstillpredominateincertaincontexts,theadventofcontinuoussystemsusheredinanew
eraofefficiencyandproductivity.Continuousconveyorsystems,characterizedbycrushers,
conveyorbelts,andintegratedautomationtechnologies,offercountlessadvantagesover
discontinuoustechnologies[29].
Giventheevolvingchallengesofenvironmentalsustainability,safetyandcostoptimization,the
roleofcontinuoustransportsystemsisgainingincreasingimportanceinminingoperations.These
systems,characterizedbytheirabilitytooperate24/7withoutinterruption,offerapathtowards
sustainableandresponsibleminingpractices.Byminimizingenergyconsumption,reducingcarbon
emissionsandincreasingworkersafety,continuoustransportsystemssupporttransformative
changesintheminingindustry[30].
ThecontinuouspartofthecombinedsystemisusedatthecoalopenpitGacko,RepublicSrpska.
Thispaperpresentsamodelthatpredictsthedependabilityofthecontinuouspartofthecombined
system(CCSsystem)attheopenpitGackoapplyingthefuzzytheory.Moreprecisely,thispaper
dealswiththedevelopmentofamodelforpredictingthedependabilityofthecontinuouspartofthe
combinedsystemattheopenpitusingthemaxmincomposition.Thebasicideaofthispaperisan
expertassessmentofpartialindicatorsthataffectthedependabilityandtheirsynergyinorderto
determinethedependabilityoftheCCSsystemswiththehelpoffuzzymodels.Inadditiontothe
fuzzymodel,ahistoricaloverview(period20182023)ofdatarelatedtothedependabilityofthese
systemsisgiven.Thesehistoricaldataservedtoverifythefuzzymodel.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
3
2.ContinuousPartsoftheCombinedSystem
TheCCSsystem(crusher‐beltconveyors‐landfill)consistsoftwosemimobileprimary
crushersSB1315andSB1515,beltconveyorsTU3,TU2,TU1,andPTU.Coalbroughtbytruckto
theSB1515crusherisdirectlyshakenontothesamerake,andthatbroughttotheSB1315crusheris
depositedatthelandfillanddosedtotherakeusingaloader,whereaftercrushingandpulverization
bytheconveyorsystem,itishandedovertopowerplant.Figure1showsaviewoftheopenpit
Gacko.Figure2showsthepositionoftheCCSsystemattheopenpitGacko.
Figure1.Gackoopenpit(photographedbytheauthorofthearticle:N.S.).
Figure2.ViewoftheCCSsystem(SourceGoogleEarth).
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
4
Figure3.PartsofCCSsystemattheopenpitGacko(privatearchive).
3.Dependability
Dependabilityisacommontermusedtodescribetheavailabilityandfactorsaffectingit:
reliability,maintainability,andlevelofmaintainability[31,32].Thetermavailabilityiscommonly
usedasameasureofoperationalsafety[31,33].Theavailabilityisexpressedinquantitative
indicators,andassuchrepresentsameasureofoperationalsafetyandthusameasureofqualityin
use[34].Theperformanceofavailabilityhasadecisiveeffectonoperationalsafetyandqualityinuse
duetothewellknownfactthatthemachineshouldfirstofallbeavailableforwork,inordertorealize
theotherperformancesaswell[31,34].
Dependabilityisacomplexfunctionthatdependsonthefollowingperformances[35]:
performancesofreliability
performancesofmaintainability
performancesoflogisticsupportformaintenance
Operationalsafety:ʺAcollectivetermusedtodescribetheavailabilityperformanceandfactors
thatdeterminetheseperformances:reliabilityperformances,maintainabilityperformances,and
logisticssupportperformancesʺ[35]
ThedependabilityoftechnicalsystemsisconceptuallystipulatedbyISOIECstandards[36,37].
4.MaterialsandMethods
4.1.DevelopmentFuzzyModel
Thefirststepwhencreatingafuzzymodelisthedefinitionoflinguisticvariablesthatreferto
thepartialindicatorsofdependability,namely:
Reliabilityrepresentstheprobability,atacertainlevelofconfidence,thatthesystem(machine)
willsuccessfullyperformthefunctionforwhichitisintended,withoutfailureandwithinthe
specifiedperformancelimits,takingintoaccounttheprevioustimeofsystemuse,duringthe
specifieddurationofatask.Whenitisusedintheprescribedmannerandforthepurposeforwhich
itisintended,underthespecifiedloadlevels.[11]
Maintainabilityasasetofstructuralcharacteristicsthataffectthetimetoeliminatefailuresor
thetimeofperformingothermaintenanceprocedures,isaninternalpropertyoftheobserved
technicalsystem,thereforeitiscalledstructuralmaintainability.Thefollowingparametersaffectthe
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
5
maintainability:t‐technology,e‐toolsandequipment,u‐ unification,d‐diagnostics,m‐
manipulativeness,s‐standardization[11,38].
Forthetechnicalsystemtosuccessfullyperformthesettasks,itisnecessarytoprovidelogistical
supportandnumerousconditions.Thelogisticsupportcombinesthemanagementprocesswith
appropriatetechnicalmeasurestodefinethenecessarysupportandcreateconditionsforthe
realizationofthegivenfunctionofthetechnicalsystemgoal.
LogisticalsupportperformancesaccordingtotheISOIECStandardaredefinedas:ʺTheability
ofmaintenancesystem,i.e.theorganizationthatperformsmaintenance,toprovideundergiven
conditionstherequiredmaintenanceofthetechnicalsysteminaccordancewiththemaintenance
policy[35,36]theStandardsoftheIEC300seriesdealwiththeconceptoflogisticsupportfor
maintenance[37].
DDependability
R‐Reliability M‐Maintainability F‐Logisticalsupport
t‐Technological
e‐Toolsandequipment
u‐Unific ation
d‐Diagnostic
m‐Manipulativness
s‐Standardization
Figure5.Presentationofpartialindicatorsofdependability.
Intermsofthenumberoflinguisticvariables,itcanbeinferredthatsevenisthemaximumcount
ofvariablesthatapersoncanrationallyrecognizesimultaneouslywhileretainingthesamemeaning
[39].
Takingthisstatementintoaccount,thefiveratings(linguisticvariables),definedasfollows:
excellent(exc),good(good),average(aver),adequate(adeq),andpoor(poor),willbeconsideredin
thispaper.Linguisticvariables(ratings)aregivenintheformoftriangularfuzzynumbers,andtheir
graphicrepresentationispresentedinthefollowingfigure.
Correspondingfuzzynumbersofthementionedlinguisticvariablesaredefinedby(according
toFigure6):𝜇󰇛1, 0.25, 0, 0, 0󰇜,
𝜇󰇛0.25, 1, 0.25, 0, 0󰇜,
𝜇󰇛0, 0.25, 1, 0.25, 0󰇜,
𝜇󰇛0, 0, 0.25, 1, 0.25󰇜,
(1)
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
6
𝜇󰇛0, 0, 0, 0.25, 1󰇜.
Partialindicatorst,e,u,d,m,smorecloselydeterminesthepartialindicatorMmaintenance
convenience,whileMmaintainabilitytogetherwithRreliabilityandFlogisticsupportdetermine
theD‐dependabilityofthesystem.ItwillbeshowninthefollowinghowthedependabilityDis
determinedbasedonindicatorsofmaintainabilityM,reliabilityRandlogisticalsupportF,whilethe
maintenanceconvenienceMisobtainedsimilarlybasedonpartialindicatorst,e,u,d,m,s.
Figure6.Fuzzysets.
TheideaofthisworkistoobtainamoreaccurateassessmentofthedependabilityofCCS
systemsattheopenpitGacko.Thisassessmentwasidentifiedasthebestpossibleamongtheworst
expectedratingsofthepartialavailabilityindicators(R,M,andF).LetthepartialindicatorsR,M,F
beshownintheformofthefollowingtriangularfuzzynumbers
𝜇𝜇
,𝜇
,𝜇,
𝜇
,𝜇
, 𝜇󰇛𝜇
,𝜇
,𝜇,
𝜇
,𝜇
󰇜,𝜇󰇛𝜇
,𝜇
,𝜇,
𝜇
,𝜇
󰇜. (2)
Inthenextstep,themaxmincompositionisperformedonthem.Ifthementionedpartial
indicatorsR,M,Fareobserved,itispossibletomake𝐶5125combinationsofcorresponding
membershipfunctions,whichwillbefurtherdenotedwith
𝜇 󰇛𝜇
, 𝜇
,𝜇
),𝑖,
𝑗
,𝑘 󰇝1, 2, 3, 4, 5󰇞(3)
Eachofthesecombinationsrepresentsonepossibleassessmentofthedependabilityandthe
followingtwovaluescanbeassociatewithit
Ω󰇟󰇠
 (4)
and𝑚min𝜇
,𝜇
, 𝜇
(5)
Ωtakesvaluesfromtheset󰇝1, 2, 3, 4, 5󰇞,andeachofthementionedvaluescanbeassociated
withthenumber𝜇whichrepresentsthemaximumvalueof
𝑚 of all those combinations for which Ωisequalto𝑙,za𝑙∈󰇝1, 2, 3, 4, 5󰇞,thatis
𝜇min𝑚 Ω𝑙.(6)
Inthisway,aratingforthedependabilityof𝐷isobtained
𝜇󰇛𝜇,𝜇,𝜇,𝜇,𝜇󰇜(7)
Usingthebestfitmethod,see[11],totransformtheobtainedratingsintobelongingtothefuzzy
set,determinedby(2),thedistanceisusedthatisdefinedby
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
7
𝑑𝑑󰇛𝜇,𝜇 󰇜
󰇛𝜇 𝜇,󰇜
 , 𝜇𝜇,,𝜇,,𝜇,,𝜇,,𝜇,,(8)
For𝜇𝜇,𝜇 , 𝜇,𝜇 , 𝜇 .Smallvalues𝑑indicateproximitytothelinguistic
variable𝜇 .Accordingly,let𝑑betheminimumvalueoftheobtaineddistances𝑑,𝑑,𝑑,𝑑,𝑑,
thenthereciprocalvalueoftherelativedistancescanbeassociatedtoeachofthemthatisdetermined
by:𝛼𝑑
𝑑, 𝑖∈󰇝1, 2, 3, 4, 5󰇞.(9)
Ifforsomeithedistancevalue 𝑑isequalto0,thenthecorrespondingvalueofthereciprocal
valueofrelativedistanceis𝛼1, whiletheothervaluesofthereciprocalrelativedistancesare
equalto0.Thenormalizedvaluesofthusobtainedreciprocalvaluesoftherelativedistancesare
determinedby:𝛽𝛼
𝛼𝛼𝛼𝛼𝛼,𝑖∈󰇝1, 2, 3, 4, 5󰇞(10)
andpresentbelongingtotheappropriaterating:
𝐴󰇛𝛽,"excʺ󰇜,𝛽,"goodʺ,󰇛𝛽,"averʺ󰇜,𝛽,"adeqʺ,𝛽,"poorʺ(11)
Intheend,theappropriatelinguisticratingisobtainedasfollows:
𝑍5𝛽4𝛽3𝛽2𝛽1𝛽
𝛽𝛽𝛽𝛽𝛽 (12)
Inasimilarway,aratingformaintainabilityMisobtainedfromthelinguisticvariablest,e,u,d,
m,swhichislaterusedtodeterminethedependabilityD.
Figure7showsthefuzzymodelalgorithmfordependabilityevaluation.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
8
Start
Exp ert
evaluation
(Questionnaire)
Statistical processing
Fuzz y propos ition
Fuzz y composition
Best-fit m ethod
Data classification
Fuzzification
Fuzzy inference model
Identifica tion
Evaluation of
dependability
End
Situation analysis
Input- numerica l
values
Inpu t – fuz zy values
Output –fuzzy
values
Numerical value
Figure7.Algorithmoffuzzymodelforevaluationthedependability[11].
4.2.CaseStudyOpenPitGacko
4.2.1.ResultsofExpertEvaluation
Determinationofthedependabilityofthesystemanditspartialindicatorswasprocessed
throughtheresultsobtainedthroughquestionnairesrelatedtotheexpertevaluationofthepartial
indicatorsofoperationalsafety.Thequestionnairecontaineddetaileddescriptionsofthepartial
indicatorsthemselves.Intheexpertevaluation,10expertsweresurveyed.Thefirst5expertsare
representativesoftheGackoMine(expertsfromthisfieldwithmanyyearsofworkonthesesystems
‐minimum10yearsofworkexperience),andtheother5expertsareexternalexpertswithmanyyears
ofexperienceinthefieldofopenpitmining.Ratingsareexpressedusingmembershipfunctions
representingpredefinedlinguisticvariablesrangingfromʹpoorʹtoʹexcellentʹwithinascaleof0to1.
Additionally,aparametercanbeassociatedwithmultiplelinguisticvariablessimultaneously,
ensuringthatthetotalsumofratingsequals1.Thefollowingtablesgivetheresultsofexpert
evaluationforeachpartoftheCCSsystem.ThelayoutofonequestionnaireisgiveninFigure8.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
9
Figure8.Layoutofquestionnaire.
Table1.ResultsofexpertevaluationforCrusherSB1515.
ExpertTypepooradeqavergoodexcExpertTypepooradeqavergoodexc
1
R00.50.500
6
R0000.60.4
t00.20.800t00.40.600
e00.60.400e00.20.800
u0.20.8000u00.10.900
d00.50.500d00.40.600
m00.30.700m00.30.700
s00.10.900s00.70.300
F0.40.6000F0.20.8000
2
R000.30.70
7
R000.30.70
t000.350.650t000.20.80
e000.20.80e0000.40.6
u000.60.40u00.40.600
d0.20.8000d0000.60.4
m0.50.5000m000.20.80
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
10
s00.70.300s000.30.70
F00.30.700F00.40.600
3
R000.30.70
8
R0000.80.2
t000.40.60t00.40.600
e000.450.550e00.30.700
u00.250.7500u00.60.400
d00.10.900d000.20.80
m0.40.6000m000.70.30
s00.60.400s00.40.600
F00.30.700F00.10.900
4
R000.10.90
9
R0000.90.1
t000.20.80t00.30.700
e00.50.500e000.20.80
u0.40.6000u000.40.60
d00.40.600d000.20.80
m0.30.7000m000.70.30
s0.250.75000s00.30.700
F0.150.85000F0.20.8000
5
R000.30.70
10
R000.60.40
t00.30.700t00.30.700
e00.70.300e00.40.600
u00.40.600u00.60.400
d0.30.7000d00.10.900
m00.60.400m00.70.300
s0.30.7000s00.20.800
F00.30.700F00.40.600
Table2.ResultsofexpertevaluationforCrusherSB1315.
ExpertTypepooradeqavergoodexcExpertTypepooradeqavergoodexc
1
R0000.60.4
6
R0000.60.4
t000.20.80t00.40.600
e0000.70.3e00.20.800
u0.450.55000u00.10.900
d000.10.90d00.40.600
m00.30.700m00.30.700
s00.20.800s00.70.300
F000.40.60F0.20.8000
2
R000.30.70
7
R000.30.70
t0000.30.7t000.20.80
e0000.40.6e0000.40.6
u000.20.80u00.40.600
d000.40.60d0000.60.4
m0.50.5000m000.20.80
s000.80.20s000.30.70
F000.20.80F00.40.600
3
R000.30.70
8
R0000.80.2
t000.40.60t00.40.600
e000.450.550e00.30.700
u00.250.7500u00.60.400
d00.10.900d000.20.80
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
11
m0.40.6000m000.70.30
s00.60.400s00.40.600
F00.30.700F00.10.900
4
R000.10.90
9
R0000.90.1
t000.20.80t00.30.700
e00.50.500e000.20.80
u0.40.6000u000.40.60
d00.40.600d000.70.30
m0.30.7000m000.40.60
s0.250.75000s00.30.700
F0.150.85000F0.20.8000
5
R000.30.70
10
R000.60.40
t00.30.700t00.30.700
e00.70.300e00.40.600
u00.40.600u00.60.400
d0.30.7000d00.10.900
m00.60.400m00.70.300
s0.30.7000s00.20.800
F00.30.700F00.40.600
Table3.Resultsofexpertevaluationforbeltconveyors.
ExpertTypepooradeqavergoodexcExpertTypepooradeqavergoodexc
1
R00.50.500
6
R0000.60.4
t00.20.800t00.40.600
e00.60.400e00.20.800
u0.20.8000u00.10.900
d00.50.500d00.40.600
m00.30.700m00.30.700
s00.10.900s00.70.300
F0.40.6000F0.20.8000
2
R000.30.70
7
R000.30.70
t000.350.650t000.20.80
e000.20.80e0000.40.6
u000.60.40u00.40.600
d0.20.8000d0000.60.4
m0.50.5000m000.20.80
s00.70.300s000.30.70
F00.30.700F00.40.600
3
R000.30.70
8
R0000.80.2
t000.40.60t00.40.600
e000.450.550e00.30.700
u00.250.7500u00.60.400
d00.10.900d000.20.80
m0.40.6000m000.70.30
s00.60.400s00.40.600
F00.30.700F00.10.900
4
R000.10.90
9
R0000.90.1
t000.20.80t00.30.700
e00.50.500e000.20.80
u0.40.6000u000.40.60
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
12
d00.40.600d000.70.30
m0.30.7000m000.40.60
s0.250.75000s00.30.700
F0.150.85000F0.20.8000
5
R000.30.70
10
R000.60.40
t00.30.700t00.30.700
e00.70.300e00.40.600
u00.40.600u00.60.400
d0.30.7000d00.10.900
m00.60.400m00.70.300
s0.30.7000s00.20.800
F00.30.700F00.40.600
4.3.DeterminationthePartialIndicatorofMaintainabilityM
Onthebasisofthesubmittedresults,thefollowingestimateswereobtainedforeachanalyzed
partoftheCCSsystem.
Table4.RatingsofmaintainabilityindicatorsforCrusherSB1515,CrusherSB1315andbelt
conveyors.
 CrusherSB1515CrusherSB1315Beltconveyors
 pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
t0.00000.28500.52500.19000.00000.13000.48000.32000.07000.00000.07000.35500.44500.13000.0000
e0.06000.25500.41500.27000.00000.34000.43000.20000.03000.00000.08000.38500.41500.12000.0000
u0.00000.10000.46500.37500.06000.00000.36000.35000.24500.04500.00000.14000.53000.33000.0000
d0.04000.17000.44000.30000.05000.12000.43000.35000.10000.00000.00400.22000.49000.25000.0000
m0.00000.17000.34000.37000.12000.07000.30000.33000.21000.09000.00700.18000.27000.37000.1100
s0.00000.07000.43000.44500.00550.00000.17000.45000.32500.05500.00000.08000.43000.46000.0300
Table5.Finalratingforpartialindicatorst,e,ud,m,s,forCrusherSB1515,CrusherSB1315andbelt
conveyorsintheformoffuzzynumber.
 CrusherSB1515CrusherSB1315Beltconveyors
 pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
t0.07130.41630.64380.32130.04750.25000.59250.45750.15000.01750.15880.48380.56630.24130.0325
e0.12380.37380.54630.37380.06750.44750.56500.31500.08000.00750.17630.50880.54130.22380.0300
u0.02500.21630.58380.50630.15380.09000.44750.50130.34380.10630.03500.27250.64750.46250.0825
d0.82500.29000.55750.42550.12500.22750.54750.48250.18750.02500.09500.35250.60750.37250.0625
m0.04250.25500.47500.48500.21250.14500.40000.45750.31500.14250.11500.26500.40750.46500.2025
s0.01750.17750.55880.56630.16630.04250.28250.57380.45130.13630.02000.18750.56500.57500.1450
Onthebasisoftheobtainedratingsintheformoffuzzynumbers,theratingsobtainedusingthe
maxmincompositionforthespecifiedpartsofthesystemareshowninthefollowingtable.
Table6.Ratingsobtainedforthepartialindicatorofmaintainabilityusingthemaxmin
composition.
M‐maintainabilitypooradeqavergoodexc
CrusherSB15150.12500.48450.48500.41630.0713
CrusherSB13150.02500.31500.45750.45750.2275
Beltconveyors0.06250.46500.46500.46500.0950
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
13
Figure9.DistributionofoutputvaluesforindicatorMmaintainabilityforCrusherSB1515usingmax
mincomposition.
Figure10.DistributionofoutputvaluesforindicatorMmaintainabilityforCrusherSB1315using
maxmincomposition.
Figure11.DistributionofoutputvaluesforindicatorMmaintainabilityforbeltconveyorsusingmax
mincomposition.
4.4.DeterminationofPartialIndicatorsofReliabilityandLogisticalSupportofPartsoftheContinuousPrats
ofCombinedSystem‐RandF
Onthebasisofthesubmittedresults,thefollowingestimateswereobtainedforeachanalyzed
partofthecontinuoussystemwhenthesetwopartialindicatorsareconcerned.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
14
Table9.RatingsofpartialreliabilityandlogisticalsupportforCrusherSB1515,CrusherSB1315and
beltconveyors.
 CrusherSB1515 CrusherSB1315Beltconveyors
 pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
R0.070
0
0.640
0
0.240
0
0.050
0
0.000
0
0.270
0
0.620
0
0.110
0
0.000
0
0.000
0
0.070
0
0.650
0
0.240
0
0.040
0
0.000
0
F
0.000
0
0.000
0
0.420
0
0.485
0
0.095
0
0.000
0
0.260
0
0.370
0
0.325
0
0.045
0
0.000
0
0.000
0
0.460
0
0.500
0
0.040
0
Usingtheestimatedvaluesforthepartialindicatorsforsystemmaintainability,thefinalratings
forthepartialindicatorsR,M,andFforCrusherSB1515,CrusherSB1315andbeltconveyorsinthe
fuzzynumberform.
Table10.CorrespondingfuzzynumbersforCrusherSB1515,CrusherSB1315andbeltconveyors.
 CrusherSB1515CrusherSB1315Beltconveyors
 pooradeqavergoodexcpooradeqavergoodexcpooradeqavergoodexc
R0.230
0
0.717
5
0.412
5
0.110
0
0.125
0
0.425
0
0.715
0
0.265
0
0.027
5
0.000
0
0.232
5
0.727
5
0.412
5
0.100
0
0.010
0
M0.125
0
0.484
5
0.485
0
0.416
3
0.071
3
0.025
0
0.315
0
0.457
5
0.457
5
0.227
5
0.062
5
0.465
0
0.465
0
0.465
0
0.095
0
F0.000
0
0.105
0
0.541
3
0.613
8
0.216
3
0.065
0
0.352
5
0.516
3
0.428
8
0.126
3
0.000
0
0.115
0
0.585
0
0.625
0
0.165
0
Basedontheobtainedratingsintheformoffuzzynumber,theratingsobtainedusingthemax
mincompositionforthespecifiedpartsoftheCCSsystemareshowninthefollowingtable.
Table11.Obtainedratingsforoperationalsafetyusingthemaxmincomposition.
Ddependabilitypoo
r
adeqave
r
g
oodexc
CrusherSB15150.07130.41250.48500.48500.1050
CrusherSB13150.02750.26500.30330.30330.2478
Beltconveyors0.09500.41250.46500.46500.6250
Figure12.DistributionofoutputvaluesforDdependabilityforCrusherSB1515usingmaxmin
composition.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
15
Figure13.DistributionofoutputvaluesforDdependabilityforCrusherSB1315usingmaxmin
composition.
Figure14.DistributionofoutputvaluesforDdependabilityforbeltconveyorsusingmaxmin
composition.
4.5.DependabilityoftheCCSSystemattheOpenPitGacko
Onthebasisofobtainedratingsfordependabilityofthesystemparts,theoverallratingof
dependabilitywasobtainedusingthemaxmincompositionandreadsasfollows:
(0.07125,0.3033,0.30333,0.30333,0.105).
Furtheranalysisshowsthatthecorrespondingvaluesobtainedbythebestfitmethodareequal
to:
(1.02977,0.78942,0.71215,0.77866,0.99645).
Thecorrespondingreciprocalvaluesoftherelativedistances𝛼are:
(0.69156,0.90211,1,0.91458,0.71468),
whilethevaluesofnormalizedreciprocalvalues𝛽areequalto:
(0.16376,0.21362,0.23680,0.21657,0.16923).
Appropriatelinguisticevaluation𝑍
 2.9860.
Onascaleof15,thementionedsysteminoperationhasacenterofgravityoflinguistic
assessmentforthemaxmincompositionof2.9860.Dependabilityis59%.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
16
Figure15.DistributionofoutputvaluesforDdependabilityforCCSsystemusingmaxmin
composition.
5.VerificationofFuzzyModel
Theverificationmodelisbasedontheresultsofsystematicmonitoringoftheworkofthe
continuouspartofthecombinedsystem,whichiscarriedoutbyaspeciallydesignatedservicewithin
GackoMineandThermalPowerPlant.Theeffectivesystemoperatingtimerepresentsthetotal
operatingtimeintheobservedperiodandiscalculatedbysubtractingthetotaldowntime(failures)
fromthecalendarfund.Theoperationofeachsystemisaccompaniedbycertainfailuresthathavea
directimpactontheutilizationandreliabilityofthesystem.Thesefailurescanbeplannedor
unplanned.Planneddowntimereferstopredefinedtechnologicaloperationsandregularservice
maintenance.Unplannedfailuresareunpredictableandarenotanintegralpartofthesystemʹs
workinghours.Thedepartmentinchargeofmonitoringtheoperationoftheanalyzedsystemkeeps
recordsthatincludethebeginning,duration,andtypeoffailures.Theserecordsaremaintainedona
shiftordailybasis,andanofficialmonthlyreportisissuedontheoperationofthesystemasawhole,
includingthecontinuouspart.
Failuresarecategorizedintothefollowinggroups:
technologicalfailures,
electricalfailures,
mechanicalfailures,
shiftofworkers,
equipmentoverhaul,
dailyreview,
weatherconditions.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
17
Figure16.TheauthorsofthearticlewithrepresentativesoftheGackomineduringatourofthefield
(privatearchive).
ThefollowingfigureshowsthepercentageparticipationbytypesoffailuresfortheCCSsystem
byyear.
Figure17.ThepercentageoffailuresoftheCCSsystemintheperiodfrom20182023.years.
Thisgraphshowsthepercentageparticipationofdifferenttypesoffailuresintheoperationof
theCCSsystemintheperiodfrom2018to2023.Thekeyindicatorsofthegraphareasfollows:
Technologicalfailuresareconsistentlyhighandvariesfrom20.1%to33.4%peryear,which
accountsforthelargestpartoftotaldowntime(29%foraperiodof6years).
Shiftofworkersandequipmentoverhaularealsosignificantdowntimefactorswithoverall
percentagesof23%and22%.
Electricalfailuresandmechanicalfailureshavearelativelysmallershare,butshowvariations
betweenyears.
Weatherconditionshavetheleastparticipationintotaldowntime(0.5%foraperiodof6years).
Dailyreviewvariesbyyear,butrecordsasignificantparticipationof17%fortheentireobserved
period.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
18
Overalldatashowthattechnologicalfailures,shiftofworkersandequipmentoverhaularethe
mostdominantfactorsintheoperationoftheCCSsystem,whileweatherconditionsaretheleast
significant.
DependabilityoftheCCSsystemintheperiod20182023isshowninthefollowingfigure(Figure
18).
Figure18.DependabilityofthecontinuouspartoftheCCSsystemintheperiodfrom20182023.
years.
DataonthedependabilityoftheCCSsysteminpercentagesfortheperiodfrom2018to2023
showslightvariations.In2018and2020,thesystemhadthehighestdependabilityof55%.In2019,
dependabilitywasthelowest,at46%.Thiswastheresultofasignificantpercentageoffailuresrelated
tothedailyinspectionofequipment,whichwassignificantlyhigherin2019comparedtoallothers
years.In2021and2022,dependabilitywasstableat53%,while2023sawaslightdropto51%.Overall,
systemdependabilityvariesbetween46%and55%overtheobservedperiod.Theaveragevalueof
dependabilityfortheperiodof6yearsis52.16%.
6.Conclusions
Thispaperpresentsamodelforevaluatingthedependabilityoftechnicalsystemsusingfuzzy
logic.Itbreaksdowndependabilityintodifferentindicatorsandcombinesthemusingthemaxmin
compositionmethod.
UnlikeconventionalmodelsthatrelyonITmonitoringsystems,thisapproachincorporates
expertassessmentsfromindividualsdirectlyinvolvedinmachineoperationandmaintenance.Its
simplicityandrelianceonexpertjudgmentmakeiteasytoimplementwithoutextensivedata
collection.
Thismodeloffersafastwaytoassesssystemsafetyandprovidesvaluableinsightsforenhancing
specificindicatorsandoveralldependability.Byfollowingthemodelʹsrecommendations,companies
canstreamlinemaintenanceactivities,analyzeworkflows,pinpointweaknesses,andoptimizethe
lifecyclesofmachinerytoloweroperationalexpenses.
Fieldexperienceconfirmsthatthemodelaccuratelyreflectsthedependabilityofanalyzed
systems,consideringfactorssuchassystemcomponents,structure,age,workingconditions,and
organizationalinfluences.Whencomparingthereliabilitydataobtainedthroughthefuzzylogic
modelwiththeactualfielddatacollectedovertheperiodfrom2018to2023,thereisastrong
correlation.Thedependabilityobtainedbythemodelis59%,andbasedonhistoricaldataforaperiod
of6years,theaveragevalueofdependabilityis52.6%.Thisconsistencyunderscoresthemodelʹs
effectivenessincapturingtherealworldperformanceanddependabilityoftheCCSsystems.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
19
Moreover,thehistoricaldataʹsalignmentwiththemodelʹsoutputvalidatestheuseoffuzzylogic
inpredictingandimprovingdependability.Thisapproachnotonlyfacilitatesproactivemaintenance
andriskmanagementbutalsosupportsstrategicdecisionmakingbyprovidingasophisticated
understandingofsystemvulnerabilities.Theadaptabilityofthemodeltodifferentminingcontexts
anditsrelianceonexpertknowledgefurtherenhanceitspracticalityandrobustness.Ultimately,this
modelservesasavaluabletoolforminingcompaniesaimingtoachievegreatersustainability,
efficiency,andcosteffectivenessintheiroperations.
Futureresearchcouldexplorefurtherrefinementofthismodelbyintegratingitwithadvanced
dataanalyticsandmachinelearningtechniquestoenhancepredictiveaccuracyandadaptability.
Additionally,expandingtheapplicationofthismodeltootherindustriesbeyondminingcouldreveal
broaderinsightsandbenefits,establishingitasaversatiletoolfordependabilityassessmentacross
varioussectors.Thecontinuedevolutionandvalidationofthismodelwillensureitsrelevanceand
efficacyintheeverchanginglandscapeoftechnicalsystemmanagement.
AuthorContributions:Conceptualization,N.S.andM.G.;methodologyN.S.,M.G.andP.M..;Writing–review
andeditingN.S.,P.M.,D.K.,A.D.,andM.G.,supervisionS.S.,N.S.andM.G.Allauthorshavereadandagreed
tothepublishedversionofthemanuscript.
Funding:ThisworkwasfinanciallysupportedbytheMinistryofScience,TechnologicalDevelopmentand
InnovationoftheRepublicofSerbia,Contractonrealizationandfinancingthescientificresearchworkofthe
MiningandMetallurgyInstituteBorin2024,ContractNo.:4510366/202403/200052.
Acknowledgments:
GratitudetoMinistryofScience,TechnologicalDevelopmentandInnovationoftheRepublicofSerbia
MiningandMetallurgyInstituteBor,Zelenibulevar35,Bor
GackoMineandThermalPowerPlant
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Ali,S.,Giurco,D.,Arndt,N.etal.Mineralsupplyforsustainabledevelopmentrequiresresource
governance.Nature543,367–372(2017).https://doi.org/10.1038/nature21359
2. Dubiński,J.(2013).SustainableDevelopmentofMiningMineralResources.JournalofSustainableMining,
12(1),1–6.doi:10.7424/jsm130102
3. Purhamadani,E.,Bagherpour,R.,&Tudeshki,H.(2020).Energyconsumptioninopenpitmining
operationsrelyingonreducedenergyconsumptionforhaulageusinginpitcrushersystems.Journalof
CleanerProduction,125228.doi:10.1016/j.jclepro.2020.125228
4. Zhang,S.,&Xia,X.(2011).Modelingandenergyefficiencyoptimizationofbeltconveyors.AppliedEnergy,
88(9),3061–3071.doi:10.1016/j.apenergy.2011.03
5. Tabelin,C.B.,Dallas,J.,Casanova,S.,Pelech,T.,Bournival,G.,Saydam,S.,&Canbulat,I.(2021).Towards
alowcarbonsociety:Areviewoflithiumresourceavailability,challengesandinnovationsinmining,
extractionandrecycling,andfutureperspectives.MineralsEngineering,163,106743.
doi:10.1016/j.mineng.2020.106743
6. Ercelebi,S.G.;Bascetin,A.Optimizationofshoveltrucksystemforsurfacemining.J.South.Afr.Inst.Min.
Metall.2009,109,433439.
7. Bao,H.;Knights,P.;Kizil,M.;Nehring,M.ElectrificationAlternativesforOpenPitMineHaulage.Mining
2023,3,1–25
8. MohamadIssa&AdrianIlinca&DanielR.Rousse&LoïcBoulon&PhilippeGroleau,2023.ʺRenewable
EnergyandDecarbonizationintheCanadianMiningIndustry:OpportunitiesandChallenges,ʺEnergies,
MDPI,vol.16(19),pages122,October.
9. Kim,H.;Lee,W.H.;Lee,C.H.;Kim,S.M.DevelopmentofMonitoringTechnologyforMineHaulageRoad
throughSensorConnectedDigitalDeviceandSmartphoneApplication.Appl.Sci.2022,12,12166
10. DejanV.Petrović,MilošTanasijević,SašaStojadinović,JelenaIvaz,PavleStojković.ʺFuzzyModelforRisk
AssessmentofMachineryFailuresʺinSymmetry,MDPIAG(2020).https://doi.org/10.3390/sym12040525
11. Gomilanovic,M.;Tanasijevic,M.;Stepanovic,S.DeterminingtheAvailabilityofContinuousSystemsat
OpenPitsApplyingFuzzyLogic.Energies2022,15,6786.https://doi.org/10.3390/en15186786
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
20
12. Djenadic,S.;Ignjatovic,D.;Tanasijevic,M.;Bugaric,U.;Jankovic,I.;Subaranovic,T.Developmentofthe
AvailabilityConceptbyUsingFuzzyTheorywithAHPCorrection,aCaseStudy:BulldozersintheOpen
PitLigniteMine.Energies2019,12,4044.https://doi.org/10.3390/en12214044
13. Gomilanovic,M.;Bugaric,U.;Bankovic,M.;Stanic,N.;Stepanovic,S.DeterminingtheAvailabilityof
ContinuousSystemsinOpenPitsUsingANFISandaSimulationModel.Energies2024,17,1138.
https://doi.org/10.3390/en17051138
14. Gomilanovic,M.;Tanasijevic,M.;Stepanovic,S.;Miletic,F.AModelforDeterminingFuzzyEvaluations
ofPartialIndicatorsofAvailabilityforHighCapacityContinuousSystemsatCoalOpenPitsUsinga
NeuroFuzzyInferenceSystem.Energies2023,16,2958.https://doi.org/10.3390/en16072958
15. Čelebić,M.;Bajić,D.;Bajić,S.;Banković,M.;Torbica,D.;Milošević,A.;Stevanović,D.Developmentofan
IntegratedModelforOpenPitMineDiscontinuousHaulageSystemOptimization.Sustainability2024,16,
3156.https://doi.org/10.3390/su16083156
16. Urošević,K.;Gligorić,Z.;Miljanović,I.;Beljić,Č.;Gligorić,M.NovelMethodsinMultipleCriteriaDecision
MakingProcess(MCRATandRAPS)—ApplicationintheMiningIndustry.Mathematics2021,9,1980.
https://doi.org/10.3390/math9161980
17. Halilović,D.;Gligorić,M.;Gligorić,Z.;Pamučar,D.AnUndergroundMineOrePassSystemOptimization
viaFuzzy0–1LinearProgrammingwithNovelTorricelli–SimpsonRanking
Function.Mathematics2023,11,2914.https://doi.org/10.3390/math11132914
18. Li,S.;Huang,Q.;Hu,B.;Pan,J.;Chen,J.;Yang,J.;Zhou,X.;Wang,X.;Yu,H.MiningMethodOptimization
ofDifficulttoMineComplicatedOrebodyUsingPythagoreanFuzzySetsandTOPSIS
Method.Sustainability2023,15,3692.https://doi.org/10.3390/su15043692
19. Bajić,S.;Bajić,D.;Gluščević,B.;RistićVakanjac,V.ApplicationofFuzzyAnalyticHierarchyProcessto
UndergroundMiningMethodSelection.Symmetry2020,12,192.https://doi.org/10.3390/sym12020192
20. Jaderi,F.,Ibrahim,Z.Z.,&Zahiri,M.R.(2018).CriticalityAnalysisofPetrochemicalAssetsusingRisk
BasedMaintenanceandtheFuzzyInferenceSystem.ProcessSafetyandEnvironmentalProtection.
doi:10.1016/j.psep.2018.11.005
21. Bakhtavar,E.,Hosseini,S.,Hewage,K.etal.AirPollutionRiskAssessmentUsingaHybridFuzzy
IntelligentProbabilityBasedApproach:MineBlastingDustImpacts.NatResourRes30,2607–2627(2021).
https://doi.org/10.1007/s11053020098104
22. Tubis,A.;WerbińskaWojciechowska,S.;Wroblewski,A.RiskAssessmentMethodsinMiningIndustry—
ASystematicReview.Appl.Sci.2020,10,5172.https://doi.org/10.3390/app10155172
23. Jiskani,I.M.,Cai,Q.,Zhou,W.,&Lu,X.(2020).Assessmentofrisksimpedingsustainableminingin
Pakistanusingfuzzysyntheticevaluation.ResourcesPolicy,69,101820.doi:10.1016/j.resourpol.2020.1018
24. Spanidis,P.M.;Roumpos,C.;Pavloudakis,F.AFuzzyAHPMethodologyforPlanningtheRisk
ManagementofNaturalHazardsinSurfaceMiningProjects.Sustainability2021,13,2369.
https://doi.org/10.3390/su13042369
25. Djenadic,S.;Tanasijevic,M.;Jovancic,P.;Ignjatovic,D.;Petrovic,D.;Bugaric,U.RiskEvaluation:Brief
ReviewandInnovationModelBasedonFuzzyLogicandMCDM.Mathematics2022,10,811.
https://doi.org/10.3390/math10050811
26. Dimitrijević,B.;Šubaranović,T.;Stević,Ž.;Kchaou,M.;Alqurashi,F.;Subotić,M.ANovelHybridFuzzy
MultipleCriteriaDecisionMakingModelfortheSelectionoftheMostSuitableLandReclamationVariant
atOpenPitCoalMines.Sustainability2024,16,4424.https://doi.org/10.3390/su16114424
27. Ebrahimabadi,A.,Pouresmaieli,M.,Afradi,A.,Pouresmaeili,E.,&Nouri,S.(2018).ComparingTwo
MethodsofPROMETHEEandFuzzyTOPSISinSelectingtheBestPlantSpeciesfortheReclamationof
SarcheshmehCopperMine.AsianJournalofWater,EnvironmentandPollution,15(2),141–
152.doi:10.3233/ajw180026
28. Liang,W.;Dai,B.;Zhao,G.;Wu,H.AssessingthePerformanceofGreenMinesviaaHesitantFuzzy
ORESTE–QUALIFLEXMethod.Mathematics2019,7,788.https://doi.org/10.3390/math7090788
29. Nehring,M.,Knights,P.F.,Kizil,M.S.,&Hay,E.(2018).Acomparisonofstrategicmineplanning
approachesforinpitcrushingandconveying,andtruck/shovelsystems.InternationalJournalofMining
ScienceandTechnology,28(2),205–214.doi:10.1016/j.ijmst.2017.12.026
30. Zhang,S.,&Xia,X.(2011).Modelingandenergyefficiencyoptimizationofbeltconveyors.AppliedEnergy,
88(9),3061–3071.doi:10.1016/j.apenergy.2011.03
31. Jankovic,I.,(2020).Optimisationofthelifecycleconceptofauxiliarymachineryatligniteopenpitmines,
doctoraldissertation,FacultyofMiningandGeology,UniversityofBelgrade.
32. Todorovic,J.,(1993).TechnicalSystemsMaintenanceEngineering,YugoslavSocietyforEnginesand
Vehicles,Belgrade.
33. Tanaskovic,T.,(2001).Maintenanceofminingmachines,FacultyofMiningandGeology,Universityof
Belgrade,Belgrade.
34. Tanasijevic,M.,(2007).Dependabilityofthemechanicalcomponentsofbucketwheel,doctoraldissertation,
FacultyofMiningandGeology,UniversityofBelgrade.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
21
35. Krunic,D.J.,(2021)Developmentofqualityofservicemodelforauxiliaryequipmentinopenpitlignite
mines,doctoraldissertation,FacultyofMiningandGeology,UniversityofBelgrade.
36. Krunić,D.J.,Vujić,S.,Tanasijević,M.etal.ModelApproachestoLifeCycleAssessmentofAuxiliary
MachinesBasedonanExampleofaCoalMineinSerbia.JMinSci54,404–413(2018).
https://doi.org/10.1134/S1062739118033809
37. InternationalElectrotechnicalVocabulary,DependabilityandQualityofService,IECStandard,1990,no.
50(191)
38. JovancicP.(2014)MaintenanceofMiningMachines,FacultyofMiningandGeology,Universityof
Belgrade,Belgrade,2014,ISBN:9788673522500
39. Wang,J.;Yang,J.B.;Sen,P.SafetyAnalysesandSynthesisUsingFuzzySetsandEvidentialReasoning.
Reliab.Eng.Syst.Saf.1995,47,103–118.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythose
oftheindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)
disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideas,methods,instructionsor
productsreferredtointhecontent.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 doi:10.20944/preprints202407.1952.v1
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The expansion of the open-pit exploitation of mineral raw materials, and especially the energy resources of fossil fuels, makes open-pit coal mines spatially dominant objects of large mining basins. Exploitation activities are accompanied by negative ecological impacts on the environment, which requires the integral planning, revitalization, reclamation, and rehabilitation of the disturbed area for human use in the post-exploitation period. The post-exploitation remediation and rehabilitation of open-pit mining areas and disposal sites, i.e., space disturbed by mining activities and accompanying facilities, are complex synthetic multidisciplinary multiphase engineering project tasks. In this paper, a hybrid fuzzy MCDM model (Multiple-Criteria Decision-Making) was developed for the selection of a reclamation solution for the Tamnava-West Field open-pit mine. IMF SWARA (Improved Fuzzy Stepwise Weight Assessment Ratio Analysis) was applied to define the weights of 12 criteria of different structures used in the evaluation of reclamation solutions. The Fuzzy ROV (Range of Value) method was applied to select the reclamation solution from a total of 11 solutions previously obtained using a process approach. The results of the hybrid IMF SWARA—Fuzzy ROV model show that forestry is the best solution for the Tamnava-West Field open-pit mine. After the results had been obtained, verification analyses of the proposed model were performed and the best stable proposed reclamation solution was determined.
Article
Full-text available
The selection of the optimal equipment for discontinuous haulage systems is one of the most important decisions that need to be made when an open-pit mine is designed. There are a number of influencing factors, including natural (geological and environmental), technical, economic, and social. Some of them can be expressed numerically, in certain units of measure, while others are descriptive and can be stated by linguistic variables depending on the circumstances of the project. These factors are characterized by a high level of uncertainty, associated with both exploration and mining operations. The experience, knowledge, and expert judgment of engineers and specialists are of key importance for the management of mining processes, consistent with the issues stemming from the dynamic expansion of open-pit mines in space over time. This paper proposes an integrated model that translates all the criteria that affect the selection of the optimal solution into linguistic variables. By employing the multiple-criteria decision-making method and combining it with fuzzy logic, we developed an algorithm that addresses all the above-mentioned uncertainties inherent in various mining processes where the experience of experts forms the basis. The fuzzy analytic hierarchy process is used in order to deal with trending decision problems, such as mining equipment and management system selection. The entire algorithm was applied to a real case study - the Ugljevik East 1 open-pit mine.
Article
Full-text available
This paper presents a model for determining the availability of continuous systems at open pits using the neuro-fuzzy system. The concept of availability is divided into partial indicators (synthetic indicators and sub-indicators). The presented model in relation to already existing models for determining availability uses a combination of the advantages of artificial neural networks and fuzzy logic. The case study addressed the I ECC (bucket wheel excavator–conveyors–crushing plant) system of the open pit Drmno, Kostolac. In this paper, in addition to the ANFIS model for determining the availability of continuous systems, a simulation model was developed. The obtained results of the ANFIS model were verified with the help of a simulation model that uses certain assumptions about the distribution of failures. This paper was created as a result of several years of field and theoretical research into the availability of continuous systems in open pits, and completes a cycle that consists of several published articles on the subject of modeling the behavior of these systems in real time using a time picture of the state, expert assessment, simulation and AI models, while respecting the multidisciplinarity of the problem (mining technological, mechanical, and information technological aspects). The developed ANFIS model is a key instrument for improving operational efficiency and resource management in the mining sector. Its ability to accurately predict the availability of the ECC system brings not only operational benefits through reduced downtime and optimized maintenance, but also a potential reduction in overall costs at coal open pits. Such an innovative model marks a significant step forward in the mining industry, especially when it comes to continuous systems in coal open pits.
Article
Full-text available
In this work, we propose a 3D dynamic optimization model that enables the design of an underground mine ore pass system with uncertainties. Ore transportation costs and ore pass development costs are quantified by triangular fuzzy numbers. Transportation costs are treated as production costs, and they vary over the duration of mining operation, while development costs of ore passes are treated as an investment, and they are treated as constant. The developed model belongs to the class of fuzzy 0–1 linear programming models, where the fuzzy objective cost function achieves a minimum value, with respect to given set of techno-dynamic constraints. Searching for optimal value in the fuzzy environment is a hard task, and because of that, we developed a new ranking function which transforms the fuzzy optimization model into a crisp one. A triangular fuzzy number can be presented as a triangular graph G(V,E) composed of vertices and edges. The x-coordinate of the Torricelli point of a triangular graph presents the crisp value of a triangular fuzzy number. The use of this model lets us know the optimal number of ore passes, optimal location of ore passes, and optimal dynamic ore transportation plan.
Article
Full-text available
Abstract: This paper presents a model for determining fuzzy evaluations of partial indicators of the availability of continuous systems at coal open pits using a neuro-fuzzy inference system. The system itself is a combination of fuzzy logic and artificial neural networks. The system availability is divided into partial indicators. By combining the fuzzy logic and artificial neural networks, a model is obtained that has the ability to learn and uses expert judgment for that learning. This paper deals with the ECC system (bucket wheel excavator-conveyor-crushing plant) of the open pit Drmno-Kostolac, which operates within the Electric Power Company of Serbia. The advantage of a model of this type is that it does not rely on the historical experiences of experts and usual predicted values for the fuzzy evaluation of partial indicators, which are based on the assumption that similar systems affect availability in a similar way. The fuzzy evaluation of partial indicators is based on historical data for the specific system for which the model was created. As such, it can more accurately predict continuous systems availability on the basis of expert evaluations in the appropriate time period. Another advantage of this model is that the availability is estimated on a quarterly basis, which gives a more accurate view because it uses a smaller time period with more similar characteristics and, thus, includes certain external influences which are related to the quarterly meteorological conditions.
Article
Full-text available
In Suichang gold mine, the altered rock type gold deposits were cut by faults and joint fissures, leading to complex resource endowment characteristics, large changes in occurrence, a serious complex of ore vein branches and great difficulty in mining. In order to select a suitable mining method for such a difficult and complicated orebody, a multi-factor and multi-index comprehensive evaluation system involving benefits, costs, safety and other aspects was constructed by using the Pythagorean fuzzy sets and TOPSIS method. Taking Suichang gold mine as an example, the weighted aggregation evaluation matrix was constructed, the closeness index of the four mining schemes were 0.8436, 0.3370, 0.4296 and 0.4334, and the mechanized upward horizontal layering method was determined as the optimal scheme. This method overcame the fuzzy comparison of economic and technical indicators directly, but converted them into corresponding fuzzy numbers to obtain accurate closeness index for optimization. The application of this method not only ensured a safe, efficient and environment-friendly mining effect, but also provided a reference for the optimization of the mining scheme of the severely branched composite orebody.
Article
Full-text available
Truck-Shovel (TS) systems are the most common mining system currently used in large surface mines. They offer high productivity combined with the flexibility to be rapidly relocated and to adjust load/haul capacity and capital expenditure according to market conditions. As the world moves to decarbonise as part of the transition to net zero emission targets, it is relevant to examine options for decarbonising the haulage systems in large surface mines. In-Pit Crushing and Conveying (IPCC) systems offer a smaller environmental footprint regarding emissions, but they are associated with a number of limitations related to high initial capital expenditure, capacity limits, mine planning and inflexibility during mine operation. Among the emerging technological options, innovative Trolley Assist (TA) technology promises to reduce energy consumption for lower carbon footprint mining systems. TA systems have demonstrated outstanding potential for emission reduction from their application cases. Battery and energy recovery technology advancements are shaping the evolution of TAs from diesel-electric truck-based patterns toward purely electrified BT ones. Battery Trolley (BT) systems combined with autonomous battery-electric trucks and Energy Recovery Systems (ERSs) are novel and capable of achieving further significant emission cuts for surface mining operations associated with safety, energy saving and operational improvements. This article reviews and compares electrification alternatives for large surface mines, including IPCC, TA and BT systems. These emerging technologies provide opportunities for mining companies and associated industries to adopt zero-emission solutions and help transition to an intelligent electric mining future.
Article
Full-text available
A system that can acquire and share information about the environment from vehicles using various sensors and smartphones was developed to prevent accidents that may occur on mine haulage roads. A light detection and ranging sensor and an accelerometer in a smartphone were used to determine the road surface conditions at a mining site, and dust and gas sensors were used to measure the atmospheric environment. The GPS function of the smartphone was utilized to obtain the location data of the vehicle, and a smartphone application was developed to collect and share this information. A preliminary test was conducted at Samcheok Campus, Kangwon National University, and a field test at the Samdo mine. The data acquired from each vehicle could be shared in real time. Additionally, by analyzing the spatial distribution of each dataset, sections with rough road surfaces and those with poor atmospheric conditions could be identified. If the technology is further developed and big-data analysis is performed in the future, the developed technology could contribute to improving the mining environment.
Article
Full-text available
This work presents a model for determining the availability of continuous systems at open pits by applying fuzzy logic and fuzzy inference systems. The applied model was formed by the synthesis of independent partial indicators of availability. The model is based on an expert system for assessing the availability of continuous mining systems. The availability of the system, as a complex state parameter, is decomposed into the partial indicators, reliability, and convenience of maintenance, and the fuzzy compositions, used for integration the partial indicators, are the max–min and min–max compositions. The advantage of this model in comparison to the conventional models is that it takes into account the effect of practical indicators of availability, does not require long-term monitoring, and records necessary to determine the time picture of the system state. This model for determining the availability has a role to help responsible persons at open pits in the planning and control of exploitation, and the adoption of an appropriate maintenance strategy, all with the aim of stable production and cost reduction. The presented model can be used as a tool for the quick assessment of system availability, based on expert judgments and assessments.